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Here, we present a workflow for analyzing multi-omics data of plasma samples in patients with
post-COVID condition (PCC). Applicable to various diseases, we outline steps for data
preprocessing and integrating diverse assay datasets. Then, we detail statistical analysis to unveil
plasma profile changes and identify biomarker-clinical variable associations. The last two steps
discuss machine learning techniques for unsupervised clustering of patients based on their
inherent molecular similarities and feature selection to identify predictive biomarkers.
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SUMMARY

Here, we present a workflow for analyzing multi-omics data of plasma samples in pa-
tients with post-COVID condition (PCC). Applicable to various diseases, we outline
steps for data preprocessing and integrating diverse assay datasets. Then, we detail
statistical analysis to unveil plasma profile changes and identify biomarker-clinical
variable associations. The last two steps discuss machine learning techniques for un-
supervised clustering of patients based on their inherent molecular similarities and
feature selection to identify predictive biomarkers.

For complete details on the use and execution of this protocol, please refer to
Wang et al.’

BEFORE YOU BEGIN

Institutional permissions

This study was conducted under the ethical principles of the Declaration of Helsinki with approval
from the University of Alberta Health Research Ethics Board (Pro00100319 and Pro00100207). Writ-
ten and informed consent was obtained from all participants. We also remind the users of this pro-
tocol that they need to acquire permissions from relevant institutions to collect plasma samples and
clinical information of their patients.

Hardware preparation

A computer with a MacOS or Windows operating system and network connection is required. The
RAM requirement depends on the size of the datasets, the complexity of machine learning models,
and the analysis pipeline. Since the machine learning models and analysis pipeline are moderate in
this protocol, 16 GB RAM would be sufficient for small-to-moderate-size datasets. For larger data-
sets containing over 1000 samples and several thousands of features, 32 GB RAM may be required.

Software preparation
The applications described in this section are required to analyze multi-omics data.

1. Install R programming language.
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a. Access R webpage (https://www.r-project.org) and install the latest version.

2. Install R studio.

a. Download the latest version of R Studio (https://posit.co/downloads) and install it.

3. Install Python programming language.
a. Access Python webpage (https://www.python.org) and install the latest version.
4. Install Visual Studio code (VS code).
a. Access VS code webpage (https://code.visualstudio.com) and install the latest version.

Note: Instead of installing the mentioned programming language, one can use web-based interac-
tive computing platforms, such as Jupyter notebook or Google Colaboratory (Google Colab).

Dataset preparation

Prior to implementing the detailed protocol, it is necessary to convert raw output from omics plat-

forms into concentration tables. These tables should have samples arranged in rows and may

contain categorical features (such as study group, disease severity, clinical outcome) and numerical

features (molecular concentrations) stored in columns in Excel or .csv files.

Note: The example datasets used in this protocol follow this arrangement and are provided in
supplemental files.” (Data S1, S2, and S3).

Note: Raw output from omics platforms have also been deposited to online repositories (Pep-
tideAtlas: PASS03810, Metabolights: MTBLS7337).

KEY RESOURCES TABLE

REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

Raw proteomics dataset
Raw metabolomics dataset
Supplemental files

GitHub repository

PeptideAtlas: PASS03810
MetabolLights: MTBLS7337
Khoramjoo et al.”
Khoramjoo et al.”

https://peptideatlas.org/
https://www.ebi.ac.uk/metabolights/
https://data.mendeley.com/datasets/zyzt62gbrw/1

https://github.com/MobinKhoramjoo/
Biomarker-identification-by-multi-omics-analysis

Software and algorithms

R (v4.2.3)
Python (v3.8.16)
dplyr (v1.1.4)
ggplot2 (v3.4.4)

The R Project for Statistical Computing®
Jupyter Notebook

Wickham et al.”

Wickham et al.®

https://www.r-project.org/
https://www.python.org/doc/versions/
https://dplyr.tidyverse.org
https://ggplot2.tidyverse.org

MetaboAnalystR (v4.0) Pang et al.” https://github.com/xia-lab/MetaboAnalystR
ComplexHeatmap (v2.18.0) Guetal® https://doi.org/10.18129/B9.bioc.ComplexHeatmap
Circlize (v 4.1.2) Gu etal.” https://doi.org/10.1093/bioinformatics/btu393
Numpy Harris et al.'® https://doi.org/10.1038/s41586-020-2649-2.

Pandas The pandas development team'’ https://doi.org/10.5281/zenodo.3509134
Matplotlib Hunter et al.' https://doi.org/10.1109/MCSE.2007.55

Scikit learn Buitinck et al.’® https://doi.org/10.48550/arXiv.1309.0238
TensorFlow TensorFlow Developers'* https://doi.org/10.5281/zenodo.10126399

Others

Computer with an operating
system that can run software
as listed above

https://code.visualstudio.com,
https://posit.co/downloads

https://code.visualstudio.com,
https://posit.co/downloads

STEP-BY-STEP METHOD DETAILS

Herein, we describe essential steps to analyze the integrated omics datasets, from data binding to

machine learing analysis. Python performs the last two steps: unsupervised clustering and feature

selection.
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Part 1: Data preprocessing
® Timing: 10 min
Note: Missing values in omics data often arise because concentrations fall below the limit of
detection for the molecule in the assay for a particular sample. Therefore, we adopt the
approach of replacing remaining missing values with the minimum observed value for each

corresponding molecule.

1. Load packages in R (troubleshooting 1).

>library (readxl)
>library (MetaboAnalystR)
>library (ComplexHeatmap)
>library(circlize)
>library (dplyr)

>library (ggplot2)

2. Import the datasets as data frames.

> cytokines <- read_excel (‘Data.xlsx’, sheet = ‘Cytokines’)

> Proteins <- read_excel (‘Data.xlsx’, sheet = 'Proteins’)

> Metabolites <- read_excel (‘Data.xlsx’, sheet = 'Metabolites’)

Note: The file Data.xIsx contains all three raw concentration tables generated from omics plat-
forms along with patients’ categories in three separate sheets (Data S1).

Note: If you are using your own dataset, you need to import them to RStudio environment as
data frames.

3. Bind the datasets.

>n_protein = 5 #number of the first protein column in your data
>n_metabolite =5 #number of the first metabolite column in your data
>Data <- cbind (cytokines,

Proteins[n_protein:length(Proteins)],

Metabolites[n_metabolite:length (Metabolites)])

Note: In all datasets, samples should be in rows and features (molecules) should be in columns.
Note: Make sure the order of samples in the datasets is identical.

4. Change the type of features (molecules) to numeric in the merged dataset.

>desc_cols =c(1:4) #number of the descriptive columns in the merged data

>n_first_mol = 5 #number of the first molecule column in the merged data

STAR Protocols 5, 103041, June 21, 2024 3
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> Data <- cbind(Datal[,desc_cols],
as.data.frame (sapply (Data[,n_first_mol:length(Data)],

function (x) as.numeric (as.character(x)))))

STAR Protocols

Note: In this step, all the missing values which were annotated by texts or characters turn into
"NA"s.

5. Change the zero values to “NA"s, as they are considered as missing values.

>sum(Data == 0, na.rm = TRUE)
>Data <- replace (Data, Data == 0, NA)

>sum(Data == 0, na.rm = TRUE) #Should return 0

6. Data cleaning: filtering the features based on percentage of their missing values.

>Transposed_Data <- as.data.frame (t (Data))
## missing value vector:
>p <-c ()
>for (i1 in 1:nrow(Transposed_Data)) {
pli] <- sum(is.na(Transposed_Datal[i,]))/ncol (Transposed_Data)
}
#input the vector to the data
>Transposed_Data <- Transposed_Data $>%
mutate (percent_of_missing_Values=p) %$>%
select (percent_of_missing Values, everything())
#filter the data based on the generated column (percent of #missing values)
>missing_value_cut_off=0.5
>filtered_Transposed_Data <- Transposed_Data $>%
filter (percent_of_missing Values <missing value_cut_off)
##re-transpose the data:
>cleaned_data <- as.data.frame (t (filtered_Transposed_Data))
>cleaned_data <- cleaned_datal[-1, ]

>row.names (cleaned_data) <- row.names (data)

Note: Features (molecules) with over 50% of the values missing are eliminated. To know what
features got deleted, run the following code:

# features containing more missing values than cut off
>eliminated_data <- Transposed_Data %>%

filter (percent_of_missing Values > missing value_cut_off)

4 STAR Protocols 5, 103041, June 21, 2024
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7. Data Imputation: replacing the remaining missing values by corresponding minimum value of
each feature (molecule).

## imputation of remaining missing values
>sum(is.na(cleaned_data))
>for (i inn_first_mol:ncol (cleaned_data)) {
for(j in1l:nrow(cleaned_data)) {
if (is.na(cleaned_datal[j,i]) == "TRUE") {

cleaned_data[j,i] =min(cleaned_data[,i], na.rm = TRUE)

}
##check NAs and zero values to be removed

>sum(is.na(cleaned_data))

>sum(cleaned_datal[,n_first_mol:ncol (cleaned_data)]== 0, na.rm = TRUE)

Part 2: Statistical data analysis

® Timing: 10 min
Here, we detail the steps to analyze the processed data, from normalization to exploratory analysis.
xpro_103041_gr2_3c.tif - These steps are pivotal in gaining valuable insights into the omics profile

of different study groups. To accomplish this, we leverage the MetaboAnalyst library.

8. Create a dataset object to store the processed data via the MetaboAnalystR library.

>mSet<-InitDataObjects("conc", "stat", FALSE)

>mSet<-Read.TextData (mSet, cleaned_data, "rowu", "disc")

>mSet<-SanityCheckData (mSet)

9. Normalize and scale the data. Here, we perform log transformation and mean centering.

>mSet<-PreparePrenormData (mSet)

>mSet<-Normalization (mSet, "NULL", "LogNorm", "MeanCenter", "NULL", ratio=FALSE,
ratioNum=20)

10. Perform and visualize the principal component analysis (PCA) (Figure 1A) (troubleshooting 2).

>mSet<-PCA.Anal (mSet) #Perform PCA

>mSet<-PlotPCAPairSummary (mSet, "pca_pair_0_", format = "png", dpi = 72, width=NA, 5) #
Create PCA overview

>mSet<-PlotPCAScree (mSet, "pca_scree_0_", "png", dpi = 72, width=NA, 5) # Create PCA

scree plot

STAR Protocols 5, 103041, June 21, 2024 5
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>mSet<-PlotPCA2DScore (mSet, "pca_score2d_0_", format = "png", dpi=300, width=NA, 1, 2,
0.95, 0, 0) # Create a 2D PCA score plot

11. Perform pairwise fold change analysis (troubleshooting 3).

>Fold_change_cut_off=1.5 #set your cut off for fold change
>P_Value_cut_off = 0.05 #set your cut off for adjusted p value

>mSet<-Volcano.Anal (mSet, FALSE, Fold_change_cut_off, 0, F, P_Value_cut_off, TRUE, "fdr")

Note: The criteria set for this step should be tailored based on each specific study. Higher fold
change thresholds will result in the identification of fewer differentially changed molecules
and vice versa.

12. Visualizing the pairwise fold change analysis by a volcano plot (Figure 1B)

>mSet<-PlotVolcano (mSet, "volcano_0_", 1, 0, format ="png", dpi=300, width=NA)

13. Visualizing molecules with the greatest change across all study groups through heatmap
(Figure 1C).

>top_mol = 100 #number of the topmolecules to be shown in the heatmap

>mSet<-PlotSubHeatMap (mSet, "heatmap_1_", "png", 300, width=NA, "norm", "row", "euclidean",
"ward.D", "bwm", 8, "tanova", top_mol, "overview", F, T, T, F, T, T, T)

Note: Depending on the number of features (molecules) after data preprocessing, we can
decide on the number of molecules to be shown by the heatmap. This decision can be
made considering the heatmap'’s readability and interpretability. Displaying too many mole-
cules may result in a cluttered and difficult-to-interpret visualization, while showcasing too few
may overlook potentially relevant information. Thus, it is advisable to strike a balance by se-
lecting a suitable number of molecules that adequately represent the dataset’s characteristics
while ensuring clarity in the heatmap presentation.

Optional: We can highlight the changes in meaningful molecules across study groups by box
plots to emphasize their role in disease of interest.

Part 3: Identifying the correlation between DEMs and clinical variables

® Timing: 10 min
Identifying associations between differentially expressed molecules and clinical variables such as
symptoms can facilitate the discovery of diagnostic biomarkers. By employing generalized linear
models, we can identify those associations while adjusting them to other variables that may influence

a disease state. We utilize a loop to iterate through all the molecules and clinical variables.

14. Importing the clinical dataset.

>clinical_variables<-read.csv("Data.csv")

6 STAR Protocols 5, 103041, June 21, 2024
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Note: For this part, the dataset should have differentially expressed molecules (DEMs) and
clinical variables in the same file in columns. (Data S2).

15. Import the values based on your data.

>n_o_clinical_variables =20

>n_of_differentially_ changed_molecules =219
>A=n_o_clinical_variables +n_of_differentially changed_molecules
>ncol_adjustment_var = 240

>n__adjustment_var =7

>B= c (ncol_adjustment_var: (ncol_adjustment_var+n__adjustment_var))

16. Make two empty data frames for the coefficients and p values.

#empty data frame for odds ratios
>Coefficients<-data.frame (matrix (nrow=n_o_clinical variables,
ncol =n_of_differentially changed_molecules))

>row.names (Coefficients) <-colnames (clinical_variables [ (n_of_differentially_changed molecules+1) :A])
>colnames (Coefficients)<-colnames (clinical_variables [1l:n_of_differentially_changed_molecules])
#empty data frame for p values
>pvalue<-data.frame (matrix(nrow =n_o_clinical_variables,

ncol =n_of_differentially changed_molecules))

>row.names (pvalue) <- row.names (Coefficients)

>colnames (pvalue) <- colnames (Coefficients)

17. Perform the generalized linear model for all molecules and clinical variables by a loop.

>for(iinl:n_of_differentially_ changed_molecules) {
for(j in (n_of_differentially changed_molecules+1) :A) {
sym<-glm(unlist(clinical_variables [j])~unlist(clinical_variables [1])+
unlist(clinical_variables [B[1]])+ #list all your adjustment variables
unlist(clinical_variables [B[2]])+
unlist(clinical_variables [B[3]])+
unlist(clinical_variables [B[4]1])+
unlist(clinical_variables [B[5]])+
unlist(clinical_variables [B[6]])+
unlist(clinical_variables [B[7]])+
unlist(clinical_variables [B[8]]),

family=binomial (),

data= clinical_variables)

STAR Protocols 5, 103041, June 21, 2024 7
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pvalue [j-n_of_differentially_changed_molecules,il<-coef (summary (sym)) [2,4]

STAR Protocols

Coefficients [j-n_of_differentially changed_molecules,i]<-exp (coef (summary (sym)) [2,1])

}

18. After performing the adjusted regression, molecules with three or more significant p values were

filtered for illustration.

# transposing the matrix

>n.pval <- as.data. frame(t (pvalue))

#Make a column for the number of significant p values in each row for transposed table

>v <-c()
>for (i in1l:nrow(n.pval)) {
v[i]<- sum(n.pval[i,] <0.05)
}
>n.pval <-n.pval $>%
mutate(n.of.sig=v)
# subset themolecules with >= 3 significant p values
>P_Value_cut_off = 3 #set your cut off for number of significant p vales
>n.pval.filtered<-n.pval $>%
filter (n.of.sig >= P_Value_cut_off)
>n.pval.filtered$n.of.sig <- NULL
#subset of odds ratio values of molecules with >= 3 significant p values
>odds .filrtered <- Coefficients %$>%
select (rownames (n.pval.filtered) )

>odds .filrtered <- as.data. frame (t (odds.filrtered))

1

Note: The threshold to filter out the molecules for illustration purposes should be determined
based on results of the regression analysis. This threshold ensures that only molecules exhib-

iting a certain number of significant associations are included in the visualization.

9. lllustrating the associations by a heatmap (Figure 2).

Note: In this heatmap, significant associations are denoted by asterisks and the color of each
cell shows the direction of the association, where blue indicates negative and red indicates

positive associations.

8

>my_color_mapping <- colorRamp2 (c (0, 1, 10), c("#2E2EFF", "white", "#FF2E2E"))

>Heatmap (
as.matrix(odds.filrtered),

width = ncol (odds.filrtered) *unit (4.5, "mm"),

STAR Protocols 5, 103041, June 21, 2024
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height = nrow(odds.filrtered) *unit (3, "mm"),
cluster_rows = FALSE,
cluster_columns = FALSE,
show_row_dend = FALSE,
show_column_dend = FALSE,
clustering method_ rows = "ward.D2",
heatmap_legend_param = list (
title = "Odds Ratio",
at = seq(0, 2, length.out =3),
labels =c("10%-5", "1", "1075")),
cell_fun = function(j, i, x, y, w, h, fill) {
if(n.pval.filtered [1i, j] <0.05) {

grid.text("*", x, y-(0.3*h) ,gp=gpar (fontsize=18))

1,
col =my_color_mapping,
column_names_gp = grid: :gpar (fontfamily= "Arial", fontface= "bold", fontsize =10),

row_names_gp = grid: :gpar (fontfamily= "Arial", fontface= "bold", fontsize =9)

Part 4: Unsupervised clustering of patients based on their multi-omics profile
® Timing: 10 min

To capture significant similarities between patients on a biological scale, we cluster patients based
on the degree of change in molecule levels from the acute to convalescence phase. We utilized au-
toencoder as a non-linear dimensionality reduction tool. A lower dimensional representation of the
data is beneficial for clustering, and hence, the initial data with all the omics profiles is sent through
an autoencoder to generate a lower dimensional representation and then clustered using the
k-means algorithm.

Note: We will use Python to analyze the data from this step forward.

20. Import required libraries.

>import pandas as pd # To read data files

>import numpy as np # Process matrices

>frommatplotlib import pyplot as plt # Plot figures

>from sklearn.decomposition import PCA # Perform PCA

>from sklearn.cluster import KMeans # Perform K-Means .layers

# Following packages are used to build the autoencoder

>import tensorflow as tf

STAR Protocols 5, 103041, June 21, 2024 9
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>from tensorflow import keras
>from tensorflow. keras.layers import Dense

>from tensorflow.keras import models, Sequential

21. Read the split data files of the acute and convalescence values and calculate the delta values.

# Extract Long and Acute covid values

>X_acute_cyt=pd.read_csv(‘'Acute_cytokine.csv’).iloc[:, :].values
>X_long_cyt=pd.read_csv(‘'Long_cytokine.csv’).iloc([:, :].values
>X_acute_pro=pd.read_csv(‘'Acute_proteins.csv’).iloc[:, :].values
>X_long_pro=pd.read_csv(‘'Long_proteins.csv’).iloc[:, :].values
>X_acute_meta=pd.read_csv(‘Acute_metabolities.csv’).iloc[:,:].values
>X_long_meta= pd.read_csv(‘'Long_metabolites.csv’).iloc[:,:].values

>X_acute =np.hstack((X_acute_cyt,X_acute_pro,X_acute_meta))
>X_long =np.hstack ((X_long_cyt,X_long_pro,X_long_meta))
>patient_labels = pd.read_csv(‘'Patient labels.csv).iloc[:, :].values
>X=X_long-X_acute

>scaler=StandardScaler ()

>X=scaler.fit_transform(X) # Normalize the data

>print (X.shape)

Note: The data that should be used in this step is the log10 transformed version of data
created in step 7 (Data S3), which is split into different datasets based on the type of molecules
(cytokine, protein, and metabolite) and the sampling time (acute and long COVID).

22. Build autoencoder architecture.
Note: The number of neurons in each layeris [100, 70, 50, 30] for the encoder and [50, 70, 100,

782] for the decoder. The autoencoder reduces our data from 782 features (dimensions) to 30
features.

>model=Sequential ()

>model .add (Dense (100, input_shape=(782,) ,activation='sigmoid’))
>model .add (Dense (70, activation='"sigmoid’))

>model .add (Dense (50, activation='sigmoid’))

>model .add (Dense (30,activation='"sigmoid’))

>model .add (Dense (50, activation='sigmoid’))

>model.add (Dense (70, activation='"sigmoid’))

>model .add (Dense (100, activation='sigmoid’))

>model .add (Dense (782))

>model . summary ()

10 STAR Protocols 5, 103041, June 21, 2024
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>callback=tf.keras.callbacks.EarlyStopping (monitor =’loss’, min_delta= 1E-7, patience=
1000, restore_best_weights= True) #Earlystopping

>model .compile (loss='mse’,optimizer='adam’) # Compile model with MSE loss
>model .fit (X, X, epochs=1000, verbose=1, callbacks =[callback]) # Fit model for 1000 epochs

>Encoder=keras.Model (model.inputs,model.layers[3].output) #Extract the bottleneck layer

to give lower dimensional features
>Encoder.summary () # Print summary of model structure

>X_low=Encoder.predict (X) # Generate lower dimensional features

23. Create label vector and color vector for plotting.

>label_dict_comb={’'recovered’:’'green’, ‘'mild’: 'blue’, 'severe’: 'red’}
>class_dict_comb={’'recovered’:0, 'mild’:1, 'severe’:2}

>cvec=[label_dict_comb[label] for label in patient_labels]

>org_label=[class_dict_comb[label] for label in patient_labels]

24. Perform K-means clustering. The number of clusters is chosen based on the silhouette coeffi-
cient of clustering.

>kmeans_comb=KMeans (n_clusters=3) .fit (X_low) #3 clusters

>cluster_new =kmeans_comb.labels_#Store cluster labels for each sample

25. Save AutoEncoder Model.

>keras.models.save_model (model, 'AutoEnc_Allfeatures_Delta_Sigmoid.hp5’,save_format='h5")

26. Save Clustered Data.

>dict={
>for i,key in enumerate (df .keys () [1:]) :
dictl[key]l=X[:,1]

>dict[’Cluster Label’]=kmeans_comb.labels_

>pd.DataFrame (dict) .to_csv('Cluster labels.csv’)

27. Plotting clustering results (Figure 3A).

>s=np.ones (X.shape[0])*200
>mpl.rcParams|[’'figure.dpi’]1=1200

>mpl.rcParams.update({’font.size’:22})
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>colors=ListedColormap ([’'#69B0F8’, '#FEEOD2’, '#F2757B’'])
>colorsl=ListedColormap ([ ‘'magenta’, ‘yellow’, ‘black’])
>fig, ax=plt.subplots(1,2,figsize=(20,20))

>scatter=ax[0] .scatter(X_low[:,0],X_ low

[:,1],s=s,c=0rg_label, cmap=colors, edgecolors='black’)
>ax[0] .set_xlabel ('Encoded Dim 1’)
>ax[0].set_ylabel ('Encoded Dim 2’ )

>ax[0] .legend (handles=scatter.legend_elements () [0], >labels=["Recovered", 'Mild’, 'Severe’],

fontsize=35,markerscale=5)

>scatterl=ax[1l].scatter(X_low[:,0],X low[:,1],s=s,c=cluster_new,cmap=colorsl, edgecolors=
‘black’)

>ax[1l] .set_xlabel ('Encoded Dim 1)
>ax[1l].set_ylabel ('Encoded Dim 2’)

>ax[1l].legend(handles=scatterl.legend_elements () [0], labels=["Cluster A", 'Cluster B’,

"Cluster C"], fontsize=35,markerscale=5)

28. Find features with deviations above 65%.

# Function to find features with deviations above 65%

>def find_deviations (df_clustered, cutoff,name) :

means =df_clustered.abs () .mean (numeric_only=True)
cluster_means =df_clustered.abs () .groupby ([’ClusterLabels’]) .mean (numeric_only=True)
deviation=cluster_means.sub(means[:-1]) .div(means[:-1])

features=deviation.copy ()
features[features.abs ()>=cutoff]=1
features|[features.abs ()<cutoff]=0

pd.concat ([features,deviation.multiply (100)]) .transpose().to_csv(’'Impute_Test_ 781/

Features/Random_Impute_’+name+’.csv’)
return features

#Find features in each cluster

> print ('Finding features for’,h name)

> features = find_deviations (df_clustered, cutoff, name)

Note: Different thresholds should be examined for this step to find the proper number of devi-
ated features. Higher thresholds will lead to fewer deviated features while lower thresholds
may result in more.

Note: Following the generation of clusters, clinical variables and symptoms of the newly
formed clusters can be examined. This analysis enables the identification of biomarkers that
contribute significantly to the predominant symptoms or characteristics exhibited by each
cluster. For further guidance, refer to the example provided in Figure 5 of our published

paper.'
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Part 5: Perform ML and feature selection to identify predictive biomarkers
® Timing: 10 min

In this section, we make a classical machine learning model to predict the clinical outcomes of pa-
tients with PCC. We fit a linear classifier to the data to classify patients with and without clinical out-
comes based on their omics profile in the convalescence phase. By doing that, we are able to assess
the ability of each assay to predict the outcomes and subsequently perform feature selection to
identify the most predictive biomarkers.

29. Import libraries.

>import pandas as pd # To read data files

>import numpy as np # To performmatrix operations

>import math # Mathematical operations (check if nan)

>import os # To access directories

>from sklearn.preprocessing import StandardScaler # Normalize data
>from sklearn.linear_model import LogisticRegression # Linear classifier
#Obtain metrics to test classifier

>from sklearn.metrics import >fl_score,confusion_matrix,roc_curve,ConfusionMatrixDisplay, auc,balanced_accuracy._

SCOre, roc_auc_score

>from sklearn.model_selection import train_test_split,cross_validate,GridSearchCV # Split data to train-test,

perform Grid search

>from sklearn. feature_selection import SequentialFeatureSelector,RF # Feature elimination tools

>import matplotlib.pyplot as plt # To plot data

30. Open data file and split into different sets containing specific omics profiles.

>X_acute_cp=np.hstack((X_acute_cyt,X_acute_pro)) # stack cytokines and proteins together

for acute data
>X_long_cp=np.hstack((X_long_cyt,X_long_pro)) #stack cytokines and proteins for long data

>X_acute_cm=np.hstack((X_acute_cyt,X_acute_meta)) # stack cytokines and metabolites for

acute
>X_long_cm=np.hstack((X_long_cyt,X_long _meta)) # stack cytokines and metabolites for long

>X_acute_pm=np.hstack((X_acute_pro,X_acute_meta)) # stack protein and metabolites for

acute
>X_long_pm=np.hstack((X_long pro,X_long _meta)) # stack protein and metabolites for long
>X_acute =np.hstack((X_acute_cyt,X _acute_pro,X_acute_meta))

>X_long =np.hstack ((X_long_cyt,X_long_pro,X_long_meta))

31. Generate color vector and label vector for classifier.

>label_dict_comb={0:'green’,1l:'red’}

>class_dict_comb={’'Event-Free’:0, 'With Event’:1}
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>cvec=[label_dict_comb[label] for label in patient_labels]

>org_label=patient_labels.

32. Create Data Matrix combining all data to automate the procedure for different datasets.

>DATA=[]

>DATA.append (X_acute)
>DATA.append (X_acute_cyt)
>DATA . append (X_acute_pro)
>DATA.append (X_acute_meta)
>DATA.append (X_acute_cp)
>DATA . append (X_acute_cm)
>DATA.append (X_acute_pm)
>DATA . append (X_long)

>DATA .append (X_long_cyt)
>DATA . append (X_long_pro)
>DATA.append (X_long_meta)
>DATA . append (X_long_cp)
>DATA.append (X_long_cm)
>DATA . append (X_long_pm)
>DATA.append (X_long-X_acute)

>NAMES=["'Acute’, 'Acute_Cyt’, 'Acute_Pro’, 'Acute_Meta’, 'Acute_CP’,’
Acute_CM'’, 'Acute_PM’, 'Long’, 'Long_Cyt’, 'Long_Pro’, 'Long_Meta’, 'Long_CP’,
‘Long_CM’, 'Long_PM’, ‘Delta’]

33. Function to perform 5-fold cross validation.

>def cross_validation(model, _X, _y, _cv=5):
_scoring = ['balanced_accuracy’, 'precision’, ‘recall’, 'f1']

results = cross_validate (estimator=model,

X=_X,
Y=_Y.,
cv=_cv,

scoring=_scoring,
return_train_score=True)
return {"Training Accuracy scores": results[’train_balanced_accuracy’]

"Mean Training Accuracy":results[’train_balanced_accuracy’].mean()*100,

"Training Precision scores": results[’train_precision’],
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"Mean Training Precision": results|[’train_precision’] .mean(),
"Training Recall scores": results|[’'train_recall’],

"Mean Training Recall": results|[’train_recall’] .mean(),
"Training F1 scores": results|[’train_f1'],

"Mean Training F1 Score": results[’train_fl1’].mean(),

"Validation Accuracy scores": results[’'test_balanced_accuracy’],
"Mean Validation Accuracy": >results|[’test_balanced_accuracy’] .mean()*100,
"Validation Precision scores": results[’'test_precision’],

"Mean Validation Precision": >results|[’'test_precision’].mean(),
"Validation Recall scores": results|[’'test_recall’],

"Mean Validation Recall": results[’test_recall’].mean(),
"Validation F1l scores": results|[’'test_f1'],

"Mean Validation F1 Score": results[’test_f1’].mean()

34. Function to plot 5-fold cross validation results (Figure 3B).

>def plot_result (x_label, y_label, plot_title, train_data, val_data,name) :

7’ ’Function to plot a grouped bar chart showing the training and validation
results of the ML model in each fold after applying K-fold cross-validation.
Parameters
x_label: str,

Name of the algorithmused for training e.g ‘Decision Tree’
y_label: str,

Name of metric being visualized e.g 'Accuracy’
plot_title: str,

This is the title of the plot e.g ‘Accuracy Plot’
train_result: list, array

This is the list containing either training precision, accuracy, or £1 score.
val_result: list, array

This is the list containing either validation precision, accuracy, or fl score.
Returns

The function returns a Grouped Bar chart showing the training an validation result in each fold.

"# Set size of plot
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'plt.figure (figsize=(12,6))
‘labels = ["1st Fold", "2nd Fold", "3rd Fold", "4th Fold", "5th >Fold"]
'X_axis =np.arange(len(labels[:len(train_data)l))
‘ax =plt.gcal()
‘plt.ylim(0.0, 1)
'plt.bar(X_axis-0.2, train _data, 0.4, color='blue’, label='Training’)
'plt.bar (X_axis+0.2, val_data, 0.4, color="red’, label='Validation’)
'plt.title(plot_title, fontsize=30)
'plt.xticks (X_axis, labels[:len(train_data)])
'plt.xlabel (x_label, fontsize=14)
'plt.ylabel (y_label, fontsize=14)
‘plt.legend()
'plt.grid(True)
plt.savefig(’'MinimalPanel New/RFE/FU_2023/Minimal/IMAGES/Cross_Val/’'+str (name)+’'_CV.png')

‘plt.show()

35. Perform grid search to tune in on hyper-parameters for the classifier.

Note: Since the number of samples for each class is unequal, we need to weigh the classes to
ensure the classifier gives equal importance. A grid search allows us to find the optimum
weight by computing all combinations of parameters.

>FPR=1[]

>TPR=[]

>FPR_ALL=[]

S>TPR_ALL=[]

>results_df=pd.DataFrame ()

>for i in range (len (DATA)) :
X=DATA[1]
results_dict={}
#GRID SEARCH

parameters={’class_-
weight’:[{0:1,1:1},{0:1,1:2},{0:1,1:5},{0:1,1:10},{0:2,1:1},{0:10,1:1}, 'balan-
ced’],’'C’:[1E-5, 1E-3, 0.1, 1, 10, 100,1000]}

_scoring = ['balanced_accuracy’, 'precision’, ‘recall’, 'f1']

clf = GridSearchCV (LogisticRegression (penalty='12’,max_iter=5000,), parameters, scoring=

_scoring, refit="balanced_accuracy’)
clf.fit (X_train,y_train);

results_dict = clf.best_params_

if clf.best_params_[’class_weight’] !="balanced’:
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clf.best_params_[’'class_weight']

dummy=str (clf.best_params_[’'class_weight’][0])+’, '+str((clf.best_params_
["class_weight’]1[1]))

results_dict[’class_weight’] = dummy

36. Feature Elimination (troubleshooting 4).

Note: Features correspond to the different molecular profiles. They are eliminated based on
whether they are important to the classification or not based on the weights of the classifier.

>Estimator=clf.best_estimator_
>n_features = 20 # number of features to be selected
>selector=RFE (estimator,step=1,n_features_to_select=n_features )

>selector.fit (X, org_label) >mask=selector.support_

37. Reduce input feature space.

>X_low=selector.transform(X) # reduces the dimensionality of the data based on step 36

>X_train,X_test,y_train,y_test,train_id,test_id = train_test_split(X_low,org_label, -

sample_num, test_size=0.1, random_state=42)
>Clf_result=cross_validation(Clf,X_train,y_train,5)

>plot_result(’Linear Classifier '+ str (NAMES[i]), "Accuracy", "Balanced Accuracy scores in 5
Folds", Clf_result["Training Accuracy scores"],Clf_result["Validation Accuracy score-
s"],NAMES[1])

38. Fit best regressor from grid search using reduced features.

>Estimator.fit (X_train,y_train) # Fit the classifier

>y_pred=Estimator.predict (X_test) # Predict the labels for unseen data
>y_score=Estimator.decision_function (X_test) # Probability of the sample being in a class
>y_train_pred = Estimator.predict (X_train)

>results_dict[’'Test Accuracy’] = balanced_accuracy_score(y_test,y_pred) # Test Accuracy
>results_dict[’'Test F1l Score’]=fl_score(y_test,y_pred) # Test F1 Score

>results_dict[’'Train Accuracy’] = balanced_accuracy_score(y_train,y_ train_pred) # Train

accuracy

>results_dict[’'Train Fl Score’]=fl_score(y_train,y_ train_pred) # Train F1l score

>results_dict[’Dataset’] = NAMES[i]

39. Print confusion matrix (Figure 3C). Generates a .csv file that contains Accuracy and F1 score.

>cm = confusion_matrix(y_test, y_pred, labels=Clf.classes_) # Confusionmatrix

>disp = ConfusionMatrixDisplay (confusion_matrix=cm,display_labels=Clf.classes_
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>disp.plot ()

>plt.savefig(’MinimalPanel_ New/RFE/FU_2023/IMAGES/Confusion_Matrix/'’'+str (NAMES
[i])+’'_CM.png")

>print (’Saving results for ', NAMES[i]

>results_df=pd.concat ([results_df,pd.DataFrame (results_dict, index=
[0])],ignore_index=True)

>results_df.to_csv(’MinimalPanel New/RFE/FU_2023/Summary new.csv’) # Change to the loca-

tion to store results in

40. Compute and plot the ROC curve for test data (Figure 3D).

Note: ROC curve provides a means of visualizing the performance of the classification task.
The larger the area under the ROC curve, the better the classification performance.

>fpr_all,tpr_all,_ =roc_curve(org_ label,y score)
>area=auc (fpr_all, tpr_all)

>plt.figure ()

>1w=3

>label ='Linear '+NAMES[i]+' (area= %0.2f) "’
>plt.plot(fpr_all,tpr_all,color='blue’,lw=1w, label=1abel % area, )
>plt.plot([0,1],[0,1],color="black’,lw=1w, linestyle="--")
>plt.x1im([0.0,1.0])

>plt.ylim([0.0,1.05])

>plt.xlabel ('False Positive Rate’)

>plt.ylabel (' True Positive Rate’)
>plt.title(’ROC Curves All Data’)

>plt.legend(loc='lower right’)

>plt.savefig(’/MinimalPanel_New/RFE/FU_2023/IMAGES/ROC/’+str (NAMES[i])+’_ROC.png’)

41. Save weights and bias for linear model.

>Weights_dict={}

>Weights_dict[’'Features’]=np.array(mols_list[i]) [mask] >Weights_dict[’Weights’]=Esti-
mator.coef [0] >Weights_df=pd.DataFrame (Weights_dict) >pd.concat([Weights_df,pd.Data-
Frame ({’'Features’:’'Bias’, 'Weights’ :Estimator.intercept_[0] }, index=[0])],ignore_in-

dex=True) .to_csv(’MinimalPanel_New/RFE/FU_2023/Minimal/Weights/'+NAMES([i]+’.csv’)

#Change to desired location

EXPECTED OUTCOMES

This protocol serves as a resource for omics analysis of plasma samples from patients with PCC.
These steps can be applied to similar studies that conducted omics assays on plasma samples of
other diseases. The primary outcome of this protocol is a processed dataset (part 1: data prepro-
cessing) containing no missing values prepared for any downstream statistical analysis.
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Figure 1. Statistical analysis of multi-omics datasets

(A) Principal component analysis utilizing proteomics, metabolomics, and cytokines illustrating the different plasma profiles among healthy controls,
acute, and convalescence phases of patients infected by SARS-CoV-2. Reprinted and Adapted from Wang et al." (B) Volcano plot comparing
convalescence samples and healthy controls. Adapted from Wang et al." with modifications.

(C) Heatmap showing the top 100 molecules with the most significant p values comparing healthy control with acute and convalescence phases using
ANOVA test on log10 transformed data. Reprinted and Adapted from Wang et al.’

A key part of this protocol is the statistical analysis section (part 2: statistical data analysis), which
yields informative plots elucidating the characteristics of individual groups in an omics study. Firstly,
principal component analysis (PCA) (step 10) generates a score plot which visualizes how distinct the
omics profiles of the study groups are (Figure 1A). Then, pairwise fold change analysis (step 12) pro-
duces a volcano plot (Figure 1B) highlighting the molecules significantly altered in a comparison.
These identified molecules can then undergo further downstream analyses, such as pathway anal-
ysis." This provides insights into dysregulated pathways in a disease, offering potential diagnostic
and therapeutic targets. At the end of this part, the heatmap (Figure 1C) shows the top changed mol-
ecules, which are identified based on the analysis of variance (ANOVA) (step 13). This heatmap
showcases molecules with different trajectories during a disease, which is particularly valuable in
study designs with paired samples across multiple time points.

Another important outcome of the protocol is the correlation heatmap (Figure 2) illustrating the as-
sociation between differentially expressed molecules and symptoms, which is adjusted for other
clinical variables, such as comorbidities, age, and sex that may play important roles in a disease.
This analysis can identify important associations between symptoms with specific biomarkers to pro-
vide crucial insights into the pathophysiological processes and unveil novel therapeutic targets. For
example, taurine and serotonin showed negative associations with several symptoms, including
diarrhea, nausea, mood disturbance, and cognitive impairment in PCC, highlighting their potential
role in modulating neurological and mitochondrial dysfunctions in patients with PCC.

We next performed unsupervised clustering (part 4: unsupervised clustering of patients based on their
multi-omics profile) for individuals based on the changes in concentrations of molecules (cytokines, pro-
teins, and metabolites) between acute and convalescence phases (step 21). A non-linear dimensionality
reduction was performed using an autoencoder (step 22). Autoencoders (AE) are a class of artificial neural
networks where the network architecture creates a bottleneck by encoding a layer of lower dimensions to
generate a lower-dimensional data projection. Since the activation of each layer in the AE is non-linear,
the lower dimensional projection of the data is a non-linear combination of the original variables. The au-
toencoder consisted of three encoding layers of 100, 70, and 50 neurons each. The bottleneck layer con-
sisted of 30 neurons followed by three decoding layers, with all layers using the sigmoid activation on
their outputs. Utilizing k-means (step 24) on autoencoders yielded three phenotypically distinct clusters
(Figure 3A) based on their inherent molecular similarities (step 28). These new clusters can be further
analyzed to identify the unique clinical features of each cluster.

In the last step of the protocol (part 5: perform ML and feature selection to identify predictive bio-
markers), we utilized logistic regression to evaluate the ability of different omics platforms to predict
adverse clinical outcomes. A 5-fold validation (step 33) is conducted (Figure 3A) to prevent over- or
underfitting of the model output. Following this, optimal hyperparameters were identified through
grid search (step 35), and recursive feature elimination (step 36) was performed for feature selection
to identify the minimum number of molecules with the highest predictive ability. The best regressor
was fitted to the data (step 38), and a confusion matrix (step 39) was generated (Figure 3C). Finally,
the predictive ability of different omics platforms and the minimal panel was evaluated using ROC
curves (Figure 3D).

LIMITATIONS

This protocol has some limitations. Users need to perform this protocol on relatively high-perfor-
mance computers. The required computing power depends on the number of samples and
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Figure 2. Heatmap illustrating the association between biomarkers and self-reported PCC symptoms assessed by multivariable logistic regression
analysis

Asterisks indicate statistical significance (p < 0.05).

Reprinted and Adapted from Wang et al.’

molecules being analyzed. Therefore, it's important to mention that this protocol may not accurately
estimate the computing power needed for different scales of multi-omics studies.

Another inherent limitation arises from the fact that the accuracy of classification and unsupervised
clustering is highly dependent on the characteristics of the input data. The efficacy of these tasks is
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metabolomics), and the minimal panel using molecular profile. Reprinted and Adapted from Wang et al.’

not guaranteed to be uniform across different datasets. It is advisable to explore different unsuper-
vised learning and classification algorithms to optimize the accuracy of this analysis.

TROUBLESHOOTING

Problem 1

You might encounter problems for installing and loading the MetaboAnalystR package (step 1).

Potential solution

e Update the Rtools through https://cran.r-project.org/bin/windows/Rtools/

e For more information, please refer to their GitHub (https://github.com/xia-lab/MetaboAnalystR).

22 STAR Protocols 5, 103041, June 21, 2024

10


https://cran.r-project.org/bin/windows/Rtools/
https://github.com/xia-lab/MetaboAnalystR

STAR Protocols ¢? CellP’ress

OPEN ACCESS

Problem 2

Including data from two or more batches into one analysis could introduce technical variability,
which potentially disrupts the biological signals in the downstream analyses. The initial step in de-
tecting batch effects is in principal component analysis where samples of one study group (ex.
treated) exhibit divergence (step 10).

Potential solution
The batch effect should first be remediated prior to statistical analysis. Various R libraries, including
limma, Deseq2, sva, and ComBat, offer functions to remove the batch effect.’'®

Problem 3

Performing differentially expressed analysis with these predefined criteria (FC > 1.5 and adjusted
p-value < 0.05) may result in an excessively low or high number of molecules in other datasets
(step 11).

Potential solution

Set the criteria for differential expression analysis (fold-change and p-value) based on the study’s
unique characteristics. In multi-omics studies measuring numerous molecules, utilizing adjusted
p-values is recommended for statistical rigor. Consider a lower fold-change threshold in cases where
even small changes should be considered.

Problem 4

The feature extraction task is an iterative routine that fits multiple models of increasing complexity to
determine a lower number of features best suited for the classification. When the initial number of
features is large, it can lead to a long computational time (step 36).

Potential solution
To expedite the process, consider employing a less complicated unsupervised dimensionality
reduction technique, such as PCA, for data preprocessing before integrating it into the routine.

>pca=PCA(0.95) >X_low=PCA.fit_transform(X) # Xis theoriginal datamatrixwith large number

of features # Use X_low instead of X from Box 35

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be ful-
filled by the lead contact, Dr. Gavin Oudit (gavin.ouditQualberta.ca).

Technical contact
Questions about the technical specifics of performing the protocol should be directed to and will be
answered by the technical contact, Mobin Khoramjoo (khoramjo@ualberta.ca).

Materials availability
This study did not generate any reagents.

Data and code availability
Raw data of omics platforms in this study have been deposited to PeptideAtlas: PASS03810 and Me-
tabolights: MTBLS7337.

The datasets (Data S1, S2, and S3) used in this protocol have been deposited to Mendeley data
(https://doi.org/10.17632/zyzt62gbrw.1).?
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The codes generated during this study are available at a GitHub repository (https://github.com/
MobinKhoramjoo/Biomarker-identification-by-multi-omics-analysis) and Zenodo (https://doi.org/

10.5281/zenodo.10880873).%

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xpro.2024.103041.
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