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Abstract

Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting 

and contributing to the evidence-based practice of medicine, personalizing patient treatment, 

reducing costs, and improving both healthcare provider and patient experience. Unlocking this 
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potential requires systematic, quantitative evaluation of the performance of medical AI models 

on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, 

we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. 

MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them 

to different facilities, such as healthcare organizations. This process of bringing the model to the 

data empowers each facility to assess and verify the performance of AI models in an efficient 

and human-supervised process, while prioritizing privacy. We describe the current challenges 

healthcare and AI communities face, the need for an open platform, the design philosophy 

of MedPerf, its current implementation status and real-world deployment, our roadmap and, 

importantly, the use of MedPerf with multiple international institutions within cloud-based 

technology and on-premises scenarios. Finally, we welcome new contributions by researchers 

and organizations to further strengthen MedPerf as an open benchmarking platform.

As medical artificial intelligence (AI) has begun to transition from research to clinical 

care1–3, national agencies around the world have started drafting regulatory frameworks to 

support and account for a new class of interventions based on AI models. Such agencies 

include the US Food and Drug Administration4, the European Medicines Agency5 and the 

Central Drugs Standard Control Organisation in India6. A key point of agreement for all 

regulatory agency efforts is the need for large-scale validation of medical AI models7–9 to 

quantitatively evaluate their generalizability.

Improving evaluation of AI models requires expansion and diversification of clinical 

data sourced from multiple organizations and diverse population demographics1. Medical 

research has demonstrated that using large and diverse datasets during model training 

results in more accurate models that are more generalizable to other clinical settings10. 

Furthermore, studies have shown that models trained with data from limited and specific 

clinical settings are often biased with respect to specific patient populations11–13; such 

data biases can lead to models that seem promising during development but have lower 

performance in wider deployment14,15.

Despite the clear need for access to larger and more diverse datasets, data owners are 

constrained by substantial regulatory, legal and public perception risks, high up-front costs, 

and uncertain financial return on investment. Sharing patient data presents three major 

classes of risk: (1) liability risk, due to theft or misuse; (2) regulatory constraints such 

as the Health Insurance Portability and Accountability Act or General Data Protection 

Regulation16,17; and (3) public perception risk, in using patient data that include protected 

health information that could be linked to individuals, compromising their privacy18–25. 

Sharing data also requires up-front investment to turn raw data into AI-ready formats, 

which comes with substantial engineering and organizational cost. This transformation 

often involves multiple steps including data collection, transformation into a common 

representation, de-identification, review and approval, licensing, and provision. Navigating 

these steps is costly and complex. Even if a data owner (such as a hospital) is willing to 

pay these costs and accept these risks, benefits can be uncertain for financial, technical or 

perception reasons. Financial success of an AI solution is difficult to predict and—even if 
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successful—the data owner may see a much smaller share of the eventual benefit than the AI 

developer, even though the data owner may incur a greater share of the risk.

Evaluation on global federated datasets

Here we introduce MedPerf26, a platform focused on overcoming these obstacles to broader 

data access for AI model evaluation. MedPerf is an open benchmarking platform that 

combines: (1) a lower-risk approach to testing models on diverse data, without directly 

sharing the data; with (2) the appropriate infrastructure, technical support and organizational 

coordination that facilitate developing and managing benchmarks for models from multiple 

sources, and increase the likelihood of eventual clinical benefit. This approach aims to 

catalyse wider adoption of medical AI, leading to more efficacious, reproducible and cost-

effective clinical practice, with ultimately improved patient outcomes.

Our technical approach uses federated evaluation (Fig. 1), which aims to provide easy and 

reliable sharing of models among multiple data owners, for the purposes of evaluating 

these models against data owners’ data in locally controlled settings and enabling aggregate 

analysis of quantitative evaluation metrics. Importantly, by sharing trained AI models 

(instead of data) with data owners, and by aggregating only evaluation metrics, federated 

evaluation poses a much lower risk to patient data compared with federated training of AI 

models. Evaluation metrics generally yield orders of magnitude less information than model 

weight updates used in training, and the evaluation workflow does not require an active 

network connection during the workload, making it easier to determine the exact experiment 

outputs. Despite its promising features, federated evaluation requires submitting AI models 

to evaluation sites, which may pose a different type of risk27,28. Overall, our technology 

choices are aligned with the adoption growth federated approaches are experiencing in 

medicine and healthcare2.

MedPerf was created by a broad consortium of experts. The current list of direct contributors 

includes representatives from over 20 companies, 20 academic institutions and nine 

hospitals across thirteen countries and five continents. MedPerf was built upon the work 

experience that this group of expert contributors accrued in leading and disseminating 

past efforts such as (1) the development of standardized benchmarking platforms (such as 

MLPerf, for benchmarking machine learning training29 and inference across industries in 

a pre-competitive space30); (2) the implementation of federated learning software libraries 

such as the Open Federated Learning library31, NVIDIA FLARE, Flower by Flower Labs/

University of Cambridge, and Microsoft Research FLUTE32; (3) the ideation, coordination 

and successful execution of computational competitions (also known as challenges) across 

dozens of clinical sites and research institutes (for example, BraTS33 and Federated Tumor 

Segmentation (FeTS)34; and (4) other prominent medical AI and machine learning efforts 

spanning multiple countries and healthcare specialties (such as oncology3,29,35,36 and 

COVID-1937).

MedPerf aims to bring the following benefits to the community: (1) consistent and 

rigorous methodologies to quantitatively evaluate performance of AI models for real-world 

use; (2) a technical approach that enables quantification of model generalizability across 
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institutions, while aiming for data privacy and protection of model intellectual property; 

and (3) a community of experts to collaboratively design, operate and maintain medical 

AI benchmarks. MedPerf will also illuminate use cases in which better models are 

needed, increase adoption of existing generalizable models, and incentivize further model 

development, data annotation, curation and data access while preserving patient privacy.

Results

MedPerf has already been used in a variety of settings including a chief use-case for 

the FeTS challenge3,34,38, as well as four academic pilot studies. In the FeTS challenge—

the first federated learning challenge ever conducted—MedPerf successfully demonstrated 

its scalability and user-friendliness when benchmarking 41 models in 32 sites across six 

continents (Fig. 2). Furthermore, MedPerf was validated through a series of pilot studies 

with academic groups involved in multi-institutional collaborations for the purposes of 

research and development of medical AI models (Fig. 3). These studies included tasks 

on brain tumour segmentation (pilot study 1), pancreas segmentation (pilot study 2) 

and surgical workflow phase recognition (pilot 3), all of which are fully detailed in 

Supplementary Information. Collectively, all studies were intentionally designed to include a 

diverse set of clinical areas and data modalities to test MedPerf’s infrastructure adaptability. 

Moreover, the experiments included public and private datasets (pilot study 3), highlighting 

the technical capabilities of MedPerf to operate on private data. Finally, we performed 

benchmark experiments of MedPerf in the cloud to further test the versatility of the platform 

and pave the way to the benchmarking of private models; that is, models that are accessible 

only via an application programming interface (API), such as generative pre-trained 

transformers. All of the pilot studies used the default MedPerf server, whereas FeTS used 

its own MedPerf server. Each data owner (see Methods for a detailed role description) was 

registered with the MedPerf server. For the public datasets (pilot studies 1 and 2), and for the 

purposes of benchmarking, each data owner represented a single public dataset source. Each 

data owner prepared data according to the benchmark reference implementation and then 

registered the prepared data to the MedPerf server (see Methods). Finally, model MLCube 

containers (see Methods) comprising pretrained models were registered with the MedPerf 

server and evaluated on the data owners’ data. A detailed description for each benchmark—

inclusive of data and source code—is provided in Supplementary Information.

We also collected feedback from FeTS and the pilots’ participating teams regarding their 

experience with MedPerf. The feedback was largely positive and highlighted the versatility 

of MedPerf, but also underlined current limitations, issues and enhancement requests that 

we are actively addressing. Mainly, technical documentation on MedPerf was reported to 

be limited, creating an extra burden to users. Since then, the documentation has been 

extensively revamped39. Second, the dataset information provided to users was limited, 

requiring benchmark administrators to manually inspect model–dataset associations before 

approval. Finally, benchmark error logging was minimal, thus increasing debugging effort. 

The reader is advised to visit the MedPerf issue tracker for a more complete and up-to-date 

list of open and closed issues, bugs and feature requests40.
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MedPerf roadmap

Ultimately, MedPerf aims to deliver an open-source software platform that enables groups 

of researchers and developers to use federated evaluation to provide evidence of generalized 

model performance to regulators, healthcare providers and patients. We started with 

specific use cases with key partners (that is, the FeTS challenge and pilot studies), and 

we are currently working on general purpose evaluation of healthcare AI through larger 

collaborations, while extending best practices into federated learning. In Table 1, we review 

the necessary next steps, the scope of each step, and the current progress towards developing 

this open benchmarking ecosystem. Beyond the ongoing improvement efforts described 

here, the philosophy of MedPerf involves open collaborations and partnerships with other 

well-established organizations, frameworks and companies.

One example is our partnership with Sage Bionetworks; specifically, several ad-hoc 

components required for MedPerf-FeTS integration were built upon the Synapse platform41. 

Synapse supports research data sharing and can be used to support the execution of 

community challenges. These ad-hoc components included: (1) creating a landing page 

for the benchmarking competition38, which contained all instructions as well as links to 

further material; (2) storing the open models in a shared place; (3) storing the demo data 

in a similarly accessible place; (4) private and public leaderboards; and (5) managing 

participant registration and competition terms of use. A notable application of Synapse has 

been supporting DREAM challenges for biomedical research since 200742. The flexibility 

of Synapse allows for privacy preserving model-to-data competitions43,44 that prevent public 

access to sensitive data. With MedPerf, this concept can take on another dimension by 

ensuring the independent security of data sources. As medical research increasingly involves 

collecting more data from larger consortia, there will be greater demands on computing 

infrastructure. Research fields in which community data competitions are popular stand to 

benefit from federated learning frameworks that are capable of learning from data collected 

worldwide.

To increase the scalability of MedPerf, we also partnered with Hugging Face to leverage 

its hub platform45, and demonstrated how new benchmarks can use the Hugging Face 

infrastructure. In the context of Hugging Face, MedPerf benchmarks can have associated 

organization pages on the Hugging Face Hub, where benchmark participants can contribute 

models, datasets and interactive demos (collectively referred to as artifacts). The Hugging 

Face Hub can also facilitate automatic evaluation of models and provide a leaderboard of the 

best models based on benchmark specifications (for example, the PubMed summarization 

task46). Benefits of using the Hugging Face Hub include the fact that artifacts can 

be accessed from Hugging Face’s popular open-source libraries, such as datasets47, 

transformers48 and evaluation49. Furthermore, artifacts can be versioned, documented with 

detailed datasets/model cards, and designated with unique digital object identifiers. The 

integration of MedPerf and Hugging Face demonstrates the extensibility of MedPerf to 

popular machine learning development platforms.

To enable wider adoption, MedPerf supports popular machine learning libraries that offer 

ease of use, flexibility and performance. Popular graphical user interfaces and low-code 

frameworks such as MONAI50, Lobe51, KNIME52 and fast.ai53 have substantially lowered 
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the difficulty of developing machine learning pipelines. For example, the open-source fast.ai 

library has been popular in the medical community due to its simplicity and flexibility to 

create and train medical computer vision models in only a few lines of code.

Finally, MedPerf can also support private AI models or AI models available only through 

API, such as OpenAI GPT-4 (ref. 54), Hugging Face Inference Endpoints55 and Epic 

Cognitive Computing (https://galaxy.epic.com/?#Browse/page=1!68!715!100031038). As 

these private-model APIs effectively run on protected health information data, we see 

a lower barrier to entry in their adoption via Azure OpenAI Services, Epic Cognitive 

Computing and similar services that guarantee compliance of the API (for example, Health 

Insurance Portability and Accountability Act or General Data Protection Regulation). 

Although this adds a layer of complexity, it is important that MedPerf is compatible with 

these API-only AI solutions.

Although the initial uses of MedPerf were in radiology and surgery, MedPerf can easily 

be used in other biomedical tasks such as computational pathology, genomics, natural 

language processing (NLP), or the use of structured data from the patient medical record. 

Our catalogue of examples is regularly updated56 to highlight various use cases. As data 

engineering and availability of validated pretrained models are common pain points, we plan 

to develop more MedPerf examples for the specialized, low-code libraries in computational 

pathology, such as PathML57 or SlideFlow58, as well as Spark NLP59, to fill the data 

engineering gap and enable access to state-of-the-art pretrained computer vision and NLP 

models. Furthermore, our partnership with John Snow Labs facilitates integration with 

the open-source Spark NLP and the commercial Spark NLP for Healthcare60–62 within 

MedPerf.

The MedPerf roadmap described here highlights the potential of future platform integrations 

to bring additional value to our users and establish a robust community of researchers and 

data providers.

Related work

The MedPerf effort is inspired by past work, some of which is already integrated with 

MedPerf, and other efforts we plan to integrate as part of our roadmap. Our approach 

to building on the foundation of related work has four distinct components. First, 

we adopt a federated approach to data analyses, with the initial focus on quantitative 

algorithmic evaluation toward lowering barriers to adoption. Second, we adopt standardized 

measurement approaches to medical AI from organizations—including the Special Interest 

Group on Biomedical Image Analysis Challenges of MICCAI63, the Radiological Society 

of North America, the Society for Imaging Informatics in Medicine, Kaggle, and Synapse—

and we generalize these efforts to a standard platform that can be applied to many problems 

rather than focus on a specific one14,64–67. Third, we leverage the open, community-

driven approach to benchmark development successfully employed to accelerate hardware 

development, through efforts such as MLPerf/MLCommons and SPEC68, and apply it to 

the medical domain. Finally, we push towards creating shared best practices for AI, as 

inspired by efforts such as MLflow69, Kubeflow for AI operations70, MONAI50, Substra71, 

Fed-BioMed72, the Joint Imaging Platform from the German Cancer Research Center73, 
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and the Generally Nuanced Deep Learning Framework74,75 for medical models. And we 

acknowledge and take inspiration from existing efforts such as the Breaking Barriers to 

Health Data project led by the World Economic Forum10.

Discussion

MedPerf is a benchmarking platform designed to quantitatively evaluate AI models ‘in the 

wild,’ considering unseen data from out-of-sample distinct sources, and thereby helping 

address inequities, bias and fairness in AI models. Our initial goal is to provide medical 

AI researchers with reproducible benchmarks based on diverse patient populations to 

assist healthcare algorithm development. Robust well-defined benchmarks have shown 

their impact in multiple industries76,77 and such benchmarks in medical AI have similar 

potential to increase development interest and solution quality, leading to patient benefit and 

growing adoption while addressing underserved and underrepresented patient populations. 

Furthermore, with our platform we aim to advance research related to data utility, 

model utility, robustness to noisy annotations and understanding of model failures. Wider 

adoption of such benchmarking standards will substantially benefit their patient populations. 

Ultimately, standardizing best practices and performance evaluation methods will lead to 

highly accurate models that are acceptable to regulatory agencies and clinical experts, 

and create momentum within patient advocacy groups whose participation tends to be 

underrepresented78. By bringing together these diverse groups—starting with AI researchers 

and healthcare organizations, and by building trust with clinicians, regulatory authorities 

and patient advocacy groups—we envision accelerating the adoption of AI in healthcare 

and increasing clinical benefits to patients and providers worldwide. Notably, our MedPerf 

efforts are in complete alignment with the Blueprint for an AI Bill of Rights recently 

published by the US White House79 and would serve well the implementation of such a 

pioneering bill.

However, we cannot achieve these benefits without the help of the technical and medical 

community. We call for the following:

• Healthcare stakeholders to form benchmark committees that define specifications 

and oversee analyses.

• Participation of patient advocacy groups in the definition and dissemination of 

benchmarks.

• AI researchers to test this end-to-end platform and use it to create and validate 

their own models across multiple institutions around the globe.

• Data owners (for example, healthcare organizations, clinicians) to register their 

data in the platform (no data sharing required).

• Data model standardization efforts to enable collaboration between institutions, 

such as the OMOP Common Data Model80,81, possibly leveraging the highly 

multimodal nature of biomedical data82.

• Regulatory bodies to develop medical AI solution approval requirements that 

include technically robust and standardized guidelines.
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We believe open, inclusive efforts such as MedPerf can drive innovation and bridge the gap 

between AI research and real-world clinical impact. To achieve these benefits, there is a 

critical need for broad collaboration, reproducible, standardized and open computation, and 

a passionate community that spans academia, industry, and clinical practice. With MedPerf, 

we aspire to bring such a community of stakeholders together as a critical step toward 

realizing the grand potential of medical AI, and we invite participation at ref. 26.

Methods

In this section we describe the structure and functionality of MedPerf as an open 

benchmarking platform for medical AI. We define a MedPerf benchmark, describe the 

MedPerf platform and MLCube interface at a high level, discuss the user roles required to 

successfully operate such a benchmark, and provide an overview of the operating workflow. 

The reader is advised to refer to ref. 39 for up-to-date, extensive documentation.

The technical objective of the MedPerf platform is threefold: (1) facilitate delivery and 

local execution of the right code to the right private data owners; (2) facilitate coordination 

and organization of a federation (for example, discovery of participants, tracking of which 

steps have been run); and (3) store experiment records, such as which steps were run by 

whom, and what the results were, and to provide the necessary traceability to validate the 

experiments.

The MedPerf platform comprises three primary types of components:

1. The MedPerf server, which is used to define, register and coordinate benchmarks 

and users, as well as record benchmark results. It uses a database to store the 

minimal information necessary to coordinate federated experiments and support 

user management, such as: how to obtain, verify and run MLCubes; which 

private datasets are available to—and compatible with—a given benchmark 

(commonly referred to as association); and which models have been evaluated 

against which datasets, and under which metrics. No code assets or datasets are 

stored on the server (see the database SQL files at ref. 83).

2. The MedPerf client, which is used to interact with the MedPerf Server 

for dataset/MLCube checking and registration, and to perform benchmark 

experiments by downloading, verifying and executing MLCubes.

3. The benchmark MLCubes (for example, the AI model code, performance 

evaluation code, data quality assurance code), which are hosted in indexed 

container registries (such as DockerHub, Singularity Cloud and GitHub).

In a federated evaluation platform, data are always accessed and analysed locally. 

Furthermore, all quantitative performance evaluation metrics (that is, benchmark results) 

are uploaded to the MedPerf Server only if approved by the evaluating site. The MedPerf 

Client provides a simple interface—common across all benchmark code/models—for the 

user to download and run any benchmark.
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MedPerf benchmarks

For the purposes of our platform, a benchmark is defined as a bundle of assets that enables 

quantitative evaluation of the performance of AI models for a specific clinical task, and 

consists of the following major components:

1. Specifications: precise definition of the (1) clinical setting (for example, the 

task, medical use-case and potential impact, type of data and specific patient 

inclusion criteria) on which trained AI models are to be evaluated; (2) labelling 

(annotation) methodology; and (3) performance evaluation metrics.

2. Dataset preparation: code that prepares datasets for use in the evaluation step and 

can also assess prepared datasets for quality control and compatibility.

3. Registered datasets: a list of datasets prepared by their owners according to the 

benchmark criteria and approved for evaluation use by their owners.

4. Registered models: a list of AI models to execute and evaluate in this benchmark.

5. Evaluation metrics: an implementation of the quantitative performance 

evaluation metrics to be applied to each registered model’s outputs.

6. Reference implementation: an example of a benchmark submission consisting of 

an example model code, the performance evaluation metric component described 

above, and publicly available de-identified or synthetic sample data.

7. Documentation: documentation for understanding and using the benchmark and 

its aforementioned components.

MedPerf and MLCubes

MLCube is a set of common conventions for creating secure machine learning/AI software 

container images (such as Docker and Singularity) compatible with many different systems. 

MedPerf and MLCube provide simple interfaces and metadata to enable the MedPerf client 

to download and execute a MedPerf benchmark.

In MedPerf MLCubes contain code for the following benchmark assets: dataset preparation, 

registered models, performance evaluation metrics and reference implementation. 

Accordingly, we define three types of MedPerf MLCubes: the data preparation MLCube, 

model MLCube, and evaluation metrics MLCube.

The data preparation MLCube prepares the data for executing the benchmark, checks the 

quality and compatibility of the data with the benchmark (that is, association), and computes 

statistics and metadata for registration purposes. Specifically, it’s interface exposes three 

functions:

• Prepare: transforms input data into a consistent data format compatible with the 

benchmark models.

• Sanity check: ensures data integrity of the prepared data, checking for anomalies 

and data corruption.
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• Statistics: computes statistics on the prepared data; these statistics are displayed 

to the user and, given user consent, uploaded to the MedPerf server for dataset 

registration.

The model MLCube contains a pretrained AI model to be evaluated as part of the 

benchmark. It provides a single function, infer, which computes predictions on the prepared 

data output by the data preparation MLCube. In the future case of API-only models, this 

would be the container hosting the API wrapper to reach the private model.

The evaluation metrics MLCube computes metrics on the model predictions by comparing 

them against the provided labels. It exposes a single ‘evaluate’ function, which receives as 

input the locations of the predictions and prepared labels, computes the required metrics, 

and writes them to a results file. Note that the results file is uploaded to the server by the 

MedPerf only after being approved by the owner.

With MLCubes, the infrastructure software can efficiently interact with models, which 

means it can be implemented in various frameworks, run on different hardware platforms, 

and leverage common software tools for validating proper secure implementation practices 

(for example, CIS Docker Benchmarks).

Benchmarking user roles

We have identified four primary roles in operating an open benchmark platform, as outlined 

in Table 2. Depending on the rules of a benchmark, in many cases, a single organization may 

participate in multiple roles, and multiple organizations may share any given role. Beyond 

these roles, the long term success of medical AI benchmarking requires strong participation 

of organizations that create and adopt appropriate community standards for interoperability; 

for example, Vendor Neutral Archives84,85, DICOM80, NIFTI86, OMOP80,81, PRISSMM87 

and HL7/FHIR88.

Benchmarking workflow

Our open benchmarking platform, MedPerf, uses the workflow depicted in Fig. 4 and 

outlined in Table 3. All of the user actions in the workflow can be performed via the 

MedPerf client, with the exception of uploading MLCubes to cloud-hosted registries (for 

example, DockerHub, Singularity Cloud), which is performed independently.

Establishing a benchmark committee.—The benchmarking process starts with 

establishing a benchmark committee (for example, challenge organizers, clinical trial 

organizations, regulatory authorities and charitable foundation representatives), which 

identifies a problem for which an effective AI-based solution can have a clinical impact.

Recruiting data and model owners.—The benchmark committee recruits data owners 

researchers, AI vendors) either by inviting trusted parties or by making an open call for 

participation, such as a computational healthcare challenge. The recruitment process can 

be considered as an open call process for the data and model owners to register their 

contribution and benchmark intent. A higher number of recruited dataset providers may 

result in larger diversity on a global scale.
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MLCubes and benchmark submission.—To register the benchmark on the MedPerf 

platform, the benchmark committee first needs to submit the three reference MLCubes: data 

preration MLCube, model MLCube and evaluation metrics MLCube. After submitting these 

three MLCubes, the benchmark committee may initiate a benchmark. Once the benchmark 

is submitted, the MedPerf administrator must approve it before it becomes available to 

platform users. This submission process is presented in Fig. 4a.

Submitting and associating additional models.—With the benchmark approved 

by the MedPerf administrator, model owners can submit their own model MLCubes and 

request an association with the benchmark. This association request executes the benchmark 

locally with the given model to ensure compatibility. If the model successfully passes the 

compatibility test, and its association is approved by the benchmark committee, then it 

becomes part of the benchmark. The association process of model owners is shown in Fig. 

4b.

Dataset preparation and association.—Data owners that would like to participate 

in the benchmark can prepare their own datasets, register them and associate them with 

the benchmark. Data owners can run the data preparation MLCube so that they can 

extract, preprocess, label and review their dataset in accordance with their legal and ethical 

compliance requirements. If data preparation is successful, the dataset has successfully 

passed the compatibility test. Once association is approved by the benchmark committee, 

then the dataset is registered with MedPerf and associated with that specific benchmark. 

Figure 4c shows the dataset preparation and association process for data owners.

Executing the benchmark.—Once the benchmark, datasets and models are registered 

to the benchmarking platform, the benchmark committee notifies data owners that models 

are available for benchmarking, thus they can generate results by running a model on their 

local data. This execution process is shown in Fig. 4d. The procedure retrieves the specified 

Model MLCube and runs it with the indicated prepared dataset to generate predictions. The 

model MLCube executes the machine learning inference task to generate predictions based 

on the prepared data. Finally, the evaluation metrics MLCube is retrieved to compute metrics 

on the predictions. Once results are generated, the data owner may approve and submit them 

to the platform and thus finalize the benchmark execution on their local data.

Privacy considerations

The current implementation of MedPerf focuses on preserving privacy of the data used to 

evaluate models; however, privacy of the original training data is currently out of scope, 

and we leave privacy solutions to the model owners (for example, training with differential 

privacy and out-of-band encryption mechanisms).

However, privacy is of utmost importance to us. Hence future versions of MedPerf will 

include features that support model privacy and possibly a secure MedPerf container 

registry. We acknowledge that model privacy not only helps with intellectual property 

protection, but also mitigates model inversion attacks on data privacy, wherein a model 

is used to reconstruct its training data. Although techniques such as differential privacy, 
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homomorphic encryption, file access controls and trusted execution environments can all be 

pursued and applied by the model and data owners directly, MedPerf will facilitate various 

techniques (for example, authenticating to private container repositories, storing hardware 

attestations, execution integrity for the MedPerf client itself) to strengthen privacy in models 

and data while lowering the burden to all involved.

From an information security and privacy perspective, no technical implementation should 

fully replace any legal requirements or obligations for the protection of data. MedPerf’s 

ultimate objectives are to: (1) streamline the requirements process for all parties involved 

in medical AI benchmarking (patients, hospitals, benchmark owners, model owners and so 

on) by adopting standardized privacy and security technical provisions; and (2) disseminate 

these legal provisions in a templated terms and conditions document (that is, the MedPerf 

Terms and Use Agreement), which leverages MedPerf technical implementation to achieve 

a faster and more repeatable process. As of today, hospitals that want to share data typically 

require a data transfer agreement or data use agreement. Achieving such agreements can 

be time-consuming, often taking several months or more to complete. With MedPerf most 

technical safeguards will be agreed on by design and thus immutable, allowing the templated 

agreement terms and conditions to outline the more basic and common-sense regulatory 

provisions (for example, prohibiting model reverse engineering or exfiltrating data from 

pretrained models), and enabling faster legal handshakes among involved parties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

All datasets used here are available in public repositories except for: (1) the Surgical 

Workflow Phase Recognition benchmark (pilot study 3), which used privately held surgical 

video data, and (2) the test dataset of the FeTS challenge, which was also private. Users 

can access each study’s dataset through the following links: FeTS challenge38; pilot study 

1—brain tumour segmentation (https://www.med.upenn.edu/cbica/brats2020/data.html); 

pilot study 2—pancreas segmentation (https://www.synapse.org/#!Synapse:syn3193805 

and https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT); and pilot study 4—

cloud experiments (https://stanfordmlgroup.github.io/competitions/chexpert/).
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Fig. 1 |. Federated evaluation on MedPerf.
Machine learning models are distributed to data owners for local evaluation on their 

premises without the need or requirement to extract their data to a central location.
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Fig. 2 |. Geographical distribution of the FeTS collaborating sites in 2022.
For the MICCAI FeTS 2022 challenge, our MedPerf platform facilitated the distribution, 

execution and collection of model results from 32 hospitals across Africa, North America, 

South America, Asia, Australia and Europe.
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Fig. 3 |. Locations of the data sources used in the pilot studies.
The locations of the data sources used in the brain tumour segmentation (green), pancreas 

segmentation (red) and surgical workflow phase recognition (blue) pilot studies are shown.
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Fig. 4 |. Description of MedPerf workflows.
All user actions are performed via the MedPerf client, except uploading to container 

repositories. a, Benchmark registration by the benchmark committee: the committee uploads 

the data preparation, reference model and evaluation metrics MLCubes to a container 

repository and then registers them with the MedPerf Server. The committee then submits 

the benchmark registration, including required benchmark metadata. b, Model registration 

by the model owner: the model owner uploads the model MLCube to a container repository 

and then registers it with the MedPerf Server. They may then request inclusion of models 

in compatible benchmarks. c, Dataset registration by the data owner: the data owner 

downloads the metadata for the data preparation, reference model and evaluation metrics 

MLCubes from the MedPerf server. The MedPerf client uses these metadata to download 

and verify the corresponding MLCubes. The data owner runs the data preparation steps and 

submits the registration output via the data preparation MLCube to the MedPerf server. d, 
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Execution of benchmark: the data owner downloads the metadata for the MLCubes used 

in the benchmark. The MedPerf client uses these metadata to download and verify the 

corresponding MLCubes. For each model, the data owner executes the model-to-evaluation-

metrics pipeline (that is, the model and evaluation metrics MLCubes) and uploads the results 

files output by the evaluation metrics MLCube to the MedPerf server. No patient data are 

uploaded to the MedPerf server.

Karargyris et al. Page 23

Nat Mach Intell. Author manuscript; available in PMC 2024 May 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karargyris et al. Page 24

Ta
b

le
 1

 |

M
ed

Pe
rf

 r
oa

dm
ap

 s
ta

ge
s,

 s
co

pe
s,

 a
nd

 c
or

re
sp

on
di

ng
 d

et
ai

ls
 f

or
 e

ac
h 

st
ag

e

R
oa

dm
ap

 s
ta

ge
Sc

op
e:

 S
T

A
T

U
S

D
et

ai
ls

D
es

ig
n

D
es

ig
n 

fo
r 

an
 o

pe
n 

m
ed

ic
al

 b
en

ch
m

ar
ki

ng
 

pl
at

fo
rm

—
co

m
pl

et
ed

.
M

ed
Pe

rf
 w

as
 d

es
ig

ne
d 

by
 th

e 
no

n-
pr

of
it 

M
L

C
om

m
on

s 
A

ss
oc

ia
tio

n.
 M

L
C

om
m

on
s 

br
in

gs
 to

ge
th

er
 e

ng
in

ee
rs

 a
nd

 
ac

ad
em

ic
s 

gl
ob

al
ly

 to
 m

ak
e 

A
I 

be
tte

r 
fo

r 
al

l; 
th

ey
 h

av
e 

al
re

ad
y 

cr
ea

te
d 

an
d 

ho
st

 th
e 

M
L

Pe
rf

 b
en

ch
m

ar
k 

su
ite

s 
fo

r 
A

I 
pe

rf
or

m
an

ce
 (

as
 m

ea
su

re
d 

by
 s

pe
ed

-u
p,

 e
le

ct
ri

ca
l c

on
su

m
pt

io
n 

an
d 

so
 o

n)
.

Im
pl

em
en

ta
tio

n 
of

 p
la

tf
or

m
 

(a
lp

ha
 r

el
ea

se
)

Ph
as

e 
1:

 s
in

gl
e-

sy
st

em
 p

ro
of

-o
f-

co
nc

ep
t—

co
m

pl
et

ed
.

Im
pl

em
en

t a
nd

 d
em

on
st

ra
te

 te
ch

ni
ca

L
 a

pp
ro

ac
h 

us
in

g 
pu

bl
ic

 d
at

a 
an

d 
op

en
-s

ou
rc

e 
m

od
eL

s 
on

 a
 s

in
gl

e 
sy

st
em

 th
at

 
si

m
ul

at
es

 m
ul

tip
le

 s
ys

te
m

s 
(w

hi
ch

 e
lim

in
at

es
 p

la
tf

or
m

 in
co

m
pa

tib
ili

ty
 a

nd
 c

om
m

un
ic

at
io

n 
is

su
es

).

Ph
as

e 
2:

 d
is

tr
ib

ut
ed

 p
ro

of
-o

f-
co

nc
ep

t—
co

m
pL

et
ed

.
Im

pl
em

en
t a

nd
 d

em
on

st
ra

te
 te

ch
ni

ca
l a

pp
ro

ac
h 

us
in

g 
pu

bl
ic

 d
at

a 
an

d 
op

en
-s

ou
rc

e 
m

od
el

s 
co

m
m

un
ic

at
in

g 
ac

ro
ss

 
th

e 
in

te
rn

et
 o

n 
m

ul
tip

le
 s

ys
te

m
s 

be
lo

ng
in

g 
to

 p
ot

en
tia

l d
at

a 
an

d 
m

od
el

 o
w

ne
rs

.

Im
pr

ov
em

en
ts

 o
f 

pl
at

fo
rm

 
(t

ra
ns

iti
on

 f
ro

m
 a

lp
ha

 to
 b

et
a 

re
le

as
e)

M
od

el
 p

ro
te

ct
io

n:
 in

 d
ev

el
op

m
en

t f
ed

er
at

ed
 

le
ar

ni
ng

 c
ap

ab
ili

ty
—

in
 d

ev
el

op
m

en
t.

Id
en

tif
y 

an
d 

de
ve

lo
p 

be
st

 p
ra

ct
ic

es
 f

or
 m

od
el

 in
te

lle
ct

ua
l p

ro
te

ct
io

n.
B

ui
ld

 u
po

n 
co

m
m

on
 f

ed
er

at
ed

 le
ar

ni
ng

 f
ra

m
ew

or
ks

. I
nt

eg
ra

te
 a

nd
 p

ro
po

se
 b

es
t p

ra
ct

ic
es

 r
el

at
ed

 to
 f

ed
er

at
ed

 
le

ar
ni

ng
 in

 m
ed

ic
al

 A
I.

Im
pl

em
en

ta
tio

n 
an

d 
ev

al
ua

tio
n 

of
 s

am
pl

e 
be

nc
hm

ar
ks

B
ra

in
 tu

m
ou

r 
se

gm
en

ta
tio

n-
co

m
pl

et
ed

. 
Pa

nc
re

as
 s

eg
m

en
ta

tio
n—

co
m

pl
et

ed
 S

ur
gi

ca
l 

ph
as

e 
re

co
gn

iti
on

—
co

m
pl

et
ed

.

W
e 

ch
os

e 
th

es
e 

m
ot

iv
at

in
g 

pr
ob

le
m

s 
be

ca
us

e 
th

ey
: (

1)
 a

ff
ec

t a
 la

rg
e,

 g
lo

ba
l p

at
ie

nt
 p

op
ul

at
io

n 
an

d 
re

pr
es

en
t a

 
su

bs
ta

nt
ia

l o
pp

or
tu

ni
ty

 f
or

 c
lin

ic
al

 im
pa

ct
; (

2)
 h

av
e 

hi
gh

-p
ot

en
tia

l A
I 

so
lu

tio
ns

; a
nd

 (
3)

 h
av

e 
pu

bl
ic

 d
at

as
et

s 
an

d 
op

en
-s

ou
rc

e 
m

od
el

s 
in

 d
ev

el
op

m
en

t.

D
ep

lo
ym

en
t

Ph
as

e 
1:

 b
et

a 
re

le
as

e—
co

m
pl

et
ed

.
Se

le
ct

ed
 n

um
be

r 
of

 b
en

ch
m

ar
ki

ng
 e

ff
or

ts
 u

si
ng

 n
on

-p
ub

lic
 d

at
a—

ch
ie

f 
us

e-
ca

se
: F

eT
S 

ch
al

le
ng

e.

Ph
as

e 
2:

 w
id

e-
sc

al
e 

re
le

as
e—

on
go

in
g.

O
pe

n 
to

 a
ll 

qu
al

if
ie

d 
be

nc
hm

ar
ki

ng
 e

ff
or

ts
.

Nat Mach Intell. Author manuscript; available in PMC 2024 May 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Karargyris et al. Page 25

Table 2 |

Benchmarking user roles and responsibilities

Role name Role definition Role responsibilities

Benchmark 
committee

Benchmark committee incLudes regulatory 
bodies, groups of experts (for example, 
clinicians, patient representative groups), 
and data or model owners wishing to drive 
evaluation of their model or data.

• Authors the benchmark, manages all benchmark assets, and 
produces some assets (for example, dataset preparation).

• Recruits model owners and data owners, makes an open 
benchmark for model owners and approves applicants.

• Controls access to the aggregated statistical results.

Data owner Data owners may include hospitals, 
medical practices, research organizations 
and healthcare insurance providers that 
‘own’ medical data, register medical data 
and execute benchmark requests.

• Registers data with benchmarking platform.

• Performs data labelling.

• Downloads and executes a data preparation processor to 
prepare data.

• Downloads and periodically uses platform client to approve 
and serve requests, and to approve and upload results to or 
from benchmarking platform.

Model owner Model owners include AI researchers 
and software vendors that own a trained 
medical AI model and want to evaluate its 
performance.

• Registers model with benchmarking platform

• Views results of their model on the benchmark

• Has the option to approve sharing of results of that benchmark 
with other model/data owners or the public if allowed by 
benchmark group

Platform 
provider

Organizations such as MLCommons, which 
operate a platform that enables benchmark 
groups to run benchmarks by connecting 
data owners with model owners.

• Manages user accounts and provides a website for registering 
and discovering benchmarks, datasets, models, and for overall 
workflow management

• Coordinates active benchmarks by sending requests, 
aggregating results and managing result access
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Table 3 |

Benchmarking workflow, steps and interconnections with roles

Workflow step Objective

1 Define and 
register 
benchmark

• The benchmarking process starts with establishing a benchmark committee of healthcare stakeholders: 
healthcare organizations, clinical experts, AI researchers and patient advocacy groups.

• Benchmark committee identifies a clinical problem for which an effective AI-based solution can have a 
substantial clinical impact.

• Benchmark committee registers the benchmark on the platform and provides the benchmark assets (see 
‘MedPerf Benchmarks’).

2 Recruit data 
owners

• Benchmark committee recruits data and model owners either by inviting trusted parties or by making 
an open call for participation.

• Dataset owners are recruited to maximize aggregate dataset size and diversity on a global scale. Many 
benchmarking efforts may initially focus on data providers with existing agreements.

Prepare and 
register datasets

• In coordination with the benchmark committee, dataset owners are responsible for data preparation 
(that is, extraction, preprocessing, labelling, reviewing for legal/ethical compliance).

• Once the data are prepared and approved by the data owner, the dataset can be registered with the 
benchmarking platform.

3 Recruit model 
owners

• Model owners modify the benchmark reference implementation. To enable consistent execution on 
data owner systems, the solutions are packaged inside of MLCube containers.

• Model owners must conduct appropriate legal and ethical review before submission of a solution for 
evaluation.

Prepare and 
register models

• Once implemented by the model owner and approved by the benchmark committee, the model can be 
registered on the platform.

4 Execute 
benchmarks

• Once the benchmark, dataset and models are registered to the benchmarking platform, the platform 
notifies the data owners that models are available for benchmarking.

• The data owner runs a benchmarking cLient that downloads available models, reviews and approves 
models for safety, and then approves execution.

• Once execution is completed, the data owner reviews and approves upload of the results to the 
benchmark platform.

5 Release results • Benchmark results are aggregated by the benchmarking platform and shared per the policy specified by 
the benchmark committee, following data owners’ approval.
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