
Disentangling sex-dependent effects of APOE on diverse 
trajectories of cognitive decline in Alzheimer’s disease

Haixu Maa, Zhuoyu Shib, Minjeong Kimc, Bin Liud, Patrick J. Smithb, Yufeng Liua,f,*, 
Guorong Wua,b,e,g,*,*, Alzheimer’s Disease Neuroimaging Initiative (ADNI)
aDepartment of Statistics and Operations Research, University of North Carolina at Chapel Hill, 
NC 27599, USA

bDepartment of Psychiatry, University of North Carolina at Chapel Hill, NC 27599, USA

cDepartment of Computer Science, University of North Carolina at Greensboro, NC 27412, USA

dDepartment of Statistics and Data Science, School of Management at Fudan University, 
Shanghai, 200433, PR China

eDepartment of Computer Science, University of North Carolina at Chapel Hill, NC 27599, USA

fDepartment of Genetics, Department of Biostatistics, University of North Carolina at Chapel Hill, 
NC 27599, USA

gUNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 27599, USA

Abstract

Current diagnostic systems for Alzheimer’s disease (AD) rely upon clinical signs and symptoms, 

despite the fact that the multiplicity of clinical symptoms renders various neuropsychological 

assessments inadequate to reflect the underlying pathophysiological mechanisms. Since putative 

neuroimaging biomarkers play a crucial role in understanding the etiology of AD, we sought 

to stratify the diverse relationships between AD biomarkers and cognitive decline in the aging 

population and uncover risk factors contributing to the diversities in AD. To do so, we capitalized 

on a large amount of neuroimaging data from the ADNI study to examine the inflection 

points along the dynamic relationship between cognitive decline trajectories and whole-brain 

neuroimaging biomarkers, using a state-of-the-art statistical model of change point detection. Our 

findings indicated that the temporal relationship between AD biomarkers and cognitive decline 
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may differ depending on the synergistic effect of genetic risk and biological sex. Specifically, 

tauopathy-PET biomarkers exhibit a more dynamic and age-dependent association with Mini-

Mental State Examination scores (p < 0.05), with inflection points at 72, 78, and 83 years old, 

compared with amyloid-PET and neurodegeneration (cortical thickness from MRI) biomarkers. 

In the landscape of health disparities in AD, our analysis indicated that biological sex moderates 

the rate of cognitive decline associated with APOE4 genotype. Meanwhile, we found that higher 

education levels may moderate the effect of APOE4, acting as a marker of cognitive reserve.
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1. Introduction

Alzheimer’s disease (AD) is defined by its underlying pathologic processes that can be 

measured in vivo by imaging biomarkers (Jack et al., 2018, 2013). The most commonly 

used imaging biomarkers in the research and clinic areas include amyloid β (Aβ) deposition, 

pathologic tau, and neurodegeneration (such as cortical thickness), which constitute the 

backbone of A-T-[N] research framework of AD (Jack et al., 2018). Since AD is clinically 

heterogeneous in both presentation and progression, converging evidence shows that the 

one-model-fits-all scenario has limited power to capture the complex relationship between 

imaging biomarkers and the clinical phenotypes that often demonstrate variable topographic 

distributions, progression rates, and perhaps underlying mechanisms (Anchisi et al., 2005; 

Dong et al., 2017b; Lam et al., 2013; Tatsuoka et al., 2013).

It is a common practice to disentangle the heterogeneous population into a set of sub-groups 

using the clustering technique (Chen et al., 2023; Mu et al., 2023, 2022; Wolk et al., 

2009; Young et al., 2018), which stratifies the population based on subject-to-subject 

biomarker similarities. However, little attention has been paid to characterizing the temporal 

behavior where the contribution of AD biomarkers to cognitive decline might exhibit 

diverse trajectories in the long-time course of disease progression. We used the simulated 

data to demonstrate the importance of stratifying disease progression trajectories and its 

advantage over existing data clustering methods. As shown in Fig. 1 (bottom-left), a 

single linear regression model is limited to capturing the complex relationship between 

imaging phenotypes and the clinical outcome, where the red, purple, and black axes denote 

the imaging data, outcome score, and age, respectively. To disentangle the massive data 

heterogeneity, it is common to first cluster subjects into a set of sub-groups based on 

the imaging (or omics) phenotypes and then apply the statistical inference to each group 

separately. As shown in Fig. 1 (top-left), the statistical power of the current two-step 

approach is still not strong enough even applying the non-linear statistical model to the 

stratified groups. Indeed, the problem is rooted in the gap between population stratification 

and statistical inference, where the subject-to-subject similarity (drives data clustering) 
does not necessarily align with the brain-to-phenotype relationship. Since the clinical 

outcome information is not used in the clustering step, the sub-optimal stratification result 

is responsible for the underpower issue of statistical analysis. In this regard, it is of high 
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demand to investigate the temporal behaviors of the brain-to-phenotype relationship. As 

shown in the bottom-right of Fig. 1, the two-stage stratification has significantly improved 

linear regression performance by jointly detecting the transition of the relationship and 

applying statistical inference.

In light of this, we sought to uncover the multi-stage mechanism of the A-T-[N] framework 

by capturing the critical fluctuation (change point) of the biomarker-to-outcome relationship 

as the cognitive status progressively declines. The concept of our change point detection 

(CPD) model is shown in Fig. 2, which is designed to detect possible changing points in the 

relationship between imaging biomarkers (between A, T, [N] biomarkers) and MMSE (mini-

mental state examination) score (Arevalo-Rodriguez et al., 2015), where biological sex, 

APOE4 status, and education level are included as additional covariates in the model. Thus, 

under the hood of change point detection, our statistical inference model was essentially 

a spatial-temporal clustering approach on high-dimension neuroimaging biomarkers with a 

statistical guarantee on the effect size and significance of data-driven findings.

We would like to highlight that the identified change points are not predetermined but are 

detected using a data-driven process, implemented within our hypothesis testing framework 

for change point detection. Our CPD model was specifically crafted to pinpoint critical 

change points in the progression of AD. These change points were characterized by shifts 

in the relationship between clinical scores and brain imaging along the age of candidates, 

which in turn signal different stages of AD (Ma et al., 2022). In particular, for each AD 

biomarker, we first tested whether the change point exists and whether multiple change 

points exist. Next, we projected the detected change point to the chronic age axis, which 

allows us to stratify the diverse progression of AD into a set of distinct stages. On top of 

identified change points in the progression of AD, we put the spotlight on the multi-factorial 

mechanism of AD risk disparities (such as biological sex and APOE4 status) that contributes 

to diverse incidence and prevalence of AD. At each identified change point, we investigated 

the relationship between AD biomarkers and clinical assessment before and after the change 

point, stratified by males and females, by APOE carriers and non-carriers, and by high-

education and low-education, respectively. The secondary analysis was to repeat the main 

analysis with respect to memory-specific and executive-function-specific composite scores 

separately.

The output of our analysis provided a novel insight into the diversities and disparities in 

AD, where the stratified progression stages allow us to disentangle the heterogeneities in 

AD. Since presymptomatic or early symptomatic interventions may ultimately constitute the 

best long-term therapeutic strategy, the disentangled temporal behavior of cognitive decline 

offers a new window to manage the priority of risk factors more effectively in AD treatment.

Relevant works.

Since AD is a multi-factorial disease (Iqbal and Grundke-Iqbal, 2010), the extant literature 

supports that there are multiple factors (such as demographic data, genetic risks, and 

lifestyles) contributing to the heterogeneous trajectories of cognitive decline. In this regard, 

various clustering approaches have been employed to identify latent sub-groups based on the 

distribution of neuroimaging data (Dong et al., 2016; Hwang et al., 2016; Jack et al., 2016; 
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Noh et al., 2014). For example, K-median clustering analysis on [18F]AV-1451 tau-PET data 

was used to determine how AD subjects vary in the relative involvement of the entorhinal 

cortex and neocortex (Whitwell et al., 2018), where three subtypes were reported likely 

corresponding to the postmortem subtypes. Semi-supervised machine learning methods 

(Dong et al., 2017a) have been applied to Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) data to elucidate the heterogeneity of neuroanatomical differences between subjects 

with mild cognitive impairment (MCI), AD, and cognitively normal (CN) individuals, with 

the focus on establishing neuroanatomical and neuropathological (e.g. amyloid and tau 

deposition) dimensions in AD and its prodromal stages. Despite the fact that the disease 

progression in AD often involves dynamic interaction between genetic determinants and 

environmental exposures (Dunn et al., 2019; Eid et al., 2019; Elbaz et al., 2007), current 

clustering-based methods have not taken varying progression rates among AD patients into 

consideration.

Recently, event-based statistical modeling has come to the stage to characterize the 

progression of AD, which models the transition from normal to abnormal using a set of 

predefined events (Firth et al., 2020). Such an event-based strategy has been extended 

to model a more flexible piecewise linear function as well as multiple trajectories for 

quantifying the progression heterogeneity in AD (Vogel et al., 2021; Young et al., 2018). 

Despite a plethora of ways to model the trajectory, current methods often rely on some 

assumptions about the form of the trajectory function. More critically, longitudinal data with 

event changes (such as conversion from CN to MCI) are required to infer the parameters in 

the event-based models. Thus, a limited number of longitudinal data might undermine the 

potential of event-based approaches in clinical applications. In contrast, our CPD method 

was designed to characterize the temporal trajectory of neurodegeneration, at a population 

level, using cross-sectional neuroimages.

Our CPD method effectively modeled the relationship between AD biomarkers and clinical 

scores using a linear regression model. In low-dimensional settings where the number 

of covariates is fewer than the number of observations, change point, and segmentation 

inference are well-established (Chan et al., 2014; Jin et al., 2013; Maidstone et al., 2017). 

However, the challenge arises in AD analysis, where data exhibit a high-dimensional 

structure where the number of biomarkers is larger than the number of observations. 

In such scenarios, traditional low-dimensional methods were computationally infeasible. 

Despite recent advancements in high-dimensional change point detection, as explored by 

(Lee et al., 2016; Zhang et al., 2015), our work presented distinct benefits and differences. 

Firstly, while existing methods mainly concentrate on estimating the positions of change 

points, our approach focused on change point inference. This was achieved by employing 

bootstrap techniques to maintain the Type I error rate at any given significance level. 

Therefore, the detected change points have fewer false positives compared to others 

without statistical inference. Secondly, our CPD method, enhanced with binary segmentation 

techniques, was adept at detecting and identifying multiple change points in the regression 

function. Specifically, once we detected the first significant change point, the algorithm 

then iteratively examined each half of the data before and after that change point. In each 

iteration, it looked for evidence of other significant changes in the relationship between 

clinical scores and AD biomarkers. If a potential change point was detected in a segment, 
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that segment was further divided into two, and the process was repeated for multiple 

change point detection. This aspect was particularly crucial for modeling the multi-stage 

neurodegeneration characteristic of AD, setting our method apart in its application and 

efficacy in AD research.

2. Participants

The data used in our study were obtained from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database (www.ida.loni.usc. edu). ADNI enrolls participants between the 

ages of 55 and 90 who are recruited at 57 sites in the United States and Canada. After 

obtaining informed consent, participants undergo a series of initial tests that are repeated 

at intervals over subsequent years, including clinical evaluation, neuropsychological tests, 

genetic testing, lumbar puncture, and MRI and PET scans. There were four phases of the 

ADNI study (ADNI1, ADNI-GO, ADNI2, and ADNI3). Some participants were carried 

forward from previous phases for continued monitoring, while new participants were added 

with each phase to further investigate the progression of Alzheimer’s disease.

The ADNI data used in this work consisted of neuroimaging biomarkers, CSF biomarkers, 

genetics data, demographic data, clinical outcomes, and socioeconomic status. Table 1 

summarized the data statistics. Specifically, we collapsed the APOE genotype into two 

sub-groups: (1) subjects carrying any ε4 alleles (homozygous ε4/ε4 and heterozygous ε4/−) 

and (2) subjects with no ε4 risk alleles (−/−). Hence, the APOE genotype served as a 

binary variable in our study (carrier and non-carrier). We adopted the CSF p-tau/Aβ42 ratio 

(Campbell et al., 2021) as the CSF hallmark in the following analysis, where higher CSF 

tau/Aβ42 indicated a higher risk of developing AD.

Regarding neuroimaging data, we followed the Destrieux atlas (Destrieux et al., 2010) 

and used our in-house analytic pipeline based on FreeSurfer (Fischl, 2012). Major image 

processing steps included (1) noise reduction and bias correction on T1-weighted MRI, 

(2) skull striping, (3) tissue segmentation, (4) cortical surface reconstruction, (5) spatial 

image alignment which warps the atlas as well as the corresponding label information 

to the underlying subject space. The output was a whole-brain parcellation that includes 

148 cortical regions and 12 sub-cortical structures. After that, we registered PET image to 

the T1-weighted MR image. Based on the Destrieux parcellation, we calculated regional 

Standard Uptake Value Ratio (SUVR) from amyloid, tau, and FDG-PET scans and obtained 

the whole-brain A, T, [N] imaging biomarkers, respectively, which were normalized by 

using the whole cerebellum as the reference region.

In addition to MMSE score, ADNI provided various neuropsychological batteries. 

Specifically, we put the spotlight on the effect of AD-related pathology on memory decline 

(MEM) and executive function (EF) decline, respectively, by following the calculation 

methods in (Crane et al., 2012; Gibbons et al., 2012). Specifically, MEM score was 

a weighted average of Rey Auditory Verbal Learning Text (RAVLT, 2 versions), AD 

assessment Schedule – Cognition (ADAS-Cog, 3 versions), MMSE, and Logical Memory 

data (Crane et al., 2012). EF score was a weighted average of EF indicators from two 

secondary domains (Category Fluency items and Clock Drawing items), which included (1) 
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counts in a pre-specified time span (Category Fluency, WAIS-R Digit Symbol), (2) times to 

completion (Trails), (3) number of items completed correctly (Digit Span Backwards), and 

(4) dichotomous correct/incorrect (clock drawing) (Gibbons et al., 2012).

3. Methods

Ethics statement.

We have obtained the necessary permission and approval to access and use ADNI 

data. Data are publicly and freely available from the http://adni.loni.usc.edu/data-

samples/access-data/ Institutional Data Access / Ethics Committee (contact via http://

adni.loni.usc.edu/data-samples/access-data/) upon sending a request that includes the 

proposed analysis and the named lead investigator. More details can be found 

about the ADNI project and data acquisition and sharing policies and protocol 

as follows: Data sharing policy and data access process: http://adni.loni.usc.edu/wp-

content/uploads/how_to_apply/ADNI_DSP_Policy.pdf; ADNI steering committee and list 

of acknowledgement for publications using ADNI repository: http://adni.loni.usc.edu/

wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf; ADNI protocol and 

ethics statement: http://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/

clinical/ADNI-2_Protocol.pdf.

Principle of change point detection.

The primary goal of our CPD methodology was to identify the latent transition points, 

indicating shifts in the multi-stage progression of relationships between biomarkers and 

clinical outcomes. By stratifying subjects temporally (e.g., by age), our CPD method 

sought to statistically test the significance of these temporal transitions in relation to 

the aforementioned relationships. Specifically, let Y i, Xi i = 1
N  be N chronically ordered 

independent realizations of (Y, X) by another variable Z, such as age. We employed a linear 

regression model Y i = Xi
Tβ + εi to fit the relationships between p-dimensional biomarker data 

Xi and clinical outcome Yi. Here, β represented the p-dimensional unknown vector of 

coefficients, and εi was the error term. Our objective was to test whether the regression 

coefficients β that describe the regression plane of Y ~ X has a change point among the 

observations. Let β(1) and β(2) be two p-dimensional vectors of coefficients. We considered 

the following linear regression model with a potential change point:

Y i = Xi
Tβ 1 + εi, if   Zi ≤ a * ;

Y i = Xi
Tβ 2 + εi, if   Zi > a * .

Here, a* represented the position of the change point on the range of Z. If Z was specified as 

the ages of subjects, then for those subjects that were younger than a*, the relationship 

between Y ~ X was characterized by β(1), while for subjects that elder than a*, the 

relationship was captured by β(2). In this case, a* served as the critical change point that we 
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aim to detect, marking a significant transition in the biomarker-to-outcome relationship. This 

change was crucial to detect in the context of AD progression.

Our CPD model aimed to identify and estimate this specific time point where there was a 

significant shift between the regression models before and after that moment. We considered 

the following hypothesis testing framework:

H0:β(1) = β(2) for all a, v.s.

H1:β(1)≠β(2) for specific a * .

In other words, under H0, the regression coefficients were homogeneous across all 

observations, while under H1, there was a change point at an unknown time point a*, 

resulting a sudden shift in regression coefficients after a*. By conducting statistical inference 

based on the above hypothesis testing framework, our CPD model can provide a p-value 

using bootstrap to describe the significant level of the detected change point (van de Geer 

et al., 2014). A significant p-value leaded to the rejection of null hypothesis, thereby 

supporting the existence of a change point. Then, our second goal was to estimate the 

change point location when we concluded the existence of the change point. By adopting the 

hypothesis testing framework, one of the advantages of our approach was the reduced risk of 

detecting false positives in change points, making the methodology more robust and reliable 

for applications in clinical research.

Integrated solution of change point detection.

The methodology of our CPD model was structured into four main steps, enabling the 

identification of significant transition points in the progression of relationships:

Step 1: High Dimensional Regression Analysis.—We started by discretizing the 

time domain into n segments. For each potential cut point, de-biased lasso estimators were 

computed to model the relationship before and after the cut point. This step was crucial in 

setting the groundwork for identifying possible transition points in the data.

Step 2: Change point detection.—We employed an argmax-based change point 

estimator (Liu et al., In press). This involved synthesizing information from various potential 

change point locations. The underlying rationale was that the largest discrepancy in model 

coefficients should manifest at the actual transition point, indicating a significant shift in the 

data.

Step 3: Bootstrap.—Bootstrap techniques were then utilized to assess the significance of 

the statistics obtained from the previous step. This analysis yielded a p-value, which was 

critical for the hypothesis testing process. It helped in determining the statistical significance 

of the identified change points.
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Step 4: Multiple change point detection.—Finally, our model incorporated a refitting 

step combined with a binary segmentation technique, an approach conducive for detecting 

multiple change points (Fryzlewicz, 2014). This recursive process involved iteratively 

examining each data segment pre and post the initial change point. If subsequent significant 

change points were detected within a segment, the segment was further split, and the process 

was reiterated. This iterative approach was particularly adept at unraveling the multifaceted 

stages of AD progression.

If the p-values for each binary split were significant, the CPD algorithm outputs the precise 

locations of the change points along with regression estimations for each identified time 

period. This comprehensive detection mechanism offers a nuanced understanding of the 

multiple stages in AD progression (Liu et al., 2021, 2022; Liu et al., 2020), which is pivotal 

for informed clinical decision-making and targeted therapeutic interventions (Liu et al., 

2021, 2022; Liu et al., 2020).

4. Results

In this section, we delved into the results of our AD analysis. We started with simulation 

studies that served as a precursor to real data application. In Section 4.1, we designed 

the simulation settings to replicate the complexities of AD analysis, served as a critical 

preliminary test for our CPD method. The primary objective here was to evaluate the 

robustness and sensitivity of the method. These simulations yielded promising outcomes, 

showcasing the method’s effectiveness in accurately identifying and locating change points, 

which demonstrated a testament to its potential in analyzing AD degeneration.

With this strong simulation-based foundation, we transited to real data analysis in the 

subsequent sections. Here, we applied our CPD method to key AD biomarkers: A, T, and 

[N]. In Section 4.2, we spotlighted a significant revelation: the Tau biomarker was more 

sensitive than A and [N] in monitoring cognitive decline. This critical finding, marked by the 

detection of multiple significant change points in Tau linked to AD degeneration, naturally 

shifted our analytical focus toward Tau in the following analysis.

Progressing to Sections 4.3 and 4.4, we focused on interpreting the changes detected by 

the Tau biomarker at each identified change point in AD progression. This exploration was 

enriched by considering important biomarkers, such as biological sex and APOE4 status. 

These factors were crucial, as they offered insights into the biomarkers’ differential impacts 

across diverse individual’s profiles. Further broadening our analysis in Section 4.5, we 

incorporated socioeconomic factors, such as education level, into our study. This inclusion 

acknowledged the potential influence of social determinants on the progression of AD, 

adding depth to our understanding of AD progression.

Finally, in Section 4.6, we confronted the multifaceted nature of cognitive decline in AD. 

By dissecting the global MMSE score into Memory (MEM) and Executive Functioning 

(EF) composite scores, we strived to disentangle the complex, time-dependent interactions 

between AT[N] biomarkers and these specific cognitive domains. The analysis on splitting 
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the MMSE score not only provided insights on the varied clinical presentations of AD but 

also enhanced our comprehension of its progression.

4.1. Sensitivity and robust analysis

To test the stability and robustness of our CPD method, we conducted the following 

comprehensive simulation studies. These studies were designed to encapsulate three distinct 

cases: (1) No change point case; (2) Single change point detection; (3) Multiple change 

point detection. For the design matrix X, we generated i.i.d Xi that followed multivariate 

normal distribution N(0, Σ) where ∑ = σ i, j = 1
p  and σi,j = 0.5|i–j|. The error terms εi’s were 

i.i.d. generated from standard normal distributions. To mimic the real data, we chose age 

as the sorting variable Z, represented in years, and generated it from a truncated normal 

distribution N(75, 10) within the interval [50, 100]. In the regression model, the first five 

covariates were assigned with non-zero coefficients, while the coefficients of the remaining 

p – 5 covariates were set to zero. These non-zero coefficients were independently and 

identically drawn from a uniform distribution U(0, 2).

In the no change point case, we maintained a uniform regression function across all 

observations, characterized by a single set of regression coefficients β(1). For the single 

change point case, the true regression function was designed to change for subjects older 

than 75 years old. We added a signal jump δ = log p
n  to the 5 non-zero covariates of β(1) to 

generate β(2). For the multiple change point case, we considered three change points at ages 

70, 75, and 80 years old. The above three change points divided the data into four segments, 

each with distinct regression coefficientsβ(1), β(2), β(3), and β(4). At each change point, a 

signal jump δ = log p
n  was introduced to the non-zero covariates, ensuring a systematic 

shift in the dataset’s underlying structure. This underlying structure of regression model 

tended to mimic the multi-stage degeneration of AD.

For tuning parameter selection of de-biased lasso in Step 1 of our CPD method, we applied 

5-fold cross-validation using mean square error as the evaluation metric. To assess the 

method’s robustness and sensitivity, we varied the sample size from 500 to 1000 and 

increased the dimension of covariates from 100 to 200. The number of bootstrap replications 

for statistical inference was set at B = 100, with a significance level of 0.05. All numerical 

results in above three cases were based on 50 replications. Our hypothesis testing aimed to 

demonstrate that (1) no significant change point should be detected in the first case, (2) a 

single significant change point close to the age of 75 should be detected in the second case, 

and (3) three significant change points around 70, 75, and 80 years should be detected in the 

third case.

As shown in Table 2, for the no change point case, nearly all combinations of sample size 

and covariate dimensions yielded non-significant p-values, indicating a low risk of false 

positives for change point detection. In the single change point case, significant p-values 

(0.00) were consistently returned, with the estimated change point closely approximating 

75 years and exhibiting small standard errors, affirming our method’s accuracy even when 

we reduced sample sizes to 500 and increased dimensions to 200. Fig. 3 showcased the 
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density plots for the detected change points across multiple scenarios. Notably, the plots 

featured three distinct peaks, each corresponding to the true change points identified at ages 

70, 75, and 80. This clear delineation of peaks at the specific ages reinforced the accuracy 

of our CPD method in pinpointing the precise moments of transition in the regression 

function. Even under conditions of smaller sample sizes and higher dimensions, our method 

successfully identified these change points with a probability. This consistent detection 

of key transition ages in the plots underscored the robustness and reliability of our CPD 

approach, particularly in its capability to detect multiple stages in AD progression.

4.2. Tau biomarker is more sensitive to monitoring cognitive decline than a and [N] 
biomarkers

Building on the foundation of the simulation analysis, we transitioned to real data 

analysis, applying our CPD method to distinct biomarkers: Amyloid (A), Tau (T), and 

Neurodegeneration [N]. The change point detection results for A~MMSE, T~MMSE, and 

[N]~MMSE were summarized in Table 3. The relationship between T and MMSE appeared 

to have three critical transition points at the ages of 72, 78, and 83. When compared 

to A-Biomarker, which showed no significant change point in the 55–97 age range, the 

temporal relationship between T and MMSE was more heterogeneous, displaying multiple 

progression stages. As shown in Fig. 4(a), the strongest change point in the T~MMSE 

relationship occurred at 78 years old, with the largest difference in slope between the two 

linear models. At a significant level of p < 0.001, a one-unit increase in tauopathy burden 

resulted in a 1.13 decrease in MMSE score before the age of 78 (left panel in Fig. 4(b1)). 

However, after age 78, the decline became much more rapid, with a one-unit increase in 

tauopathy burden leading to a 2.44 decrease in MMSE score (right panel in Fig. 4(b1)). 

To substantiate the significant temporal shift in the T-biomarkers relationship after age 78, 

we further executed a z-test specifically aimed at comparing the regression coefficients of 

the whole brain Tau SUVR. The resulting p-value, calculated to be 0.03, aligned coherently 

with the significant differences highlighted by our CPD model. Additionally, the second and 

third significant change points occurred at the ages of 72 and 83, respectively. The fitted 

linear relationships between the T-biomarker and MMSE score were displayed in Fig. 4(b2) 

for three age ranges: before 72, between 72 and 83, and after 83, where T-biomarkers were 

closely correlated with MMSE score (p < 0.001). In contrast, the p-value of 0.38 obtained 

from the z-test on the whole brain A-biomarker indicates that, the decline of slopes due 

to A-biomarker did not manifest a significant difference before (β = − 1.25) and after (β 
= − 0.74) the identified change point (age 77), albeit the A-biomarkers showed a strong 

correlation to MMSE score (p < 0.001) both before and after change point (Fig. 5(a)).

In Fig. 5(b), we demonstrated the fitting error using a global linear regression model (in 

red) and a piecewise linear regression model (in green) that leveraged the identified change 

points. It was evident that using piecewise line fitting has reduced the T~MMSE fitting 

error by 6.3 % in terms of the residual between observed MMSE and linearly-fitted MMSE 

scores, suggesting the importance of stratifying the temporal heterogeneity of T~MMSE in 

disease progression.
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Remarks.—Since AD biomarkers consisted of regional SUVRs from 160 brain regions, 

we used the whole-brain average as a global measurement to quantify their collective 

impact on MMSE score (as shown in Figs. 4(b) and 5(a)). To identify the brain regions 

that have the most significant impact on the occurrence of changing points, we utilized a 

fused LASSO model (Tibshirani, 1996) to select a collection of brain regions that made the 

largest contribution to the changing points underlying the T~MMSE relationship. The fusion 

penalty helped to penalize the spurious difference of the regression coefficients for each 

covariate across the estimated stages (Arnold and Tibshirani, 2016). From left to right, we 

displayed the selected brain regions that are associated with critical transition ages 72, 78, 

and 83 in Fig. 6(a), where the node size was proportional to the impact level. The summary 

of these brain regions was listed in Fig. 6(b).

4.3. Main effect of biological sex and APOE4 status in T~MMSE relationship

To deepen our understanding of AD progression, we focused on interpreting the 

relationships between AD biomarkers and clinical assessments at each identified change 

point in Tau. We started by considering variations across important biomarkers: biological 

sex and APOE4 status. In piecewise linear regression model of T~MMSE relationship, we 

found that the effect size of both biological sex and APOE4 status are significant (p < 

0.05). In this context, we sought to examine the stratified T~MMSE relationship for sex and 

APOE4 status separately. Due to the clinical significance of the age of 72 and 78 as the top 

two critical transition points in the T~MMSE relationship for early prevention of AD, we 

further applied the linear regression model before and after the change point for males and 

females (Fig. 7), and APOE4 carriers and non-carriers (Fig. 8), respectively.

Our analysis revealed notable gender-specific differences in the progression of cognitive 

decline associated with whole brain Tau SUVR prior to the identified change point at age 78. 

Stratifying the data by gender, we observed a marked disparity in the regression coefficients 

before the age of 78: a z-test yielded a p-value of 0.019, indicating a significant difference 

between genders. Specifically, for females, a one-unit increase in whole-brain tau burden 

corresponded to a 1.57 unit decrease in the MMSE score before age 78, in stark contrast 

to a 0.45 unit decrease observed in males. This suggested a more rapid cognitive decline in 

females compared to males in the pre-78 age group. Interestingly, after age 78, this decline 

in cognitive function becomes more uniform across genders, as indicated by a p-value of 

0.27. This convergence in decline rates after the age of 78 implied a diminishing gender 

disparity in the progression rate at later stages.

Additionally, our stratification analysis based on APOE4 status revealed a universally 

steeper decline slope in APOE4 carriers as compared to non-carriers, with a significant 

p-value of 0.039 observed before the age of 78. This finding suggests that APOE4 was 

a significant risk factor for AD progression, with carriers being at a higher risk than non-

carriers for more rapid cognitive decline.

4.4. Sex-dependent APOE effect on cognitive decline

Along with current findings in AD (Altmann et al., 2014; Andrew and Tierney, 2018; 

Barnes et al., 2005; Davis et al., 2021), our results in Figs. 7 and 8 indicated that, in the 
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early stages of Alzheimer’s Disease, there appeared to be a more rapid cognitive decline in 

women compared to men, and APOE4 carriers seemed to experience a more pronounced 

decline than non-carriers. In this regard, we sought to investigate how the mechanistic role 

of AD biomarkers changes in mediating the effect of APOE4 on the cognitive decline 

before and after the change point. We followed the classic mediation analysis to estimate 

the direct effect βD (DE) and mediation effect βM (ME) for the mechanistic pathways of 

APOE4→MMSE and APOE4→AD biomarker→MMSE, respectively.

Mediation analysis for T-biomarker prior to and after the age of 78 (1st change 
point)—Firstly, we examined the direct pathway of APOE4 affecting MMSE score and 

the indirect pathway that was mediated by whole-brain T-biomarker (average of tau SUVRs 

across 160 brain regions). At a significant level of 0.01, APOE4 significantly contributed 

to the decrease of MMSE score via the increase of whole-brain tau aggregates (shown in 

Fig. 9(a)). Prior to the change point (age of 78), the estimated βD and βM were −0.01 and 

−0.18, respectively, with the indirect pathway accounting for 94.6 % proportion of the effect 

on the decrease of MMSE score. However, after the change point, both direct and indirect 

pathways equally affected cognition, with the proportion between DE (βD = − 0.26) and ME 

(βM = − 0.27) balanced at 50.8 %. It was apparent that (1) the risk associated with APOE4 
became more pronounced as age advances, and (2) there was a noteworthy transition from 

a ME-dominant pattern of APOE4 effect on the cognitive decline to the neurodegeneration 

pattern where the direct and indirect pathways were more evenly balanced.

Secondly, we sought to investigate the driving factor behind such pattern shifts before and 

after the change point. We hypothesized that the change in the ME/(ME+DE) proportion 

from 94.6 % to 50.8 % was sexually dimorphic. To do so, we stratified the same medication 

analysis to males and females, as shown in Fig. 9(b). Specifically, our findings indicated 

that the cognitive decline in female APOE4 carriers was consistently influenced by the 

accumulation of tau aggregates in the whole brain, as evidenced by the ME/(ME+DE) 

proportions of 84.9 % before the age of 78 and 97.1 % after the age of 78. On the contrary, 

the ME/(ME+DE) proportion in males decreased from 98.1 % to 20.8 %, showing that 

(1) the impact of APOE4 risk factor on cognitive decline is primarily mediated by the 

whole-brain tau aggregates in both males and females prior to the change point, (2) male 

APOE4 carriers experienced a significant shift from the indirect pathway (βM = − 0.15) to 

the direct pathway (βD = − 0.39) after the change point. This piece of evidence suggested 

that APOE4 may have a sex-specific effect on the cognitive decline that changes over time.

Thirdly, we localized the mediation analysis by replacing the whole-brain tau aggregation 

level with regional SUVR. Among 160 brain regions, 4.4 % of regions exhibited more than 

a 100 % decrease in ME/(ME+DE) ratio after the change point, and 53.1 % of regions 

exhibited more than a 50 % decrease in ME/(ME+DE) ratio after the change point. The 

table in the middle of Fig. 9(c) presented the mediation effect βM in nine top-ranked 

brain regions, sorted in a decreasing order based on the amount of mediation effect βM 

before and after age 78. This result indicated that the temporal changes in the way how 

APOE4 affected cognitive decline might be region selective. In Fig. 9(c), we displayed 

the top nine brain regions where the mediated effect of APOE4 on cognitive decline (via 

regional tau SUVR) significantly decreased after the change point (indicated by region size). 
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Furthermore, we colored these selected brain regions with respect to the topological location 

in large-scale functional brain networks (color notation shown at the bottom of Fig. 9(c)). 

It was apparent that the brain regions experiencing significant ME/(ME+DE) proportion 

transition of APOE4 effect were located in sub-cortical areas (purple) and default-mode 

network (dark blue), which indicated the region-selective pattern in terms of the topological 

location underlying functional networks.

Fourthly, we sought to identify brain regions that manifest sex differences in terms 

of changes in medication effect before and after the change point, by combining 

the male/female stratification analysis on top of the regional mediation analysis of 

APOE4→Tau→MMSE pathways. At the significance level of p < 0.05, we have not 

detected any brain region exhibiting a significant change in the proportion of mediation 

effects before and after age 78 in the stratification analysis between males and females.

Mediation analysis for [N]-biomarker prior to and after the age of 72 (1st 
change point)—Since age 72 is the only significant change point detected in [N] ~MMSE 

relationship, we investigated the mechanistic role of [N] biomarker in regulating the 

effect of APOE4 on cognitive decline. The major findings of mediation analysis in the 

APOE4→FDG→MMSE pathway were summarized below.

• We found that only 38.2 % of APOE4 effect on the decrease of MMSE has been 

mediated by the decrease of whole-brain metabolism level (approximated by the 

average of regional FDG-SURVs) before the change point (shown in Fig. 10(a)), 

at a significant level p < 0.01. After the age of 72, the ME portion was further 

reduced to 15.4 %, indicating that the APOE4 risk factor exerted a direct effect 

on cognitive decline underlying the APOE4→[N]→MMSE pathway.

• We found that both men (from 42.9 % before age 72 to 15.8 % after age 72) and 

women (from 35.3 % before age 72 to 15.9 % after age 72) contributed to the 

decline of ME/(ME+DE) proportion prior to and after the change point, as shown 

in Fig. 10(b).

• We conducted the same mediation analysis for each brain region. Our findings 

indicated that 7.5 % of regions exhibit more than a 100 % decrease in ME/

(ME+DE) ratio after the change point, and 60 % of regions exhibit more than 

a 50 % decrease in ME/(ME+DE) ratio after the change point. In this context, 

it was possible that the role of [N] biomarkers in the APOE4→[N]→MMSE 

pathway undergoes temporal changes that were specific to certain regions at 

the change point. The top eleven brain regions with the largest decrease in ME/

(ME+DE) ratio before and after the change point were displayed in Fig. 10(c), 

where the before vs. after mediation effects βM as well as the significance levels 

were listed in the middle of Fig. 10(c). In general, most of the top-ranked brain 

regions were located in the default mode network.

• On top of the regional mediation analysis in Fig. 10(c), we further stratified the 

statistical tests into males and females separately. In the middle of Fig. 10(d), 

we first displayed the brain regions where the proportion of medication effects 

manifested significant change before and after age 72 in both males and females, 
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at a significance level of p < 0.01. It is evident that most of the brain regions 

in the default mode network manifested the change of mediation role by the 

reduced metabolism level. This temporal pattern was observed in both males and 

females. Second, male-specific and female-specific brain regions that exhibited 

the same temporal changing patterns were displayed in Fig. 10(d) left and right, 

respectively.

4.5. Role of socioeconomic status in modifying multi-stage progression of AD 
biomarkers

Multiple lines of findings have reported that socioeconomic status significantly modifies 

the progression of AD. In our change point detection model, we found that education 

level also manifested a significant association in the multi-stage T~MMSE and [N]~MMSE 

relationships. Hence, we stratified the statistical analysis underlying the T~MMSE 

relationship for the low education group (less than 16 school years) and high education 

group (more than 16 school years) at the age of 78 (most critical change point).

Impact of education level on T~MMSE relationship prior to and after the age 
of 78—Firstly, we found that both low and high-education groups exhibited a moderate-to-

rapid decline pattern before and after the change point, as shown in Fig. 11(a). Using the 

significant level p < 0.05, the decline in the low-education group (−1.65 before age 78 and 

−2.88 after age 78) was more severe than that in the high-education group (−0.99 before age 

78 and −2.03 after the change point).

Secondly, we examined the direct and indirect effects along the APOE4→T→MMSE 

pathway. For the high-education group (Fig. 11(b) top), the proportion of the mediation 

effect of APOE4 on MMSE decreased from 95.2 % to 21.6 % after age 78. On the 

contrary, the low-education group showed the opposite pattern, where the proportion of 

mediation effect of APOE4, ME/(ME+DE), on MMSE increased from 59.7 % to 76.1 % 

after age 78. This observation implied that education level could be a modifying factor in 

the pathophysiological mechanism underlying the impact of APOE4 risk factor on cognitive 

decline. Since education level has been found to be a strong predictor of cognitive reserve 

(Stern, 2012), we provided an in-depth discussion in Section 5.

Impact of education level on [N]~MMSE relationship prior to and after the age 
of 72—Similarly, we investigated the role of education level in [N]~MMSE relationship 

before and after age 72 (the only change point). At a significance level p < 0.001, the 

reduced metabolism level (measured by whole-brain concentration level from FDG-PET 

scan) showed increased effect size (1.44 prior to age 72 and 1.61 after age 72) in the low 

education group (Fig. 12(a) top). However, the high education group manifested an opposite 

changing pattern where the effect size of a unit decrease of metabolism level was associated 

with a 1.49 unit decrease of MMSE score before age 72 while reduced to a 1.28 unit 

decrease of MMSE score after the change point (Fig. 12(a) bottom).

At a significance level of p < 0.05, the mediation analysis results in Fig. 12(b) top suggested 

that high education group exhibited a more profound indirect pathway prior to the age 

72 (i.e., the majority of APOE4 effect on cognitive decline was mediated by the reduced 
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whole-brain metabolism level), where the proportion of medication effect can reach 79.8 %. 

After the change point, however, there was a pronounced change in the high education group 

that the effect of APOE4 on cognitive decline shifted to the direct pathway, as indicated 

by the drop of the proportion of medication effect to 15.8 %. Regarding the medication 

analysis of APOE4→[N]→MMSE pathway in low-education group (Fig. 12(b) bottom), 

our finding suggested that APOE4 effect on cognitive decline was primarily driven by 

the direct pathway. Furthermore, we observed a moderate change in the proportion of the 

mediation effect, with a decrease from 27.1 % before the age of 72 to 16.5 % after the age of 

72.

4.6. Multi-stage association between cognitive composite score and AD hallmarks

Cognitive function is complex and multidimensional, which is partially responsible for the 

heterogeneous clinical manifestations reported in the progression of AD. In this regard, we 

sought to break the global MMSE score into MEM and EF composite scores and disentangle 

the temporal heterogeneity underlying the relationships of AT[N] biomarker~MEM (in Table 

4) and AT[N] biomarker~EF (in Fig. 13), respectively.

Firstly, we have detected one change point underlying A~MEM relationship at the age of 

74, one change point underlying [N]~MEM relationship at the age of 74, and two change 

points underlying T~MEM relationship at the ages of 80 and 86. However, none of the 

change points in the A~MEM, T~MEM, and [N]~MEM relationship passed the statistical 

significance test at the significance level of p < 0.05 (shown in Table 4). This finding 

suggested that the linear effect of AT[N] biomarkers on memory performance does not show 

significant change over time.

Secondly, we found that AT[N] biomarkers exhibit a multi-stage impact on the decline 

in EF performance (shown in Fig. 13(a)). Using a significant level of p < 0.001, we 

identified two change points underlying A~EF relationship: the first occurred at the age of 

70, followed by a second change point at the age of 76. T~EF relationship showed two 

change points occurring at the age of 79 and 86, respectively. However, the second change 

point (86-year-old) was not significant. There was only one statistically significant change 

point in the [N]~EF relationship occurring at the age of 72. These findings suggested that the 

effect of AT[N] biomarkers on EF performance is much more dynamic than AT[N]~MEM 

relationship. From Fig. 13(b–d), we displayed the brain regions on which the regional A, 

T, and [N] burdens have a significant impact on the decline of EF performance (The node 

size is proportional to the effect size). Furthermore, we localized these brain regions in 

the context of large-scale functional brain networks. We found that (1) most brain regions 

underlying A~EF relationship were located in the left hemisphere, (2) the accumulation 

of tau aggregates in the default mode network was associated with the multi-stage T~EF 

relationship, (3) the decreased metabolism levels in the sub-cortical area and visual cortex 

underlined the temporal change of [N]~EF relationship.

4.7. Multi-stage relationship between imaging biomarkers and the CSF biomarkers

Note that our CPD method was not limited to sorting the individuals by chronological age. 

Instead, it offered the flexibility to sort based on various continuous variables related to 
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AD. This versatility allowed us to adapt our approach to different aspects of AD research, 

enriching the comprehension of AD’s intricacies. As an illustration of its utility, we applied 

our CPD method to the CSF biomarkers, and identified change points across the spectrum 

of CSF biomarker values. In Fig. 14, we demonstrated the application of disentangling 

the latent multiple stages in the evolving [N]~MMSE relationship as the accumulation of 

CSF biomarkers. Since it is common to use the CSF tau/Aβ42 ratio in clinical practice, 

we adopted the CSF tau/Aβ42 ratio as the sorting variable, where a larger CSF tau/Aβ42 

indicated a higher risk of developing AD. Therefore, each subject has a collection of 160 

regional [N] biomarkers from the FDG-PET scan, MMSE score, and the CSF tau/Aβ42 

biomarker. As shown at the top of Fig. 14, the first (most critical) change point in 

the [N]~MMSE relationship occurred at the early stage of CSF biomarker accumulation 

(tau/Aβ42 = 0.37), followed by the second and third change points occurring at tau/Aβ42 

=0.61 (middle stage of AD progression) and tau/Aβ42 = 0.89 (late stage of AD progression). 

In Fig. 14 bottom, we displayed the brain regions on which the reduced metabolism level 

has a strong contribution to the change of the linear relationship between [N] biomarker and 

MMSE score.

5. Discussion

Clinic impact of our work.

AD is the most common form of dementia that affects older people of varying ethnicities, 

sexual and gender identities, and lifestyles (Organization, 2012). The heterogeneity in 

the presentation and progression of clinical symptoms posed great challenges to fully 

elucidating the complex interaction between disparities and diversities in AD. In this regard, 

an in-depth understanding of health disparities will set the stage for the development 

of precision medicine in AD by encompassing personalized strategies for prevention, 

detection, drug development, and disease-modifying therapy. Specifically, the identified 

change points in AD progression would be beneficial for (1) a comprehensive underpinning 

of the interaction between health disparities and cognitive change over time that might 

provide practice guidelines for analyzing and understanding diversities in drug development 

and disease-modifying therapeutics for AD, (2) a new neurobiological mechanism that 

links biological indicators with environmental exposures which provides an in-depth 

understanding of health disparities in AD, and (3) a more effective health care system that is 

accessible and equal for all Americans, regardless of gender, race, ethnicity, geography, and 

socioeconomic status.

In this work, we investigated the synergistic effect of APOE4 and biological sex on the 

diversities of cognitive decline in AD, with the focus on (i) common and distinct dynamic 

patterns of disease progression across amyloid (A), tau (T), and neurodegeneration (N) 

biomarkers (Figs. 4–6), (ii) sex-dependent effect of APOE4 status on the long period of 

neurodegeneration (Figs. 7–10), and (iii) the protective factors behind the health disparities 

at the different stages of AD (Figs. 11 and 12).
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Education, a marker of cognitive reserve, is protective against cognitive decline.

Education has long been recognized as an important indicator of greater cognitive reserve, 

which is the brain’s ability to compensate for age-related brain changes and greater 

neuropathological burden (Stern, 2006, 2012). In our study, the impact of APOE4 on 

cognitive decline was found to be moderated by level of premorbid education (Fig. 11(b) 

top), where the total effect size (DE+ME) of APOE4 are −0.04 before age 78 and −0.27 

after age 78, compared to low education group (Fig. 11(b) bottom), where the total effects of 

APOE4 are −0.39 before age 78 and −0.57 after age 78. This suggested that education may 

provide a cognitive ‘buffer’ that helps to delay the onset of AD. These findings underscored 

the importance of lifelong learning and the value of education in promoting healthy aging 

and maintaining cognitive function in old age.

Refinement for multiple comparisons and data double use.

To enhance the robustness and accuracy of our discoveries related to the identification of 

CPs in AD progression, we further integrated a strategic methodological refinement. By 

adopting a data splitting strategy within our analytical framework, we split our dataset 

into two pivotal segments. The initial segment was used to identify CPs related to 

cognitive decline and neuroimaging biomarkers through our CPD method. Concurrently, 

the subsequent segment was earmarked for the independent verification and nuanced 

interpretation of these CPs. This methodical division was designed to mitigate the inherent 

risks associated with multiple comparisons and circumvent potential biases by segregating 

the dataset used for CP identification from that employed in their validation. Such a 

methodological enhancement solidified our confidence in the identified CPs as definitive 

indicators of crucial transitions within the AD progression spectrum.

Our refined analysis confirms several key observations: (1) Tauopathy-PET biomarkers 

persist in demonstrating a pronounced and age-sensitive correlation with cognitive decline, 

validated through statistical significance (p < 0.05), with the most significant change point 

notably positioned around the age of 78. This confirmation underscored tauopathy’s unique 

contribution to AD progression in contrast to amyloid-PET and FDG-PET biomarkers. (2) 

Verification within the independent data segment underscored significant gender-specific 

disparities in cognitive decline associated with whole-brain Tau SUVR preceding the 

identified age 78 change point. This phase of the analysis highlighted a steeper cognitive 

decline in females relative to males within the pre-age 78 demographic, signifying a 

pronounced vulnerability in females during this period. (3) Our analysis, when stratified 

by APOE4 carrier status, disclosed a universally more acute decline in cognitive functions 

among APOE4 carriers versus non-carriers before the age of 78, achieving statistical 

significance (p < 0.05). This pivotal insight accentuated APOE4′s substantial influence 

as a significant risk factor for AD, underscoring the heightened susceptibility of carriers to 

expedited cognitive deterioration.

Limitation of current work and future direction.

There were several methodology and application-wise limitations in our current approach. In 

the following, we discussed each limitation and possible solutions.
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1. Cross-sectional vs. longitudinal. Our current CPD method was designed for 

modeling the population-wise change of neuro-degeneration trajectory from 

cross-sectional data. Specifically, we simultaneously stratified the subjects in 

the temporal domain (by age) and tested whether the temporal transitions show 

statistical significance in terms of the biomarker~outcome relationship. Since 

subject-specific changes were oftentimes more relevant to disease progression, 

future work should take subject-specific longitudinal change into account by 

integrating the mixed-effect model into our CPD method.

2. Normal aging v.s. highly selective disease data. The data analysis in this work 

used ADNI data only, which is a clinical research study in AD. However, 

the presence and incidence of AD might not be accurately reflect the general 

aging population in the clinic routine. To address this issue, our future work 

includes extending the data analysis to multi-site studies by exploring other 

public datasets such as Biocard (Sacktor et al., 2017) and UK Biobank (Fawns-

Ritchie and Deary, 2020).

3. Multi-factorial mechanisms of health disparities in AD. Since AD is a multi-

factorial disease (Iqbal and Grundke-Iqbal, 2010), the extant literature supported 

the hypothesis that there were multiple factors contributing to the presence of 

diverse disease progression in the aging population. However, little attention 

(including our work) has been given to understanding their relationship and 

how their interaction affected the trajectory of cognitive decline. For example, 

APOE4 risk tends to vary by race. Although it is important to examine whether 

race plays a role, the majority body of recruited subjects in ADNI are genetically 

related to European ancestry. In this regard, our work was unable to detect race 

differences. Advanced multivariate statistical models were in high demand to 

elucidate the synergistic effect of phenotypic variables on the progression of AD.

4. Cognitive reserve in AD prevention. A major challenge in the care and 

management of AD is the paradoxical relationship between the burden of AD 

pathology and its clinical outcome (Stern, 2002; van Loenhoud et al., 2019). 

Recent evidence shows cognitive reserve, the brain’s capability to preserve 

cognition despite underlying AD pathology, is a key determinant that moderates 

clinical progression (Medaglia et al., 2017; Reed et al., 2010; Stern, 2002, 

2006, 2012, 2017; van Loenhoud et al., 2019, 2017). Following this notion, 

we investigated the role of education level in change points, and we found 

that greater education might buffer against cognitive decline. While education 

level is thought to be an important marker of cognitive reserve, other markers, 

including premorbid verbal IQ, occupational complexity, and others have also 

been suggested as providing important proximal markers of this complex 

construct (Stern et al., 2020). Future studies may therefore, benefit from the 

incorporation of additional measures of cognitive reserve to comprehensively 

assess this protective factor.

5. Extend from AT[N] to ATX[N] framework. The AT[N] framework (Jack et 

al., 2018) is the most popular AD research framework that characterizes 
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individuals using amyloid-β pathway (A), tau-mediated pathophysiology (T), 

and neurodegeneration biomarker (N). Our current work followed the AT[N] 

framework. Recently, the biomarker matrix has been expanding to an ATX[N] 

system (Hampel et al., 2021), where X represents novel candidate biomarkers 

such as neuroimmune dysregulation, synaptic dysfunction, and blood-brain 

barrier alterations. Upon the availability of new biomarker data in the public 

database, it is worthwhile to investigate the temporal behaviors of X biomarkers 

in the aging population.

6. Conclusions

Our findings provided critical refinements that delineate previously undifferentiated 

heterogeneity within AD progression using a powerful multi-variate statistical model of 

change point detection. Our investigation focused on the multi-stage progression between 

AD biomarkers and clinical phenotypes. Our findings extent prior work demonstrating 

differential associations between AD biomarkers and clinical decline by showing that the T-

biomarker exhibits more change points than the A and [N] biomarkers as cognition declines 

during AD progression. We also observed that genetic risk (i.e. APOE4), biological sex, and 

cognitive reserve exert important influences on the transition from AD biomarker elevations 

to clinical phenotypes. Our results highlighted the critical importance of delineating 

individual differences influencing the impact of AD biomarkers on clinical phenotype.

It is important to recognize that understanding differential risks and rate of AD progression 

is a critical challenge in the development of precision medicine for the disease. Personalized 

strategies for prevention, detection, drug development, and disease-modifying therapy 

can only be effective if they take into account the complex interactions between health 

disparities and cognitive change over time. Our data-driven approach can help achieve this 

goal in several ways. Firstly, it can provide a comprehensive understanding of the impact 

of health disparities on cognitive change over time, which can be used to develop practice 

guidelines for analyzing and understanding diversities in drug development and disease-

modifying therapeutics for AD. Secondly, our approach can reveal new neurobiological 

mechanisms that link biological indicators with environmental exposures, providing a more 

in-depth understanding of health disparities in AD. Thirdly, our findings can inform the 

development of a more effective healthcare system that is accessible and equitable for all 

Americans, regardless of gender, race, ethnicity, geography, or socioeconomic status.
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Fig. 1. 
Current two-step approach (top-left) vs our joint change detection and statistical inference 

(bottom-right). The distribution of simulated data was shown in top-right, where applying 

a global regression model on the whole data (bottom-left) does not have the statistical 

power to model the relationship between imaging phenotype and clinical outcomes. Since 

current two-step approaches applied clustering and statistical analysis separately, the 

clustering result might be sub-optimal for statistical inference. Our method disentangled 

the heterogeneity of temporal behavior (i.e., the relationship between imaging phenotype 

and clinical outcome) and thus yielded significantly higher statistical power in understanding 

the factors behind the clinical outcomes.

Ma et al. Page 25

Neuroimage. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Our statistical model identified change points, sorted by age, by examining the latent 

piecewise linear relationship between regional AD biomarkers and clinical outcomes. Using 

the results from temporal stratification, we were able to explore how biological sex and 

education level dynamically contribute to modifying the impact of APOE4 on cognitive 

decline across multiple stages of AD progression.
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Fig. 3. 
Density plots of detected change points for multiple change point case.
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Fig. 4. 
The change point detection results on T-biomarker. (a) There were three significant change 

points occurring at the ages of 72, 78, and 83, where the temporal patterns of T~MMSE 

relationship manifested significant difference before and after changing point. (b) The fitted 

line of T~MMSE relationships before and after change points.
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Fig. 5. 
The change point detection results on A biomarker. (a) We have not found significant change 

point in A~MMSE relationship as the linear model before the age of 77 (in red) does 

not show significant difference with comparison to that after the age of 77 (in green). (b) 

Reduced fitting error of T~MMSE relationship by piecewise line fitting (in green) for each 

progression stage, compared to global linear model (in red).
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Fig. 6. 
The change point detection results on T biomarker. (a) The brain regions on which 

T-biomarkers have top-ranked contributions to the transitions. (b) The summary of brain 

regions that have the most significant impact on the occurrence of changing points.
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Fig. 7. 
Regression plot for MMSE score and whole brain Tau SUVR before and after the detected 

change points age 72 (top) and 78 (bottom) on Tau and stratified by sex.
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Fig. 8. 
Regression plot for MMSE score and whole brain Tau SUVR before and after the detected 

change points age 72 (top) and 78 (bottom) on Tau and stratified by APOE4 carrier and 

non-carrier.
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Fig. 9. 
Sex-dependent effect of APOE4 on cognitive decline, possibly mediated by T-biomarker 

in the APOE4→Tau→MMSE pathway. (a) We first examined the direct effect 

(APOE4→MMSE) and the corresponding indirect effect mediated by whole-brain T 

biomarkers before and after particular change point. (b) Then, we stratified the same 

mediation analysis to males and females separately. (c) Furthermore, we conducted 

the same mediation analysis (males and females together) at each brain region. We 

displayed the mediation effect before and after change point (right), where the node size 

indicated the proportion of mediation effect size. (d) Finally, we investigated whether the 

regional APOE4→Tau→MMSE pathways manifest significant changes in the proportion 

of mediation effect (by T-biomarker) before and after age 78 in the male/female stratified 

mediation analysis.
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Fig. 10. 
Sex-dependent effect of APOE4 on cognitive decline, possibly mediated by [N]-biomarker 

in the APOE4→FDG→MMSE pathway. (a) We first examined the direct effect 

(APOE4→MMSE) and the corresponding indirect effect mediated by whole-brain [N] 

biomarkers before and after particular change point. (b) Then, we stratified the same 

mediation analysis to males and females separately. (c) Furthermore, we conducted the 

same mediation analysis (males and females together) at each brain region. We displayed 

the mediation effect before and after change point (right), where the node size indicates 

the proportion of mediation effect size. (d) Finally, we investigated whether the regional 

APOE4→FDG→MMSE pathways manifest significant changes in the proportion of 

mediation effect (by [N]-biomarker) before and after age 72 in the male/female stratified 

mediation analysis.
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Fig. 11. 
(a) The T~MMSE relationship before (in red) and after (in green) the change point of age 

78 for low-education (top) and high-education (bottom) groups. (b) The mediation analysis 

result of APOE→T→MMSE pathway before and after the change point for low-education 

(top) and high-education (bottom) groups.
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Fig. 12. 
(a) The [N]~MMSE relationship before (in red) and after (in green) the change point of age 

72 for low-education (top) and high-education (bottom) groups. (b) The mediation analysis 

result of APOE→[N]→MMSE pathway before and after the change point for low-education 

(top) and high-education (bottom) groups.
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Fig. 13. 
Identified change points (sorted in age) and the associated p-value in the AT[N]~EF 

relationship are shown in (a). The brain regions showing significant contribution to the 

change points underlying A~EF, T~EF, and [N]~EF relationship were displayed in (b), (c), 

and (d), respectively. The node size and color indicated the effect size and topological 

location in the large-scale functional networks.
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Fig. 14. 
Top: Three change points have been detected (sort by CSF tau/Aβ42 biomarker) in 

[N]~MMSE relationship. Bottom: The brain regions with strong contributions to the changes 

of [N]~MMSE relationships prior to and after each change point.
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