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S O C I A L  S C I E N C E S

Proper network randomization is key to assessing 
social balance
Bingjie Hao1, István A. Kovács1,2,3*

Social ties, either positive or negative, lead to signed network patterns, the subject of balance theory. For exam-
ple, strong balance introduces cycles with even numbers of negative edges. The statistical significance of such 
patterns is routinely assessed by comparisons to null models. Yet, results in signed networks remain controversial. 
Here, we show that even if a network exhibits strong balance by construction, current null models can fail to iden-
tify it. Our results indicate that matching the signed degree preferences of the nodes is a critical step and so is the 
preservation of network topology in the null model. As a solution, we propose the STP null model, which inte-
grates both constraints within a maximum entropy framework. STP randomization leads to qualitatively different 
results, with most social networks consistently demonstrating strong balance in three- and four-node patterns. 
On the basis our results, we present a potential wiring mechanism behind the observed signed patterns and out-
line further applications of STP randomization.

INTRODUCTION
Individuals within society can be viewed as nodes in a social net-
work, with edges representing various relationships between them. 
These relationships are highly diverse in their nature and can often 
be expressed in either positive (friend/trust) or negative (foe/
distrust) terms (1), leading to signed social networks, with varying 
degrees of polarization (2, 3). Quantifying the abundance of net-
work patterns is the first step toward understanding why certain 
connections are formed and not others, captured by the underly-
ing wiring mechanisms, as well as toward understanding and poten-
tially reducing polarization in social media (2, 4–8). As a key 
concept, network graphlets (and motifs) (9, 10) are patterns of 
connections that occur significantly more frequently than in a null 
model, which is a suitably randomized version of the empirical 
data (9). Graphlets, also known as induced subgraphs (11), specify 
the existence and sign of every edge within a subset of nodes. In 
contrast, motifs (or noninduced subgraphs) (9), specify only the 
required edges, allowing for the presence or absence of other edges. 
For instance, in an undirected signed network, a graphlet consist-
ing of three nodes connected by two edges indicates the absence of 
the third edge, while a motif detects instances both with or with-
out the third edge. Note that any fully connected graphlet can be 
equivalently referred to as a motif.

Seminal studies have shown that network graphlets and motifs 
play an important role in understanding the organization, function-
ality, and hidden mechanisms behind many complex systems, from 
social networks to brain connectivity and protein-protein interac-
tion networks (9–17). Fully connected “triangle” graphlets of three 
nodes are particularly informative on tie formation mechanisms 
between acquaintances of the same node. As a starting point, strong 
balance (SB) (18) captures the intuitive notions of “the friend of my 
friend is my friend,” “the enemy of my friend is my enemy,” and “the 
enemy of my enemy is my friend.” All these examples correspond to 

balanced cycles (a path that starts and ends at the same node) of 
length three, where the product of edge signs along the cycle is pos-
itive. The notion of SB has been extended to cycles of any length, 
stating that a network is maximally balanced if all cycles are bal-
anced (18). In practice, there are often deviations from maximal bal-
ance (19), requiring the statistical analysis of the enrichment of the 
studied patterns versus a null model. A null model of statistical 
power is a randomized network that is as close to the real network as 
possible without capturing the actual wiring mechanisms. Although 
it is generally believed that social networks tend to be in somewhat 
balanced states (20, 21), the conclusions about balance strongly 
depend on the studied datasets and the chosen null model (22–25).

As a basic example, the “rewire” null model (23) swaps edges 
between nodes while preserving the node degree (k, number of 
neighbors), leading to networks with disrupted topology. Hence, 
the conclusions based on the rewire null model mix the pattern for-
mation mechanisms arising from edge signs with those of purely 
topological origin. For example, an overrepresentation of certain 
patterns might stem solely from the observation that those patterns have 
a low probability of forming at a purely topological level, regardless 
of the edge signs.

Here, we aim to disentangle purely topological effects from 
mechanisms of balance related to edge signs by fixing the topology 
while randomizing the edge signs. As a realization, a more com-
monly used null model that preserves the network topology is the 
“sign shuffle” null model (22). In this null model, the total number 
of positive and negative edges is exactly preserved, while the sign is 
randomly assigned to each edge. Note that the sign shuffle null 
model has the limitation that all nodes are assumed to have the 
same expected ratio of positive edges. As illustrated in Fig. 1, this 
assumption is far from reality. In real-life networks, some nodes are 
more “friendly” (“hostile”) than others, i.e., holding mostly positive 
(negative) edges. Consequently, null models that neglect the signed 
node degree could yield biased conclusions regarding balance.

To incorporate both insights, a null model that preserves both 
the network topology and signed node degree is needed. State-of-
the-art null models only preserve one of these constraints (22, 23, 
26). As a solution, we propose an alternative null model, a signed 
degree and topology preserving (STP) null model based on the 
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maximum entropy framework (27–31). The STP null model pre-
serves the network topology exactly, while also matching the signed 
node degrees on average (see Materials and Methods).

We examine the signed network patterns on a collection of 
signed social networks covering datasets of various scales, including 
(i) Slashdot, a friend/foe network in the technological news site 
Slashdot (1); (ii) Congress, a political network where signed edges 
represent (un/)favorable interactions between US congresspeople 
on the House floor in 2005 (32); (iii) Bitcoin-Alpha, a trust/distrust 
network of Bitcoin traders on the platform Bitcoin Alpha (33); (iv) 
Bitcoin-OTC, a trust/distrust network of Bitcoin traders on the plat-
form Bitcoin OTC (34); and (v) Epinions, a trust/distrust network 
among users of the product review site Epinions (1). For an over-
view of these datasets, see Table 1. As a key motivation for our work, 
we observe that positive (k+) and negative (k−) node degrees are at 
best moderately correlated in the studied networks (Fig. 1), indicat-
ing that null models that do not consider the signed degree as a con-
founding factor may lead to biased results. As a key result, we show 
that, apart from the STP null model, none of the studied null models 
detect SB even in a simple reference network (SB reference), which 
is explicitly designed to exhibit SB. In the example of large-scale 
signed social networks, we show that the STP null model changes 
the results qualitatively, leading to a consistent interpretation of 
signed patterns. We conclude by discussing potential underlying 
pattern formation mechanisms behind our observations, as well as 
further applications and extensions of STP randomization.

RESULTS
Signed null models
To investigate how the topology and signed degree affect the graphlet 
statistics, we consider four null models for signed networks, see Fig. 2. 
In addition to the commonly used rewire and sign shuffle null models 
and our STP null model, we also consider the “signed rewire” null 
model (35). The signed rewire null model preserves the signed node 
degree by rewiring the positive and negative subgraphs separately. As 
a result, it preserves the signed node degrees while disrupting the to-
pology. In Fig. 2, we illustrate the studied null models on a toy net-
work satisfying SB. This toy network contains two groups of nodes 
(indicated by different node colors), with positive edges among group 
members and negative edges between the groups (36). Note that some 
nodes are more friendly (like node 0) or more hostile (like node 1), 
i.e., have a higher fraction of positive (or negative) edges than others.

Signed triangle patterns
To test social balance in real networks, we first consider the signed 
fully connected three-node graphlets, triangles, as illustrated in Fig. 3A 
for the Slashdot network. Each triangle graphlet is counted (nobs) 
and compared to the frequency distribution of such triangle (nrand) 
in the four null models. We first perform a normality test (37) for 
the null model frequencies of each graphlet nrand and achieve P > 
0.05 for most cases. This implies the lack of substantial evidence to 
reject the null hypothesis that nrand conforms to a normal distribu-
tion (fig. S1). This is expected, as nrand is the sum of several almost 
independent random variables. Thus, we use the routinely applied 
z score as a measure to assess the enrichment or depletion of graphlets, 
computed as

where <nrand> and σrand denote the mean and SD of nrand in 1000 
random samples, respectively. To assess the significance of the re-
sults, we calculate the empirical P value in Figs. 3 and 4 (see Materials 
and Methods for details). We only interpret significant results with 
P < 0.01 and ∣z∣ > 2. In addition, we also calculate the fold change = 
nobs/<nrand> to indicate the relative abundance of the studied patterns.

In the Slashdot network, both the rewire and sign shuffle null 
models would conclude that only + + − triangles are underrepre-
sented (Fig. 3A). This conclusion aligns with the notion of weak bal-
ance (WB) (1, 38, 39). WB relaxes the notion of balance so that only 
triangles with exactly one negative edge should be underrepresented. 
On the contrary, the signed rewire and STP null models identify that 
both − − − and + − − triangles are underrepresented, in line with 
SB. To gain more insight, we benchmark the performance of differ-
ent null models by constructing a simple SB reference network (40) 
that is designed to exhibit SB (see details in Materials and Methods). 
As a clear limitation, the rewire and sign shuffle null models fail to 
detect SB even in the SB reference network (Fig. 4), as they mistak-
enly identify the + − − triangles as being underrepresented. This 
observation indicates the essential role of matching the heteroge-
neous signed degrees in the null models, narrowing down suitable 
null models to the signed rewire and STP models.

With the STP null model, we observe significant SB in all studied 
datasets at the triangle level (Fig. 4). The results of the signed rewire 
null model are again consistent with SB, apart from the Epinions 
dataset, where the + + − pattern appears to be overrepresented. To 

z =
nobs − <nrand>

σrand
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Fig. 1. Signed degree correlations. The positive (k+) and negative (k−) node degree correlation in (A) Slashdot, (B) Congress, (C) Bitcoin-Alpha, and Bitcoin-OTC (D) Epin-
ions. The r values denote the Pearson correlation coefficient between k+ and k− of each dataset, indicating a moderate correlation between k+ and k−. The dashed line 
represents the linear fit.
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underline the importance of reference datasets, the rewire and sign 
shuffle null models appear to be consistent with WB in all real net-
works, a disturbingly misleading result, as these null models fail to 
detect SB even in the SB reference dataset. To sum up, null models 
that disrupt the signed degree preferences lead to erroneous conclu-
sions at the triangle level. This incoherence is further amplified 
when analyzing four-node graphlets, as discussed next.

Signed four-node patterns
Four-node graphlets are useful in uncovering higher-order struc-
tures and assessing network reliability across various fields (41–43). 
However, as we will demonstrate, when analyzing social networks, 
comparing the observed frequencies of signed four-node graphlets 
to existing null models often yields inconsistent conclusions about 
structural balance across datasets. This again highlights the need for 
a proper null model that can help uncover the effect of balance in 
social networks. Just like for three-node graphlets, we start by 
considering fully connected four-node graphlets, squareX (patterns 
5 to 15 in Fig. 4). We will then discuss four-node graphlets that are 

missing either one (squareZ) or both (square) diagonal edges. We 
define these graphlets to be balanced if all the cycles within the 
graphlet are balanced. Just like at the triangle level, the rewire and 
sign shuffle null models fail to detect SB at the squareX level even in 
the SB reference network (balanced patterns 5 to 6 appear to be 
underrepresented), rendering them unsuitable for our purposes 
(Fig. 4). In terms of the real-life datasets, the picture appears to be 
rather confusing, as each of the unbalanced squareX graphlets can 
be either significantly over- or underrepresented depending on the 
choice of network data and the null model (Fig. 4). In stark contrast, 
with the STP null model, the results are consistent with SB. The 
signed rewire null model again leads to inconsistent results across 
the datasets, as in addition to the Epinions dataset, Slashdot also 
appears to violate SB for multiple graphlets.

Since squareX graphlets are considered to be combinations of 
triangles, it is natural to expect that squareX graphlets are balanced 
if triangles are balanced. It then looks surprising that the signed 
rewire model fails to detect SB for squareX patterns in Slashdot, in 
contrast to the observed SB at the triangle level. This is an example 

Table 1. Overview of studied networks. 

Dataset Slashdot Congress Bitcoin-Alpha Bitcoin-OTC Epinions SB ref EC ref

Nodes 82,052 219 3766 5857 119,070 120,000 120,000

Edges 498,527 520 13,872 21,131 701,569 547,868 790,591

Density 0.00015 0.02178 0.00196 0.00123 0.00010 0.00008 0.00011

Positive ratio 0.76411 0.79615 0.91703 0.86271 0.83215 0.82187 0.72319
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Fig. 2. Overview of signed null models. A small toy network that contains two groups of nodes (even in yellow and odd in gray) is shown in the middle. The network is 
designed to be strongly balanced with positive edges only between members of the same group and negative edges only between members of different groups. We 
consider four null models: (i) rewire, disrupts the topology and signed node degrees; (ii) sign shuffle, preserves the topology, disrupts signed node degrees; (iii) signed 
rewire, preserves signed node degrees, disrupts the topology; and (iv) STP, preserves both the topology and signed node degrees. Positive edges are shown in blue, while 
negatives are in red. Thicker lines indicate edges that are different from the original network.
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that even for graphlets composed of triangles, the results do not 
simply follow from those for triangles. The reason is that significant 
SB at the triangle level still often comes with a considerable number 
of unbalanced triangles, contributing in a nonlinear way to the 
statistics of squareX and squareZ graphlets. Yet, four-node graphlets 
with fewer constraining edges may exhibit even less balance, calling 
for the analysis of squareZ (graphlets 16 to 29) and square (graphlets 
30 to 35) patterns (Fig. 5). With the STP null model, squareZ graphlets 
again show consistency with SB (Fig. 5). Just like before, the rewire 
and sign shuffle null models fail for the SB reference network. At the 
same time, the signed rewire model deviates from SB only for the 
Epinions dataset.

Square graphlets can provide additional information as they 
are not constrained by triangle statistics. In this case, the signed 
rewire null model also fails to detect SB in the SB reference network, 
in addition to the rewire and sign shuffle models. Specifically, the 
+ + + + graphlet appears to be significantly underrepresented 
according to the signed rewire null model (Fig. 5), leaving the STP 
null model as the only viable null model.

Although there is no anticipation of SB at the square level 
from the triangle results, we observe significant SB in most of the 
studied datasets when compared to the STP null model (Fig. 5). 
The two potential exceptions are the financial datasets, namely, 
the significant underrepresentation of + − + − in Bitcoin-OTC 
and the depletion of − − − − in Bitcoin-Alpha, although this 
deviation is not significant. Note that most of the motif results 
align with the corresponding graphlet results for the STP null 
model (fig. S3). The only two exceptions are: − − − − in Epinions, 
which becomes significantly underrepresented, and + − + − in 
Bitcoin-OTC, which becomes significantly overrepresented. The 
observed cases of SB at the square level (with STP null model) 
call for an interpretation, independently from patterns at the tri-
angle level. When network topology and node preferences are 
considered, square-level balance reveals additional balance not 
captured by triangle-level balance alone, as follows. (i) If two nodes 

have a shared enemy (friend), they may have more shared enemies 
(friends), corresponding to + + + + and − − − −; (ii) if two nodes 
have one shared enemy (friend), they may have more shared friends 
(enemies), corresponding to + + − −; and (iii) if two nodes 
have opposite attitudes toward a common neighbor, they may 
hold opposite attitudes toward more neighbors, corresponding 
to + − + −.

In addition, we have checked the performance of the null models 
on randomly rewired SB reference networks, where SB is inten-
tionally reduced (fig. S2A). As expected, none of the null models 
detect SB or WB in this case for triangles and squares. However, 
the signed rewire null model generally detects larger z scores in 
these randomized networks than the STP null model. As an even 
more extreme test, we also considered reversing the signs of the 
SB reference network, leading to the network “SB rev” (fig. S2B). 
No method finds SB or WB in this case, and only the STP null 
model is consistent with the intended structure. Once again, we 
conclude that matching the topology and the signed degree se-
quence in the null model is important. Now that we have estab-
lished the STP null model as the only suitable null model, we turn 
to discuss some of the potential wiring mechanisms behind our 
observations with STP.

Potential mechanisms behind signed patterns
As a starting point, ideas of node-copying mechanisms have 
been proposed to potentially explain network patterns, including 
the formation of square graphlets (44–47). Here, we first generalize 
the node-copying mechanism to signed networks, where a new 
node can replicate (some or all) of the connections of another 
node, also copying the corresponding edge signs. As illustrated in 
Fig. 6A, when a node (A′) duplicates the edges along with their 
associated signs from another node (A), it naturally leads to some 
of the balanced squares: − − − −, + + − −, and + + + +. Note 
that the + − + − pattern cannot be created this way. This is in line 
with the Bitcoin-OTC dataset, where SB is detected apart from 
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the underrepresented + − + − pattern. Yet, all other results in 
Fig. 5 show an overrepresentation of + − + − graphlets, calling 
for mechanisms that can potentially explain it. Moreover, signed 
triangle graphlets are not necessarily explained by a node-copying 
mechanism, depending also on the initial conditions.

Thus, as an alternative solution, we propose a simple edge-
copying mechanism (Fig. 6B). Here, in each step, a node can copy all 
or some of the edges from its neighbor. Nodes connected by positive 
edges are assumed to copy each other’s attitudes toward other nodes, 
just like in the node-copying mechanism. A key difference is that 
negatively connected nodes are proposed to replicate the edges of 
their foes with signs reversed. The edge-copying mechanism initially 

leads to balanced triangles as shown in Fig. 6B and eventually leads 
to larger balanced graphlets (fig. S4). We implement the proposed 
edge-copying mechanism together with node addition to generate a 
simple edge-copying reference network, “EC ref ” (see Materials and 
Methods). The EC reference network starts with a + + + triangle, 
with nodes sequentially added to the network (see examples in 
Fig. 6C and fig. S5), and eventually leads to all possible balanced 
patterns, including the + − + − square graphlet that is missing from 
the node-copying mechanism. This simple EC reference network 
only includes balanced patterns (see the proof in the Supplementary 
Materials) and thus all unbalanced patterns are underrepresented 
when compared to all null models.
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DISCUSSION
Graphlet (or motif) statistics provide key insights into the mecha-
nisms of network wiring and function. However, it is important to 
interpret the results in the context of an adequate null model. Up 
until now, signed network null models had a crucial shortcoming as 
they either ignored the signed degree preferences of the nodes or the 
network topology. First, we have shown that matching the signed 

degrees is critically important in heterogeneous signed networks. 
Second, we have shown that keeping the network topology intact is 
useful to disentangle purely topological effects from those related to 
the balance of signed patterns. As a solution, we proposed the STP 
null model that preserves both the signed degrees and the network 
topology using the maximum entropy framework. We found that 
the STP null model provides more consistent results across signed 
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Fig. 5. Overview of the results for four-node graphlets with some edges missing (squareZ and square). The z scores are indicated by blue (overrepresented) and red 
(underrepresented) blocks. We list the balanced graphlets first, separated from the unbalanced graphlets by a black line. We leave the block white if σrand = 0 as it leads to 
an undetermined z score. Significant results with both ∣z∣ > 2 and P < 0.01 are indicated by *. The statistical analysis is performed using a sample size of n = 1000.
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social networks than previous null models, favoring SB at both the 
level of triangles and four-node graphlets, with the potential excep-
tion of the + − + − graphlet for Bitcoin-OTC. The results suggest 
that, only when the network topology and node sign preferences are 
considered, real social networks exhibit a preference for balanced 
patterns while avoiding unbalanced patterns. This prevalent signa-
ture of SB is obscured when topology or signed node degrees are not 
properly incorporated into the null models. More broadly, the 
results also highlight the importance of the space of allowed con-
nections. Assuming all connections are possible drastically changes 
interpretations from a fixed topology. In reality, the topology is 
neither completely arbitrary nor fixed. Gathering information on 
the structure of allowed connections would be useful for further 
understanding the wiring mechanisms of real-world social net-
works. The STP model could readily incorporate such data on the 
allowed connections as hard constraints.

In addition, we have introduced an edge-copying mechanism 
that has the potential to form balanced triangles and four-node 
graphlets, while providing flexibility in matching the (un)balanced 
square patterns. Note that the edge-copying mechanism provides a 
simple, yet plausible, example of forming balanced patterns at the 
levels of triangles, squareZ and squareX graphlets, questioning the 
current paradigm that ignores four-node graphlet mechanisms (36). 
Even so, without following the detailed dynamical processes of these 
networks, we cannot conclude that the edge-copying mechanism 
is actually at play in these networks. As a complication, when intro-
ducing a new node to the network, it can potentially engage in the 

formation of multiple graphlets simultaneously, both with and with-
out participating in higher-order interactions (48, 49). Furthermore, 
both node-copying and edge-copying mechanisms may happen 
simultaneously in real social networks. Note that signed node copy-
ing is more plausible when a node can access information on the 
signed edges of other unrelated nodes, like in the Slashdot and 
Bitcoin-OTC datasets. Under other circumstances, for online social 
networks (50), individuals may have access to strangers’ friend lists 
but may have at most limited access to strangers’ blacklists (or foes). 
Therefore, we expect that the observed patterns might depend 
on factors like the feasibility and accessibility of copying strangers’ 
edges. Yet, the consistent SB observed in most datasets indicates a 
potentially widespread common mechanism, such as edge copying. 
Any exception detected in the square results may offer clues to 
understand key aspects of user behavior across platforms. For ex-
ample, the underrepresentation of + − + − in the Bitcoin-OTC 
dataset might support the hypothesis that rather than reversing 
signs from distrustful users, users may decide not to copy those 
edges instead, leading to fewer + − + − squares.

Here, our primary narrative was to identify null models that are 
as close to the real data as possible without capturing the wiring 
mechanisms. As a key step, we proposed to disassociate the purely 
topological effects from those related to social balance. A substantial 
difference from a signed null model is then informative on the 
mechanisms related to balance. Note, however, that this is not the 
only narrative to consider. The presented null models are also 
valuable ingredients of an alternative framework where the aim is to 
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match the mechanisms behind real data as closely as possible by the 
null models. In this sense, the rewire null model corresponds to the 
scenarios, where individuals can choose both whom they interact 
with and how. On the other hand, the sign shuffle null model reflects 
situations where individuals cannot choose whom they interact with 
but they can decide on how, as long as they have no heterogeneous 
sign preferences. In situations matching the signed rewire null model, 
individuals can choose whom to interact with, but with various 
tendencies of forming positive or negative edges. Last, the STP null 
model would capture scenarios where individuals cannot choose 
whom to interact with but they have inherently different tendencies 
toward forming either more positive or negative edges.

One limitation of this study is that the STP null model preserves 
the average signed node degree rather than the exact node degree. 
Consequently, it results in a “canonical ensemble” and is therefore 
expected to be statistically somewhat less powerful than “microca-
nonical” null models that preserve the signed node degree exactly 
(51). Although formulating a null model that precisely preserves 
signed degrees is expected to introduce a considerably more chal-
lenging combinatorial problem, it is a promising avenue that merits 
further investigation.

Another interesting point that would require further investiga-
tion is the appropriate statistical threshold (z score or P value). 
Especially in very large networks, the standard choice of ∣z∣ > 2 must 
be revisited as the tail of the distributions might deviate from a 
normal expectation. Going beyond triangle patterns also quickly 
increases the number of hypothesis tests, especially if one would 
consider five- or six-node patterns, potentially leading to spurious 
results, calling for a controlled family-wise error rate. Besides, while 
considering higher-order graphlets is a meaningful way to better 
decipher the complexity of social networks, limited by the sub-
stantially increased computational complexity, we only considered 
three- and four-node graphlets in this study. As an illustration of the 
computational complexity, within the Slashdot dataset, we encoun-
ter 571 million triangles, categorized into four distinct cases, along 
with 54 billion four-node graphlets that are classified into 31 distinct 
cases (graphlets 5 to 35 in Figs. 4 and 5).

STP randomization has widespread potential applications and 
extensions. To start, it can provide a more adequate alternative null 
model to quantify balance (24, 36, 52–54) or measure polarization 
(2, 4–6, 8) in social networks. Besides, the observed SB in social 
networks, as indicated by the STP model, shows potential to ad-
vance current sign prediction methods (55–59). In addition, the 
STP null model can be extended to directed and weighted networks 
(60, 61), with the potential to contrast large-scale data against alter-
natives to SB, such as status theory (1).

Note that upon completion of our manuscript, we came across 
a parallel study that overlaps with our work (62). The presented 
SCM-FT null model shares the same mathematical formulation 
as the STP null model, apart from details of the numerical imple-
mentation, achieving consistent results at the triangle level.

MATERIALS AND METHODS
Signed social network datasets
The four large signed social networks analyzed in this study were 
downloaded from the Stanford Large Network Dataset Collection 
(http://snap.stanford.edu/): (i) Bitcoin-Alpha, the trust/distrust net-
work among people who trade Bitcoin on a platform called Bitcoin 

Alpha; (ii) Bitcoin-OTC, the trust/distrust network among people 
who trade Bitcoin on a platform called Bitcoin OTC (34); (iii) Slash-
dot, friend/foe network of the technological news site Slashdot 
released in February 2009; and (iv) Epinions, who-trust-whom 
online social network of a general consumer review site Epinions. 
The smaller-scale Congress network is from (32). More details of the 
construction of the datasets can be found in (1, 33). Network edges 
are considered to be undirected. This process leads to only a very 
limited number of edge sign inconsistencies. Such inconsistent 
edges are disregarded in our analysis, together with any self-loops 
(52). Only the largest connected component of each network is 
considered.

Construction of the SB reference network
We create a simple model network referred to as the SB reference 
network, following Harary’s theorem of SB (40). The model network 
includes 120,000 nodes, on par with the largest studied datasets. 
Note that the primary objective of the SB reference network is not to 
emulate actual social networks but rather, to serve as a standardized 
benchmark for evaluating whether null models can successfully iden-
tify SB within a simple SB reference network.

The nodes in the SB reference network are first divided into two 
equal groups. We then generate two degree sequences according to 
power-law degree distributions with an exponent of either 2 or 3 
for positive and negative degree sequences, respectively. To intro-
duce a moderate level of correlation between these positive and 
negative degree sequences, we initially arranged both sequences in 
ascending order. Subsequently, we exchange each degree value in 
the positive degree sequence with another random degree value 
from the same sequence, with a probability of 0.2 for each exchange. 
The resulting positive and negative degree sequences have a correla-
tion coefficient of 0.4. Then, the negative degree sequence is used to 
generate negative edges between members of different groups using 
the configuration model, while the positive degree sequence is used 
to generate positive edges between members of the same groups. 
The resulting SB reference network has comparable density and 
positive edge ratios to real-life social networks as shown in Table 1.

Construction of the EC network
We use the edge-copying mechanism to introduce nodes into an 
initial network, thereby constructing a reference EC network. We 
used a + + + triangle as the initial condition and subsequently added 
nodes to the network. Each new node establishes a connection with 
a randomly selected node (45). The sign of this connection is 
positive with probability q = 0.9 to match the typical positive ratio 
of 0.75 to 0.92 in real networks (see Table 1). In addition, every new 
node connects with the neighbors of the selected node, with a prob-
ability P = 0.45 to match the sparsity of real networks. When a new 
node establishes a connection with the selected node via a positive 
(negative) edge, it keeps (reverses) the sign of the copied edge. The 
constructed EC reference network has 120,000 nodes, roughly the 
size of the largest studied real networks.

Apart from the EC reference network shown in the main text, we 
generated another two networks using different P and q values 
that lead to comparable density and positive ratios as real social net-
works (table S2). Figure S6 illustrates the degree distribution of 
the generated EC networks, which exhibits a rough alignment with 
a power-law distribution. Different EC networks yield consistent 
results regarding balance, as depicted in fig. S7.

http://snap.stanford.edu/
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Standard null models
In the rewire null model, we randomly select two edges of four dif-
ferent nodes, A − B and C − D, and attempt to swap them with equal 
probability to either A − D, C − B or A − C, B − D. Such swap 
attempts are aborted if the resulting edges already exist in the net-
work. To achieve sufficient network randomization, we perform 
40 E edge swap attempts, where E is the number of edges in the 
network. In the signed rewire null model, we use the same method 
as in the rewire null model but only select edges of the same sign, 
thus preserving the signed degrees of each node. To prevent multi-
edges with both positive and negative signs, we prohibit the swap if 
it would result in edges with contradictory signs.

In the sign shuffle null model, we randomly assign positive or 
negative signs to each edge, while preserving the exact total number 
of positive and negative edges.

The STP null model
The STP null model is based on the maximum entropy framework 
(27–31). We extend the application of the maximum entropy frame-
work to signed networks, enabling the simultaneous preservation 
of both the network topology and the signed degree sequence. A 
signed network G0 is first divided into two subgraphs, namely, the 
positive (Gp) and negative (Gn) subgraphs that include all the posi-
tive or negative edges in G0. Keeping the topology intact means 
that randomizing the negative subgraph readily provides the posi-
tive subgraph. Each negative subgraph instance Gnr is assigned a 
probability P(Gnr) that maximizes the Shannon-Gibbs entropy

subject to the constraints ∑Gnr P(Gnr) = 1 and the average negative 
node degree <k−

i
(Gnr) > = k

−

i
(Gn) . Considering all constraints 

leads to the function

where β, θi are the Lagrange multipliers of the constraints. The solu-
tion is found by setting the derivatives of L with respect to P(Gnr) 
and the Lagrange multipliers to 0. Solving the equations leads to 
P(Gnr) = e−H(Gnr)/Z, with the Hamiltonian H(Gnr) =

∑
i θik

−

i
(Gnr) 

and the partition function Z = ∑Gnr e
−H(Gnr). We define an element 

in the negative adjacency matrix as σ−
ij
= 1 if node i is negatively 

connected to node j, otherwise σ−
ij
= 0 . The Hamiltonian can then 

be expressed as

The partition function is then

The resulting probability of selecting an existing edge in G0 to be 
part of Gnr between nodes i and j is simply (63–65)

where we denote αi = eθ
i. αi can be found efficiently, through the 

iterations

We use the initial condition α(0)
i

≡ 1 and we stop the iteration 
when the maximum relative change of αi is less than 10−3 between 
two consecutive iterations or it reaches the maximum number of 
iterations of our iterative algorithm, set to 104. Note that although 
here we randomize the negative subgraph and set the remaining 
network as the positive subgraph, randomizing the positive sub-
graph first will give the same result.

Empirical P values
We use empirical P values to assess the significance of the graphlet 
results. Specifically, we compute the one-sided empirical P value as 
P = (r + 1)/(n + 1), where n is the number of random samples, set 
to 1000 in this study, and r is the number of samples that produce a 
higher (lower) graphlet frequency than or equal to the observed 
frequency (66). A P value below 0.01 indicates that the observed 
graphlet frequency nobs is significantly higher (lower) than the aver-
age graphlet frequency <nrand> in the random samples.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S7
Tables S1 and S2
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