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SUMMARY

Here, we present a workflow for analyzingmulti-omics data of plasma samples in pa-
tients with post-COVID condition (PCC). Applicable to various diseases, we outline
steps for data preprocessing and integrating diverse assay datasets. Then, we detail
statistical analysis to unveil plasma profile changes and identify biomarker-clinical
variable associations. The last two steps discuss machine learning techniques for un-
supervised clustering of patients based on their inherent molecular similarities and
feature selection to identify predictive biomarkers.
For complete details on the use and execution of this protocol, please refer to
Wang et al.1

BEFORE YOU BEGIN

Institutional permissions

This study was conducted under the ethical principles of the Declaration of Helsinki with approval

from the University of Alberta Health Research Ethics Board (Pro00100319 and Pro00100207). Writ-

ten and informed consent was obtained from all participants. We also remind the users of this pro-

tocol that they need to acquire permissions from relevant institutions to collect plasma samples and

clinical information of their patients.

Hardware preparation

A computer with a MacOS or Windows operating system and network connection is required. The

RAM requirement depends on the size of the datasets, the complexity of machine learning models,

and the analysis pipeline. Since the machine learning models and analysis pipeline are moderate in

this protocol, 16 GB RAM would be sufficient for small-to-moderate-size datasets. For larger data-

sets containing over 1000 samples and several thousands of features, 32 GB RAM may be required.

Software preparation

The applications described in this section are required to analyze multi-omics data.

1. Install R programming language.

STAR Protocols 5, 103041, June 21, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
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a. Access R webpage (https://www.r-project.org) and install the latest version.

2. Install R studio.

a. Download the latest version of R Studio (https://posit.co/downloads) and install it.

3. Install Python programming language.

a. Access Python webpage (https://www.python.org) and install the latest version.

4. Install Visual Studio code (VS code).

a. Access VS code webpage (https://code.visualstudio.com) and install the latest version.

Note: Insteadof installing thementionedprogramming language, one can useweb-based interac-

tive computing platforms, such as Jupyter notebook or Google Colaboratory (Google Colab).

Dataset preparation

Prior to implementing the detailed protocol, it is necessary to convert raw output from omics plat-

forms into concentration tables. These tables should have samples arranged in rows and may

contain categorical features (such as study group, disease severity, clinical outcome) and numerical

features (molecular concentrations) stored in columns in Excel or .csv files.

Note: The example datasets used in this protocol follow this arrangement and are provided in

supplemental files.2 (Data S1, S2, and S3).

Note: Raw output from omics platforms have also been deposited to online repositories (Pep-

tideAtlas: PASS03810, MetaboLights: MTBLS7337).

KEY RESOURCES TABLE

STEP-BY-STEP METHOD DETAILS

Herein, we describe essential steps to analyze the integrated omics datasets, from data binding to

machine learning analysis. Python performs the last two steps: unsupervised clustering and feature

selection.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw proteomics dataset PeptideAtlas: PASS03810 https://peptideatlas.org/

Raw metabolomics dataset MetaboLights: MTBLS7337 https://www.ebi.ac.uk/metabolights/

Supplemental files Khoramjoo et al.2 https://data.mendeley.com/datasets/zyzt62gbrw/1

GitHub repository Khoramjoo et al.3 https://github.com/MobinKhoramjoo/
Biomarker-identification-by-multi-omics-analysis

Software and algorithms

R (v4.2.3) The R Project for Statistical Computing4 https://www.r-project.org/

Python (v3.8.16) Jupyter Notebook https://www.python.org/doc/versions/

dplyr (v1.1.4) Wickham et al.5 https://dplyr.tidyverse.org

ggplot2 (v3.4.4) Wickham et al.6 https://ggplot2.tidyverse.org

MetaboAnalystR (v4.0) Pang et al.7 https://github.com/xia-lab/MetaboAnalystR

ComplexHeatmap (v2.18.0) Gu et al.8 https://doi.org/10.18129/B9.bioc.ComplexHeatmap

Circlize (v 4.1.2) Gu et al.9 https://doi.org/10.1093/bioinformatics/btu393

Numpy Harris et al.10 https://doi.org/10.1038/s41586-020-2649-2.

Pandas The pandas development team11 https://doi.org/10.5281/zenodo.3509134

Matplotlib Hunter et al.12 https://doi.org/10.1109/MCSE.2007.55

Scikit learn Buitinck et al.13 https://doi.org/10.48550/arXiv.1309.0238

TensorFlow TensorFlow Developers14 https://doi.org/10.5281/zenodo.10126399

Others

Computer with an operating
system that can run software
as listed above

https://code.visualstudio.com,
https://posit.co/downloads

https://code.visualstudio.com,
https://posit.co/downloads
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Part 1: Data preprocessing

Timing: 10 min

Note: Missing values in omics data often arise because concentrations fall below the limit of

detection for the molecule in the assay for a particular sample. Therefore, we adopt the

approach of replacing remaining missing values with the minimum observed value for each

corresponding molecule.

1. Load packages in R (troubleshooting 1).

2. Import the datasets as data frames.

Note: The file Data.xlsx contains all three raw concentration tables generated from omics plat-

forms along with patients’ categories in three separate sheets (Data S1).

Note: If you are using your own dataset, you need to import them to RStudio environment as

data frames.

3. Bind the datasets.

Note: In all datasets, samples should be in rows and features (molecules) should be in columns.

Note: Make sure the order of samples in the datasets is identical.

4. Change the type of features (molecules) to numeric in the merged dataset.

>library(readxl)

>library(MetaboAnalystR)

>library(ComplexHeatmap)

>library(circlize)

>library(dplyr)

>library(ggplot2)

> cytokines <- read_excel(‘Data.xlsx’, sheet = ’Cytokines’)

> Proteins <- read_excel(‘Data.xlsx’, sheet = ’Proteins’)

> Metabolites <- read_excel(‘Data.xlsx’, sheet = ’Metabolites’)

>n_protein = 5 #number of the first protein column in your data

>n_metabolite = 5 #number of the first metabolite column in your data

>Data <- cbind(cytokines,

Proteins[n_protein:length(Proteins)],

Metabolites[n_metabolite:length(Metabolites)])

>desc_cols = c(1:4) #number of the descriptive columns in the merged data

>n_first_mol = 5 #number of the first molecule column in the merged data
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Note: In this step, all the missing values which were annotated by texts or characters turn into

‘‘NA’’s.

5. Change the zero values to ‘‘NA’’s, as they are considered as missing values.

6. Data cleaning: filtering the features based on percentage of their missing values.

Note: Features (molecules) with over 50% of the values missing are eliminated. To know what

features got deleted, run the following code:

> Data <- cbind(Data[,desc_cols],

as.data.frame(sapply(Data[,n_first_mol:length(Data)],

function (x) as.numeric(as.character(x)))))

>sum(Data == 0, na.rm = TRUE)

>Data <- replace(Data, Data == 0, NA)

>sum(Data == 0, na.rm = TRUE) #Should return 0

>Transposed_Data <- as.data.frame(t(Data))

## missing value vector:

>p <-c()

>for (i in 1:nrow(Transposed_Data)) {

p[i] <- sum(is.na(Transposed_Data[i,]))/ncol(Transposed_Data)

}

#input the vector to the data

>Transposed_Data <- Transposed_Data %>%

mutate(percent_of_missing_Values= p) %>%

select(percent_of_missing_Values, everything())

#filter the data based on the generated column (percent of #missing values)

>missing_value_cut_off = 0.5

>filtered_Transposed_Data <- Transposed_Data %>%

filter(percent_of_missing_Values < missing_value_cut_off)

##re-transpose the data:

>cleaned_data <- as.data.frame(t(filtered_Transposed_Data))

>cleaned_data <- cleaned_data[-1,]

>row.names(cleaned_data) <- row.names(data)

# features containing more missing values than cut off

>eliminated_data <- Transposed_Data %>%

filter(percent_of_missing_Values > missing_value_cut_off)

ll
OPEN ACCESS

4 STAR Protocols 5, 103041, June 21, 2024

Protocol



7. Data Imputation: replacing the remaining missing values by corresponding minimum value of

each feature (molecule).

Part 2: Statistical data analysis

Timing: 10 min

Here, we detail the steps to analyze the processed data, from normalization to exploratory analysis.

xpro_103041_gr2_3c.tif - These steps are pivotal in gaining valuable insights into the omics profile

of different study groups. To accomplish this, we leverage the MetaboAnalyst library.

8. Create a dataset object to store the processed data via the MetaboAnalystR library.

9. Normalize and scale the data. Here, we perform log transformation and mean centering.

10. Perform and visualize the principal component analysis (PCA) (Figure 1A) (troubleshooting 2).

## imputation of remaining missing values

>sum(is.na(cleaned_data))

>for (i in n_first_mol:ncol(cleaned_data)){

for(j in 1:nrow(cleaned_data)){

if (is.na(cleaned_data[j,i]) == "TRUE"){

cleaned_data[j,i] = min(cleaned_data[,i], na.rm = TRUE)

}

}

}

##check NAs and zero values to be removed

>sum(is.na(cleaned_data))

>sum(cleaned_data[,n_first_mol:ncol(cleaned_data)]== 0, na.rm = TRUE)

>mSet<-InitDataObjects("conc", "stat", FALSE)

>mSet<-Read.TextData(mSet, cleaned_data, "rowu", "disc")

>mSet<-SanityCheckData(mSet)

>mSet<-PreparePrenormData(mSet)

>mSet<-Normalization(mSet, "NULL", "LogNorm", "MeanCenter", "NULL", ratio=FALSE,

ratioNum=20)

>mSet<-PCA.Anal(mSet) #Perform PCA

>mSet<-PlotPCAPairSummary(mSet, "pca_pair_0_", format = "png", dpi = 72, width=NA, 5) #

Create PCA overview

>mSet<-PlotPCAScree(mSet, "pca_scree_0_", "png", dpi = 72, width=NA, 5) # Create PCA

scree plot
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11. Perform pairwise fold change analysis (troubleshooting 3).

Note: The criteria set for this step should be tailored based on each specific study. Higher fold

change thresholds will result in the identification of fewer differentially changed molecules

and vice versa.

12. Visualizing the pairwise fold change analysis by a volcano plot (Figure 1B)

13. Visualizing molecules with the greatest change across all study groups through heatmap

(Figure 1C).

Note: Depending on the number of features (molecules) after data preprocessing, we can

decide on the number of molecules to be shown by the heatmap. This decision can be

made considering the heatmap’s readability and interpretability. Displaying too many mole-

cules may result in a cluttered and difficult-to-interpret visualization, while showcasing too few

may overlook potentially relevant information. Thus, it is advisable to strike a balance by se-

lecting a suitable number of molecules that adequately represent the dataset’s characteristics

while ensuring clarity in the heatmap presentation.

Optional: We can highlight the changes in meaningful molecules across study groups by box

plots to emphasize their role in disease of interest.

Part 3: Identifying the correlation between DEMs and clinical variables

Timing: 10 min

Identifying associations between differentially expressed molecules and clinical variables such as

symptoms can facilitate the discovery of diagnostic biomarkers. By employing generalized linear

models, we can identify those associations while adjusting them to other variables thatmay influence

a disease state. We utilize a loop to iterate through all the molecules and clinical variables.

14. Importing the clinical dataset.

>mSet<-PlotPCA2DScore(mSet, "pca_score2d_0_", format = "png", dpi=300, width=NA, 1, 2,

0.95, 0, 0) # Create a 2D PCA score plot

>Fold_change_cut_off= 1.5 #set your cut off for fold change

>P_Value_cut_off = 0.05 #set your cut off for adjusted p value

>mSet<-Volcano.Anal(mSet, FALSE, Fold_change_cut_off, 0, F, P_Value_cut_off, TRUE, "fdr")

>mSet<-PlotVolcano(mSet, "volcano_0_", 1, 0, format ="png", dpi=300, width=NA)

>top_mol = 100 #number of the top molecules to be shown in the heatmap

>mSet<-PlotSubHeatMap(mSet, "heatmap_1_", "png", 300, width=NA,"norm", "row", "euclidean",

"ward.D","bwm", 8, "tanova", top_mol, "overview", F, T, T, F, T, T, T)

>clinical_variables<-read.csv("Data.csv")
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Note: For this part, the dataset should have differentially expressed molecules (DEMs) and

clinical variables in the same file in columns. (Data S2).

15. Import the values based on your data.

16. Make two empty data frames for the coefficients and p values.

17. Perform the generalized linear model for all molecules and clinical variables by a loop.

>n_o_clinical_variables = 20

>n_of_differentially_changed_molecules = 219

>A = n_o_clinical_variables + n_of_differentially_changed_molecules

>ncol_adjustment_var = 240

>n__adjustment_var = 7

>B= c(ncol_adjustment_var:(ncol_adjustment_var+n__adjustment_var))

#empty data frame for odds ratios

>Coefficients<-data.frame(matrix(nrow = n_o_clinical_variables,

ncol = n_of_differentially_changed_molecules))

>row.names(Coefficients)<-colnames(clinical_variables [(n_of_differentially_changed_molecules+1):A])

>colnames(Coefficients)<-colnames(clinical_variables [1:n_of_differentially_changed_molecules])

#empty data frame for p values

> pvalue<-data.frame(matrix(nrow = n_o_clinical_variables,

ncol = n_of_differentially_changed_molecules))

>row.names(pvalue)<- row.names(Coefficients)

>colnames(pvalue)<- colnames(Coefficients)

>for(i in 1:n_of_differentially_changed_molecules){

for(j in (n_of_differentially_changed_molecules+1):A){

sym<-glm(unlist(clinical_variables [j])�unlist(clinical_variables [i])+

unlist(clinical_variables [B[1]])+ #list all your adjustment variables

unlist(clinical_variables [B[2]])+

unlist(clinical_variables [B[3]])+

unlist(clinical_variables [B[4]])+

unlist(clinical_variables [B[5]])+

unlist(clinical_variables [B[6]])+

unlist(clinical_variables [B[7]])+

unlist(clinical_variables [B[8]]),

family=binomial(),

data= clinical_variables)
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18. After performing the adjusted regression, molecules with three or more significant p values were

filtered for illustration.

Note: The threshold to filter out the molecules for illustration purposes should be determined

based on results of the regression analysis. This threshold ensures that only molecules exhib-

iting a certain number of significant associations are included in the visualization.

19. Illustrating the associations by a heatmap (Figure 2).

Note: In this heatmap, significant associations are denoted by asterisks and the color of each

cell shows the direction of the association, where blue indicates negative and red indicates

positive associations.

# transposing the matrix

>n.pval <- as.data.frame(t(pvalue))

#Make a column for the number of significant p values in each row for transposed table

>v <- c()

>for (i in 1:nrow(n.pval)){

v[i]<- sum(n.pval[i,] < 0.05)

}

>n.pval <- n.pval %>%

mutate(n.of.sig = v)

# subset the molecules with >= 3 significant p values

>P_Value_cut_off = 3 #set your cut off for number of significant p vales

>n.pval.filtered<- n.pval %>%

filter(n.of.sig >= P_Value_cut_off)

>n.pval.filtered$n.of.sig <- NULL

#subset of odds ratio values of molecules with >= 3 significant p values

>odds.filrtered <- Coefficients %>%

select(rownames(n.pval.filtered))

>odds.filrtered <- as.data.frame(t(odds.filrtered))

pvalue [j-n_of_differentially_changed_molecules,i]<-coef(summary(sym))[2,4]

Coefficients [j-n_of_differentially_changed_molecules,i]<-exp(coef(summary(sym))[2,1])

}

}

>my_color_mapping <- colorRamp2(c(0, 1, 10), c("#2E2EFF", "white", "#FF2E2E"))

>Heatmap(

as.matrix(odds.filrtered),

width = ncol(odds.filrtered)*unit(4.5, "mm"),
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Part 4: Unsupervised clustering of patients based on their multi-omics profile

Timing: 10 min

To capture significant similarities between patients on a biological scale, we cluster patients based

on the degree of change in molecule levels from the acute to convalescence phase. We utilized au-

toencoder as a non-linear dimensionality reduction tool. A lower dimensional representation of the

data is beneficial for clustering, and hence, the initial data with all the omics profiles is sent through

an autoencoder to generate a lower dimensional representation and then clustered using the

k-means algorithm.

Note: We will use Python to analyze the data from this step forward.

20. Import required libraries.

height = nrow(odds.filrtered)*unit(3, "mm"),

cluster_rows = FALSE,

cluster_columns = FALSE,

show_row_dend = FALSE,

show_column_dend = FALSE,

clustering_method_rows = "ward.D2",

heatmap_legend_param = list(

title = "Odds Ratio",

at = seq(0, 2, length.out = 3),

labels = c( "10^-5", "1", "10^5")),

cell_fun = function(j, i, x, y, w, h, fill) {

if(n.pval.filtered [i, j] < 0.05) {

grid.text("*", x , y-(0.3*h) ,gp=gpar(fontsize=18))

}

},

col = my_color_mapping,

column_names_gp = grid::gpar(fontfamily= "Arial", fontface= "bold", fontsize = 10),

row_names_gp = grid::gpar(fontfamily= "Arial", fontface= "bold", fontsize = 9)

)

>import pandas as pd # To read data files

>import numpy as np # Process matrices

>from matplotlib import pyplot as plt # Plot figures

>from sklearn.decomposition import PCA # Perform PCA

>from sklearn.cluster import KMeans # Perform K-Means .layers

# Following packages are used to build the autoencoder

>import tensorflow as tf
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21. Read the split data files of the acute and convalescence values and calculate the delta values.

Note: The data that should be used in this step is the log10 transformed version of data

created in step 7 (Data S3), which is split into different datasets based on the type of molecules

(cytokine, protein, and metabolite) and the sampling time (acute and long COVID).

22. Build autoencoder architecture.

Note: The number of neurons in each layer is [100, 70, 50, 30] for the encoder and [50, 70, 100,

782] for the decoder. The autoencoder reduces our data from 782 features (dimensions) to 30

features.

>from tensorflow import keras

>from tensorflow.keras.layers import Dense

>from tensorflow.keras import models,Sequential

# Extract Long and Acute covid values

>X_acute_cyt=pd.read_csv(‘Acute_cytokine.csv’).iloc[:,:].values

>X_long_cyt= pd.read_csv(‘Long_cytokine.csv’).iloc[:,:].values

>X_acute_pro= pd.read_csv(‘Acute_proteins.csv’).iloc[:,:].values

>X_long_pro= pd.read_csv(‘Long_proteins.csv’).iloc[:,:].values

>X_acute_meta= pd.read_csv(‘Acute_metabolities.csv’).iloc[:,:].values

>X_long_meta= pd.read_csv(‘Long_metabolites.csv’).iloc[:,:].values

>X_acute = np.hstack((X_acute_cyt,X_acute_pro,X_acute_meta))

>X_long = np.hstack((X_long_cyt,X_long_pro,X_long_meta))

>patient_labels = pd.read_csv(‘Patient labels.csv).iloc[:,:].values

>X=X_long-X_acute

>scaler=StandardScaler()

>X=scaler.fit_transform(X) # Normalize the data

>print(X.shape)

>model=Sequential()

>model.add(Dense(100,input_shape=(782,),activation=’sigmoid’))

>model.add(Dense(70,activation=’sigmoid’))

>model.add(Dense(50,activation=’sigmoid’))

>model.add(Dense(30,activation=’sigmoid’))

>model.add(Dense(50,activation=’sigmoid’))

>model.add(Dense(70,activation=’sigmoid’))

>model.add(Dense(100,activation=’sigmoid’))

>model.add(Dense(782))

>model.summary()
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23. Create label vector and color vector for plotting.

24. Perform K-means clustering. The number of clusters is chosen based on the silhouette coeffi-

cient of clustering.

25. Save AutoEncoder Model.

26. Save Clustered Data.

27. Plotting clustering results (Figure 3A).

>label_dict_comb={’recovered’:’green’,’mild’:’blue’,’severe’:’red’}

>class_dict_comb={’recovered’:0,’mild’:1,’severe’:2}

>cvec=[label_dict_comb[label] for label in patient_labels]

>org_label=[class_dict_comb[label] for label in patient_labels]

>kmeans_comb=KMeans(n_clusters=3).fit(X_low) #3 clusters

>cluster_new =kmeans_comb.labels_ #Store cluster labels for each sample

>keras.models.save_model(model,’AutoEnc_Allfeatures_Delta_Sigmoid.hp5’,save_format=’h5’)

>callback=tf.keras.callbacks.EarlyStopping(monitor =’loss’, min_delta= 1E-7, patience=

1000, restore_best_weights= True) #Earlystopping

>model.compile(loss=’mse’,optimizer=’adam’) # Compile model with MSE loss

>model.fit(X,X,epochs=1000,verbose=1,callbacks =[callback]) # Fit model for 1000 epochs

>Encoder=keras.Model(model.inputs,model.layers[3].output) #Extract the bottleneck layer

to give lower dimensional features

>Encoder.summary() # Print summary of model structure

>X_low=Encoder.predict(X) # Generate lower dimensional features

>dict={

>for i,key in enumerate(df.keys()[1:]):

dict[key]=X[:,i]

>dict[’Cluster Label’]=kmeans_comb.labels_

>pd.DataFrame(dict).to_csv(‘Cluster labels.csv’)

>s=np.ones(X.shape[0])*200

>mpl.rcParams[’figure.dpi’]=1200

>mpl.rcParams.update({’font.size’:22})
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28. Find features with deviations above 65%.

Note:Different thresholds should be examined for this step to find the proper number of devi-

ated features. Higher thresholds will lead to fewer deviated features while lower thresholds

may result in more.

Note: Following the generation of clusters, clinical variables and symptoms of the newly

formed clusters can be examined. This analysis enables the identification of biomarkers that

contribute significantly to the predominant symptoms or characteristics exhibited by each

cluster. For further guidance, refer to the example provided in Figure 5 of our published

paper.1

>colors=ListedColormap([’#69B0F8’,’#FEE0D2’,’#F2757B’])

>colors1=ListedColormap([’magenta’,’yellow’,’black’])

>fig,ax=plt.subplots(1,2,figsize=(20,20))

>scatter=ax[0].scatter(X_low[:,0],X_low

[:,1],s=s,c=org_label,cmap=colors,edgecolors=’black’)

>ax[0].set_xlabel(’Encoded Dim 1’)

>ax[0].set_ylabel(’Encoded Dim 2’)

>ax[0].legend(handles=scatter.legend_elements()[0], >labels=["Recovered",’Mild’,’Severe’],

fontsize=35,markerscale=5)

>scatter1=ax[1].scatter(X_low[:,0],X_low[:,1],s=s,c=cluster_new,cmap=colors1,edgecolors=

’black’)

>ax[1].set_xlabel(’Encoded Dim 1’)

>ax[1].set_ylabel(’Encoded Dim 2’)

>ax[1].legend(handles=scatter1.legend_elements()[0], labels=["Cluster A",’Cluster B’,

"Cluster C"],fontsize=35,markerscale=5)

# Function to find features with deviations above 65%

>def find_deviations(df_clustered,cutoff,name):

means =df_clustered.abs().mean(numeric_only=True)

cluster_means =df_clustered.abs().groupby([’ClusterLabels’]).mean(numeric_only=True)

deviation=cluster_means.sub(means[:-1]).div(means[:-1])

features=deviation.copy()

features[features.abs()>=cutoff]=1

features[features.abs()<cutoff]=0

pd.concat([features,deviation.multiply(100)]).transpose().to_csv(’Impute_Test_781/

Features/Random_Impute_’+name+’.csv’)

return features

#Find features in each cluster

> print(’Finding features for’,name)

> features = find_deviations(df_clustered,cutoff,name)
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Part 5: Perform ML and feature selection to identify predictive biomarkers

Timing: 10 min

In this section, we make a classical machine learning model to predict the clinical outcomes of pa-

tients with PCC. We fit a linear classifier to the data to classify patients with and without clinical out-

comes based on their omics profile in the convalescence phase. By doing that, we are able to assess

the ability of each assay to predict the outcomes and subsequently perform feature selection to

identify the most predictive biomarkers.

29. Import libraries.

30. Open data file and split into different sets containing specific omics profiles.

31. Generate color vector and label vector for classifier.

>import pandas as pd # To read data files

>import numpy as np # To perform matrix operations

>import math # Mathematical operations (check if nan)

>import os # To access directories

>from sklearn.preprocessing import StandardScaler # Normalize data

>from sklearn.linear_model import LogisticRegression # Linear classifier

#Obtain metrics to test classifier

>from sklearn.metrics import >f1_score,confusion_matrix,roc_curve,ConfusionMatrixDisplay,auc,balanced_accuracy_

score,roc_auc_score

>from sklearn.model_selection import train_test_split,cross_validate,GridSearchCV # Split data to train-test,

perform Grid search

>from sklearn.feature_selection import SequentialFeatureSelector,RF # Feature elimination tools

>import matplotlib.pyplot as plt # To plot data

>X_acute_cp=np.hstack((X_acute_cyt,X_acute_pro)) # stack cytokines and proteins together

for acute data

>X_long_cp=np.hstack((X_long_cyt,X_long_pro)) #stack cytokines and proteins for long data

>X_acute_cm=np.hstack((X_acute_cyt,X_acute_meta)) # stack cytokines and metabolites for

acute

>X_long_cm=np.hstack((X_long_cyt,X_long_meta)) # stack cytokines and metabolites for long

>X_acute_pm=np.hstack((X_acute_pro,X_acute_meta)) # stack protein and metabolites for

acute

>X_long_pm=np.hstack((X_long_pro,X_long_meta)) # stack protein and metabolites for long

>X_acute = np.hstack((X_acute_cyt,X_acute_pro,X_acute_meta))

>X_long = np.hstack((X_long_cyt,X_long_pro,X_long_meta))

>label_dict_comb={0:’green’,1:’red’}

>class_dict_comb={’Event-Free’:0,’With Event’:1}
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32. Create Data Matrix combining all data to automate the procedure for different datasets.

33. Function to perform 5-fold cross validation.

>cvec=[label_dict_comb[label] for label in patient_labels]

>org_label=patient_labels.

>DATA=[]

>DATA.append(X_acute)

>DATA.append(X_acute_cyt)

>DATA.append(X_acute_pro)

>DATA.append(X_acute_meta)

>DATA.append(X_acute_cp)

>DATA.append(X_acute_cm)

>DATA.append(X_acute_pm)

>DATA.append(X_long)

>DATA.append(X_long_cyt)

>DATA.append(X_long_pro)

>DATA.append(X_long_meta)

>DATA.append(X_long_cp)

>DATA.append(X_long_cm)

>DATA.append(X_long_pm)

>DATA.append(X_long-X_acute)

>NAMES=[’Acute’,’Acute_Cyt’,’Acute_Pro’,’Acute_Meta’,’Acute_CP’,’

Acute_CM’,’Acute_PM’,’Long’,’Long_Cyt’,’Long_Pro’,’Long_Meta’,’Long_CP’,

’Long_CM’,’Long_PM’,’Delta’]

>def cross_validation(model, _X, _y, _cv=5):

_scoring = [’balanced_accuracy’, ’precision’, ’recall’, ’f1’]

results = cross_validate(estimator=model,

X=_X,

y=_y,

cv=_cv,

scoring=_scoring,

return_train_score=True)

return {"Training Accuracy scores": results[’train_balanced_accuracy’],

"Mean Training Accuracy":results[’train_balanced_accuracy’].mean()*100,

"Training Precision scores": results[’train_precision’],
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34. Function to plot 5-fold cross validation results (Figure 3B).

"Mean Training Precision": results[’train_precision’].mean(),

"Training Recall scores": results[’train_recall’],

"Mean Training Recall": results[’train_recall’].mean(),

"Training F1 scores": results[’train_f1’],

"Mean Training F1 Score": results[’train_f1’].mean(),

"Validation Accuracy scores": results[’test_balanced_accuracy’],

"Mean Validation Accuracy": >results[’test_balanced_accuracy’].mean()*100,

"Validation Precision scores": results[’test_precision’],

"Mean Validation Precision": >results[’test_precision’].mean(),

"Validation Recall scores": results[’test_recall’],

"Mean Validation Recall": results[’test_recall’].mean(),

"Validation F1 scores": results[’test_f1’],

"Mean Validation F1 Score": results[’test_f1’].mean()

}

>def plot_result(x_label, y_label, plot_title, train_data, val_data,name):

’’’Function to plot a grouped bar chart showing the training and validation

results of the ML model in each fold after applying K-fold cross-validation.

Parameters

----------

x_label: str,

Name of the algorithm used for training e.g ’Decision Tree’

y_label: str,

Name of metric being visualized e.g ’Accuracy’

plot_title: str,

This is the title of the plot e.g ’Accuracy Plot’

train_result: list, array

This is the list containing either training precision, accuracy, or f1 score.

val_result: list, array

This is the list containing either validation precision, accuracy, or f1 score.

Returns

-------

The function returns a Grouped Bar chart showing the training an validation result in each fold.

’’’

’# Set size of plot
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35. Perform grid search to tune in on hyper-parameters for the classifier.

Note: Since the number of samples for each class is unequal, we need to weigh the classes to

ensure the classifier gives equal importance. A grid search allows us to find the optimum

weight by computing all combinations of parameters.

’plt.figure(figsize=(12,6))

’labels = ["1st Fold", "2nd Fold", "3rd Fold", "4th Fold", "5th >Fold"]

’X_axis = np.arange(len(labels[:len(train_data)]))

’ax = plt.gca()

’plt.ylim(0.0, 1)

’plt.bar(X_axis-0.2, train_data, 0.4, color=’blue’, label=’Training’)

’plt.bar(X_axis+0.2, val_data, 0.4, color=’red’, label=’Validation’)

’plt.title(plot_title, fontsize=30)

’plt.xticks(X_axis, labels[:len(train_data)])

’plt.xlabel(x_label, fontsize=14)

’plt.ylabel(y_label, fontsize=14)

’plt.legend()

’plt.grid(True)

plt.savefig(’MinimalPanel_New/RFE/FU_2023/Minimal/IMAGES/Cross_Val/’+str(name)+’_CV.png’)

’plt.show()

>FPR=[]

>TPR=[]

>FPR_ALL=[]

>TPR_ALL=[]

>results_df=pd.DataFrame()

>for i in range(len(DATA)):

X=DATA[i]

results_dict={}

#GRID SEARCH

parameters={’class_-

weight’:[{0:1,1:1},{0:1,1:2},{0:1,1:5},{0:1,1:10},{0:2,1:1},{0:10,1:1},’balan-

ced’],’C’:[1E-5, 1E-3, 0.1, 1, 10, 100,1000]}

_scoring = [’balanced_accuracy’, ’precision’, ’recall’, ’f1’]

clf = GridSearchCV(LogisticRegression(penalty=’l2’,max_iter=5000,), parameters,scoring=

_scoring,refit=’balanced_accuracy’)

clf.fit(X_train,y_train);

results_dict = clf.best_params_

if clf.best_params_[’class_weight’] !=’balanced’:
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36. Feature Elimination (troubleshooting 4).

Note: Features correspond to the different molecular profiles. They are eliminated based on

whether they are important to the classification or not based on the weights of the classifier.

37. Reduce input feature space.

38. Fit best regressor from grid search using reduced features.

39. Print confusion matrix (Figure 3C). Generates a .csv file that contains Accuracy and F1 score.

clf.best_params_[’class_weight’]

dummy=str(clf.best_params_[’class_weight’][0])+’,’+str((clf.best_params_

[’class_weight’][1]))

results_dict[’class_weight’] = dummy

>Estimator=clf.best_estimator_

>n_features = 20 # number of features to be selected

>selector=RFE(estimator,step=1,n_features_to_select= n_features )

>selector.fit(X,org_label) >mask=selector.support_

>X_low=selector.transform(X) # reduces the dimensionality of the data based on step 36

>X_train,X_test,y_train,y_test,train_id,test_id = train_test_split(X_low,org_label,-

sample_num,test_size=0.1, random_state=42)

>Clf_result=cross_validation(Clf,X_train,y_train,5)

>plot_result(’Linear Classifier ’+ str(NAMES[i]),"Accuracy","Balanced Accuracy scores in 5

Folds", Clf_result["Training Accuracy scores"],Clf_result["Validation Accuracy score-

s"],NAMES[i])

>Estimator.fit(X_train,y_train) # Fit the classifier

>y_pred=Estimator.predict(X_test) # Predict the labels for unseen data

>y_score=Estimator.decision_function(X_test) # Probability of the sample being in a class

>y_train_pred = Estimator.predict(X_train)

>results_dict[’Test Accuracy’] = balanced_accuracy_score(y_test,y_pred) # Test Accuracy

>results_dict[’Test F1 Score’]=f1_score(y_test,y_pred) # Test F1 Score

>results_dict[’Train Accuracy’] = balanced_accuracy_score(y_train,y_train_pred) # Train

accuracy

>results_dict[’Train F1 Score’]=f1_score(y_train,y_train_pred) # Train F1 score

>results_dict[’Dataset’] = NAMES[i]

>cm = confusion_matrix(y_test, y_pred, labels=Clf.classes_) # Confusion matrix

>disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=Clf.classes_
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40. Compute and plot the ROC curve for test data (Figure 3D).

Note: ROC curve provides a means of visualizing the performance of the classification task.

The larger the area under the ROC curve, the better the classification performance.

41. Save weights and bias for linear model.

EXPECTED OUTCOMES

This protocol serves as a resource for omics analysis of plasma samples from patients with PCC.

These steps can be applied to similar studies that conducted omics assays on plasma samples of

other diseases. The primary outcome of this protocol is a processed dataset (part 1: data prepro-

cessing) containing no missing values prepared for any downstream statistical analysis.

>disp.plot()

>plt.savefig(’MinimalPanel_New/RFE/FU_2023/IMAGES/Confusion_Matrix/’+str(NAMES

[i])+’_CM.png’)

>print(’Saving results for ’,NAMES[i])

>results_df=pd.concat([results_df,pd.DataFrame(results_dict,index=

[0])],ignore_index=True)

>results_df.to_csv(’MinimalPanel_New/RFE/FU_2023/Summary_new.csv’) # Change to the loca-

tion to store results in

>fpr_all,tpr_all,_ =roc_curve(org_label,y_score)

>area=auc(fpr_all,tpr_all)

>plt.figure()

>lw=3

>label =’Linear ’+NAMES[i]+’ (area= %0.2f)’

>plt.plot(fpr_all,tpr_all,color=’blue’,lw=lw,label=label % area,)

>plt.plot([0,1],[0,1],color=’black’,lw=lw,linestyle="--")

>plt.xlim([0.0,1.0])

>plt.ylim([0.0,1.05])

>plt.xlabel(’False Positive Rate’)

>plt.ylabel(’True Positive Rate’)

>plt.title(’ROC Curves All Data’)

>plt.legend(loc=’lower right’)

>plt.savefig(’MinimalPanel_New/RFE/FU_2023/IMAGES/ROC/’+str(NAMES[i])+’_ROC.png’)

>Weights_dict={}

>Weights_dict[’Features’]=np.array(mols_list[i])[mask] >Weights_dict[’Weights’]=Esti-

mator.coef_[0] >Weights_df=pd.DataFrame(Weights_dict) >pd.concat([Weights_df,pd.Data-

Frame({’Features’:’Bias’,’Weights’:Estimator.intercept_[0] }, index=[0])],ignore_in-

dex=True).to_csv(’MinimalPanel_New/RFE/FU_2023/Minimal/Weights/’+NAMES[i]+’.csv’)

#Change to desired location
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A key part of this protocol is the statistical analysis section (part 2: statistical data analysis), which

yields informative plots elucidating the characteristics of individual groups in an omics study. Firstly,

principal component analysis (PCA) (step 10) generates a score plot which visualizes how distinct the

omics profiles of the study groups are (Figure 1A). Then, pairwise fold change analysis (step 12) pro-

duces a volcano plot (Figure 1B) highlighting the molecules significantly altered in a comparison.

These identified molecules can then undergo further downstream analyses, such as pathway anal-

ysis.1 This provides insights into dysregulated pathways in a disease, offering potential diagnostic

and therapeutic targets. At the end of this part, the heatmap (Figure 1C) shows the top changedmol-

ecules, which are identified based on the analysis of variance (ANOVA) (step 13). This heatmap

showcases molecules with different trajectories during a disease, which is particularly valuable in

study designs with paired samples across multiple time points.

Another important outcome of the protocol is the correlation heatmap (Figure 2) illustrating the as-

sociation between differentially expressed molecules and symptoms, which is adjusted for other

clinical variables, such as comorbidities, age, and sex that may play important roles in a disease.

This analysis can identify important associations between symptoms with specific biomarkers to pro-

vide crucial insights into the pathophysiological processes and unveil novel therapeutic targets. For

example, taurine and serotonin showed negative associations with several symptoms, including

diarrhea, nausea, mood disturbance, and cognitive impairment in PCC, highlighting their potential

role in modulating neurological and mitochondrial dysfunctions in patients with PCC.

We next performed unsupervised clustering (part 4: unsupervised clustering of patients based on their

multi-omics profile) for individuals based on the changes in concentrations of molecules (cytokines, pro-

teins, and metabolites) between acute and convalescence phases (step 21). A non-linear dimensionality

reductionwas performed using an autoencoder (step 22). Autoencoders (AE) are a class of artificial neural

networkswhere the network architecture creates a bottleneck by encoding a layer of lower dimensions to

generate a lower-dimensional data projection. Since the activation of each layer in the AE is non-linear,

the lower dimensional projection of the data is a non-linear combination of the original variables. The au-

toencoder consisted of three encoding layers of 100, 70, and 50 neurons each. The bottleneck layer con-

sisted of 30 neurons followed by three decoding layers, with all layers using the sigmoid activation on

their outputs. Utilizing k-means (step 24) on autoencoders yielded three phenotypically distinct clusters

(Figure 3A) based on their inherent molecular similarities (step 28). These new clusters can be further

analyzed to identify the unique clinical features of each cluster.

In the last step of the protocol (part 5: perform ML and feature selection to identify predictive bio-

markers), we utilized logistic regression to evaluate the ability of different omics platforms to predict

adverse clinical outcomes. A 5-fold validation (step 33) is conducted (Figure 3A) to prevent over- or

underfitting of the model output. Following this, optimal hyperparameters were identified through

grid search (step 35), and recursive feature elimination (step 36) was performed for feature selection

to identify the minimum number of molecules with the highest predictive ability. The best regressor

was fitted to the data (step 38), and a confusion matrix (step 39) was generated (Figure 3C). Finally,

the predictive ability of different omics platforms and the minimal panel was evaluated using ROC

curves (Figure 3D).

LIMITATIONS

This protocol has some limitations. Users need to perform this protocol on relatively high-perfor-

mance computers. The required computing power depends on the number of samples and

Figure 1. Statistical analysis of multi-omics datasets

(A) Principal component analysis utilizing proteomics, metabolomics, and cytokines illustrating the different plasma profiles among healthy controls,

acute, and convalescence phases of patients infected by SARS-CoV-2. Reprinted and Adapted from Wang et al.1 (B) Volcano plot comparing

convalescence samples and healthy controls. Adapted from Wang et al.1 with modifications.

(C) Heatmap showing the top 100 molecules with the most significant p values comparing healthy control with acute and convalescence phases using

ANOVA test on log10 transformed data. Reprinted and Adapted from Wang et al.1
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molecules being analyzed. Therefore, it’s important to mention that this protocol may not accurately

estimate the computing power needed for different scales of multi-omics studies.

Another inherent limitation arises from the fact that the accuracy of classification and unsupervised

clustering is highly dependent on the characteristics of the input data. The efficacy of these tasks is

Figure 2. Heatmap illustrating the association between biomarkers and self-reported PCC symptoms assessed by multivariable logistic regression

analysis

Asterisks indicate statistical significance (p < 0.05).

Reprinted and Adapted from Wang et al.1
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not guaranteed to be uniform across different datasets. It is advisable to explore different unsuper-

vised learning and classification algorithms to optimize the accuracy of this analysis.

TROUBLESHOOTING

Problem 1

You might encounter problems for installing and loading the MetaboAnalystR package (step 1).

Potential solution

� Update the Rtools through https://cran.r-project.org/bin/windows/Rtools/

� For more information, please refer to their GitHub (https://github.com/xia-lab/MetaboAnalystR).

Figure 3. Machine learning analysis

(A) Dot plot showing the k-means clustering on latent space generated by autoencoder. Reprinted and Adapted from Wang et al.1

(B) Bar plot showing the accuracy of classification in all 5-fold validation groups.

(C) Confusion matrix illustrating the predicted labels and true labels of samples classified by logistic classification.

(D) Receiver operator characteristic curves of prediction models trained on each individual omics datasets, combined omics (cytokines, proteomics, and

metabolomics), and the minimal panel using molecular profile. Reprinted and Adapted from Wang et al.1
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Problem 2

Including data from two or more batches into one analysis could introduce technical variability,

which potentially disrupts the biological signals in the downstream analyses. The initial step in de-

tecting batch effects is in principal component analysis where samples of one study group (ex.

treated) exhibit divergence (step 10).

Potential solution

The batch effect should first be remediated prior to statistical analysis. Various R libraries, including

limma, Deseq2, sva, and ComBat, offer functions to remove the batch effect.15,16

Problem 3

Performing differentially expressed analysis with these predefined criteria (FC > 1.5 and adjusted

p-value < 0.05) may result in an excessively low or high number of molecules in other datasets

(step 11).

Potential solution

Set the criteria for differential expression analysis (fold-change and p-value) based on the study’s

unique characteristics. In multi-omics studies measuring numerous molecules, utilizing adjusted

p-values is recommended for statistical rigor. Consider a lower fold-change threshold in cases where

even small changes should be considered.

Problem 4

The feature extraction task is an iterative routine that fits multiple models of increasing complexity to

determine a lower number of features best suited for the classification. When the initial number of

features is large, it can lead to a long computational time (step 36).

Potential solution

To expedite the process, consider employing a less complicated unsupervised dimensionality

reduction technique, such as PCA, for data preprocessing before integrating it into the routine.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-

filled by the lead contact, Dr. Gavin Oudit (gavin.oudit@ualberta.ca).

Technical contact

Questions about the technical specifics of performing the protocol should be directed to and will be

answered by the technical contact, Mobin Khoramjoo (khoramjo@ualberta.ca).

Materials availability

This study did not generate any reagents.

Data and code availability

Raw data of omics platforms in this study have been deposited to PeptideAtlas: PASS03810 andMe-

taboLights: MTBLS7337.

The datasets (Data S1, S2, and S3) used in this protocol have been deposited to Mendeley data

(https://doi.org/10.17632/zyzt62gbrw.1).2

>pca = PCA(0.95) >X_low = PCA.fit_transform(X) # X is the original data matrix with large number

of features # Use X_low instead of X from Box 35
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The codes generated during this study are available at a GitHub repository (https://github.com/

MobinKhoramjoo/Biomarker-identification-by-multi-omics-analysis) and Zenodo (https://doi.org/

10.5281/zenodo.10880873).3

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2024.103041.

ACKNOWLEDGMENTS

We would like to thank the patients, their families, and the dedicated clinical staff and frontline

workers at the University of Alberta’s COVID-19 units, whose collaboration made this work possible.

Special appreciation goes to Dr. Bruce Ritchie and the Canadian Biosample Repository team for

their noteworthy contribution to the CoCollab COVID-19 Study. We also extend our thanks to the

Canadian Long COVID Web for their valuable insights. The metabolomics assays were carried out

by The Metabolomics Innovation Center in Edmonton, AB, Canada. This work was supported by

grants from the Canadian Institutes of Health Research (grant no. PJT-451105) and the Northern Al-

berta Clinical Trials and Research Centre (grant no. RES50821) at the University of Alberta.

AUTHOR CONTRIBUTIONS

M.K., K.S., and K.W. analyzed and interpreted the data. M.K. and K.S. drafted the manuscript. D.W.

and V.P. edited the manuscript and co-supervised parts of the project. G.Y.O. designed the project,

interpreted the data, edited the manuscript, and supervised the project.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

1. Wang, K., Khoramjoo, M., Srinivasan, K.,
Gordon, P.M.K., Mandal, R., Jackson, D., Sligl,
W., Grant, M.B., Penninger, J.M., Borchers,
C.H., et al. (2023). Sequential multi-omics
analysis identifies clinical phenotypes and
predictive biomarkers for long COVID. Cell
Rep. Med. 4, 101254. https://doi.org/10.1016/j.
xcrm.2023.101254.

2. Khoramjoo, M. (2024). Multi-omics and
Machine Learning Analysis of Human
Plasma to Identify Biomarkers in
Patients with Post-COVID Condition.
Mendeley Data V1. https://doi.org/10.
17632/zyzt62gbrw.1.

3. Khoramjoo, M., and Srinivasan, K. (2024). Multi-
omics and Machine Learning Analysis of
Human Plasma to Identify Biomarkers in
Patients with Post-COVID Condition. Zenodo
v1.0.0. https://doi.org/10.5281/zenodo.
10880873.

4. Team, R. (2015). RStudio: Integrated
Development for R. (No Title).

5. Wickham, H.,F.R., Henry, L., Müller, K., and
Vaughan, D. (2023). Dplyr: A Grammar of Data
Manipulation. R Package Version 1.1.4.

6. H., W. (2016). ggplot2: Elegant Graphics for
Data Analysis (Springer-Verlag).

7. Pang, Z., Chong, J., Li, S., and Xia, J. (2020).
MetaboAnalystR 3.0: Toward an Optimized
Workflow for Global Metabolomics.
Metabolites 10, 186. https://doi.org/10.3390/
metabo10050186.

8. Gu, Z., Eils, R., and Schlesner, M. (2016).
Complex heatmaps reveal patterns and
correlations inmultidimensional genomic data.
Bioinformatics 32, 2847–2849. https://doi.org/
10.1093/bioinformatics/btw313.

9. Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors,
B. (2014). circlize Implements and enhances
circular visualization in R. Bioinformatics 30,
2811–2812. https://doi.org/10.1093/
bioinformatics/btu393.

10. Harris, C.R., Millman, K.J., van der Walt, S.J.,
Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al.
(2020). Array programming with NumPy.
Nature 585, 357–362. https://doi.org/10.1038/
s41586-020-2649-2.

11. The pandas development team (2020). pandas-
dev/pandas: Pandas. Zenodo v2.2.1. https://doi.
org/10.5281/zenodo.3509134.

12. Hunter, J.D. (2007). Matplotlib: A 2D
graphics environment. Comput. Sci. Eng. 9,

90–95. https://doi.org/10.1109/Mcse.
2007.55.

13. Pedregosa, F., Varoquaux, G., Gramfort, A.,
Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V.,
et al. (2011). Scikit-learn: Machine Learning
in Python. J. Mach. Learn. Res. 12,
2825–2830.

14. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis,
A., Dean, J., Devin, M., Ghermawat, S., Irving,
G., Isard, M., et al. (2016). TensorFlow: a system
for large-scale machine learning. Proceedings
of the 12th USENIX conference on Operating
Systems Design and Implementation (USENIX
Association), pp. 265–283.

15. Leek, J.T., Johnson, W.E., Parker, H.S., Jaffe,
A.E., and Storey, J.D. (2012). The sva package
for removing batch effects and other unwanted
variation in high-throughput experiments.
Bioinformatics 28, 882–883. https://doi.org/10.
1093/bioinformatics/bts034.

16. Nygaard, V., Rødland, E.A., and Hovig, E.
(2016). Methods that remove batch effects
while retaining group differences may lead to
exaggerated confidence in downstream
analyses. Biostatistics 17, 29–39. https://doi.
org/10.1093/biostatistics/kxv027.

ll
OPEN ACCESS

24 STAR Protocols 5, 103041, June 21, 2024

Protocol

https://github.com/MobinKhoramjoo/Biomarker-identification-by-multi-omics-analysis
https://github.com/MobinKhoramjoo/Biomarker-identification-by-multi-omics-analysis
https://doi.org/10.5281/zenodo.10880873
https://doi.org/10.5281/zenodo.10880873
https://doi.org/10.1016/j.xpro.2024.103041
https://doi.org/10.1016/j.xcrm.2023.101254
https://doi.org/10.1016/j.xcrm.2023.101254
https://doi.org/10.17632/zyzt62gbrw.1
https://doi.org/10.17632/zyzt62gbrw.1
https://doi.org/10.5281/zenodo.10880873
https://doi.org/10.5281/zenodo.10880873
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref4
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref4
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref5
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref5
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref5
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref6
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref6
https://doi.org/10.3390/metabo10050186
https://doi.org/10.3390/metabo10050186
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btw313
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1093/bioinformatics/btu393
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1109/Mcse.2007.55
https://doi.org/10.1109/Mcse.2007.55
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref13
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref13
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref13
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref13
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref13
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref13
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
http://refhub.elsevier.com/S2666-1667(24)00206-5/sref14
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.1093/biostatistics/kxv027

	XPRO103041_proof_v5i2.pdf
	Protocol to identify biomarkers in patients with post-COVID condition using multi-omics and machine learning analysis of hu ...
	Before you begin
	Institutional permissions
	Hardware preparation
	Software preparation
	Dataset preparation

	Key resources table
	Step-by-step method details
	1: Data preprocessing
	2: Statistical data analysis
	3: Identifying the correlation between DEMs and clinical variables
	4: Unsupervised clustering of patients based on their multi-omics profile
	5: Perform ML and feature selection to identify predictive biomarkers

	Expected outcomes
	Limitations
	Troubleshooting
	Problem 1
	Potential solution
	Problem 2
	Potential solution
	Problem 3
	Potential solution
	Problem 4
	Potential solution

	Resource availability
	Lead contact
	Technical contact
	Materials availability
	Data and code availability

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References



