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COGNITIVE NEUROSCIENCE

Memorable first impressions
Our ability to recall details from a remembered image depends on a 
single mechanism that is engaged from the very moment the image 
disappears from view.

EMILIO SALINAS AND BASHIRUL I SHEIKH

Look out the window and see what stands out. 
Perhaps you notice some red and pink azaleas 
in full bloom. Now close your eyes and picture 

that scene in your mind. Initially, the colors and 
silhouettes linger vividly, but the details wither 
rapidly, leaving only a faded version of the image. 
As time passes, the accuracy with which an image 
can be recalled drops abruptly.

Memory is a critical, wonderful, multifaceted 
mental capacity that relies on many structures and 
mechanisms throughout the brain (Baddeley, 2003; 
Squire and Wixted, 2011; Schacter et al., 2012). 
This is not surprising, given the diversity of times-
cales and data types – such as images, words, facts 
and motor skills – that we can remember. Studies 
have shown that our visual memories are strongest 
immediately after an image disappears, remaining 
reliable for about half a second. This has tradi-
tionally been attributed to ‘iconic’ memory, which 
is thought to rely on a direct readout of stimulus-
driven activity in visual circuits in the brain. In this 
case, the memory remains vivid because, after the 
stimulus (i.e., the image) has been removed, the 
visual activity takes some time to decay (Sperling, 
1960; Pratte, 2018; Teeuwen et al., 2021).

In contrast, recalling an image a second or so 
after it has disappeared engages a different type 
of memory – visual working memory – that relies 

on information stored in different circuits in the 
frontal lobe (Pasternak and Greenlee, 2005; D’Es-
posito and Postle, 2015). Although not as vivid, the 
stored image remains stable for much longer. This 
is because, despite being more robust, the storage 
capacity for visual working memory is more limited: 
fewer items and less detail can be recalled from a 
remembered image. Together, these findings led 
to the idea that there are two distinct short-term 
memory mechanisms. Now, in eLife, Ivan Tomić and 
Paul Bays report strong evidence indicating that 
iconic memory and visual working memory are part 
of the same recall mechanism (Tomić and Bays, 
2023).

Tomić and Bays – who are based at the Univer-
sity of Zagreb and the University of Cambridge – 
first constructed a detailed computational model 
to describe how sensory information is passed to 
a visual working memory circuit for storage and 
later recall (Figure 1). In this model, visual neurons 
respond to the presentation of an image containing 
a few items. This stimulus causes sensory activity 
to rise smoothly while the input lasts, and to 
decay once the stimulus ceases, consistent with 
previous experiments (Teeuwen et al., 2021). This 
sensory response then drives a population of visual 
working memory neurons that can sustain their 
activity in the absence of a stimulus, although this 
activity will eventually be corrupted due to noise 
(Wimmer et al., 2014; DePasquale et al., 2018). 
An important feature of the model is that each 
remembered item is allocated an equal fraction of 
the maximum possible working memory activity.

The model constructed by Tomić and Bays can 
make specific testable predictions. For example, it 
predicts that if an item is cued for later recall while the 
sensory signal is still present, the working memory 
activity associated with the non-targets will decay 
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rapidly, freeing up resources and thus increasing the 
working memory activity associated with the cued 
item. This leads to more accurate recall of the item. 
In contrast, if an item is cued for later recall once 
the sensory signal has approached zero, this ‘boost’ 
does not happen, and the item is not recalled as 
accurately. In addition, the working memory activity 
should increase with longer exposure to the stimulus 

and should decrease as the number of remembered 
items increases.

These predictions were confirmed through exper-
iments with humans. Participants were shown visual 
stimuli while several factors were varied, including the 
number of items to be remembered, the duration of 
the stimulus, the time at which the item to be recalled 
was identified, and the time of the actual recall. The 
results of these experiments are consistent with the 
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Figure 1. Timeline of events during stimulus presentation and storage. A visual stimulus (grey box containing 
pattern) with N items is presented for a period of time (pale blue region). Sensory activity increases to a maximum 
value during this period, and then decays when the stimulus disappears. For each item, VWM activity also 
increases towards an effective saturation limit, which is the maximum possible value divided by the number of 
items presented: here N=2, so the effective saturation limit is half the maximum possible value. When the target 
item is cued (black arrow; top) at a later time (yellow region), the non-target item(s) are removed from memory 
(grey trace), and activity associated with the target item (green trace) increases towards the maximum possible 
value. The level of activity (and hence the accuracy of memory recall) will vary more and more over time due to 
noise. VWM: visual working memory.

Image credit: Adapted from Figure 2 in the paper by Tomić and Bays, 2023.
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notion that, during recall, visual information is always 
read out from the same population of neurons.

The findings of Tomić and Bays are satisfying for 
their simplicity; what seemed to require two sepa-
rate mechanisms is explained by a single framework 
aligned with many prior studies. However, models 
always require simplifications and shortcuts. For 
instance, much evidence indicates that both frontal 
lobe circuits and sensory areas contribute to the self-
sustained maintenance of activity that underlies the 
short-term memory of sensory events (Pasternak 
and Greenlee, 2005). Therefore, visual working 
memory is likely the result of continuous recurrent 
dynamics across areas (DePasquale et  al., 2018; 
Stroud et  al., 2024). Furthermore, there is still 
debate about the degree to which visual working 
memory implies equal sharing of resources, as 
opposed to some items receiving larger or smaller 
shares (Ma et al., 2014; Pratte, 2018). Neverthe-
less, the proposed model is certainly an important 
advance that future studies can build upon.
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