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Abstract

Defining the cellular response to pharmacological agents is critical for understanding the 

mechanism of action of small molecule perturbagens. Here, we developed a 96-well-plate-based 

high-throughput screening infrastructure for quantitative proteomics and profiled 875 compounds 

in a human cancer cell line with near-comprehensive proteome coverage. Examining the 24-h 

proteome changes revealed ligand-induced changes in protein expression and uncovered rules by 

which compounds regulate their protein targets while identifying putative dihydrofolate reductase 

and tankyrase inhibitors. We used protein–protein and compound–compound correlation networks 

to uncover mechanisms of action for several compounds, including the adrenergic receptor 

antagonist JP1302, which we show disrupts the FACT complex and degrades histone H1. By 

profiling many compounds with overlapping targets covering a broad chemical space, we linked 

compound structure to mechanisms of action and highlighted off-target polypharmacology for 

molecules within the library.

Small molecule modulators affect their target proteins through several mechanisms. 

Deconvoluting the mechanisms of action (MOA) for these biologically active molecules can 

lead to better therapeutic interventions. Though targeted approaches can assess the effects 

of specific compounds on selected signaling pathways and cellular processes, systems-level 

profiling is required to define MOA for drugs and tool compounds. Thus far, large-scale 
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characterization of drug MOA has employed mostly RNA quantification via relatively high-

throughput, low-cost sequencing technologies. For example, the Connectivity Map (CMAP) 

project developed the L1000 RNA-sequencing platform to quantify the 978 most descriptive 

transcripts1. The CMAP database contains around 30,000 small molecule perturbagens 

profiled in several cell lines, providing a rich resource for discovery of compound MOA. 

However, most United States Food and Drug Administration (FDA)-approved drugs target 

proteins, and the steady-state correlation among RNA and protein levels is limited at best2–

4, suggesting that protein-level changes will provide the most proximal—and relevant—

readout of compound action.

Recently several high-throughput mass spectrometry (MS) methods to characterize 

compound MOA have been employed to enhance our understanding of chemical 

perturbagen-induced changes in protein expression. These include targeted quantification 

of selected phosphorylation events and histone modifications5,6 and untargeted approaches 

to survey proteome remodeling7,8. Proteome-wide drug screening efforts have not yet 

achieved comprehensive proteome depth, often due to single-shot approaches that increase 

the throughput of label-free experiments9. Whereas this increased throughput comes at the 

expense of proteome depth10,11, multiplexing of compound-treated proteomes using isobaric 

labeling can offset this12,13. However, no isobaric-labeling-based high-throughput, low-input 

proteomics platform exists, limiting most existing resources of protein-level changes to 

relatively few compounds. Indeed, no existing resources of small-molecule-induced changes 

in protein expression have screened more than 80 compounds.

Here we quantify ‘proteome fingerprints’ depicting proteome-wide effects of 875 

small molecule perturbagens as a resource for MOA deconvolution and compound 

repurposing, including a companion website for data exploration (gygi.med.harvard.edu/

DeepCoverMOA). The 875 compounds screened herein include modulators of half the 

targetable proteome, thus revealing those portions of the HCT116 proteome most responsive 

to chemical perturbagens. This resource, spanning a library tenfold larger than previously 

achieved, highlights how deep proteome profiling uncovers previously unappreciated nuance 

in how the proteome responds to pharmacological agents. We provide the largest resource 

for evaluating the frequency and specificity of ligand-induced changes in target protein 

regulation, demonstrating that 15% of compounds modulate their target protein’s abundance. 

We used the depth of our screen to appreciate polypharmacology of the FDA-approved poly 

(ADP-ribose) polymerase (PARP) inhibitor talazoparib, revealing off-target proteins with 

high confidence. We show that many widely used tool compounds and clinically relevant 

small molecule inhibitors have myriad unanticipated proteome-level effects. Analysis of 

these unexpectedly active compounds uncovered a family of structurally related small 

molecules, including PAC-1, currently in clinical trials, whose activity is driven by iron 

chelation. Finally, we highlight the activity of JP1302—an adrenergic receptor antagonist 

that inhibits transcription through several mechanisms including degradation of linker 

histone H1. This resource will inform drug discovery and reveal fundamental, recurring 

patterns of protein coexpression following pharmacological perturbation.
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Results

A platform for comprehensive proteome analysis of drug MOA

Our overarching goals were to understand how modulators of different classes of proteins 

affect proteome remodeling, to draw conclusions about the activities of distinct chemical 

scaffolds and to appreciate the effects of understudied compounds. Achieving these goals 

necessitated the use of a large screening library that covered a broad chemical space and 

included redundancies in the annotated targets. Though proteomics has traditionally been 

ill-suited to large-scale work, recent developments, including sample multiplexing, have 

begun to make higher-throughput proteomics feasible. Building upon previous cell line 

work4,14,15, we miniaturized our tandem mass tag (TMT) workflow to allow integration 

with 96-well-plate-based small-molecule screening infrastructure. Small molecules (875) 

were transferred in biological triplicate to HCT116 cells growing at less than 50% 

confluence in 96-well plates. Cells were incubated with screening compound (10 μM), 

dimethylsulfoxide (DMSO) or a positive control compound for 24 h before lysis, tryptic 

digestion and labeling with TMT11-plex sample multiplexing reagents. One replicate plate 

was used to screen for toxic compounds, which were removed and replaced with additional 

replicates of the positive control compound (Extended Data Fig. 1). Toxic compounds 

were rescreened at lower concentrations and included in separate 11-plex experiments. 

Among 875 library members, 754 (86%) were screened in biological duplicate, all using 

real-time-search-mediated synchronous precursor selection– MS3 (SPS–MS3) quantitation 

to maximize accuracy while maintaining depth of proteome coverage16–19. In 172 separate 

11-plex experiments—totaling 2,176 LC-MS runs and around 4,400 hours of instrument 

time—more than 11 million high-quality peptide quantification events were acquired. With 

over 800 proteome profiles acquired in duplicate, this is the largest isobaric labeling study 

to date and represents, to our knowledge, the first deployment of isobaric-labeling-enabled 

proteome profiling in the context of 96-well-plate-based cellular screening.

The screening library ultimately selected for this work is comprised of 875 small molecules 

that, when all known targets are included, target 914 proteins that constitute approximately 

half of the targetable proteome20 (Fig. 1 and Extended Data Fig. 1b). The library 

includes compounds across all stages of clinical development, ranging from highly cited 

FDA-approved drugs to largely undescribed chemical tools (Fig. 1b and Extended Data 

Fig. 1a). Nearly 700 compounds share primary or secondary targets with other library 

members, allowing for interpretation of both target-induced proteome fingerprints and 

off-target polypharmacology (Extended Data Fig. 1c). Further discussion of these initial 

considerations are included in Supplementary Note 1.

With this workflow, we achieved deep proteome coverage, quantifying a median of 8,863 

proteins per compound out of 9,960 observed proteins (89% coverage per compound; 

Fig. 1c). Data completeness was excellent, with around 8,900 proteins quantified in at 

least half of the library (438 compounds; Extended Data Fig. 1j). Protein quantification 

across biological replicates was reproducible, with just 1% of 5.5 million replicate 

protein-compound measurement pairs differing by more than a log2(fold change (FC)) 

of 0.5 (compound versus DMSO) (Extended Data Fig. 1f). The control compound, 
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which dramatically rewires the proteome, was included 55 times across the dataset, or 

approximately once in every three TMT groups. The median coefficient of variation (%CV) 

for protein measurements was 8.8% across all 55 replicates of the control compound, and 

6.8% after merging two biological replicates (Extended Data Fig. 1i). The median Pearson 

correlation (r) for biological replicates of the control compound was 0.87, with no obvious 

outliers after averaging two replicates. These results highlight both the reproducibility of 

these measurements and the benefit of including and averaging protein measurements from 

biological replicates (Extended Data Fig. 1g–i).

Each proteome profile encodes specific protein-level changes that follow each compound 

treatment. For the thalidomide-derived immunomodulatory drug (IMiD), pomalidomide, 

we see direct evidence of its known mechanism of action, in which it degrades several 

proteins by forming a ternary complex with CRBN21. While the transcription factors 

IKZF1 and IKZF3 that mediate the therapeutic effects of IMiDs in multiple myeloma22 

are not expressed in HCT116 cells, several other known neosubstrates23,24, including several 

transcription factors, were downregulated with minimal variance between replicates (Fig. 

1d).

The proteome is dynamically regulated by small molecules

Each compound interacts with one or more protein targets and induces proteome-level 

changes via common and perturbagen-specific modulations of cellular processes that reflect 

its MOA. These perturbagen-induced abundance changes vary in magnitude from protein to 

protein. Thus, regulation events were defined by two criteria: (1) a twofold change versus 

DMSO or (2) a five standard deviation change of protein expression relative to the mean 

change for that protein across all compounds. Leveraging the large number of compounds 

screened allowed us to appreciate proteins with varying response magnitudes and to identify 

situations where small FCs are noteworthy. We found that even low-magnitude regulation 

events are reproducible, with small molecules from the same class inducing nearly identical 

FC magnitudes (Extended Data Fig. 2a,b).

Using these criteria, we determined that over half the quantifiable proteome varied by at 

least twofold with one or more compounds, while 98% of proteins quantified showed a 

change in abundance of five standard deviations by one or more compounds (Fig. 2a). In 

addition, over 4,000 proteins were highly (greater than twofold) downregulated by at least 

one compound, revealing many potential ligand-induced degradation events. Overall, we 

uncovered 141,786 regulation events, less than 2% of the 7.63 million protein measurements 

in the dataset (Fig. 2b).

We then identified proteins that respond to perturbagen treatment with unusual frequency 

and are often associated with common drug resistance or stress coping pathways. We found 

a striking propensity for frequently responding proteins to change in only one direction 

(Fig. 2c and Extended Data Fig. 2d). Preferentially upregulated proteins were enriched with 

members of the steroid biosynthesis, cytokine–cytokine receptor interaction, mitophagy and 

ferroptosis pathways, suggesting that HCT116 cells overcome exogenous stressors through 

upregulation of autophagy and sterol metabolism. Likewise, downregulated proteins were 

enriched with proteins from several cell-cycle-related pathways, including p53 signaling, 
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suggesting that these cells often respond to perturbagen-induced stress via cell cycle arrest 

(Fig. 2d).

We next ranked compounds based on the number of proteins each regulated, finding that the 

median compound altered expression of 15 proteins. The most active compounds regulate 

up to 25% of the observable proteome and include inhibitors of important cellular processes 

such as proteasomal degradation, transcription and histone acetylation. Many compounds 

induced a balance of up- and downregulated proteins, unexpectedly including proteasome 

inhibitors MG132, ONX0914 and epoxomicin. However, ranking compound activity instead 

by the number of proteins with large (greater than twofold) changes revealed proteome 

responses better aligned with expectations, with proteasome inhibitors largely inducing 

protein upregulation and transcription inhibitors inducing protein downregulation (Extended 

Data Fig. 2d). Although their numbers and directionality sometimes defied expectations, 

small-magnitude protein regulation events are nevertheless consistent between biological 

replicates and among compounds of the same class, supporting their use for interpretation of 

compound activity (Extended Data Fig. 2b).

Regulation of target proteins informs compound MOA

Ligand-induced changes in protein expression have come to the forefront of drug discovery 

with the emergence of molecular glues and PROTAC degraders as promising classes of 

therapeutics. Conversely, pharmacologic upregulation of a target protein may drive drug 

resistance25 through relief or suppression of negative and positive feedback loops26,27. 

Despite the therapeutic importance of small-molecule-induced changes in target protein 

expression, the phenomenon remains poorly understood, though several studies have 

attempted to address this by mining RNA expression datasets28,29. A recent proteome-wide 

drug perturbation study suggests that around 25% of drugs and tool compounds regulate 

expression of their target protein, though the library studied was skewed towards highly 

active compounds targeting proteins in commonly perturbed pathways9.

We identified approximately half of the annotated primary targets for the 875 compounds 

in our dataset and 90% of target proteins were quantified in the 11-plex containing the 

compound of interest (Fig. 3a and Extended Data Fig. 3b). For this analysis we also 

included one additional secondary target for each compound, where applicable, yielding 

541 compound-target pairs. We found that 15% of compounds regulate the expression of 

their target proteins (Fig. 3b and Extended Data Fig. 3a) by a median of around 1.56-fold, 

with upregulation occurring more frequently than downregulation (Extended Data Fig. 3e). 

Even small-magnitude regulation events (FC less than twofold, greater than five standard 

deviations (5SD)) were reproducible across overlapping classes of compounds (Extended 

Data Fig. 3f).

Ligand-induced changes in protein expression were often observed for highly active 

compounds that regulate many other proteins in addition to their target(s) (Fig. 3c and 

Extended Data Fig. 3d). This suggests that many regulation events are indirect consequences 

of perturbing important cellular processes, not necessarily arising directly from ligand–

target engagement. When several compounds targeted the same proteins, similar changes in 

target protein abundance were often observed. For instance, BRD4 inhibitors JQ-1, CPI-203 
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and birabresib, HSP90 inhibitors radicolol and NVP-BEP800, and nutlin-based MDM2 

inhibitors regulated their targets to near identical levels, suggesting mechanism-specific 

regulation thresholds (Fig. 3c and Supplementary Fig. 3g,j). BRD4 abundance also increased 

upon treatment with PLK1 inhibitors BI-2536 and volasertib, probably reflecting shared 

PLK1 and BRD4-inhibitor-driven phenotypes30.

Though target protein expression was usually modulated by compounds inducing extensive 

proteome remodeling, some target proteins were regulated by compounds with narrower 

proteome-level effects, suggesting specific ligand-induced regulation or localized feedback. 

These specific changes in target protein abundance occurred with BIRC2, DHFR, VDR, 

PDE9A and TNKS inhibitors, among others (Fig. 3c). Regulation of these proteins was 

largely restricted to compounds directly targeting them, identifying these proteins as 

promising subjects for future MOA deconvolution (Extended Data Fig. 3j).

Leveraging reproducible compound-induced upregulation, we identified three compounds 

that upregulate DHFR with magnitude and specificity equivalent to iclaprim and 

pyrimethamine—both known DHFR inhibitors used clinically (Fig. 3d,e). These 

putative DHFR inhibitors—the imidazoquinoline-based TLR7 activators imiquimod, 

R848 (resiquimod) and the HCN channel blocker ZD7288—are structurally similar to 

diaminopyrimidine-containing DHFR inhibitors31. Antifolates such as methotrexate and 

nolatrexed are known to upregulate DHFR7,8 and served as positive controls (Extended Data 

Fig. 3h).

TNKS1/2 inhibitors reproducibly induced large FCs of PARP tankyrase-1/2 (TNKS and 

TNKS2), two related ADP ribosylases that influence several pathways including WNT 

signaling32. These proteins were also upregulated by proteasome and histone deacetylase 

(HDAC) inhibitors, as well as the PARP inhibitor talazoparib (Fig. 3f). While substantial 

crossover in cellular responses to PARP and TNKS inhibition is not surprising due to 

homology between their ribosylation domains, the other PARP inhibitor in the dataset, 

Olaparib, did not regulate TNKS or TNKS2. Moreover, the angiomotin family of proteins 

(AMOT, AMOTL1 and AMOTL2), which are regulated by TNKS through direct interaction 

and signal TNKS inhibition33, showed increased expression in cells treated with the three 

TNKS inhibitors and talazoparib, but not with olaparib treatment. These findings imply 

that, at 10 μM, talazoparib, but not olaparib, has off-target activity against TNKS/TNKS2, 

supporting previously reported in vitro half maximal inhibitory concentration (IC50) values 

of these compounds against a panel ADP ribosylases34.

Finally, we noticed frequent upregulation of dual specificity kinase CLK1 (Fig. 2c and 

Extended Data Fig. 2d). The entire family of CLK kinases is generally upregulated in cells 

treated with kinase inhibitors, including potent CLK inhibitors KH-CB-19 and mL167 (Fig. 

3g). Among CLK kinases, CLK1 and CLK4 are most readily upregulated despite having 

relatively long halflives15. Experiments such as kinase enrichment beads, thermal stability 

assays, affinity pulldowns and crosslinking assays will aid in the understanding of direct 

versus indirect binding of these compounds to the CLK family of kinases.
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MOA drives the organization of compound communities

We next used the entire proteome fingerprint database to generate MOA similarity networks 

by correlating proteome profiles for all possible compound pairs. After filtering the network 

to include only edges connecting compounds whose proteome-level effects correlated at a 

0.1% false discovery rate (FDR)35, we formed a compound–compound correlation network 

containing 2,543 out of 382,375 possible edges (Fig. 4a). Of 875 compounds, 295 had at 

least one significant correlation to another compound, where the correlations were calculated 

with a median of 8,315 common proteins between each pair of compounds (Extended 

Data Fig. 4a). From this network, we identified interconnected communities comprised of 

compounds with overlapping targets whose association reflects shared biology (Fig. 4b–h 

and Extended Data Fig. 4b). For example, one community grouped MDM2 and CDK4/6 

inhibitors (Fig. 4b), probably because both classes induce G1 arrest36–38. CDK4/6 inhibitors 

palbociclib and ribociclib were present in this community, but not the more promiscuous 

abemaciclib39, which correlates poorly with palbociclib (Extended Data Fig. 4c,d). Pairwise 

correlation plots highlight that the nutlin-based MDM2 inhibitors idasanutlin and nutlin3a 

are influenced by the p53 transcriptional program (Fig. 4c).

We also found overlap among the proteomes of cells treated with the PLK1 inhibitors 

volasertib and BI-2536 (Fig. 4e) and the bromodomain and extraterminal (BET) inhibitors 

birabresib, CPI-203 and JQ-1, which inhibit BRD4 through interaction with both 

bromodomains (BD1 and BD2)40 (Fig. 4d). Strongly associated with this community was 

RVX-208—a BD2-selective BET inhibitor41 currently in clinical trials for treatment of 

cardiovascular disease42. While this community reflects strong overlap between PLK1 

and BRD4-inhibitor treated proteomes (Extended Data Fig. 4f), the slight difference in 

RVX-208 MOA is apparent. Several MAPK inhibitors formed a tight community, with 

MEK inhibitor MEK162 and RAF inhibitor AZ628 the most highly correlated among 

this group (Fig. 4f,g). Finally, we noted a cluster of the three proteasome inhibitors 

from the library (Fig. 4h); pairwise correlation plots demonstrated that these inhibitors 

inhibit proteasomal degradation equivalently (Fig. 4i). These findings support network-level 

analysis of compound–compound correlation for deconvolution of compound MOA.

Protein–protein correlations reveal drug response pathways

We next generated a protein–protein correlation network, hypothesizing that proteins with 

shared functions would be coregulated by compounds with overlapping targets. Thus, we 

correlated relative expression profiles for all possible protein pairs and filtered the resulting 

Pearson correlation matrix to a 1% FDR35. The final network (Fig. 5a) contained 2,388 

nodes (24% of all quantified proteins) and 35,936 edges (0.07% of 49,500,000 possible 

protein pairs).

Clustering of this protein–protein correlation network revealed protein communities 

organized by cellular function, as large clusters were enriched with proteins from cell cycle, 

RNA processing, metabolism and cholesterol biosynthesis molecular function ontologies. 

Extracting stronger protein correlations within these communities revealed organization of 

proteins into known complexes, including the kinetochore, whose subunits NDC80-NUF2 

had the highest protein-level correlation in the dataset (Fig. 5b). Another community 
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includes numerous cholesterol biosynthesis proteins alongside several highly correlated 

autophagy proteins, including TMEM59, which promotes LC3 activation through interaction 

with ATG16L1 (ref. 43). TMEM59 expression is associated strongly with that of lysosomal 

protein LAPTM4A—an association driven by known autophagy modulators bafilomycin 

A1, reversine, gedatolisib, lapatinib, amsacrine and pictilisib, among others44–46. These 

findings suggest further investigation into the role of LAPTM4A in autophagy.

Within the larger network we identified communities enriched with p53 signaling proteins, 

NAD dehydrogenases (NDUFs), tRNA synthetases and amino acid transporters, and 

oxidative stress proteins. Ribosomal proteins subdivided into two distinct communities 

corresponding to 80S and mitochondrial ribosomes, suggesting that these complexes are 

regulated independently by small molecules. Finally, correlation network analysis reveals 

functional associations even for proteins with small FC values relative to DMSO. For 

example, acetyl-CoA carboxylase 1 and 2 (ACACA and ACACB) correlate strongly, though 

neither protein achieves twofold regulation with any compound (Fig. 5d).

Pairwise plots for correlated proteins can highlight compounds that drive regulation of 

two highly related proteins. However, we can also define families of compounds that 

coregulate distinct protein communities. For example, correlated regulation of several 

NDUF and succinate dehydrogenase (SDHA) proteins is driven by around 20 compounds 

(Fig. 5e,f). Similarly, a community of oxidation-sensing proteins including heme oxygenase 

1 (HMOX1) and thioredoxin reductase 1 (TXNRD1) correlates with cytochrome p450 

monoxoygenase CYP4F11 due to effects of several nitro-containing compounds including 

4-nitropiazthiole and PD-160170 (Extended Data Fig. 5c,d). These analyses highlight the 

power of this resource to define new members of known biological processes, and to identify 

the drugs and tool compounds that drive pathways and processes of interest.

Perturbagen-induced proteome fingerprints reveal drug mechanisms

A comprehensive proteome fingerprint does not exist for most drugs and tool compounds, 

making this dataset a rich resource for finding new and off-target mechanisms for 

library compounds. As such, we mined the compound–compound correlation network for 

communities containing molecules with unrelated targets. We observed three correlated 

compounds with no known overlapping targets: SP2506, PAC-1 and KH7, which are 

annotated as inhibitors of LSD1, CASP7 and ADCY10, respectively. Despite targeting 

different enzyme classes, the three compounds showed highly correlated proteome 

fingerprints in both the primary screen (Extended Data Fig. 6a) and with repurchased 

compounds (Extended Data Fig. 6b). As aroylhydrazones, these three compounds share 

a motif known to chelate metal cations like Fe(II)47,48. Indeed, proteins from iron-sulfur-

binding molecular function ontologies were enriched among those downregulated by these 

chemically similar compounds. The strongly correlated proteome responses we observed 

in response to each structurally similar perturbagen suggest a common mechanism driven 

by iron sequestration, affecting the function of iron binding proteins and enzymes. This 

complements previous findings that question the target and accepted MOA of PAC-1 (refs. 
49,50), which is in phase III clinical trials.
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While compounds with overlapping targets and MOAs typically elicit similar protein-level 

responses and thus show high correlation (Fig. 4), we also find compounds whose proteome-

level effects are inconsistent despite ostensibly targeting the same proteins. We focused 

on a clear-cut example of off-target biology by investigating two BTK inhibitors: FDA-

approved ibrutinib and a potent, preclinical compound RN486 (refs. 51,52). Since HCT116 

cells do not express BTK, ibrutinib induced few proteome changes, as expected. However, 

RN486 caused dramatic proteome remodeling, suggesting a non-BTK off-target (Extended 

Data Fig. 6d). Proteins upregulated by RN486 treatment were enriched for mitophagy, 

steroid biosynthesis and cytokine signaling Kyoto Encyclopedia of Genes and Genomes 

(KEGG) pathways53, while the lysosome was overrepresented among downregulated 

proteins (Extended Data Fig. 6e). Upregulation of autophagy markers coupled with a 

decrease in lysosomal proteins reveals dysregulation of autophagy as the main phenotype 

in RN486-treated cells, which is a common mechanism of many kinase inhibitors (Extended 

Data Fig. 7c).

Experiments using kinase affinity beads coupled to MS failed to uncover any kinases 

targeted by RN486 that would explain this unexpected activity (Extended Data Fig. 6f), 

suggesting that a nonkinase off-target mediates the effects of RN486. We then used the in-

cell proteome integral solubility alteration assay (PISA), which uses ligand-induced changes 

in protein thermal stability to infer protein binding of a compound of interest54,55. While 

ibrutinib treatment altered the thermal stability of several kinases, putative targets of RN486 

included many endoplasmic reticulum (ER) and mitochondrial proteins, including TEX264, 

a receptor that mediates ER-autophagy56,57 (Extended Data Fig. 6g). Further analysis of 

these targets is necessary to identify the mechanism by which RN486 affects the proteome.

JP1302 inhibits transcription

To test the utility of this dataset for MOA deconvolution, we separated compounds by target 

expression and identified several highly active compounds that target proteins not detected in 

HCT116 cells (Fig. 6a). Among these is JP1302, a poorly characterized compound based on 

a 9-aminoacridine scaffold, which is annotated as an alpha-adrenergic receptor antagonist58. 

Though ADRA2C is not detectable in HCT116 cells, JP1302 treatment induced a proteome 

fingerprint that correlates with several RNA transcription inhibitors (Fig. 6b). These 

correlated compounds include ATP-competitive CDK9 inhibitors flavopiridol, AZD5438 

and PHA767491, which inhibit transcription elongation, in part, through downregulation 

of RNA polymerase II (Pol II) phosphorylation59. In this community, the compound 

correlated most strongly to JP1302 is the carbazole-derived CBL0137, which inhibits the 

FACT complex—a heterodimer of SSRP1 and SUPT16H that regulates RNA-transcription-

associated nucleosomal DNA uncoiling and recovery60. In contrast, the closest structural 

analog to JP1302 among screened compounds is another 9-aminoacridine, the topoisomerase 

poison amsacrine, which has little correlation with JP1302.

We next applied protein–protein correlation analysis to further define the mechanism of 

this group of inhibitors. We hypothesized that, in a TP53 wild-type cell line like HCT116, 

p53 protein levels should correlate positively with known targets such as CDKN1A (p21) 

and MDM2. While this assumption usually held true, we identified several compounds 
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that caused p53 expression to increase while MDM2/p21 expression decreased or remained 

unchanged (Fig. 6c and Extended Data Fig. 8a). Most compounds that break the expected 

trend are transcription inhibitors, including those highly correlated to JP1302. This analysis 

further suggests that JP1302 may inhibit RNA transcription.

To further characterize the MOA of this compound, we compared the proteome 

changes of repurchased JP1302 with those induced by THZ513—a specific inhibitor 

of transcriptional kinases CDK12 and CDK13. THZ513 treatment immediately arrests 

RNA transcription, universally decreasing protein expression61. Though both compounds 

similarly downregulated protein expression (Fig. 6d and Extended Data Fig. 8b), several 

downregulated proteins were unique to JP1302 treatment (Fig. 6e). Three of these, the 

histone subunits H2AZ1, HP1BP3 and H1FX, are resistant to pharmacological perturbation, 

though they were uniquely downregulated by JP1302 and CBL0137 (Fig. 6f). Hypothesizing 

that both compounds inhibit the FACT complex, which associates with linker histones to 

mediate nucleosome assembly, we sought to gauge the effects of JP1302 treatment on 

histone proteins in short treatments. Indeed, time-resolved analysis of proteome changes in 

JP1302-treated cells shows rapid degradation of H1 linker histones (Fig. 6g and Extended 

Data Fig. 8c).

To discern how JP1302 downregulates protein expression and degrades histone H1, we again 

used in-cell PISA, and included a matched, whole proteome experiment to account for any 

changes in protein expression during the 30-min incubation. While we observed no effect 

following treatment with the CDK9/12/13 inhibitor flavopiridol, both JP1302 and CBL0137 

alter the thermal stability of many RNA transcription proteins, with FACT complex subunit 

SUPT16H most affected (Fig. 6h and Extended Data Fig. 8d). Despite strong shifts in 

thermal stability, the expression did not change for these proteins after 30 min (Extended 

Data Fig. 8e). These findings implicate JP1302 as a new chemical tool for studying FACT 

complex inhibition and linker histone degradation.

Finally, we assessed the potency of JP1302 as a FACT complex inhibitor by assessing Pol 

II phosphorylation and p21 expression at several concentrations. Treatment with 10 μM 

JP1302 inhibited Pol II phosphorylation and p21 expression comparably with CBL0137, 

THZ531 and three other CDK9 inhibitors (Fig. 6i and Extended Data Fig. 8f). However, 

lower concentrations of JP1302 had no effect on Pol II phosphorylation and induced an 

increase in p21 expression and H2AX phosphorylation—a marker of DNA damage62. To 

further elucidate the MOA of JP1302 across concentrations, we examined dose-dependent 

proteome remodeling and found that the relative numbers of proteins up- and downregulated 

upon treatment diverged as JP1302 concentrations decreased, suggesting concentration-

dependent differences in pathway activation. (Fig. 6j and Extended Data Fig. 8g). Indeed, 

the p53 signaling KEGG pathway was enriched among upregulated proteins following 1 μM 

JP1302 treatment, explaining the observed increase in p21.

We then inserted the proteome fingerprints acquired from each concentration into the 

compound–compound correlation network (Fig. 6k). In line with the KEGG pathway 

prediction, cells treated with 1 μM JP1302 aligned most closely with nutlin-based MDM2 

inhibitors that activate p53, while higher concentrations clustered with the same compounds 
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observed previously. However, despite this distinction between concentrations, p53 knockout 

only marginally affected the capacity of JP1302 to inhibit cell proliferation, while rendering 

the MDM2 inhibitor MI773 nearly inactive, affirming a p53-independent mechanism for this 

compound (Extended Data Fig. 8h). Thus, JP1302 dynamically affects cell signaling, with 

DNA damage driving p53 activity at low concentrations while higher concentrations lead to 

FACT complex disruption and inhibition of RNA transcription.

Further analysis of compound dose dependence showed a low incidence of divergent MOAs 

across concentrations (Extended Data Fig. 9 and Supplementary Note 3). In sum, these data 

highlight the many ways in which our proteome fingerprint resource can be used to pinpoint 

distinct MOAs for unknown compounds.

Discussion

Cellular exposure to drugs and tool compounds often induces proteome remodeling 

where compounds with similar MOAs have similar proteome changes. Library-scale 

characterization of these changes using comprehensive profiling methods provides 

mechanistic annotation of compound action for use in future drug discovery efforts. 

Though proteomics approaches are vital to MOA deconvolution and target identification63, 

proteome-scale annotation of compound action is not performed routinely. Here, we defined 

a roadmap for how library-scale annotation of small-molecule fingerprints can be used in 

drug discovery.

First, we demonstrate how this dataset can reveal the mechanisms by which chemical 

perturbagens induce proteome remodeling. We described MOAs for several compounds, 

including several drugs used in the clinic, showing that this dataset may facilitate MOA 

elucidation and drug repurposing. This resource may also uncover polypharmacology by 

revealing off-target protein engagements via specific protein expression biomarkers that 

correspond to discrete compound classes. Our findings indicate that routine quantification 

of proteome-level changes induced by promising screening hits and preclinical candidates 

would increase the efficiency of drug discovery by revealing the MOA of a compound 

during early stages of development. This increase in efficiency, coupled with the potential to 

repurpose drugs with known safety profiles, would positively influence the growing cost of 

bringing drugs to market64.

Second, we identified compounds that regulate expression of over 9,000 proteins in HCT116 

cells. Further examination of these regulation events may uncover new ligand-induced 

degradation events and reveal uncharacterized feedback loops. In addition, a path for ‘off 

label’ tool compound usage becomes available, where these small molecules can be used 

to modulate expression of specific proteins/processes/pathways of interest, sometimes in 

contradiction of their original purpose.

Finally, our database of chemical-induced protein fingerprints reveals fundamental and 

recurring patterns of protein coexpression that occur in response to perturbation. Through 

‘guilt by association’, our protein coregulation network can link poorly characterized 

proteins with specific biological processes. Additionally, these protein coregulation events 
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can be compared against protein interactions identified in the BioPlex network, which 

includes AP-MS experiments for over 5,500 proteins in the same HCT116 cell line65. 

Additional analyses of compounds that ‘break’ the correlation between coregulated proteins 

will further reveal pathway-level regulation by small molecules.

We have provided a companion website for the community to explore the dataset, 

including an option to query user data and a test case with previously published data 

(gygi.med.harvard.edu/DeepCoverMOA and Supplementary Note 4).

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41587-022-01539-0.

Methods

Screening library

The 875 compounds were part of a MOA library provided by the Harvard 

Medical School-Longwood screening facility (https://iccb.med.harvard.edu/iccb-longwood-

mechanism-action-library-10mm). Annotation of protein targets was performed in 

collaboration with Novartis Institutes for BioMedical Research, with support from 

HMS Library of Integrated Network-based Cellular Signatures (LINCS). Clinical stage 

annotations were obtained from the CLUE platform (https://clue.io/) curated by the Broad 

Institute. The compound library was arrayed by the ICCB-Longwood screening facility 

in rows of ten compounds and was used as provided with each row (plus one DMSO) 

comprising a TMT 11-plex.

Screening conditions

HCT116 cells were dispensed into tissue-culture treated 96-well plates at a density of 30,000 

cells per well in a volume of 300 μl using a Multidrop Combi Reagent Dispenser (Thermo). 

After 18 h cells were around 50% confluent, and compounds (10 mM stock in DMSO) were 

transferred (300 nl) using a Seiko pin transfer robot to a final concentration of 10 μM (0.1% 

DMSO). All transfers were performed in triplicate: two clear 96-well plates for proteome 

analysis, and one white-bottom 96-well plate for measuring cell viability. After treatment, 

cells were incubated for 24 h at 37 °C before washing with PBS (5 × 200 μl per well) using a 

12-pin aspirating wand and a Multidrop Combi Dispenser. After the final wash, all PBS was 

aspirated, clear cell culture plates were covered with plate tape and stored at −80 °C until 

processed, while white plates were processed for cell viability screening.

Rescreening of cytotoxic compounds

After completion of the screen, compounds removed due to cytotoxicity (less than 50% 

viability) were cherry picked from screening stocks and HCT116 cells were retreated (1 μM, 

24 h) in 96-well plates using a D300 digital dispenser. Washing and viability measurements 

were repeated as described above. From the original 880 compound library, 33 compounds 
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were too toxic at 10 μM. Of these, 28 were included in the final dataset at a concentration 

of 1 μM. Five compounds were still too toxic at the lower concentrations and were not 

included, leaving a final dataset with 875 compounds.

Sample workup of whole proteomes

Lysis buffer (30 μl) containing 8 M urea, 0.1% SDS, 200 mM 3-[4-(2-

hydroxyethyl)piperazin-1-yl]propane-1-sulfonic acid (EPPS) pH 8.5, 5 mM tris(2-

carboxyethyl)phosphine (TCEP) and protease inhibitors was added to each well before 

incubating at room temperature (30 min, shaking). To this, alkylation buffer (30 μl) 

containing 200 mM EPPS pH 8.5, 10 mM iodoacetamide and benzonase (1.6 U μl−1) 

was added before incubating in the dark (30 min at room temperature). Iodoacetamide was 

quenched with dithiothreitol (DTT) (15 mM, 10 min) before transferring cell lysate to a 

96-well PCR plate. Single-pot SP3 was used to facilitate protein isolation66–68. In brief, 2 μl 

of each bead type was added to each well before adding neat ethanol (65 μl) and shaking (10 

min). PCR plates were placed on a 96-well magnet (2 min) and supernatant was aspirated. 

Beads were washed with 80% ethanol (3 × 125 μl) by resuspending/vortexing. Beads were 

resuspended in digest buffer (45 μl) containing 200 mM EPPS pH 8.5 and LysC (10 ng μl−1), 

then incubated overnight at 37 °C with constant agitation, before adding trypsin (400 ng) for 

an additional 6 hr at 37 °C. Acetonitrile (15 μl) was added to the eluted peptides, still in the 

presence of the beads, followed by TMT 11-plex reagents and the mixture was incubated 

at room temperature for 1 h. The reaction was quenched with 0.5% hydroxylamine, before 

pooling all beads and eluates into a single 2 ml tube and placing it on a magnetic rack. 

Supernatant was collected, then the beads were washed with 5 % acetonitrile/1% formic acid 

(1 ml) and the resulting supernatant was pooled with the initial elution.

PISA assay

HCT116 cells were suspended in normal growth medium with each compound at the 

indicated concentration or vehicle (DMSO). Cells were allowed to incubate in suspension 

for 30 min at 37 °C. After 30 min, an equal volume of each suspension was transferred to 

ten PCR tubes and heated across a temperature gradient from around 48 to 58 °C (48.3, 

48.9, 49.8, 50.9, 52.1, 53.4, 54.7, 55.8, 56.8, 57.5 °C) for 3 min in a Mastercycler Pro.S 

thermal cycler (Eppendorf). After heating, the cells were allowed to rest for 5 min at room 

temperature. An equal volume of cell suspension was taken from each PCR tube and pooled 

into a single sample. The cells in each pooled sample were pelleted (300g for 3 min) and 

the treatment media was removed by aspiration. The cells were washed once with ice-cold 

PBS. Washed cell pellets were resuspended in 150 μl ice-cold lysis buffer (1× PBS pH 

7.4, 0.5% NP-40, 1.5 mM MgCl2, 1 μl ml−1 benzonase and protease inhibitor cocktail) and 

incubated for 10 min at 4 °C. Lysates were centrifuged at 21,000g for 90 min. An equal 

volume of soluble lysate from each sample (corresponding to around 15 μg of protein) was 

collected and diluted with an equal volume of prep buffer (400 mM EPPS pH 8.5, 0.5% 

SDS) to achieve a final concentration of 200 mM EPPS pH 8.5 and 0.25% SDS. Proteins 

were reduced with TCEP (5 mM, 30 min) before alkylating cysteines with iodoacetamide 

(10 mM, 30 min). Proteins were extracted using the SP3 method described above before 

digestion with LysC/trypsin and labeling with TMT 16-plex reagents.
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Offline fractionation of whole proteomes and PISA samples

The pooled, multiplexed samples were desalted using a 50 mg SepPak solid phase extraction 

cartridge. The desalted peptides were fractionated with basic pH reversed-phase (bRP) 

HPLC (250 mm × 2.1 mm, 3.5 μm Zorbax 300 A Extended-C18 column), collected in a 

96-well plate, and concatenated down to 24 superfractions69. Nonadjacent superfractions (12 

of 24 for each TMT plex) were evaporated and desalted using Oasis 96-well μElution plates 

before LC-MS/MS.

Kinase enrichment using kinase affinity beads

Cell pellets of HCT116, K562 and 293T cells were lysed with kinase enrichment buffer 

(20 mM HEPES pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.8% Triton X-100, protease 

and phosphatase inhibitor cocktails) by pipetting up and down 20 times with a P-1000 

pipette. The lysate was mixed (1:1:1 ratio) and aliquoted into 16 tubes (1 mg each) before 

adding compounds (20 μM) or DMSO (0.1%) and rotating at 4 °C (15 min). Pre-washed 

(3 × 1 ml, kinase enrichment buffer) kinase affinity beads were added to each tube (40 

μl original slurry) and rotated at 4 °C (45 min). Proteins were eluted off the resin by 

incubating with 2% SDS in 200 mM EPPS pH 8.5 at 37 °C (15 min), before reducing with 

TCEP (5 mM, 30 min), then alkylating cysteines with iodoacetamide (10 mM, 30 min). 

Proteins were extracted using the SP3 method described above. Following LysC/trypsin 

digest and TMT labeling, samples were pooled then desalted with 50 mg SepPak solid phase 

extraction columns. Eluted peptides were resuspended in bRP buffer A (10 mM ammonium 

bicarbonate, 5% acetonitrile) and loaded onto a pre-equilibrated StageTip packed with 

16 wafers of C18 material. After washing with bRP buffer A, peptides were eluted in 

three ‘bumps’ containing 15%, 25% and 70% acetonitrile (ACN) with 10 mM ammonium 

bicarbonate.

MS analysis of whole proteomes

Data were collected on an Orbitrap Fusion, Lumos or Eclipse mass spectrometer coupled to 

a Proxeon EASY nLC 1000 or 1200 LC pump. Labeled peptides were resuspended in 5% 

ACN/5% formic acid separated on an inhouse pulled C18 column (30 cm, 2.6 μm Accucore, 

100 μm ID) using a 90, 120 or 180-min linear gradient; 120-min gradients were used for 

most runs, but this was adjusted based on instrument performance. MS1 precursor scans 

were acquired in the orbitrap at 120 K resolution, 1 × 105 automatic gain control (AGC) 

target with a maximum of 50 ms injection time. Data dependent, ‘top 10’ MS2 scans were 

acquired in the ion trap with collisional induced dissociation (CID) fragmentation. While 

setting varied from instrument to instrument and with instrument performance, generally the 

following was used for MS2 scans: normalized collision energy (NCE) 35%, 1.5 × 104–4 × 

104 AGC target, maximum injection time 35–50 ms, isolation window 0.5–0.7 Da. Orbiter, 

an online real-time search algorithm, was used to trigger MS3 quantification scans17. MS3 

scans were acquired in the orbitrap using varying settings based on instrument performance: 

50,000 resolution, AGC of 2 × 105–5 × 105, injection time of 150–200 ms, higher energy 

C-trap dissociation (HCD) collision energy of 65%. Protein-level closeout was typically set 

to two peptides per protein per fraction17.
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Order of preparation of MS analysis for MOA library

Cellular treatments for replicate plates were performed simultaneously (same day), while 

biological replicate 11-plex experiments were prepared injected on the mass spectrometer 

many months apart. The first replicate of all compounds was injected over the course of 

around 6 months. Several months later, the second replicates were then injected.

MS analysis of kinase enrichment experiments

Data were collected on an Orbitrap Lumos or Eclipse mass spectrometer as described in 

MS analysis of—whole proteomes, with some small changes; 180 min gradients were used 

for each bRP ‘bump’ and Orbiter was used to trigger MS3 quantification scans using a 

protein-level closeout of five peptides per protein across all three fractions.

MS analysis of PISA samples

Data were collected on an Eclipse mass spectrometer equipped with a high-field 

asymmetric-waveform ion mobility spectrometry (FAIMS) Pro device70, coupled to a 

Proxeon EASY nLC 1200 LC pump. Labeled peptides were resuspended in 5% ACN/5% 

formic acid separated on an inhouse pulled C18 column (30 cm, 2.6 μm Accucore, 100 μm 

ID) a 90 min linear gradient. FAIMS inner and outer electrodes were set to 100 °C, with 

transport gas preset to 4.7 l min−1. Three FAIMS compensation voltages (CVs) (−40 V, 

−60 V and −80 V) were used during acquisition. MS1 precursor scans were acquired in the 

orbitrap at 120 K resolution, 1 × 105 AGC target with a maximum of 50 ms injection time. 

Cycle time was set at 1 s for each CV. MS2 scans were performed in the Orbitrap with HCD 

fragmentation (isolation window 0.5 Da; 50,000 resolution; NCE 36%; maximum injection 

time 250 ms; AGC 1.5 × 105).

MS data analysis

Raw files were converted to mzXML using msconvert and monoisotopic peaks were 

reassigned using Monocle71. Searches were performed using the Comet72 search algorithm 

against the human Uniprot database (download v.02/2020), appended with reverse protein 

sequences and common contaminants. Searches were completed with the following 

parameters: 50 ppm precursor tolerance, fragment ion tolerance of 0.9 Da (low resolution 

MS2) or 0.03 Da (high-resolution MS2), static modifications of TMT (+229.163 Da) or 

TMTpro (+304.2071 Da) on lysine and peptide N-termini, and carbamidomethylation of 

cysteine residues (+57.021 Da), while oxidation of methionine residues (+15.995 Da) was 

set as a variable modification, and two missed cleavages were allowed. Peptide spectrum 

matches were first filtered to a peptide FDR of 1%73. Peptide spectrum matches were 

filtered separately for each run using linear discriminant analysis74. For each protein 

across all runs within an experiment (2,176 runs for MOA dataset, 12 runs for separate 

whole proteomes and PISA experiments), the posterior probabilities reported by the linear 

discriminant analysis model for each peptide were multiplied to give a protein-level 

probability estimate. Using the Picked FDR method75, proteins were filtered to the target 1% 

FDR level, again using the target–decoy approach to model false positives73.

For reporter ion quantification, a 0.003 Da window around each reporter ion m/z was 

scanned and the most intense m/z was used. Reporter ion intensities were adjusted to correct 
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for impurities during synthesis of different TMT reagents according to the manufacturer’s 

specifications. The impurity adjustments were updated for each new batch of TMT used. An 

isolation purity of at least 0.7 in the MS1 isolation window was used for samples analyzed 

with high-resolution MS2, but not when real-time searching (Orbiter) was used. Peptides 

were filtered to require a total summed signal-to-noise of more than 100 (11-plex) or more 

than 160 (16-plex) across all reporter ions. To account for unequal loading within each 

11-/16-plex experiment, protein quantitative values were normalized (column normalization) 

so that the sum of the signal for all protein in each channel within each 11-/16-plex 

experiment was equal. For each protein within each 11-/16-plex experiment, the sum signal-

to-noise was scaled to sum to 100, allowing comparisons across TMT plexes.

Dataset Normalization

Scaled sum signal-to-noise values were converted to FC versus DMSO by dividing by 

the 126 (DMSO) channel within each 11-plex experiment. These FC values were log2 

transformed then median normalized at the plex level by subtracting the median log2(FC) 

value for each protein within each plex from each log2(FC) value. No imputation was 

performed. A protein–protein correlation matrix was then generated and all proteins with 

expression highly correlated (r > 0.5) to bovine albumin were considered contaminants and 

removed. Reverse proteins and known contaminants were also removed, along with TTLL4, 

PIP, KTM2B and AZGP1, which were poorly behaved across the 172 TMT groups.

To identify any bad replicate experiments, log2(FC) values for the individual replicates 

of each compound were overlaid as histograms. If differences in global activity were 

observed, the replicate with more, larger protein-level changes was removed from the 

dataset. Log2(FC) values for proteins found in both biological replicates, where applicable, 

were averaged. The final dataset contains 875 compounds, 754 of which were screened in 

biological duplicate.

A detailed analysis of our normalization scheme can be found in Supplementary Note 2.

General bioinformatics analyses

All general bioinformatics analyses were performed using R, including data normalization 

and plotting. Plots were made using ggplot2, ggpubr, pheatmap and ggrepel. Graphics for 

the protein–protein correlation network were generated in Cytoscape76 and those for the 

compound–compound correlation network were generated in Mathematica and Cytoscape. 

For all analyses requiring pathway-level or gene ontology (GO) enrichment, we used 

the clusterProfiler package in R, after converting gene names to ENTREZ ID using the 

org.Hs.eg. db R package from BioConductor. The enrichKEGG function was used for 

pathway-level KEGG mapping with a P value cutoff of 0.01. For GO enrichment analysis, 

we used enrichGO with molecular function (‘mf’) ontologies and a P value cutoff of 0.01. 

For each analysis, the background list of gene names most appropriate for that analysis was 

used; typically this was the list of gene names for all 9,960 proteins identified in HCT116 

cells.
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Correlation networks

The compound–compound and protein–protein correlation matrixes were constructed using 

the rcorr function from the Hmisc package with the ‘Pearson’ option. For the protein–protein 

correlation network, correlations using fewer than 200 datapoints (200 compounds) were 

subsequently removed. FDRs were estimated using the fdrtool35 package with the ‘pct0’ 

cutoff method, and edges were filtered to an estimated 1% FDR. The protein–protein 

correlation network was annotated in two ways. First, smaller clusters were investigated 

individually, and clearly defined clusters were annotated manually. Second, larger clusters 

were grouped and the nodes for each network were subjected to GO analysis (described 

above), using all possible nodes as a background.

Statistics and reproducibility

All follow-up experiments after the initial screen used repurchased compounds. For whole 

proteome, PISA and kinobead experiments, each condition was repeated in biological 

triplicate or quadruplicate. Experiments analyzed by Western blot were repeated in 

biological Phosphatase inhibitors Pierce duplicate on separate days.

Data analysis of whole proteomes, PISA and kinobeads

For these experiments, protein quantification tables containing normalized TMT abundance 

ratios were imported into Perseus77 before channels (columns) were assigned to treatment 

groups and data were log2 transformed. P values for each protein within each treatment 

group were calculated relative to DMSO using a two-sample Student’s t-test. FDRs were 

estimated using the permutation-based method with 250 randomizations.

Preparation of kinase affinity beads

NHS-ester resin (3 ml slurry) was washed with dimethylformamide (2 × 2.5 ml) and DMSO 

(2 × 2.5 ml) before adding a solution (1 ml in DMSO) of CZC8004 (5 μmol), VI16832 

(5 μmol), PP58 (5 μmol), bisindolylmaleimide-x (2.5 μmol) and N,N-diisopropylethylamine 

(50 μmol). The slurry was then incubated at room temperature (18 h) with agitation before 

quenching unreacted NHS-esters by spiking in hydroxylamine to a final concentration of 

1%. The resin was then washed with dimethylformamide (2 × 2.5 ml), DMSO (2 × 2.5 ml) 

and 80% ethanol (2 × 2.5 ml) and stored as a 50% slurry in 80% ethanol.

Proliferation and viability assay

Assessment of relative cell viability was performed using the Cell Titer Glo assay 

(Promega). For measuring compound toxicity screen from the 875 compound screen, after 

the final PBS wash, all PBS was aspirated and fresh PBS (100 μl) was added to each 

well. Cell Titer Glo reagent (100 μl) was then added before plates were incubated at room 

temperature, with shaking, for 30 min. Luminescence was measured using an Envision plate 

reader, and cell viability was calculated relative to the average luminescence of DMSO-

treated wells. For 16-point EC50 curves, HCT116 cells (wild-type or TP53KO) were plated 

in white, cell-culture-treated, 96-well plates at a density of 2,000 cells per well (in 250 μl). 

At 18 h after plating cells, compounds were added using an HP D300 digital dispenser. Each 

concentration on the 16-point curve was repeated in triplicate. Cells were incubated with 
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compound for 72 h (37 °C) before luminescence was measured (as above) and half maximal 

effective concentration (EC50) concentrations were calculated with a nonlinear regression 

using Graphpad Prism.

Cell culture

HCT116 and 293T cells were grown in DMEM with 10% FBS. K562 cells were grown in 

RPMI1640 supplemented with 10% FBS. HCT116 TP53KO and HCT116 nontarget control 

cells, a kind gift from J. Mancias, were grown in DMEM with 10% FBS. All cell lines 

routinely tested negative for Mycoplasma.

Materials

Reagent Vendor

HCT116 cells ATCC, catalog no. CCL247

K562 cells ATCC, catalog no. CCL243

293T cells ATCC, catalog no. CRL3216

TP53 KO cells Mancias Lab

Control KO cells Mancias Lab

DMEM Corning

RPMI Invitrogen

FBS Hyclone

Reagent Vendor

Benzonase SCBT

Protease inhibitors Pierce

Phosphatase inhibitors Pierce

SP3 beads Cytiva

LysC FujiFilm

Trypsin Promega

SepPak – 50mg Waters

TMT11-plex ThermoFisher

TMT18-plex ThermoFisher

Oasis stagetip plates Waters

Accucore Thermo

NHS-ester resin Sigma

Cell titer glo reagent Promega

Mycoplasma Kit SouthernBiotech

Equipment

Fusion ThermoFisher

Lumos ThermoFisher

Eclipse ThermoFisher

FAIMS Pro ThermoFisher

Easy nLC-1000 ThermoFisher

Mitchell et al. Page 18

Nat Biotechnol. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Reagent Vendor

Easy nLC-1200 ThermoFisher

D300 HP

Multidrop Combi Reagent Dispenser ThermoFisher

96-well pin array Seiko/Custom

Fractionation Column Agilent

Antibodies

pRB (S2) Cell Signaling, catalog no. 13499S, 1:1,000

pRB (S5) Cell Signaling, catalog no. 13523S, 1:1,000

pRB(S7) Cell Signaling, catalog no. 13780S, 1:1,000

pH2AX (S139) Cell Signaling, catalog no. 9718, 1:1,000

GAPDH-HRP Cell Signaling, catalog no. 8884S, 1:20,000

P21 Cell Signaling, catalog no. 2947, 1:1,000

Software

R v.3.6.2

rcorr v.0.4.2

Dplyr v.1.0.7

Tidyr v.1.0.0

Reshape2 v.1.4.3

GO.db v.3.10.0

Enrichplot v.1.6.1

Tibble v.3.1.2

ggrepel v.0.8.2

Pheatmap v.1.0.12

fdrtool v.1.0.12

ggplot2 v.3.3.5

ggally v.2.1.2

Reagent Vendor

org.Hs.db v.3.10.0

Rcolorbrewer v.1.1

Mathematics v.11.2

Graphpad prism v.7.0

Cytoscape v.3.8.1

Msconvert v.1.1

Monocle v.1.1

Comet v.1.0

Small molecule inhibitors

CZC8004 MedChemExpress

VI16832 MedChemExpress

PP58 MedChemExpress
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Reagent Vendor

Bisindoiyimaieimide-x MedChemExpress

JP1302 Tocris

Ibrutinib Cayman

RN486 Cayman

SP2509 Selleckchem

KH7 Selleckchem

PAC-1 SeUeckchem
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Extended Data

Extended Data Fig. 1 |. Details on the MOA library and measurement reproducibility.
(a) Number of PubMed citations per library compound, with select examples shown. (b) 

Overlap of all annotated targets from the MOA library and all targets with an FDA approved 

drug. The list of FDA approved drug targets was acquired from The Human Protein Atlas 

(proteinatlas.org) (c) Target redundancy for compounds in the library. 694 compounds are 

annotated to target a protein that is also targeted by another compound. 183 compounds 

target proteins that are unique among the library. All annotated targets were considered. 

(d) Distribution of compound molecular weight across the MOA library. (e) A breakdown 

of the number of annotated targets per compound. 495 compounds have one annotated 
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target. (f) Distribution of the absolute difference between replicate protein measurements. 

The difference between Log2 fold change (compound versus DMSO) measurements was 

compared for the same protein treated with the same compound. The ~5.5 million Log2FC 

differences between biological replicate 1 and biological replicate 2 represents ~11 million 

total protein measurements. (g) Basic structure of the control compound included 55 times 

across all 170 TMT groups. (h) Representative plot comparing the Log2 FC values for two 

replicates of the control compound. The median Pearson correlation (r) for two replicates 

of the control compound was 0.87, which is the correlation of the two replicates shown. (i) 
Percent coefficient of variation (CV) protein level fold-change measurements across all 55 

biological replicates (red). After merging/averaging two biological replicates (coming from 

the same 96-well plate position, as is the case for other compound replicates), the Percent 

CV was recalculated (blue). The center line represents the median, the upper and lower 

bounds of the box indicate the interquartile range (IQR, the range between the 25th and 75th 

percentiles), and whiskers extend to the highest and lowest values within 1.5 times the IQR. 

(j) Bar graph showing dataset completeness. For example, 8,860 proteins were quantified in 

at least half (438) of the compound treatments.
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Extended Data Fig. 2 |. Illustration of five standard deviations as a suitable threshold for 
regulated events.
(a) Histogram of absolute value Log2 fold change for all regulated events (5 standard 

deviations or two fold change–n = 141,786). The histogram is truncated at abs(L2FC) = 2 

for clarity. (b) Scatterplot of CAND1 expression, highlighting the regulation event with the 

lowest fold change in the dataset (n = 875 compounds). Vorinostat and Quisinostat (both 

HDAC inhibitors) regulated CAND1 to similar levels. The three proteasome inhibitors in 

the dataset, ONX0914, MG132, and Epoxomicin, all downregulate CAND1. (c) The activity 
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of each compound measured by the number of proteins decreased (x-axis) and increased 

(y-axis) by two-fold versus DMSO. Compare to Fig. 2f, which is the same graph using a 

five standard deviation cutoff. (d) Rate at which proteins increase versus decrease by five 

standard deviations. Proteins that mostly increase with small molecule treatments are in 

blue, those that mostly decrease in red. Only those proteins quantified in more than half 

of compound are shown (n = 8,860). Change rate is calculated by taking the number of 

compounds affecting expression by five standard deviations and dividing by the compounds 

where the protein was quantified. Compare to Fig. 2c, which is the same graph using two-

fold versus DMSO cutoff. (e) Illustration of the two different regulation cutoff thresholds for 

each compound in the dataset. The number of proteins regulated by 5 standard deviations 

(y-axis) versus the number of proteins changed by two-fold versus DMSO (x-axis). Log 

scale (left) and linear (right). The line represents y = x. The slope of the scatterplot = ~3.
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Extended Data Fig. 3 |. Regulation of target proteins informs on compound MOA.
(a) The 541 compound-target pairs analyzed, broken down by the two different regulation 

thresholds. Those in green and red are highlighted/annotated in Fig. 3c. (b) Proportion 

of primary targets that were identified, broken down by whether they were quantified in 

the TMT group that contained the compound. For a fraction of the target-compound pairs 

(<11%), the target was expressed in HCT116 cells, but it was not quantified in the TMT 

plex containing the compound. (c) Proportion of all 2,485 annotated targets quantified in the 

dataset (d) Number of regulated events per compound, separated by those that regulate their 

target (blue) and those that do not (black). (e) Histogram of Log2 fold change (compound 

versus DMSO) for all compound-target regulation events. The number of upregulation 

and downregulation events is indicated. (f) The compound-target regulation event with 
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the smallest fold change is highlighted in purple. The 5 SD threshold is marked with an 

asterisk. Three HDAC inhibitors also regulate XPO1 expression to similar levels, suggesting 

a five standard deviation cutoff captures reproducible biology. (g) BRD4 expression across 

the dataset, with BRD4 inhibitors (purple) and PLK1 inhibitors (red) annotated. This is a 

low-fold change regulation event, highly reproducible across several compounds of the same 

class. (h) Protein expression (Log2 fold change) of all quantified proteins for the TYMS 

inhibitor nolatrexed, (highlighted in Fig. 3d) with DHFR labeled. Compound structure 

is shown below. (i) Related to Fig. 3f: Expression of the angiomotin family of proteins 

(AMOT, AMOTL1, and AMOTL2) across the MOA dataset. TNKS inhibitors (purple), 

PARP inhibitors (red) and proteasome inhibitors (brown) are highlighted. ( j) Expression of 

several proteins regulated by at least two compounds that target them. In each case the 5 SD 

threshold is marked with an asterisk.

Extended Data Fig. 4 |. Compounds with a similar MOA are strongly correlated.
(a) A table highlighting the number of nodes and edges in the overall network from Fig. 

4a, after filtering to a FDR of 0.1%. The percentage of nodes and edges included in the 

network out of the total possible is shown in parentheses. (b) Several subcommunities 

highlighted from the larger compound-compound correlation network, including a cluster 

of HDAC inhibitors. All subnetworks are filtered to only include edges with a Pearson r > 

0.60. (c-f) Pairwise correlation plots of (c) the CDK4/6 inhibitors palbociclib and ribociclib, 

(d) the CDK4/6 inhibitors palbociclib and abemaciclib, (e) the HDAC inhibitors quisinostat 
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and vorinostat, and (f) the BRD4 inhibitors birabresib and CPI-203. All x- and y-axes are 

represented as Log2 fold change (compound versus DMSO).

Extended Data Fig. 5 |. Proteins with similar functions are correlated across the dataset.
(a) A table highlighting the number of nodes and edges in the overall network from Fig. 

5a, after filtering to a FDR less than 5%. The percentage of nodes and edges included in 

the network out of the total possible is shown in parentheses. (b) Correlation plots for select 

pairs of strongly correlated proteins. All x- and y-axes are represented as Log2 fold change 

versus DMSO. Each point represents one compound. Plots include: 1) mevalonate kinase 

(MVK) versus lanosterol synthase (LSS), two proteins essential for cholesterol biosynthesis; 

2) cyclin A1 (CCNA1) and cyclin A2 (CCNA2); 3) DNA damage proteins RAD51 and 

CHEK1. (c) A subcommunity of proteins (from Fig. 5a) correlated to cytochrome P450 

monooxygenase, including redox sensors HMOX and TXNRD1. (d) A heatmap of protein 

expression for each of the proteins from (c) for all compounds that increase their expression 

by a median Log2 fold change of >0.6.
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Extended Data Fig. 6 |. Novel activities and compound mechanisms can be inferred through 
compound-level correlation networks.
(a) An isolated community of three compounds with different targets and high correlation. 

Names, targets, and structures for each compound are shown. An aroylhydrazone group, 

common in all three compounds, is highlighted in red. (b) Correlation plots of the indicated 

compounds; repurchased and rescreened. All axes are Log2 fold change (compound versus 

DMSO). Lines are drawn at x = −0.75 and y = −0.75. GO enrichment of proteins decreased 

by ≥60% by all three compounds. Proteins from the ‘iron-sulfur cluster binding’ molecular 

function category are highlighted on the scatterplot in red. Enriched GO functions and 

their adjusted (using Benjamini-Hochberg) p-values were calculated using the enrichGO 

R package. (c) Correlation plot of repurchased RN486 (a noncovalent BTK inhibitor) and 

Ibrutinib (a covalent BTK inhibitor). (d) Volcano plot highlighting significantly up (blue) 
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and down (red) regulated proteins in RN486 treated cells. ‘L2FC’ = Log2 fold change 

(RN486 vs DMSO) (e) KEGG pathway enrichment of up (blue bars) and down (red bars) 

regulated proteins in RN486 treated cells. Proteins used for KEGG pathway enrichment are 

color coded from (d). Enriched pathways and their adjusted (using Benjamini-Hochberg) 

p-values were calculated using the enrichKEGG R package. (f) Volcano plots of proteins 

competed off a kinase affinity enrichment medium (kinobeads) by RN486 (left) and 

Ibrutinib (right). A mixed lysate was used for this experiment, as BTK is not expressed in 

HCT116 cells. Compounds were tested at 10 μM, and all proteins with a two-fold or greater 

decrease in association with the enrichment matrix are labeled. BTK and TEC, the targets of 

these compounds, are highlighted in purple. ‘L2FC’ = Log2 fold change (treated vs DMSO) 

(g) Putative off targets of RN486 and Ibrutinib revealed by the proteome integral solubility 

alteration assay (PISA—a form of a thermal shift assay), performed in live HCT116 cells. 

Indicated proteins were significantly (5% FDR) stabilized or destabilized by treatment with 

one or both of the compounds (10 μM–30 min). All proteins with a Log2 fold change of 

>±0.25 are shown. Proteins localized to the mitochondria and/or endoplasmic reticulum 

are highlighted in red; kinases are highlighted in green. P-values in panels (d and f) were 

calculated for each protein within each treatment group relative to DMSO using a two-sided 

student’s t-test. False discovery rates (q-values) were estimated using the permutation-based 

method with 250 randomizations.
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Extended Data Fig. 7 |. Novel activities and compound mechanisms can be inferred through 
compound-level correlation networks.
(a) Full table of GO enrichment results from Supplementary Fig. 6b. Enriched GO functions 

and their adjusted (using Benjamini-Hochberg) p-values were calculated using the enrichGO 

R package. (b) Volcano plot of protein expression from cells treated with (repurchased) 

ibrutinib for 24 hr at 10 μM. Green dots have q < 0.05 by permutation-based FDR. 

(c) Compound-compound community of RN486 correlated compounds (Pearson > 0.5). 

Blue nodes are kinase inhibitors, brown nodes are annotated to target other classes of 

proteins. The RN486 node is green. (d) Chemical structures of RN486 and Ibrutinib. (e) Full 

tables of KEGG pathway enrichment related to Supplementary Fig. 6E. Pathways enriched 
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from upregulated proteins (top) and down-regulated proteins (bottom) are shown. Enriched 

pathways and their adjusted (using Benjamini-Hochberg) p-values were calculated using the 

enrichKEGG R package. (f) Volcano plot showing results of the thermal shift assay (PISA 

experiment) from HCT116 cells treated with Ibrutinib (left) or RN486 (right). Compounds 

were treated at 10 μM for 30 minutes in suspension. All proteins (with q < 0.05) with 

Log2FC greater than 0.25 or less than −0.25 are included in Fig. 6g. ‘L2FC’ = Log2 fold 

change (treated vs DMSO). P-values in panels (b and f) were calculated for each protein 

within each treatment group relative to DMSO using a two-sided student’s t-test. False 

discovery rates (q-values) were estimated using the permutation-based method with 250 

randomizations.
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Extended Data Fig. 8 |. JP1302 stops transcription by disrupting the FACT complex and histone 
H1.
(a) Protein-level linear regression of TP53 and the TP53 response gene MDM2 for all 

compounds in the dataset. Compounds that break the expected trend are shown (purple), 

including JP1302 (orange). Shading along the regression line represents the 95% confidence 

interval. (b) Volcano plot of protein expression from HCT116 cells treated with 1 μM 

THZ531 for 24 hr. (c) Volcano plot of protein expression from HCT116 cells treated with 

repurchased JP1302 (10 μM) for 2 hr. (d) Volcano plot showing results from a PISA 

experiment from cells treated with flavopiridol (10 μM). Red labels correspond to the 

same proteins labeled in the CBL0137/JP1302 PISA experiment in Fig. 6h. Black text 

highlights proteins with melting temperatures uniquely affected by flavopiridol. (e) Volcano 

plot of protein expression from HCT116 cells treated with repurchased JP1302 for 30 

min (10 μM), prior to being subjected to melting for PISA analysis. This is a matched 

proteome for Fig. 6h; the same proteins are labeled to show ligand-induced changes in 

thermal stability are not due to protein-level changes. (f) Western blot of RNA polymerase 

II phosphorylation levels in HCT116 cells treated for 90 minutes with indicated compounds. 

Treatment concentration is 10 μM or 1 μM (THZ531) unless indicated. The ‘pPolII S2’ 

panel is made from two separate Western blots, as indicated by the black vertical line. This 

experiment was performed twice, on different days, achieving similar results. (g) Volcano 

plots from the dose-dependent JP1302 whole proteome experiment. Noted in each plot is the 

number of proteins decreased by two-fold versus DMSO (left side) and increased two-fold 

versus DMSO (right side). (h) Full 16-point EC50 curves for the indicated compounds in 

HCT116 cells with wild-type (WT) TP53 or after TP53 knockout (KO). Labeled in each 

plot is the 95% confidence interval for each EC50 curve. Points on each curve are presented 

as the mean values ± standard deviation of biological triplicate measurements. MI773 is 

a nutlin-based, MDM2-P53 protein-protein interaction inhibitor. P-values in panels (B-E 

and G) were calculated for each protein within each treatment group relative to DMSO 

using a two-sided student’s t-test. False discovery rates (q-values) were estimated using the 

permutation-based method with 250 randomizations. Proteins with q > 0.05 are represented 

by light grey in each plot.
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Extended Data Fig. 9 |. Proteome fingerprints can be maintained across a concentration range.
(a) Experimental design for a compound rescreen, which compares the proteome 

fingerprints of 8 tool compounds at two doses; 10 μM versus 500 nM or 1 μM, to those from 

the primary 875 compound MOA dataset (referred here as the reference dataset). **** There 

are no compounds with significant correlation (p > 0.38) to 500 nM Simvastatin (b) Study 

results depicting treatment concentration, identity of top correlated compounds from the 

reference dataset, and a heatmap of Pearson correlations (r) between proteome fingerprints 

from the indicated compound/concentration and the same compound from the reference 

dataset. (c) Table of the top six most similar compounds from the MOA reference dataset 

for the two treatment concentrations of JQ-1 from the rescreen experiment. (d) Scatterplots 
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for a representative set of compounds from the rescreen experiment (y-axes) plotted against 

the indicated compound from the reference MOA dataset (x-axes). All values are Log2(fold 

change – compound vs. DMSO). The y = x line is shown on each plot to observe the relative 

trend in the relationship different concentrations and the reference proteome fingerprint. 

(e) Scatterplots for simvastatin, a HMGCR inhibitor, at two concentrations relative to the 

reference. This compound upregulates its target at both 500 nM and 10 μM.
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Fig. 1 |. A 96-well-plate-based platform for comprehensive proteome analysis of drug MOA.
a, Overview of screening scheme, starting with HCT116 cells growing in 96-well plates. 

Deep proteome analysis in duplicate is performed using TMT sample multiplexing after 

24-h treatments. b, Clinical stage of compounds from the MOA library at time of annotation. 

c, Proteome depth for each of the 875 compounds in the dataset. d, Representative 

proteome fingerprint for the molecular glue pomalidomide showing replicate measurements 

for downregulated proteins—displayed as log2(FC) (pomalidomide versus DMSO).
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Fig. 2 |. Most of the proteome is accessible to regulation by small molecules.
a, Statistics for protein-level regulation using two significance thresholds: 5SD and twofold 

change (compound versus DMSO). Regulated proteins were perturbed by one or more 

compounds in the dataset. b, Breakdown of all regulated events by a 5SD change, a twofold 

change or both. Around 1.9% of all 7.6 million protein measurements were regulated events. 

c, Rate at which proteins increased by twofold (n = 97) versus decreased (n = 213) by 

twofold. Only proteins quantified in at least half of compounds are shown (n = 8,860). 

Change rate is calculated by taking the number of compounds affecting expression by 

twofold and dividing by the number of compounds where the protein was quantified. d, 

KEGG pathway enrichment analysis from c. e, Compound-level waterfall plot highlighting 

the number of regulated proteins (by 5SD and/or twofold change) for each compound. f, 
Activity of each compound measured by the number of proteins decreased (x axis) and 

increased (y axis) by 5SD 24 h after treatment.
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Fig. 3 |. Regulation of target proteins by small molecules informs compound MOA.
a, Proportion of primary targets identified in this dataset. b, Proportion of primary and first 

secondary, if applicable, targets regulated by 5SD or twofold, n = 541. c, Histogram of 

compounds that regulate their target protein (primary and one secondary target) by twofold 

versus DMSO. Annotations are ‘TargetGene_CmpdName,’. d, Expression of DHFR for all 

875 compounds. Those that increase DHFR expression are highlighted. e, Protein expression 

of all quantified proteins for compounds highlighted in d. f, Expression of TNKS/TNKS2 

for all compounds, colored by inhibitor class. g, CLK1, CLK2, CLK3 and CLK4 expression 

across the dataset. Reported P values were generated from unpaired, two-sided Wilcoxon 

test. For CLK1, n = 875; CLK2, n = 857; CLK3, n = 875; CLK4, n = 808. The center line 

represents the median, the upper and lower bounds of the box indicate the interquartile range 

(IQR, the range between the 25th and 75th percentiles) and whiskers extend to the highest 

and lowest values within 1.5 times the IQR.
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Fig. 4 |. Mechanism of action drives compound community organization.
a, Community plot built from a compound–compound correlation matrix. b, Subcommunity 

of MDM2 and CDK4/6 inhibitors. All subcommunities are filtered to only include edges 

with r > 0.6. c, Pairwise correlation plot of the MDM2 inhibitors Idasanutlin and Nutlin3a. 

d, Subcommunity of BRD4 and PLK1 inhibitors. e, Pairwise correlation plot of the 

PLK1 inhibitors BI-2536 and volasertib. f, Subcommunity of compounds correlated to 

the RAF inhibitor L-779450 containing many inhibitors of the MAP kinase family. g, 

Pairwise correlation plot of the MAP kinase pathway inhibitors MEK126 and AZ628. 

h, Subcommunity of proteasome inhibitors. i, Pairwise correlation plot of MG132 and 

ONX0914—two strongly correlated proteasome inhibitors. For all pairwise correlation plots 

(c, d, g, i), all x and y axes are represented as log2(FC) (compound versus DMSO) with 

Pearson (r) reported.
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Fig. 5 |. Protein–protein correlations highlight relationships between drug response pathways.
a, Community network of protein–protein correlations. Only positive correlations and 

communities larger than five members are included in this network. Open blue circles denote 

enriched GO molecular function GO categories for the proteins within the circle. Filled 

circles are annotated manually based on the composition of the proteins within the circle. 

b–d, Pairwise correlation plot of: b, kinetochore proteins NUF2 and NDC80, c, lysosomal 

protein LAPTM4A and autophagy regulator TMEM59, d, acetyl CoA carboxylase 1 

(ACACA) and 2 (ACACB), with select compounds highlighted that affect the expression 

of each pair of proteins. All x and y axes are represented as log2(FC) (compound versus 

DMSO). Each point represents one compound. e, Subcommunity of correlated proteins, 

including several NAD and succinate dehydrogenases. f, Heatmap of protein expression for 

each protein in e for all compounds that increase or decrease their expression by a median 

log2(FC) of greater than 0.5 or less than −0.5.
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Fig. 6 |. JP1302 blocks transcription through disruption of the FACT complex and histone H1.
a, Number of regulated events for each compound in this dataset, based on whether a 

target was identified. All 2,485 annotated targets were used. The P value is from unpaired, 

Wilcoxon test (n = 875). The center line represents the median, the upper and lower bounds 

of the box indicate the IQR (range between the 25th and 75th percentiles) and whiskers 

extend to the highest and lowest values within 1.5 times the IQR. b, Compound–compound 

community plot and structure of JP1302. Edge thickness denotes the degree of correlation 

(r = 0.6 to 0.8). c, Protein-level regression of p53 and p21 for all compounds in the 

dataset. Shading along the regression line represents the 95% confidence interval. d, Volcano 

plot of JP1302-treated (10 μM, 24 h) cells using repurchased compound. e, Correlation of 

proteome fingerprints from JP1302-treated (10 μM) cells versus THZ531-treated (1 μM) 

cells. f, Expression of proteins highlighted in e across the MOA dataset. g, Volcano plot 
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of protein expression from HCT116 cells treated with JP1302 (10 μM, 4 h). h, Correlation 

of ligand-induced changes in proteome thermal stability for CBL0137 and JP1302-treated 

HCT116 cells. i, Western blot of various RNA pol II and DNA damage markers in HCT116 

cells treated for 20 h with indicated compounds. Treatment concentration is 10 μM or 1 μM 

(THZ531) unless indicated. j, Table showing the number of up- and downregulated proteins 

(by twofold versus DMSO) in cells treated with the indicated concentrations of JP1302. 

KEGG pathways enriched from the list of proteins upregulated by twofold is shown for 

each concentration. Enriched pathways and their adjusted (using Benjamini–Hochberg) P 
values (PAdj.) were calculated using the enrichKEGG R package. k, Compound–compound 

community plot generated from the larger MOA dataset after including the JP1302 dose-

dependent proteome fingerprints (red nodes). All JP1302 nodes and all network edges higher 

than 0.5 (Pearson r) are shown. P values in d and g are calculated as described in Methods. 

Measurements with Q > 0.05 are light gray.

Mitchell et al. Page 44

Nat Biotechnol. Author manuscript; available in PMC 2024 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	A platform for comprehensive proteome analysis of drug MOA
	The proteome is dynamically regulated by small molecules
	Regulation of target proteins informs compound MOA
	MOA drives the organization of compound communities
	Protein–protein correlations reveal drug response pathways
	Perturbagen-induced proteome fingerprints reveal drug mechanisms
	JP1302 inhibits transcription

	Discussion
	Online content

	Methods
	Screening library
	Screening conditions
	Rescreening of cytotoxic compounds
	Sample workup of whole proteomes
	PISA assay
	Offline fractionation of whole proteomes and PISA samples
	Kinase enrichment using kinase affinity beads
	MS analysis of whole proteomes
	Order of preparation of MS analysis for MOA library
	MS analysis of kinase enrichment experiments
	MS analysis of PISA samples
	MS data analysis
	Dataset Normalization
	General bioinformatics analyses
	Correlation networks
	Statistics and reproducibility
	Data analysis of whole proteomes, PISA and kinobeads
	Preparation of kinase affinity beads
	Proliferation and viability assay
	Cell culture
	Materials

	Table T1
	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	Extended Data Fig. 7 |
	Extended Data Fig. 8 |
	Extended Data Fig. 9 |
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |

