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Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA varia-

tion on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read se-

quencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and

complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies

(ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale

called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and

show that newer, higher accuracy ONT reads substantially improve assembly quality.

[Supplemental material is available for this article.]

Phased genome assemblies enable a variety of clinically motivated
analyses and population studies. For clinical and biological studies,
there are many transcriptional and translational outcomes that
could result from a given set of mutations in the same gene or reg-
ulon, depending on whether they co-occur on the same molecule
of DNA (Cordeiro et al. 2006;Walker et al. 2016;Miller and Piccolo
2020). Additionally, understanding how variants are linked en-
ables imputation, and therefore a high-quality set of phased vari-
ants can serve as a catalyst for much larger volume experiments,
creating greater statistical power for disease association (Marchini
and Howie 2010; Peterson et al. 2019). Population genetics also
benefits from haplotype information because it provides a means
to estimate recombination and gene flow (Song et al. 2017). As a
consequence of its many applications, a significant portion of re-
cent efforts in human genomics have become focused on generat-
ing a high-quality, genome-wide set of phased variants (Altshuler
et al. 2005; Chin et al. 2020; Wang et al. 2022).

Methods for phasing are diverse and can use information
from populations or from an individual’s sequencing data. At
the population level, variants are associated with one another by
their co-occurrence across many individuals (Altshuler et al.

2005; Browning and Browning 2007, 2011; Howie et al. 2009;
Byrska-Bishop et al. 2022). At the individual level, variants are
phased based on co-occurrence in spanning reads. Individual-level
methods can be further subdivided into approaches that rely on
mapping to an existing assembly and those that use reads directly
for creating a phased consensus. When read length or accuracy is
limited, mapping-based methods are essential, because mapping
is required to find a set of candidate variants that share reads
among them. After mapping, reads are usually phased by finding
a partition that maximizes the consistency of shared reads among
the alleles (Patterson et al. 2015; Edge et al. 2017; Ebler et al. 2019).

In contrast to reference-based methods, de novo methods for
read-based phasing generate candidate variants internal to the as-
sembler, following read overlap (Cheng et al. 2021; Rautiainen
et al. 2023). The advantage of assembly-based methods is that
they do not fall victim to reference bias and can therefore identify
variants that would otherwise map poorly, as with repetitive re-
gions or large duplications and inversions (Brandt et al. 2015;
Günther and Nettelblad 2019). Reference-based methods can
work around this issue by using a draft assembly instead of an
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existing reference. When parental sequencing data are available,
the strategy of trio binning simplifies the problem by partitioning
the reads using exact subsequences (k-mers) from parental data.
However, its applications have been limited by the added need
for parental information and the inability of k-mers to adequately
label repetitive or homozygous regions that have few haplotype-
specific k-mers (Koren et al. 2018).

Despite the variety of phasingmethods and the high demand
for phased genomes, all the Oxford Nanopore Technologies
(ONT)–specific genome assemblers evaluated at the time of
Shasta’s original publication (three years before this work), includ-
ing Shasta (Shafin et al. 2020), produced collapsed, haploid assem-
blies. Some assemblers provided pseudohaplotypes or alternative
contigs that were not explicitly phased or evaluated as such.
Since then, none of the remaining ONT-based assemblers have
adapted their methods to generate true diploid assemblies.
Instead, as a result of the emergence of Pacific Biosciences
(PacBio) HiFi reads (Wenger et al. 2019), modern diploid assem-
blers have used shorter, more accurate reads to infer haplotype-
specific overlaps or build a large-k de Bruijn graph (Cheng et al.
2021; Rautiainen et al. 2023). In the case of Verkko, ONT reads
are used to resolve regions of the genome graph that remain tan-
gled after construction with HiFi.

To date, there is only one published example of a nanopore
assembler that produces phased haplotypes (Luo et al. 2021), but
it does not run to completion on our ultralong ONT data. An ear-
lier paper concluded that nanopore de novo phasing was not
practical at the time (Duan et al. 2022). To address this, we pre-
sent the results of continued development on the Shasta assem-
bler and its new “mode 2” of assembly, capable of using R9 or
R10 ultralong nanopore reads to phase variation observed in its
sequence graph. Following the overlap stage of assembly, Shasta
methods and data structures have been replaced in order to ex-
plicitly model sequence “bubbles” or local regions of heterozy-
gous variation and their correlation to one another (see
Methods).

Because the basis of assembly phasing lies in the overlapping
of reads, highly repetitive or homozygous regions limit phasing in
Shasta and other assemblers, such as Hifiasm and Verkko (Cheng
et al. 2021; Rautiainen et al. 2023). Although trio-based haplotag-
ging of partially phased assemblies produces accurate and global
phasing, parental sequencing is not always feasible, and for a vari-
ety of species, it is essentially impossible. To address these short-
comings, proximity ligation data have been used for extending
phasing beyond the length of a typical read without the need for
parental sequencing (Selvaraj et al. 2013). Sequencing technolo-
gies like Hi-C and Pore-C exploit the physical packing of chroma-
tin in the nucleus to ligate proximal regions of DNA molecules,
which can be hundreds of millions of base pairs apart along the
chromosome (Lieberman-Aiden et al. 2009; Deshpande et al.
2022), exceeding the longest nanopore reads observed (Payne
et al. 2019). Pore-C is of particular interest because it does not
need a separate Illumina sequencing machine, and as a result of
its protocol, it produces many more proximity-based contacts
compared withHi-C at the same coverage, while also not requiring
parental data.

The approach described here leverages the assembly graph to
phase and extend partial haplotypes. In this scheme, variants are
not inferred from the read alignments. Instead, graph topology
or sequence homology is used to identify large-scale haplotypic
bubbles in the graph, and the information from proximity linkag-
es is used to phase bubbles relative to each other. To find a parti-

tion of haplotypes that is consistent with the proximity
information, this work uses a new variation of the stochastic opti-
mization methods previously described (Selvaraj et al. 2013;
Cheng et al. 2021). Once phases are inferred, chaining can then
make use of the information stored in the edges of the graphical
fragment assembly format (GFA) representation of the assemb-
ly graph to achieve a similar result to scaffolding algorithms
(Burton et al. 2013; Putnam et al. 2016). Our proximity-based
phasing methods are evaluated on Shasta, Hifiasm, and Verkko
graphs, using both Hi-C and Pore-C data, showing flexibility and
reusability. In addition, we show results comparing proximity liga-
tion libraries, which are produced as part of our automated work-
flow. GFAse also provides a means to do parental k-mer
haplotagging using the succinct variation graph that Shasta pro-
duces (see Methods).

Using nanopore sequencing for both long reads and proxim-
ity ligated reads (Pore-C), we aim to show a previously undescribed
single-sequencer pipeline that is a logistically simpler alternative
to hybrid and HiFi-based approaches, while attaining comparable
accuracy. We compare the output of this pipeline to a variety of
other hybrid methods that use Hi-C, trio Illumina, and PacBio
HiFi data types. In addition to this, we aim to evaluate the tradeoffs
of quality and cost-efficiency using a series of experiments. For the
upper limit of cost-efficiency, we test a single flow cell (FC) of
PromethION R10, and for the upper limit of assembly continuity,
we evaluate high-coverage, ultralong reads as input. These data
points may provide a reference for future projects, which must
choose from many possible combinations of sequence inputs
and software.

Results

Phased assembly generally hasmultiple steps for which input type
and choice of software or configuration are key to generating a use-
ful product (Fig. 1A). For input data quality, we separately evaluate
conventional long reads and data types used for additional phas-
ing (Fig. 1B). For completeness, we compare proximity-ligated
reads to the standard of trio Illumina phasing. For evaluating the
output of eachmodule, we have primarily used the HG002 bench-
mark human genome, and we performed supplementary analysis
involving HG005 and four other diverse samples from the HPRC
Year 1 data release. We also show phasing in diploid non-human
species in two different organisms.

Long-read sequencing

To address variability in read length, coverage, and accuracy, these
results evaluate phasing in six different combinations of library
preparation and chemistry. The effect of read accuracy on phasing
is addressed with differing nanopore chemistries: R9 and R10. For
the data sets evaluated, R9 has median accuracy of 95.7%–96.1%
(Fig. 2A), and R10 has 98.3%–98.9% median accuracy. In ONT
R9, three different length distributions and coverages were assem-
bled. The R9 data sets have minimum read lengths of 10 kbp, 35
kbp, and 100 kbp, respectively, so they have been labeled “stan-
dard,” “ultralong” (UL), and “ultra-ultralong” (UUL) for conve-
nience. Nanopore data sets vary considerably in length
characteristics, so cumulative length distributions are plotted for
proper comparison (Fig. 2B).

For R10, a similar series of length distributions are used, with
one key difference: The lowest coverage assembly used only a sin-
gle PromethION flow cell (Fig. 2B, labeled 1FC). For that data set,
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reads were sheared to maximize throughput. In the R10 UL data
set, four flow cells of unsheared DNA were combined to create a
data set with 60× coverage, reaching an approximate minimum
read length of 50 kbp. Finally, in an attempt to maximize contigu-
ity and find the limits of ourmethodswith these data, wehave also
assembled a data set from 11 flow cells and down-sampled to 60×,
resulting in an effective minimum read length of 165 kbp.

Pore-C and Hi-C sequencing

Anearly version of the Pore-Cprotocol was performed andprovided
by ONT for use in this work and compared with existing Hi-C data
sets fromtheHPRCyear 1 data freeze.Notably, these Pore-C libraries
do not have a larger modal alignment length than Hi-C (Fig. 2C).
The difference between Pore-C’s multicontact concatemers and
Hi-C’s one-to-one paired ligation are shown using alignments.
Pore-C concatemers are composed of many smaller reads, or “sub-
reads,” analogous to Hi-Cs paired reads. As a result of having
many subreads, each Pore-C read hasmany alignments, and its con-
tacts accumulate in an all-versus-all manner among subreads. The

number of subreads (usable for phasing) can be in the dozens (Fig.
2D). In contrast, Hi-C accumulates at most one long-range contact
per pair of reads, and inmany cases, read pairs contain unmappable
reads, which drastically reduces its throughput.

To show the practical differences between Pore-C and Hi-C
that are particularly relevant to phasing, these results also show
the signal ratio (Fig. 2E) and the total number of contacts (Fig.
2F) for reads that map to a diploid reference. Because mapping
quality is used to filter contacts during phasing, the spectrum of
signal ratio and the number of contacts are plotted across observed
map qualities. Signal ratio is computed using a trio-phased diploid
reference to estimate the number of consistent and inconsistent
contacts (cis or trans w.r.t. haplotypes). In summary, contacts
from Hi-C consistently have a higher signal ratio, whereas
Pore-C produces more contacts.

Assemblers evaluated

For phasing and assembly quality evaluation, we compare towidely
used pipelines for diploid assembly that useONT reads, PacBioCCS,

A

B

Figure 1. Summary of de novo phasing pipeline using Shasta and GFAse and input proximity ligation data types Pore-C and Hi-C. (A) Shasta performs de
novo assembly and phases to the extent that is supported by informative variants in the nanopore reads. GFAse then takes a partially phased assembly GFA
and extends phasing using orthogonal phasing information. GFAse can perform phasing based on any alignable data type (Hi-C, Pore-C, etc.). For Shasta
graphs, GFAse can also use parental sequencing. The pathways with bolded arrows and blue fill are the methods that are previously undescribed. (B)
Diagram of Pore-C sequencing in comparison to Hi-C. In the all-versus-all contact matrix, shaded squares represent usable contacts, which scale at a
rate of 1/2n2− n for a concatemer of n fragments or subreads.
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or both. For PacBio CCS and hybrid CCS/ONT assemblers, we have
included Hifiasm and Verkko (Table 1). As the name implies,
Hifiasm is an assembler for PacBio CCS (HiFi) data that has built-
in methods for trio and Hi-C phasing. When comparing Shasta to
Hifiasm, the relative strengths of PacBio and nanopore become ap-
parent. GFAse is also comparedwithHifiasm’s native phasingmeth-
ods to evaluate GFAse’s performance. Verkko is used in this
comparison as an upper limit, because it uses both high-coverage
CCS and ONT reads to generate its assemblies. In this comparison,
Hifiasmuses 30× coverageCCS and 30× coverageHi-C. Verkko “pro-
duction” assemblies use 42× CCS and 70× ONT >100 kbp, as well as
trio Illumina. The “full-coverage” Verkko assembly uses 190× CCS.

For nanopore, HapDuphas recently developed a combination
of alignment-based and assembly-basedmethods for phasing long
reads (Kolmogorov et al. 2023). HapDup uses a linear unphased
Shasta assembly as a starting point, phases aligned reads, and
then generates a reference-free consensus for each haplotype.
HapDup is specialized for structural variant (SV) detection in
low-coverage nanopore data sets, so it is a natural comparison
point for phased Shasta assemblies.

Phasing results

To evaluate phasing accuracy, the assemblies presented are aligned
to a common reference, and their heterozygous alleles are
compared using WhatsHap to an orthogonally phased truth set,
produced by NIST’s Genome in a Bottle (Zook et al. 2020) consor-
tium. Switch rate indicates how often alleles in the sample switch
phase relative to the truth set, and hamming rate indicates the pro-
portion of switched loci. Genotypes with allele sequences that do
not both exactly match the reference VCF are not evaluated for
phasing, which is accounted for by reporting the number of vari-
ants covered.

GFAse trio uses k-mers from parental Illumina short reads to
phase the heterozygous bubbles in the child Shasta assembly
graph. Phasing results show that Shasta +GFAse trio using
Illumina reads outperformsHifiasm trio andHifiasmHi-C in terms
of median switch rate (∼0.0005) and hamming error (∼0.0005).
Shasta +GFAse trio results are also within range of the Verkko
trio “production” assembly that uses both ONT and PacBio input
reads. Two chromosomes, Chr 15 and Chr 16, have higher

A

C

E F

D

B

Figure 2. Distributions of read accuracy, coverage, length for reads used in assembly phasing, and phasing signal for proximity-ligated reads. (A,B)
Identity and length metrics for nanopore read sets used in the HG002 evaluation. (C–F) Pore-C and Hi-C metrics for contacts and signal ratio, measured
on a per-library basis. “Alignment length” and “alignments per read” are proxies for subread statistics. Only mappings that are usable for phasing are
shown, that is, with mapping quality (mapQ) > 0 in a diploid reference. Signal ratio is computed using a high-quality trio-phased assembly to indicate
the number of consistent and inconsistent contacts (see Methods).
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hamming rates across all the R10 Shasta assemblies, whichmay be
owing to the difficulty of resolving these chromosomes and iden-
tifying inversions relative to the hg38 reference. This method re-
quires short-read sequencing of both parents, which, for various
reasons, may not always be feasible or cost-effective. For the
more contiguous Shasta assemblies, trio results closely match the
phasing results from Hi-C and Pore-C phasing, which do not re-
quire any parental sequencing.

Shasta +GFAse assemblies consistently outperform native
Hifiasm Hi-C phasing, and in some cases, hamming rates match
or beat trio-phased Hifiasm. When comparing the total number
of assessed variants, R10 assemblies drastically improve onR9, like-
ly as a result of its lower error rate. This effect can be seen by com-
paring the standard-length results to UL in R9 and R10. It is also
evident from the polished HapDup assembly that polishing has
a drastic effect on covered variants, because it also uses a single
flow cell R9 Shasta assembly. UL R10 assemblies reach nearly as
many variants covered as Verkkowhile also producing comparable
switch and hamming rates. In a direct comparison of Hifiasm’s in-
ternal Hi-C phasing versus GFAse Hi-C postphasing, the GFAse
switch rate is lower, but hamming rate is slightly higher
(Supplemental Fig. S1).

Yak trio eval, an orthogonal evaluation method that uses pa-
rental short-read k-mers to evaluate phasing accuracy, reports an or-
der of magnitude higher switch and hamming error for Shasta
assemblies compared with Verkko (Supplemental Table S2). This
could be from a combination of greater genome coverage and sys-
tematic false positives in the switch analysis. As one possible expla-
nation for the discrepancy between yak and WhatsHap, we
observed that some of the yak switch blocks occur in regions of
the Shasta assembly that differ from Verkko only in homozygous
variants (Supplemental Fig. S4A), and this is particularly evident
in Chr X of the male HG002 assembly (Supplemental Fig. S4D).
As an additional source of enrichment of errors, we observe that
some yak switches occur in repetitive regions that contain homozy-
gous homopolymer errors (Supplemental Fig. S4C). When compar-
ing Shasta Dipcall VCFs directly to Verkko Dipcall VCFs, we observe
a variant coverage of 2.48 million at a hamming rate of 0.0003, but
the total variants from Dipcall differ significantly in assembly spe-
cific insertions and deletions (indels) (Supplemental Table S3).

As evaluated by WhatsHap, GFAse consistently produces a
median chromosomal hamming error of <0.001% for Shasta as-

semblies, which is reduced from an expected chromosomal ham-
ming of ∼50% for nonglobally phased assemblies. In the single
flow cell, standard-length R10 experiment, R10 produces shorter
haplotype bubbles compared with R9, which are then phased to-
gether at the chromosome scale with proximity ligation data
(Figs. 3, 4D). In the high-coverageUL R10 assembly, a large portion
of the variants exist in continuous haplotypes directly from the
Shasta assembler (Fig. 4E). Generally, the graphs with high input
N50 reach trio-level phasing accuracy when phased with Hi-C.
The highly fragmented input graphs such as the Shasta “standard”
R9 or the Hifiasm PacBio graphs converge to a less optimal
phasing.

In addition to this analysis, a limited number of HG005 R9
and R10 assemblies were evaluated (see Supplemental Fig. S2;
Supplemental Table S1), along with four HPRC R9 assemblies
(Supplemental Fig. S3). A similar trend in phasing accuracy is ob-
served across all additional individuals, with the caveat that there
is no Strand-seq-derived truth set for the HPRC assemblies.

By comparing Pore-C andHi-C (Supplemental Fig. S1), it is ev-
ident that more information is provided by one library of Pore-C
than by Hi-C. It takes three pairs (6 × 2 lanes, or ∼45×) of Hi-C to
reach a phasing that is roughly equivalent to 1FC Pore-C (30×).
This is likely because of the higher number of total contacts per
Pore-C read. In combination with the single flow cell R10 assem-
bly, we achieve an accurately phased human assembly with a total
of 2 PromethION flow cells.

Assembly quality

SVswere evaluated with Truvari and theGIABHG002 Tier1 SV col-
lection as a truth set. Shasta nanopore assemblies consistently
yield SV F1 scores >90%, with a peak score of >95% in the UL
4FC and 11FC R10 assemblies. Most notably, a single flow cell of
R10 400-bp nanopore data can reach an F1 score of ∼94% (Fig.
4A). HapDup (Kolmogorov et al. 2023), which starts with Shasta
assembly, uses a local realignment and polishing to recover short
collapses, which is a probable cause for its greater recall.
Precisions from R10 assemblies match or exceed HiFi-based meth-
ods, but recall values do not, most likely as a result of collapse in
the repetitive regions of the genome.

A similar trend is seen in the gene-level analysis performed by
asmgene (Fig. 4B), in which the number of full single-copy genes is

Table 1. Coverage summaries for HG002 assemblies evaluated in this analysis

Assembler Label

ONT CCS
Hi-C/Pore-C

Coverage N50 (kbp) Coverage N50 (kbp) Coverage

HapDup v0.4 (Shasta) HapDup 38 31

Shasta v0.10.0 R9 standard 37 60 45/30

Shasta v0.10.0 R9 UL 60 80 45/30

Shasta v0.10.0 R9 UUL 60 150 45/30

Shasta v0.10.0 R10 (1FC) 26 32 45/30

Shasta v0.10.0 R10 UL (4FC) 60 130 45/30

Shasta v0.11.1 R10 UUL (11FC) ∼60 230 45/30

Hifiasm v0.16 trio Hifiasm trio 30 17.5

Hifiasm v0.16 Hi-C Hifiasm Hi-C 30 17.5 0/30

Verkko v1.1 trio Production 185.77 81.20 42.66 14.75

Verkko v1.1 trio Full coverage 971.71 50.65 169.03 17.22
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comparable to that of HiFi or hybrid assemblies, but multicopy
genes are reduced in comparison. For gene completeness, the high-
est scoring Shasta assembly reached ∼75% multicopy genes at a
99% identity threshold, which is now 10% lower than Hifiasm.
In terms of base-level quality, R9 assemblies have base qualities
greater than Q30, whereas R10 assemblies are greater than Q40
and PacBio HiFi or hybrid assemblies exceed Q50 (Fig. 4C).

Shasta assemblies are chained and unzipped by GFAse to
achieve greater continuity. In theory, only 0.1% of the assembly
would need to be assembled as diploid bubbles to produce a fully
phased assembly after unzipping, but in practice,mapping and op-
timization with proximity ligation reads are easier when haplo-
types are long. Before chaining, bubble N50s range from <1
Mbp, in the low-coverage experiments, up to 39.7 Mbp, in the
highest quality assembly. For the various R9 assemblies, the

chained and unzipped assemblies remain consistent in length de-
spite their variable input lengths, which is shown by their largely
overlapping post-GFAse NGx distributions (Fig. 4D,E). R10 se-
quencing protocols are currently limited by throughput, so
sheared reads, which do not enable the same level of contiguity
as the UL assemblies, were used for the single flow cell experiment.
However, for the higher-cost 4FC and 11FC UL experiments, the
upper limit on contiguity exceeds our previous most-contiguous
R9 assemblies.

Non-human assemblies

To test Shasta’s phased assembly methods outside the context of
human genomes and base-calling, two species were assembled:
the dwarf cuttlefish (Sepia bandensis) and the broad bordered

Figure 3. Phasing metrics for HG002 assemblies, as evaluated using the GIAB v4.2.1 benchmark VCF, phased with Strand-seq using WhatsHap (see
Methods). All Shasta assemblies are unpolished. Assemblies not phased with GFAse are shaded gray. Each dot represents a chromosome error rate, gen-
erated by WhatsHap compare. Native Hifiasm Hi-C uses 30× coverage. Each pair of Hi-C is ∼17×. Pore-C flow cells have ∼30× yield.
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yellowunderwingmoth (Noctua fimbriata). S. bandensis, previously
unsequenced by long reads, was sequenced for this work to a depth
of ∼105× with 30× at >100-kbp length.N. fimbriatawas previously
sequenced by the Darwin Tree of Life (Holland et al. 2021) to a
depth of 87× with an N50 of 28.7 kbp.

In non-human assemblies, truth sets are limited, so this anal-
ysis relies on BUSCO to evaluate gene completeness and extent of
phasing (Table 2). By comparing the BUSCO score for the full dip-
loid assembly, aswell as onehaplotypeof the diploid assembly, the

number of phased and unphased genes can be inferred. In both
species presented, complete phased genes are estimated to range
from 86% to 89% of the 954 genes in the metazoan data set.

Resource usage

For the slowest assembly evaluated (4FC R10 UL), Shasta runs
in 12 h on a 64-thread 1.2-TB AWS instance. This allows for 14 as-
semblies to be run in the same amount of core hours as a single

A

B C

D E

Figure 4. Structural variant, base-level, and gene-level accuracy metrics for HG002 assemblies. (A) Base accuracy evaluated using yak with Illumina
NovaSeq. (B) Gene completeness measured by asmgene using human transcript sequences. “Full single copy” genes only indicate unfragmented, non-
duplicated genes, matching transcripts by ≥99% coverage and stratified by >97% (translucent) or >99% identity (opaque). Multicopy genes are similarly
stratified. (C) SVs evaluated using the GIAB Tier1 benchmark VCF with Truvari. (D,E) NGx plots for Shasta haplotypes, before and after unzipping bubble
chains with GFAse. For comparison, the phased portion of the unchained Verkko “production” assembly is shown. The vertical line indicates the NG50 for
each assembly.
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Verkko assembly (Table 3). For unfragmented assemblies, GFAse
has variable run time of 2.3 h to 4.6 h using 64 threads, which de-
pends on the number of contacts in the alignments. In the worst-
case scenario, with a highly fragmented GFA such as the unphased
Hifiasm graph, as well as high-contact data set such as Pore-C,
GFAse can take up to 12 h.

The most time-consuming step in GFAse is the phase optimi-
zation step, which has a complexity that depends on the number
of nodes and edges in the contact graph.When running on an un-
labeled GFA, the homology detection step incurs an additional
cost, but the time consumed by this step is usually limited in com-
parison to phasing time, as homology detection primarily relies on
locality-sensitive hashing (seeMethods) to find candidatematches
between nodes. Both of these steps are multithreaded, but the
phasing step does not benefit from running with more threads
than there are independent samples (random seeds) in the stochas-
tic optimizer. The results in Table 3 are shown with 64 threads for
simplicity, but the default number of samples is 30, which means
that the phasing step would not lose performance until fewer than
30 threads are used, at which point a near linear increase in run
time would be expected.

Discussion

In this work, we use the latest advances in nanopore sequencing to
simplify the challenge of producing phased de novo assemblies.
We show accurate phasing in a two PromethION flow cell pipeline,
using one long-read flow cell and one Pore-C flow cell. Phased con-
tiguities yielded by our higher coverage experiments are un-
matched in previous nanopore assemblies, and Pore-C as a
phasing data type is unexplored in prior publications. The tools
presented are efficient and modular, and they rely on sequencing

protocols that have a relatively short turn around (Shafin et al.
2020), enabling rapid prototyping.

We focus on nanopore sequencing because, despite its cur-
rently lower base-level accuracy relative to its competitors, its abil-
ity to sequence native DNA means that its upper read length is
essentially limited only by the library preparation and loading pro-
cedure, which gives it a unique advantage over methods that rely
on synthesis or amplification (Deamer et al. 2016). With recent
changes in chemistry and computational methods, this tradeoff
in accuracy has reduced, whereas cost and throughput have im-
proved. In three years, since work by Shafin et al. (2020), R9 medi-
an read accuracy has increased from 90% to 95%, effectively
reducing error by half. In the same time span, protocols for nano-
pore library preparation have improved average N50s from 42 kbp
to >100 kbp, more than doubling. Now, with the R10.4.1 chemis-
try in production, we see yet another reduction in error, bringing
accuracy into the 98%–99% range.

The alternative sequence type to nanopore, PacBio HiFi
(CCS), has accuracies of >99.9% (Wenger et al. 2019), but its reads
are size-selected, ranging from 10 kbp to 30 kbp. This means that
they have the accuracy to distinguish copies of less-diverged repet-
itive units in the genome but not necessarily the length to span
them. Hybrid assemblers have integrated both ONT and HiFi
data to accommodate for this, in addition to parental (“trio”)
Illumina data or Illumina proximity ligation data (Hi-C) to assist
with phasing. Hybrid methods have achieved unprecedented ac-
curacy and contiguity by leveraging the strengths of three to
four different sequencers; but as a result, they are also costly in
terms of resources, logistics, and time.

Using technological advances in ONT sequencing, our results
produce a notable improvement over the previous standards for
nanopore phasing. Evaluationmetrics for phased assembly are ap-
proaching that of the hybrid assemblers in gene completeness,

Table 2. Non-human Shasta phasing metrics, in terms of BUSCO gene completeness

Complete and single-
copy (S)

Complete and duplicated
(D)

Total diploid Total haploid Diploid N50Both haps One hap Both haps One hap

Sepia bandensis 5.97% 95.39% 90.15% 0.73% 5,330,371,146 415,993,994 3,794,550

Noctua fimbriata 7.02% 93.29% 91.40% 4.82% 488,722,705 21,756,252 5,094,850

These results use the metazoan data set, which has 954 genes. Percentages are calculated as the proportion of the metazoan genes found, as a single
copy or as duplicated (according to BUSCO output), in the haploid or diploid assemblies.

Table 3. Run time performance for various assemblers presented in this paper

CPU hours Estimated wall hours (64 vCPU) Peak RAM (GB)

Verkko 8288.57 129.5 61

Hifiasm 366.9 5.7 150

HapDup 2425.0 24.0 624

Shasta (UUL) 582.4 9.1 1283

Read alignment 307.2 4.8 140

GFAse (Hi-C) 75.0 2.3 84

GFAse (Pore-C) 145.7 4.6 84

GFAse (trio) 0.58 0.58 30

Separate times shown for GFAse Hi-C and Pore-C as a result of its dependence on the number of contacts. For HapDup, CPU hours and wall hours
show the sum of multiple steps in the HapDup pipeline, including an initial Shasta assembly, which used 96 cores. GFAse trio runs single-threaded.
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contiguity, and phasing accuracy, showing promise for future sin-
gle-sequencer pipelines. When considering that all Shasta assem-
blies generated for this paper are unpolished, it is clear that there
is room for further improvement. Contiguity and completeness
are likely to continue to grow proportionally with additional
throughput of long reads. To make full use of the longest reads,
further method development is underway to address repetitive
regions, which defy the diploid assumption of our current
methods. The consistent trajectory of ONT quality and through-
put has motivated our work, and we aim to continue to adapt
long-read assembly methods to future improvements.

From a software development perspective, the tools presented
in this paper are written with the goals of modularity, interpret-
ability, and flexibility of usage. The fully specified graph outputs
of Shasta make it an ideal resource for downstream development
and analysis, as is shown by the application of GFAse in this con-
text. GFAse uses transparent and reusable data structures and, sim-
ilar to Shasta, produces comprehensive outputs that describe the
homology, proximity linkage, and inferred haplotype chains in
the graph. Relying directly on alignments, GFAse is capable of us-
ing any data type for phasing that can be aligned to the assembly
in BAM format. In theory, long reads, or even conventional linked
reads, could be used as phasing information if their alignments
span the unphased regions of an assembly. To maximize compat-
ibility, GFAse also accepts a custom contact map as input. This
makes it a flexible module for future applications, as long-range
linked data types continue to evolve.

Methods

Shasta: de novo phasing with nanopore reads

Shasta is an assembler specialized for nanopore reads, and it uses
the overlap layout consensus paradigm of assembly. It starts by re-
ducing reads into vectors of fixed-length subsequences ormarkers,
and then it computes an approximate overlap among reads using a
variation of the MinHash algorithm (Broder 1997). Shasta refines

its candidate overlaps using alignment inmarker space, and reduc-
es the overlap graph by filtering alignments and creating a k-nearest
neighbor graph. Formore details, see the initial 2020 publication or
the online documentation (Shafin et al. 2020; https://paoloshasta
.github.io/shasta/ComputationalMethods.html).

In this updated version, Shasta performs de novo phasing in-
ternally, using only conventional nanopore reads. Shasta uses a
data structure referred to as a “phasing graph,” built from amarker
representation of the reads. The phasing graph is created following
the overlap stage of assembly, and it describes the coverage in
terms of read IDs covering each branch of a heterozygous diploid
bubble found in a graph. This data structure has a strict diploid as-
sumption, not suited for polyploid species. For each pair of bub-
bles, a Bayesian model computes the probability that they either
are uncorrelated or are in one of two possible phased orientations
with respect to each other. By iteratively aggregating bubbles with
this Bayesian criteria for correlation, groups of phased bubbles are
established, whereas uncorrelated error bubbles remain isolated.

Given a set of phased bubbles or a “component,” Shasta then
identifies local bubble chains within each set, which are bubbles
in series, constituting collinearly traversable regions of the
graph (https://paoloshasta.github.io/shasta/ComputationalMethods
.html). These bubble chains have a strict topology in which elements
in the chain can be either homozygous unphased nodes or hetero-
zygous phased pairs of nodes (see Fig. 5). Bubble chains are
the basis for subsequent unzipping into haplotypes. For complete-
ness, Shasta generates output GFAs containing the succinct repre-
sentation of edits, or “detailed” graphs (Fig. 5A), as well as the
larger unzipped haplotype representation, or “phased” graphs
(Fig. 5B). Both of these representations contain bubble chains
with differing length haplotype sequences. The “phased” repre-
sentation is convenient for downstream phasing because its se-
quences tend to greatly exceed the length of a read, and multiple
variants can be spanned with conventional mapping. On the other
hand, the “detailed” representation summarizes the edits between
phased haplotypes and represents longer-scale phasing using a
path in the GFA. Graphs generated by Shasta contain “blunt” or
nonoverlapping nodes, which makes chaining them trivial.

A B

Figure 5. The two types of Shasta output graphs, visualized as a 2D layout in Bandage (Wick et al. 2015) at two different scales. (A) A subregion of the
“Assembly-Detailed.gfa,” showing near-variant scale nodes in a bubble chain and their phasing indicated by colors produced by Shasta. (B) A subregion of
the “Assembly-Phased.gfa” showing a phased portion of Chr 11 from HG002, which terminates at two tangles, presumably caused by telomeric and cen-
tromeric sequences.
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GFAse: phasing graphs with proximity ligation data

GFAse can ingest a custom contact map (as a CSV file) or process
conventional mappings for phasing information (using BAM for-
mat). Hi-C, Pore-C, or other proximity-ligated reads are mapped
to the GFA contigs using whichever mapper is most appropriate
for the sequence type. The strength of the proximity linkage be-
tween any two contigs is updated as a sum, in the form of aweight-
ed edge in a “contact graph,” in which the weight is the number of
reads linking them. Uninformative mappings that do not cover a
heterozygous site are filtered by setting a map quality threshold.

To phase the graph, GFAse first identifies diploid, haplotypic
bubbles. Two methods are available in GFAse: assembler annota-
tion and sequence similarity search. Efficient similarity search is
accomplished with a variation of MinHash (Broder 1997) similar
to that used by Shasta (Shafin et al. 2020) and then refined with
full-scale alignment with minimap2 (Li 2018). GFAse can use se-
quence similarity to recognize bubbles or bipartite subgraphs
that do not have a strict bubble topology, but the optimizer has
a strict diploid assumption because it partitions the nodes of the
GFA into two sets.

Phases are optimized using a stochastic method that approx-
imates a solution to the optimization variant of the max-cut prob-
lem (Selvaraj et al. 2013; Edge et al. 2017; Cheng et al. 2021). The
method depends on an objective function that penalizes inconsis-
tent contacts and rewards consistent contacts. If any two bubbles
are compared, there are four possible contacts, and only contacts
linking the contigs in matching phases have positive scores. For
GFAse, a variation on existingmethods was introduced to improve
the reproducibility of the stochastic method and to perform better
on fragmented graphs in which the state space is much larger. In
short, the method takes samples from repeated greedy optimiza-
tions of randomly initialized phase states and accumulates a distri-

bution of orientations, which is then used to merge bubbles that
are most consistent (Fig. 6). One benefit of sampling many times
with few iterations is that samples are independent and can be
multithreaded.

GFAse: phasing with parental data

Homozygous parental k-mers are selected from each parent and
used to phase the “detailed” assembly GFA by counting parental
k-mers in the heterozygous bubbles. To process the parental se-
quence data, reads are broken into 31-bp k-mers using kmc3
(Kokot et al. 2017). Kmc3 subtract was used to identify k-mers
that are unique to each parent. Finally, unique homozygous
k-mers are matched to child k-mers on heterozygous bubbles as-
signing a phase to bubble components, using a simple majority
vote. Illumina reads for the HG002 Ashkenazi Jewish trio sample
were obtained from the publicly available 1000 Genomes Project
(fc-4310e737-a388-4a10-8c9e-babe06aaf0cf/working/HPRC_PLUS/
HG002/raw_data/Illumina/parents/HG003 and fc-4310e737-a388-
4a10-8c9e-babe06aaf0cf/working/HPRC_PLUS/HG002/raw_data/
Illumina/parents/HG004).

GFAse: chaining phased graphs

With a phased assembly graph, adjacent bubbles are chained in a
manner similar to scaffolding to extend haplotypes. GFAse first
loads the GFA using the VG HandleGraph data structure
(Eizenga et al. 2020) and identifies tractable regions as anything
that follows a strict diploid bubble chain topology. Diploid nodes
have exactly one two-hop neighbor and, at most, two direct adja-
cencies in each direction. Chains are then identified by traversing
contiguous subgraphs of labeled nodes. With bubble chains iden-
tified, haplotypes are labeled with paths in the GFA formalism.

Then they can be “unzipped” trivially
by traversing them and duplicating the
homozygous nodes into both haplo-
types. The strict definition of bubble
chains used in this method is intended
to maximize fidelity to the input graph
by reducing misjoins in the chaining
step.

GFAse: input format

To ingest genomic contacts for use in
phasing, GFAse accepts either a BAM or
a CSV contact map. The BAM can be of
any data type, so long as contacts in the
genome share a common query name,
for example, paired end, long read,
Hi-C, Pore-C. The BAM must be grouped
or sorted by query name and does not
need to be indexed. The alternative CSV
is a simple three-column file containing
a header and any number of following
lines that indicate the weight of an edge
in the contact graph (details are in soft-
ware help output).

GFAse will run to completion on
any GFA that meets the v1.0 specifica-
tion; however, there are some practical
considerations:

1. Overlaps are arbitrarily resolved
in the output unzipping step.
Either the left or the right overlap

Figure 6. Diagram of sampling method for optimizing proximity linkages in an assembly graph. Edge
weights in the contact graph are represented by teal curves. For each inner iteration, a greedily con-
verged phase state is used to update a distribution of orientations among bubbles. Bubbles with the
strongest signal at the end of sampling are merged for successive iterations. By the end of each round
r of merging, the largest possible bubble set is 2 ^ r in size.
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sequence is arbitrarily chosen as the joining sequence in a
phased path.

2. The cumulative consumed query/target length of a
GFA overlap cigar must not exceed the length of the
query/target node. This is not possible in a properly format-
ted GFA, but it has been observed in both hifiasm and Verkko
overlaps. If this input error is encountered, it is recommended
to use the ‐‐skip_unzip argument.

3. Edges (L lines) are not required. For phasing an input that
is not in graph form (e.g., in FASTA/Q format), it is possible to
simply convert it to a GFA without any L lines, and invoke
the ‐‐skip_unzip and ‐‐use_homology flags to bin the contigs
into bin 1 or 2 or unphased. Homology will be inferred entirely
independently of the graph edges.

4. Whenusing analignment as input, nodes (“segments”
or S lines) in the graph should bemappable. Short nodes
that are insufficient in length to map a Hi-C or Pore-C subread
(≥150 bp of nonrepetitive sequence) will not accumulate any
contacts in the mapping step. Nodes without contacts will
not be phased, and GFAse will put them in the “unphased”
bin instead of using them to extend a phased chain. In addition
to this, when using the homology-based alt detection, nodes
must be long enough to confidentlymap to each other.We rec-
ommend starting with an assembly configuration that produc-
es a phase N50 as large as possible without introducing any
switch errors. For GFAs in which nodes are not mappable, the
user may provide a custom contact map CSV as input.

5. Paths (P lines) in the GFA are ignored. Input paths do not
influence the phasing step and are not written to any output
file. However, GFAse does generate an intermediate GFA that
contains additional P lines describing the result of phasing
and chaining.

Sequencing and data acquisition

Links to sequences used this work are available at Zenodo (https
://doi.org/10.5281/zenodo.10653823).

R9 standard

Sequencing was performed as described by Shafin et al. (2020) and
rebasecalled with Guppy v5.0.7.

R9 UL

ONT data from the GIAB consortium (Zook et al. 2016) were
rebasecalled with Guppy> v5.0 and combined with the R9 stan-
dard data set to provide longer reads.

R9 UUL

DNA extractions from 6 million cells of HG002 were prepared us-
ing the Circulomics nanobind CBB kit (PacBio 102-301-900).
Libraries were prepared using the ultralong DNA sequencing kit
(SQKULK001). The libraries were sequenced on a flow cell R9.4.1
on PromethION for 72 h. Flow cells were washed using the flow
cell wash kit (EXP-WSH004) every 24 h. Fresh libraries were loaded
after each wash.

R10

DNA extractions from 5 million cells of HG002 were prepared us-
ing the PacBio Nanobind CBB kit (102-301-900) according to the
UHMW DNA extraction cultured cells protocol (EXT-CLU-001).
Standard pipette tips were used to generate a homogenous sample
before DNA shearing. DNAwas sheared to a target size of 50 kb on
Megaruptor 3. Samples were normalized to a 100 µL volume at 50
ng/µL concentration and sheared at speed 27 using the

Megaruptor shearing kit (E07010003). DNA size was assessed
after shearing on Agilent femto pulse system using the gDNA
165-kb analysis kit (FP-1002-0275). After shearing, DNA size
selection was performed using PacBio SRE kit (102-208-300) fol-
lowing the manufacturer’s recommendations. Libraries were pre-
pared using the Oxford Nanopore ligation sequencing kit V14
(SQK-LSK114) according to the Oxford Nanopore protocol
GDE_9161_v114_revK_29Jun2022. The libraries were sequenced
on a flow cell R10.4.1 on PromethION for 96 h. Flow cells were
washed using the flow cell wash kit (EXP-WSH004) every 24
h. Fresh libraries were loaded after each wash.

R10 UL

Nanopore sequencing data sets were generated following Oxford
Nanopore protocol ULK_9177_v114_revC_27Nov2022. DNA ex-
tractions from 6 million cells of HG002 were prepared using
Monarch HMW DNA extraction kit for tissue (New England
Biolabs T3060). Libraries were prepared using ultralong DNA se-
quencing kit (SQKULK114). The libraries were sequenced on
flow cell R10.4.1 on PromethION for 72 h. Flow cells were washed
using the flow cell wash kit (EXP-WSH004) every 24 h. Fresh librar-
ies were loaded after each wash.

Sepia bandensis

Testes tissue (3–5 mg) from an adult male dwarf cuttlefish (S. ban-
densis) was homogenized in PBS using a Dounce homogenizer.
This was followed by DNA extraction using the Circulomics
nanobind tissue kit (PacBio 102-302-100). Libraries were prepared
using the ultralong DNA sequencing kit (SQKULK001). The
libraries were sequenced on a flow cell R9.4.1 on PromethION
for 72 h. Flow cells were washed using the flow cell wash kit
(EXP-WSH004) every 24 h. Fresh libraries were loaded after each
wash.

Noctua fimbriata

ONT data were acquired from the Darwin Tree of Life project
(Holland et al. 2021).

Generating assemblies

To generate nanopore assemblies, Shasta (v0.10.0 unless
otherwise specified) was run with the appropriate configuration
for each data type, as follows.

R9 standard

‐‐config Nanopore-Phased-May2022
‐‐Reads.minReadLength 10000
‐‐Assembly.mode2.phasing.minLogP 30

R9 UL

‐‐config Nanopore-UL-Phased-May2022
‐‐Reads.minReadLength 10000
‐‐Reads.desiredCoverage 180000000000
‐‐Assembly.mode2.phasing.minLogP 50

R9 UUL

‐‐config Nanopore-UL-Phased-May2022
‐‐Reads.minReadLength 110000
‐‐Assembly.mode2.phasing.minLogP 50

Lorig-Roach et al.

464 Genome Research
www.genome.org

https://doi.org/10.5281/zenodo.10653823
https://doi.org/10.5281/zenodo.10653823
https://doi.org/10.5281/zenodo.10653823
https://doi.org/10.5281/zenodo.10653823
https://doi.org/10.5281/zenodo.10653823


R10 (1FC)

‐‐config Nanopore-Phased-R10-Fast-Nov2022
‐‐Assembly.mode2.phasing.minLogP 20

R10 UL (4FC)

Configs for Nanopore-Phased-R10-Fast-Nov2022 and Nanopore-UL-
Phased-May2022 were merged, with Nanopore-Phased-R10-Fast-
Nov2022 taking precedence for any conflicting parameters. The
following parameters were then added:

‐‐Assembly.mode2.phasing.minLogP 20
‐‐Reads.minReadLength 50000

R10 UUL (11FC; Shasta v0.11.1)

‐‐config Nanopore-Phased-R10-Fast-Nov2022
‐‐Kmers.probability 0.05
‐‐MinHash.minBucketSize 20
‐‐MinHash.maxBucketSize 60
‐‐Align.minAlignedMarkerCount 2500
‐‐Reads.minReadLength 170000

Sepia bandensis

‐‐config Nanopore-UL-Phased-May2022
‐‐Reads.desiredCoverage 400G

Noctua fimbriata

‐‐config Nanopore-Phased-May2022

Phasing with GFAse

To phase with GFAse (https://github.com/rlorigro/GFAse), reads
are first aligned to contigs using conventional mapping and align-
ment. Paired Hi-C reads were aligned using BWA-MEM (https://
github.com/lh3/bwa), and Pore-C concatemers were aligned using
minimap2 (https://github.com/lh3/minimap2). AWDL that com-
bines these steps can be found at GitHub (https://github.com/
meredith705/gfase_wdl/tree/main).

Pore-C data were aligned using minimap2 with the follow-
ing parameters:

minimap2 \
‐a \
‐x map-ont \
‐k 17 \
‐t 56 \
‐K 10g \
‐I 8g \
Assembly-Phased.fasta \
porec_reads.fastq.gz \
| samtools view -bh -@ 8 -q 1 - \
> porec_to_assembly.sorted_by_read.bam
Hi-C data were aligned using BWA with the following

parameters:
bwa index Assembly-Phased.fasta \
&& \
bwa mem -t 46 -5 -S -P \
Assembly-Phased.fasta \
HG002.HiC_1_S1_R1_001.fastq \
HG002.HiC_1_S1_R2_001.fastq \
| samtools sort -n -@ 24 - -o hic_to_assembly.sorted_by_read

.bam \
Shasta assemblies were phased with Hi-C using the following

parameters:

/home/ubuntu/software/GFAse/build/phase_contacts_
with_monte_carlo \

‐i hic_to_assembly.sorted_by_read.bam \
‐g Assembly-Phased.gfa \
‐o /path/to/output/directory/ \
‐m 1 \
‐t 62
Shasta assemblies were phased with Pore-C using the follow-

ing parameters:
/home/ubuntu/software/GFAse/build/phase_contacts_

with_monte_carlo \
‐i porec_to_assembly.sorted_by_read.bam \
‐g Assembly-Phased.gfa \
‐o /path/to/output/directory/ \
‐m 3 \
‐t 62
Verkko assemblies need the parameters “‐‐skip_unzip” and

“‐‐use_homology” in addition to the above parameters, because
bubbles are not labeled, and its homopolymer decompressed
GFA has incorrectly specified overlaps that cannot be unzipped
and stitched trivially. A map quality minimum of three is used
for all Verkko assemblies.

Evaluation

Input datawere evaluated using an alignment basedQC tool called
WamBam, which iterates BAMs and produces read identity and
read length stats (source code can be found at GitHub [https://
github.com/nanoporegenomics/wambam]). Pore-C statistics were
generated via a similar method using the “evaluate_contacts” exe-
cutable provided in the GFAse repository. Reads were aligned to
both haplotypes of the trio phased Verkko “full-coverage”
HG002 assembly, and statistics were calculated by accumulating
loci and lengths for each mapping of each read ID. For the “signal
ratio” calculation, a contact map was constructed by building a
graph similar to that used in phasingmethods. Any twomappings
of the same read ID constitute an edge, and they are binned by the
minimum mapping quality of the pair. Edges that cross from one
haplotype to another are considered inconsistent with the true
phasing and are used to compute a ratio of consistent to inconsis-
tent edges.

As a truth set for phasing, chromosome-length haplotypes
were generated using Strand-seq and long reads. To generate
haplotypes, we have used a combination of Strand-seq data and
PacBio Hifi reads from the same individual (HG005 and HG002).
Sparse and chromosome-length haplotypes were generated
using Strand-seq data and the R package (R Core Team 2023)
StrandPhaseR (version 0.99) as previously described (Porubsky
et al. 2017). Next, we detected inverted regions using Strand-seq
data and manually curated this list of inversions as previously de-
scribed (Porubsky et al. 2022). We have used this set of inversions
to correct Strand-seq phasing over these regions with the
StrandPhaseR function called “correctInvertedRegionPhasing” as
previously described (Porubsky et al. 2022). After inversion-phase
correction, we generated dense chromosome-length haplotypes
using a combination of Strand-seq haplotypes and PacBio long
reads as previously described in the integrative phasing framework
(Porubsky et al. 2017; Hanlon et al. 2023). Integrative phasing was
completed usingWhatsHap version 1.0 (Patterson et al. 2015). For
integrative phasing, we used a defined set of variant positions
(available at https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSample
s/giab/release/ChineseTrio/HG005_NA24631_son/NISTv4.2.1/GR
Ch38/HG005_GRCh38_1_22_v4.2.1_benchmark.vcf.gz and https://
ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/Ashke
nazimTrio/HG002_NA24385_son/NISTv4.2.1/GRCh38/HG002_
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GRCh38_1_22_v4.2.1_benchmark.vcf.gz). To include indels into
the final callset, we have run WhatsHap with the ‐‐indels
parameter.

To analyze phasing accuracy, a combination of Dipcall (Li
et al. 2018) and WhatsHap was used. Dipcall is a reference-based
variant caller. For a set of phased assemblies, it produces a VCF
file of single-nucleotide variants (SNVs), as well as small indels.
For the male HG002 sample, Dipcall was run using the GRCh38
reference but was set to treat the PAR region as autosomal regions.
Phase set tags were manually added to the Dipcall VCF file before
being used byWhatsHap.WhatsHap “compare” assesses switch er-
ror and hamming distance in the phased assemblies by comparing
the phasing of alleles in the NIST’s Genome in a Bottle (Zook et al.
2016) truth set to the Dipcall VCF file. WhatsHap “compare” only
includes variants in the analysis that have identical alleles in the
truth-and-query VCF file, making it robust to SNVs caused by se-
quencing errors.WhatsHap “stats”were runwith a “- -chr-lengths”
input file to calculate phasing statistics.

Collapses andmisassemblies within the genes were evaluated
using minimap2 (Li 2018), asmgene, and the publicly available
Ensembl genes as input (https://ftp.ensembl.org/pub/release-
87/fasta/homo_sapiens/cdna/Homo_sapiens.GRCh38.cdna.all.fa
.gz). Ensembl cDNAwas aligned to the CHM13 v2.0 reference and
the HG002 assemblies withminimap2 using “-cx splice:hq” for in-
tra-species cDNA alignment. Asmgene, a part of minimap2, selects
the longest isoform from overlapping alignments and counts it as
matching the reference if it covers >99% of the transcript length
with a mapping identity above an input threshold. To account
for ONT’s sequencing error profiles, asmgene was run with a map-
ping identity threshold of 97% instead of the 99% used for HiFi as-
semblies. Transcripts are counted as single copy if they uniquely
align to the reference and as multicopy if they align to multiple
loci.

Base quality was estimated using yak (https://github.com/
lh3/yak), based on the k-mer content of Illumina short reads.
Each phased assemblywas evaluated separately.K-mer in the short
reads was counted using “yak count -b 37,” and quality values
(QVs) were estimated using “yak qv -K 3.2g -l 100k.” For HG002,
we used the 30× IlluminaNovaSeq PCR-free read set publicly avail-
able at the Google bucket (gs://deepvariant/benchmarking/fastq/
wgs_pcr_free/30x/). For the four samples from the HPRC
(HG01993, HG02132, HG02647, and HG03669), we used 30×
Illumina short-reads from the high-coverage read set of the 1000
Genomes Project samples (Byrska-Bishop et al. 2022).

Non-human assemblies (N. fimbriata and S. bandensis) were
evaluated using default arguments for BUSCO v5.4.3 and the
“metazoan_odb10” data set. To attempt to evaluate the number
of phased genes, BUSCO was run twice: once with both haplo-
types, and once with one haplotype. For the “both-haplotype”
evaluation, the entire diploid assembly was provided to BUSCO.
For the “one-haplotype” evaluation, one of each haplotype from
the phased regions was removed, and the remaining sequences
were evaluated by BUSCO.

Switch error in the phased assemblies was also estimated from
Illumina short reads from parents. We used yak to count the k-mer
in the short reads, as above, and “yak trioeval” to compute the es-
timated switch error rate. As above, the read sets for HG002’s par-
ents were downloaded from the same Google Bucket as for the
base-quality evaluation and from the 1000 Genomes Project’s
data set for the four HPRC samples.

SVs were called from the phased assemblies using dipdiff, a
modified version of the SVIM-ASM tool (Heller and Vingron
2020). In HG002 assemblies, the SVs were called against
GRCh37 and evaluated with the GIAB SV truth set (Zook et al.
2020) using Truvari (English et al. 2022). Truvari’s “bench” com-

mand was run with “‐‐no-ref a -r 2000 -C 2000” to ignore missing
homozygous calls for the reference allele and tomatch variants up
to 2000 bp away from each other.

All forms of analysis and evaluation in this paper have been au-
tomated with workflow description language (Voss et al. 2017), and
made portable using Dockstore (O’Connor et al. 2017) for reproduc-
ibility and convenience, and are available as follows: reference-based
proximity linkage evaluation, (https://dockstore.org/workflows/
github.com/meredith705/gfase_wdl/evaluate_contacts:main); ref-
erence-based phasing evaluation coupled with alignment-based
gene completeness evaluation (https://dockstore.org/workflows/
github.com/meredith705/gfase_wdl/dipcall_whatshap_asmgene:
main); VCF-based SV evaluation (https://dockstore.org/workflows/
github.com/meredith705/gfase_wdl/gfase_sv_evaluation:mai); ref-
erence-based alignment quality evaluation (https://dockstore.org/
workflows/github.com/nanoporegenomics/wambam/wambam:
main); and Yak trio k-mer-based phasing evaluation (https://
dockstore.org/workflows/github.com/meredith705/gfase_wdl/
gfase_ base_qv_trio_evaluation:main).

Data access

The Pore-C data generated in this study have been submitted to
the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession number PRJNA1066887. The
cuttlefish assembly generated in this study has been submitted
to the NCBI BioProject database under accession numbers
PRJNA1082730 and PRJNA1082729 for primary and alt haplo-
types. All data links and scripts required to reproduce this work
are available at Zenodo (https://doi.org/10.5281/zenodo
.10653823) and as Supplemental Code. Shasta source code is avail-
able at GitHub (https://github.com/paoloshasta/shasta). GFAse
source code is also available at GitHub (https://github.com/
rlorigro/GFAse).
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