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Coordinated power management 
strategy for reliable hybridization 
of multi‑source systems using 
hybrid MPPT algorithms
Djamila Rekioua 1, Zahra Mokrani 1, Khoudir Kakouche 1, Adel Oubelaid 1, Toufik Rekioua 1, 
Mohannad Alhazmi 2, Enas Ali 3,4, Mohit Bajaj 5,6,7*, Shir Ahmad Dost Mohammadi 8* & 
Sherif S. M. Ghoneim 9

This research discusses the solar and wind sourcesintegration in aremote location using hybrid power 
optimization approaches and a multi energy storage system with batteries and supercapacitors. The 
controllers in PV and wind turbine systems are used to efficiently operate maximum power point 
tracking (MPPT) algorithms, optimizing the overall system performance while minimizing stress on 
energy storage components. More specifically, on PV generator, the provided method integrating 
the Perturb & Observe (P&O) and Fuzzy Logic Control (FLC) methods. Meanwhile, for the wind 
turbine, the proposed approach combines the P&O and FLC methods. These hybrid MPPT strategies 
for photovoltaic (PV) and wind turbine aim to optimize its operation, taking advantage of the 
complementary features of the two methods. While the primary aim of these hybrid MPPT strategies 
is to optimize both PV and wind turbine, therefore minimizing stress on the storage system, they 
also aim to efficiently supply electricity to the load. For storage, in this isolated renewable energy 
system, batteries play a crucial role due to several specific benefits and reasons. Unfortunately, their 
energy density is still relatively lower compared to some other forms of energy storage. Moreover, 
they have a limited number of charge–discharge cycles before their capacity degrades significantly. 
Supercapacitors (SCs) provide significant advantages in certain applications, particularly those that 
need significant power density, quick charging and discharging, and long cycle life. However, their 
limitations, such as lower energy density and specific voltage requirements, make them most effective 
when combined with other storage technologies, as batteries. Furthermore, their advantages 
are enhanced, result a more dependable and cost-effective hybrid energy storage system (HESS). 
The paper introduces a novel algorithm for power management designed for an efficient control. 
Moreover, it focuses on managing storage systems to keep their state of charge (SOC) within defined 
range. The algorithm is simple and effective. Furthermore, it ensures the longevity of batteries and 
SCs while maximizing their performance. The results reveal that the suggested method successfully 
keeps the limits batteries and SCs state of charge (SOC). To show the significance of system design 
choices and the impact on the battery’s SOC, which is crucial for the longevity and overall performance 
of the energy storage components, a comparison in of two systems have been made. A classical 
system with one storage (PV/wind turbine/batteries) and the proposed system with HESS (PV/wind 
turbine system with batteries). The results show that the suggested scenario investigated with both 
wind and solar resources appears to be the optimum solution for areas where the two resources are 
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both significant and complementary. The balance between the two resources seems to contribute 
to less stress on storage components, potentially leading to a longer lifespan. An economical study 
has been made, using the Homer Pro software, to show the feasibility of the proposed system in the 
studied area.

Keywords  Photovoltaic, Wind turbine, Hybrid MPPT, Power management control, Hybrid energy storage, 
Optimization

Abbreviations
AC	� Alternate current
DC	� Direct current
BMS	� Battery management system
FCs	� Fuel cells
FLC	� Fuzzy logic controller
IPMC	� Intelligent power management control
HESS	� Hybrid energy storage system
HCS	� Hill climbing search
HPV	� Hybrid photovoltaic MPPT
HTb	� Hybrid turbine MPPT
MPP	� Maximum power point
MPPT	� Maximum power point tracking
PEMFC	� Proton exchange membrane fuel cell
P&O	� Perturb & observe
PMSG	� Permanent synchronous generator
PV	� Photovoltaic
SC	� Supercapacitor
SOC	� State of charge
SOCBatt	� Battery state of charge
SOCSC	� Supercapacitor state of charge

List of symbols
Eo	� Open circuit voltage (V)
epv, eTb	� PV and turbine error
C	� Capacity (F)
CBatt	� Capacity battery (Ah)
Cepv, CeTb	� Photovoltaic and turbine variation of the error
Cp	� Power coefficient
Cpmax	� Optimal power coefficient
D	� Duty cycle
Dpv	� PV duty cyle
DTb	� Turbine duty cyle
Es	� Solar irradiance (W/m2)
IBatt	� Battery current (A)
Id	� Diode-current (A)
Iss, Isq	�  (d, q) stator currents (A)
Idref	� Direct reference current (A)
IDC	� Direct bus current (A)
IL	� Inductance current (A)
Ipv	� PV current (A)
Iqref	� Quadrate reference current (A)
IRsh	� Shunt resistance current (A)
Isc	� Supercapacitor current (A)
Iph	� Photo-current (A)
KdDpv, KdDTb	� PV and turbine proportionality constant
Kepv, KeTb	� Scaling factor of PV and wind error
KCepv, KCeTb	� Scaling factor of PV and wind error variation
L	� Inductance (H)
Ld, Lq	� (d, q) inductances (H)
P	� Pair pole number
PLoad	� Load power (W)
PLoad-calc	� Calculated load power (W)
PMPP	� Maximum power point power (W)
Ppv	� Photovoltaic power (W)
Ppv-optimal	� Optimal photovoltaic power (W)
PTb	� Turbine power (W)
PTb-optimal	� Optimal turbine power (W)
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RBatt	� Internal battery resistance (Ω)
RTb	� Turbine radius (m)
Rst	� Stator windings resistance
Ta	� Ambient temperature (°C)
Tem	� Electromagnetic torque (N m)
Teref	� Electromagnetic torque reference (N m)
Usc	� Supercacitor voltage (V)
Vdc	� DC bus voltage (V)
Vdcref	� DC bus voltage reference (V)
VBatt 	� Battery voltage (V)
VL	� Inductance voltage (V)
Vsd, Vsq	� (d–q) Stator voltages (V)
Vwind	� Wind speeds (m/s)
Xepv, XeTb	� Normalized values of PV and turbine error
XCepv, XCeTb	� Normalized values of PV and turbine error variation

Greek letter
ΔP	� Power demand variation (W)
ΔPpv	� Photovoltaic power excess (W)
ΔPLoad	� Load power variation (W)
ΔPwind	� Wind power excess (W)
ΔPrenew	� Renewable power excess (W)
ΔVdc	� DC bus voltage variation (V)
ΔVpv	� Photovoltaic voltage variation (V)
Φf	� Magnetic flux produced by the permanent magnet (Wb)
Φf	� Magnetic flux produced by the permanent magnet (Wb)
λ	� Tip speed ratio
λopt	� Optimal tip speed ratio
ρ	� Air density
ΔωTb	� Wind turbine velocity variation (rad/s)
ωTb	� Wind turbine velocity (rad/s)

Renewable energy technologies are rapidly being implemented in rural regions1–3. Nonetheless, because to the 
variable nature of renewablesources, MPPT algorithms are essential to maximize power output. Various MPPT 
methods are applied to obtain the maximum power point of solar panels4–18 and wind turbines19–29. Despite the 
fact that they all aim to obtain more power, they all operate in distinct methods. In the literature, a classification 
has been developed to clarify the various techniques, which include classical, advanced and hybrid ones. Clas-
sical approaches can be classified as direct or indirect. Advanced approaches are divided into two categories: 
artificial intelligence and bio-inspired methodologies. Hybrid MPPT (HMPPT) has been widely employed in 
recent years. It can be a mixture of two traditional MPPT methods30, a classical with an advanced approach8,31, or 
two advanced methods32. In PV systems, multiple approaches can be used. The P&O approach is widely utilized 
because of its ease of use. However, it has the disadvantage of oscillations, which cannot be totally removed12,15. 
For advanced methods, the FLC, artificial neural networks (ANN) and sliding mode control (SMC) are the 
most used26–28. Also, in wind turbines, the P&O algorithm33 is the most frequently employed, along with other 
techniques such as Optimal Torque Control (OTC)32, Tip Speed Ratio (TSR)33, Power Signal Feedback (PSF), 
the FLC, and particle swarm optimization (PSO)28,34.

Energy storage systems (ESSs) are crucial for maintaining optimal power balance in hybrid PV/Wind tur-
bine systems. The selection of storage technology is influenced by system requirements, budget constraints, and 
a rigorous examination of benefits and drawbacks35–41. There are various technologies for ESSs.Batteries are 
extensively utilized becauseof their low cost and ease of installation36–38. Also, supercapacitors offer advantages 
like as quick charging and discharging but come with constraints like low energy density, high cost, and limited 
lifespan39–41. Power management control (PMC) is important for the successful and efficient operation of multi-
ple energy storage devices in a hybrid renewable system with multi-storage. Several research publications have 
been published on the power management of hybrid PV/wind turbine systems utilizing storage or multi-storage 
technology42–50.Other important works emphasize the importance of effective power management strategies 
in hybrid PV/wind systems utilizing various storage technologies, highlighting the significance of optimizing 
energy flow, enhancing system stability, and improving overall efficiency and reliability51–63.We can’t mention 
all the articles, because there are so many, but some are very important to mention. These are in general reviews 
on Control, Energy Management Approaches in Micro-Grid Systems or hybrid renewable systems64–70. These 
reviews offer valuable insights into various control strategies, energy management approaches, and optimiza-
tion algorithms in micro-grid and hybrid renewable energy systems. They provide a state-of-the-art research in 
this field and highlight key challenges and opportunities for future development71,72. Some details are given in 
“Related works” section.

In this paper, a Power Management Control (PMC) system to control the different sources and the various 
storage systems is provided. The use of this PMC has been applied in an area with considerable potential of solar 
irradiation and wind speeds, for different profiles. Weather conditions and geographic consideration have been 
taken account and due to the proposed PMC, high system performance is obtained throughout the year. When 
comparing the proposed system PV/ wind turbine with hybrid storage (batteries/SCs) to existing systems with 
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one storage (PV/Wind turbine/batteries), the batteries were less stressed, which increases the performance of the 
system thus a great advantage that brings the proposed system. The findings by simulation show the efficacy of 
the proposed PMC. The work’s purpose is to show the feasibility of solar and wind energy systems optimized by 
a hybrid power maximizing method and incorporate several storage systems and a power management system. 
In our work, we have applied the proposed power management strategy in a hybrid renewable energy system 
combining solar photovoltaic (PV) and wind power sources and applied it in the area of Bejaia (Algeria), which 
has a great potential of solar irradiance and wind speeds. These variable weather conditions highlight how the 
strategy adapts to dynamic input sources. The application of the proposed system can be tooff-grid power systems 
(our case), to electric vehicle charging stations, remote communication stations, smart microgrid integration.

An economical study has been made, using the Homer Pro software, to show the feasibility of the proposed 
system in the studied area.

This study marks a significant stride towards sustainability, efficiency, and energy autonomy for customers.

Related works
A summary of significant research related PMC in PV and wind systems with storage and hybrid storage, is 
presented in Table 1 below. These studies primarily focus on control strategies, energy management approaches, 
and optimization techniques in micro-grid and hybrid PV/wind systems incorporating battery storage or hybrid 
energy storage.

Proposed hybrid PV/wind turbine with hybrid energy storage system
The studied system consists of four distinct parts (Fig. 1). First, there is a PV generator with a DC/DC converter 
aimed at maximizing output power. This is achieved using a hybrid MPPT algorithm HPV (P&O/FLC), combin-
ing P&O and FLC methods. The second block features a wind turbine and a permanent magnet synchronous 
generator.

To maximize wind power, the proposed approach is HTb (P&O/FLC), combining P&O and FLC methods. 
The third block consists of a hybrid (batteries/SCs) storage system. Battery technology enables long-term energy 
storage, however, supercapacitors are capable of absorbing current changes, lowering the risk to batteries. Finally, 
the fourth block is the PMC system, where the inputs are optimized PV (Ppv-optimal) and wind powers (PTb-optimal), 
the SOC of batteries (SOCBatt) and SCs (SOCSC) and the load power (PLoad).

Measurementof solar radiation and wind speeds
Measurement acquisition equipment was used to measure the solar irradiation, temperature and wind speeds 
where the solar irradiance and wind speeds are complementary all the year. It is essentially composed of sen-
sors in order to transfer the different signals to a data processing interface and then to a PC where they will be 
displayed using ACQUIsol software in real-time. The measurements have been made in the studied site, the 
different measured profiles for each month of a year have been simulated (Fig. 2).

To test the effectiveness of the proposed energy management strategy, extensive numerical simulations were 
carried out under MATLAB/Simulink environment. Runge Kutta of 4th order is used as a solver with a step of 
1e−5.

The Table 2 below summarizes the used simulation details.

System component modeling
The different components are a PV generator with a DC/DC converter, a wind turbine, a permanent magnet 
synchronous generator (PMSG) and a hybrid (batteries/SCs) storage system72–74. Each component has been 
modeled before its simulation (Table 3).

The different sources have been simulated under MATLAB/Simulink (Fig. 3) and the obtained powers are 
represented in Fig. 4a, b.

Optimization of photovoltaic and wind generators
Photovoltaic generator optimization
A boost converter’s main feature is its capacity to step up the input voltage, which makes it helpful in situations 
that require a higher voltage than what is available from the input source (Fig. 5). The electrical equations are:

Then, it is obtained:

Wind turbine optimization
One of the main goals of the control is to extract the most available power from variable wind speeds (Fig. 6). 
The rotational speed variation is related to finding the optimum power point through duty cycle adjustment in 
voltage, and electromagnetic torque33,61.

(1)
{

Vpv = L dIL
dt +

(

1− Dpv

)

Vdc
(

1− Dpv

)

IL = C dVdc
dt + Idc

(2)

{

Vdc =
1

(1−Dpv)
Vpv

Idc =
(

1− Dpv

)

IL
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MPPT controllers for PV and wind turbine
P&O algorithm
The P&O or Hill Climb Search (HCS) control is an extensively used MPPT method. The primary idea is to disturb 
the operating point of the solar panels or the wind turbine and then observe the subsequent change in power. 
The algorithm decides whether to increase or reduce the operating point based on this observation (Fig. 7)8,12,15.

The duty cycle is adjusted to find the maximum power point (MPP). It is perturbed by a small increment or 
decrement75.

where: KdDpv and KdDTb are proportionality constant, ΔPpv and ΔPTb are is the change in PV and wind turbine 
power after perturbation, Sign (ΔPpv) and Sign (ΔPTb) are the sign functions, indicating the direction of the 
change in PV and wind turbine power.

If the power elevates after the perturbation, it means that the MPP is pointing in the direction of the per-
turbation, and the duty cycle will be modified accordingly. And if the power decreases after the perturbation, it 
means that the MPP is in the opposite direction of the perturbation, and the duty cycle is modified accordingly.

(3)
{

DPV−k+1 = DPV−k + KdDpv · sign
(

�Ppv
)

DTb−k+1 = DTb−k + KdDTb · sign(�PTb)

Table 1.   Some important works related on PMC with storage.

Study Year Description

42 2011
Authors demonstrate the advantages of thermal energy storage in hybrid systems for reducing the size of battery bank. But 
there is no comparison of the proposed systems with alternative approaches or technologies and there no optimization 
study

43 2012 Authors give an analysis of power management strategies for hybrid PV/wind systems, tacking account various energy 
storage technologies and control methods

44 2015
The paper focuses on developing a supervisor control system to supply an electric vehicle. The battery bank serves as an 
energy storage mechanism, storing excess energy generated by the PV andProton Exchange Membrane Fuel Cell(PEMFC) 
systems for later use when demand exceeds supply

45 2017 Authors present a comparative study of different power management strategies for hybrid PV/wind systems with battery 
storage, analyzing their impact on system efficiency

46 2017 It is proposed a decentralized PMC for hybrid PV/wind systems with distributed energy storage, aiming to improve system 
robustness and efficiency

47 2020 Authors introduce a PV system with battery and supercapacitor. Hybrid MPPT has not been taken account and the appli-
cation is given only to PV systems

48 2020 The study identifies the necessity for hybrid power generation from solar PV and wind. They take account only on batter-
ies for storage and conclude on the importance of optimizing the battery storage to reduce overall system cost

49 2020 Authors propose the integration of multiple energy storage devices into hybrid energy storage systems within standalone 
micro grids. AFLC algorithm is introduced for standalone DC microgrids with multiple energy storage

50 2020 Proposed a PMC for PV/wind system with battery storage, focusing on optimizing energy flow and enhancing system 
stability

51 2020 Investigated the feasibility of utilizing flywheel energy storage in hybrid PV/wind systems and proposed a corresponding 
power management strategy for optimal operation

52 2020 Explored the optimization of hybrid PV/wind systems with multi-storage technology using evolutionary algorithms and 
proposed an adaptive power management framework

53 2020 Investigated the impact of different power management approaches on the stability and reliability of hybrid PV/wind 
systems with integrated energy storage systems

54 2021 The paper proposes a techno-economic design of an off-grid solar/wind system with a hybrid energy storage system. The 
proposed approach is validated through simulations using MATLAB/Simulink

55 2022 Investigated the impact of different power management strategies on the performance of PV/wind systems with multi-
storage technology

56 2022 Developed a predictive power management algorithm for hybrid PV/wind systems with thermal energy storage, focusing 
on improving energy utilization and grid integration

57 2023
Authors introduce a BMS specifically designed for a modified interlinking converter within a hybrid AC/DC microgrid. 
The results demonstrate appropriate performance in both grid-connected and standalone modes, but the optimization has 
not been taken account

58 2023
The paper addresses the critical issue of PMC in autonomous hybrid systems, particularly focusing on challenges associ-
ated with optimizing energy sources and backup systems, especially under heavy loads or low renewable energy output 
conditions

59 2023 Authors integrate solar and wind energy with a PMC and multi storage, with a mono MPPT and there is no cost–benefit 
analysis to assess the economic viability of the proposed energy management scheme

60 2023 The paper proposesa new multi-stage PMC. A fuzzy PMC is employed to manage the power flow electric 

61 2023 Developed a novel power management algorithm for hybrid PV/wind systems integrated with both battery and superca-
pacitor storage, emphasizing energy optimization

62 2023 Explored the integration of pumped hydro storage in hybrid PV/wind systems and proposed an adaptive power manage-
ment approach to enhance system performance

63 2023 Investigated the use of compressed air energy storage in hybrid PV/wind systems and proposed an intelligent power man-
agement strategy to maximize system benefits
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FLC method
Fuzzy logic controllers are very used in MPP research9–12. The MPPT method from FLC is an intelligent control 
approach used in PV and wind turbine systems to efficiently track and maintain the MPP of a solar array75. Fuzzy 
logic controllers use linguistic variables and rules to make decisions, making them well-suited for systems with 
uncertainties and non-linearities. The system consists of a block for calculating the variation of the error over 
time (Cepv(k) or CeTb(k)), scaling factors associated with the error, its variation and the control variation (dDpv 
ou dDTb), fuzzy controller rules (Inference) and a defuzzification block used to convert control variation (Fig. 8).

This law is a function of the error and its variation (Dpv = ƒ(epv, Cepv),or DTb = ƒ(eTb, CeTb). Consequently, 
activating the set of associated decision rules gives the variation in control dD (dDpv or dDTb) required, enabling 
the adjustment of such a control D (Dpv or DTb).

The control law is as follow:

The calculation steps for the various controls are as follows67:
Calculation of the error:

Calculation of the variation of this error:

Calculation of the normalized values of epv(k), eTb(k), and Cepv(k), CeTb(k), by:

(4)
{

Dpv−K+1 = Dpv−K + KdDpv.dDpv−K+1

DTb−K+1 = DTb−K + KdDTb.dDTb−K+1

(5)

{

epv(k) =
Ppv(k+1)−Ppv(k)
Vpv(k+1)−Vpv(k)

eTb(k) =
PTb(k+1)−PTb(k)
ωTb(k+1)−ωTb(k)

(6)
{

Cepv(k) = epv(k+ 1)− epv(k)
CeTb(k) = eTb(k+ 1)− eTb(k)

Figure 1.   Proposed Optimized PV/Wind system with hybrid energy storage system.
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(7)
{

Xepv = Kepv ∗ epv
XCepv = KCepv ∗ Cepv
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Figure 2.   Irradiance and wind speed measurements. (a) Profile 1. (b) Profile 2.  (c) Profile 3.  (d) Profile 4.  (e) 
Profile 5.  (f) Profile 6.  (g) Profile 7.  (h) Profile 8.  (i) Profile 9.  (j) Profile 10.  (k) Profile 11.  (l) Profile 12.
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Figure 2.   (continued)

Table 2.   Parameters simulation details.

Parameters Value

D 96 days

Ts 1e−4

Solver RK-ode4

Solver type Fixed
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where Kepv, KeTb and KCepv, KCeTb are the scaling factors.
The purpose of the fuzzification process is to introduce fuzzy sets of required values with a certain degree of 

membership. The defined classes are (Fig. 9): NB: Negative Large, NS: Negative Small, ZE: Zero Environment, 
PB: Positive Large, and PS: Positive Small. Defuzzification is the last step of the FLC method.

Fuzzy rules are utilized to compute the controller output signal based on the input signals (Table 4).
The center of gravity becomes:

(8)
{

XeTb = KeTb ∗ eTb
XCeTb = KCeTb ∗ CeTb

Table 3.   Parametrized mathematical models of system components.

Components Diagram or equivalent circuit Equations Refs Parameters

PV generator Ipv = np · Iph − ns · Isat

(

e

q(Vpv+Rs ·Ipv)
ns ·A·K·Tj − 1

)

− Ish 32,58,61

PPV 80 Wp

Impp 4.58 A

Vmpp 17.5 V

Isc 4.95A

Voc 21.9 V

αsc 3.00 mA/°C

βoc − 150.00 V/°C

Wind turbine

{

PTb = (1/2) · Cp · ρ · π · R2
Tb · V

3
wind

PTb−opt = (1/2) · Cpmax

(

�opt

)

· ρ · π · R2
Tb · V

3
wind







TTb = (1/2).Cp.ρ.π.R
5
Tb.

ω
2
Tb

�3

TTb−opt = (1/2).Cp−opt.ρ.π.R
5
Tb.

ω
2
Tb

�
3
opt

J · (dωTb/dt) = TTb − Tem − f · ωTb

33,58

Blades 03

λopt 8.1

Cp 0.48

Vw-Rated 12.5 m/s

Vw-cut-in 3.4 m/s

RTb 1.05 m

PMSG











Vsd = RstIsd + Ld

�

dIsd
dt

�

− LqωIsq

Vsq = RstIsq + Lq
�

dIsq/dt
�

+ LdωIsd +�fω

ω = P�

Tem = (3/2)
[

�f .Isq +
(

Ld − Lq
)

.Isd.Isq
]

58,61

PN 900 W

RS 0.49 Ω

LS 0.0016 H

P 5

�f 0.148 Wb

RTb 1.05 m

J 0.016 kg/m2

Batteries

IBatt

+

-

VcBatt

CBatt Rs

E0 VBatt

{

VBatt = E0 − RBatt.IBatt − k. ∫
(

IBatt
Q

)

.dt

SOC = 1− IBatt .t
CBatt

37,61

VBatt 12 V

CBatt 100 Ah

RBatt 0.795 Ω

XBatt 0.07 Ω

CBatt 44.96 mF

Supercapacities

Losses

C2

Main cell Slow cell

Isc

V1 C1

R1

Vsc

R2

Rf V2

I1 I2

{

Usc = Nsc−s.Vsc = Nsc−s.(V1 + R1.Isc)

= Nsc−s.
(

V1 + R1.
isc

Nsc−p

)

V2 =
1
C2

∫ i2(t).dt
1
C2

∫
1
R2

(v1 − v2).dt

Q2 = ∫ i2(t).dt
i1 = isc − i2

60,61

CN 165 F

ESRDC 60 m Ω

IRDC 100A

VN 48 V

Esc 53 Wh

Vmax 51 V

Imax 1900 A

Vseries 750 V

Ccells 3000 F

Esc-cell 3.0 Wh

Ncells 18
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Figure 3.   Simulink modeling of different power components.
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Figure 4.   Obtained powers (PV and wind turbine) during a year. (a) Photovoltaic power. (b) Wind turbine 
power.
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Figure 5.   PV system with MPPT controller.

Figure 6.   Wind turbine system with MPPT controller.

Figure 7.   P&O algorithm principle. (a) Photovoltaic. (b) Wind turbine.
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with μ(Dpv−i), μ(DTb-i) are the degree of activation of the ith rule and Dpv, DTb are the centroid abscissa of the 
ith class.

Proposed HPV (P&O/FLC)
The proposed strategy concerns the hybridization of P&O and FLC algorithms. First, the PV voltage, current 
and duty cycle (Dpv) of each MPPT strategy is calculated. In the second step, the optimal duty cycle (Dpv-optimal) is 
deduced (Doptimal = max(DPV-P&O, Dpv-FLC)) and applied in the HPV (P&O/FLC) method. The proposed flowchart 
is given in Fig. 10.

In this comparative analysis section of our paper, we have two prominent methods for optimizing photovoltaic 
system performance: Perturb and Observe MPPT and Fuzzy Logic MPPT. The Table 5 below provides a succinct 
overview of their respective principles, advantages, and drawbacks, offering a valuable qualitative comparison 
and useful insights into the applicability of each technique in maximizing power output from PV panels.

A comparison between the three MPPT methods in photovoltaic system has been made in terms of maximum 
power, response time and efficiency (Fig. 11). It is noticed that the Hybrid (P&O/FLC) allows us to obtain a fast 
response since it reaches its optimal value rapidly compared to the P&O and FLC methods which require a more 
time to follow the MPP). The hybrid (P&O/FLC) reduce not only the convergence time to follow the MPP, but 
also decreases the steady-state power oscillation.

The photovoltaic power gain between the different methods can be written as following.

The PV power obtained under the three MPPTs is shown in Fig. 12 and obtained PV gain power is represented 
in Fig. 13. Two different zooms have been made to show the different gains obtained between the proposed hybrid 
MPPT and the no-hybrid ones (Fig. 14a, b).

The power gain between the suggested hybrid approach Hpv and the P&O strategy can reach 144.2 W (black 
color), as shown in Fig. 14a. And between P&O and FLC (Fig. 14b), it is acquired a power up to 153.3 W (in red 
color). The hybrid MPPT strategy (Hpv (P&O/FLC)) outperforms the non-hybrid methods regardless of wind 
speed variations.

In the present work, for wind turbine optimization, two approaches (P&O and FLC) were chosen to be 
combined. This optimization strategy is provided to achieve better results. The first stage allows us to choose 
distinct ideal values for each MPPT method, while the second stage calculates the optimal rotational speed and 
electromagnetic torque values. In the third stage, the optimal turbine power is obtained. The proposed optimized 
power calculation is presented in the flowchart below (Fig. 15).

A comparison between the three MPPT methods in wind turbine system has been made in terms of maximum 
power, response time and efficiency (Fig. 16).

The hybrid (P&O/FLC) method provides the best results in PV system and wind turbine, therefore, it is the 
selected MPPT method used each generator (PV and wind) of the studied system.

The wind turbine power obtained under the three MPPTs is shown in Fig. 17. The wind power gain between 
the different methods can be written as:

The obtained wind gain power is represented in Fig. 18. Two different zooms have been made to show the 
different gains obtained between the proposed hybrid MPPT and the no-hybrid ones.

Wind power gain using the different MPPT strategies are shown in Fig. 19, and zooms on wind power gain 
using the different MPPT strategies are given in Fig. 20a, b. In Fig. 20a, power gain between the proposed hybrid 
method HTb and P&O strategy can reach up to 413.9 W (black color), and between P&O and FLC (Fig. 20b), it 
is acquired a power up to 330.4 W (in red color). The renewable power is the total of the PV and wind turbine 
capacities (Fig. 21).

(9)







DpV =

�n
i=1 µ(DPV−i)−DPV
�n

i=1 µ(DPV−i)

DTb =

�n
i=1 µ(DTb−i)−DTb
�n

i=1 µ(DTb−i)

(10)







DPpv(Hpv /P&O) = Ppv−Hpv − Ppv−P&O

DPpv(Hpv /FLC) = Ppv−Hpv − Ppv−FLC

DPpv(FLC/P&O) = Ppv−FLC − Ppv−P&O

(11)

{

DPwind(HTb/P&O) = Pwind−HTb − Pwind−P&O

DPwind(HTb/FLC) = Pwind−HTb − Pwind−FLC

DPwind(FLC/P&O) = Pwind−FLC − Pwind−P&O

epv(k), Cepv(k)

eTb(k), CeTb(k)
Fuzzification Inference Deffuzication

Rules

Dpv

DTb

Kepv ,KeTb

KCepv KCeTb

Figure 8.   FLC block diagram.
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The renewable power gain is represented in Fig. 22. Two different zooms have been made to show the dif-
ferent gains obtained between the proposed hybrid MPPT and the no-hybrid ones (Fig. 22a, b). It is noticed 
that power gain obtained due to the savings in wind and PV power. The power increase between the suggested 
hybrid approach and the P&O strategy (in black) was 513.3 W, while the maximum power gain throughout FLC 
and P&O was 416.3 W (in red).

The same conclusions for the hybrid power, significant power gains are obtained due to the savings in wind 
and PV power. Power gain between the proposed hybrid method and the P&O strategy (in black color) has 
reached a value of 513.3 W and between FLC and P&Oit has attained a maximum power gain of 416.3 W (in 
red color).

Proposed hybrid energy storage system
In an isolated PV/wind turbine system, batteries play a crucial role due to several specific benefits and reasons. 
Furthermore, they are essential for storing and managing energy, ensuring a reliable and continuous power sup-
ply. Unfortunately, their energy density is still relatively lower compared to some other forms of energy storage. 
Moreover, they have a limited number of charge–discharge cycles before their capacity degrades significantly54. 
Supercapacitors (SCs) offer distinct advantages in certain applications. However, their limitations, such as low 
energy density and specific voltage needs, make them most useful when paired with other energy storage tech-
nologies, such as batteries (Fig. 23). To determinate the batteries and SCs currents, the references powers have 
been calculated as shown in Fig. 24 under MATLAB/Simulink.

(12)PRe new = Ppv−optimal + Pwind−optimal

(13)

{

DPrenew(P&O/FLC)/(P&O) = Prenew−H(P&O/FLC) − Prenew−P&O

DPrenew(H(P&O/FLC)(P&O) = Prenew−H(P&O/FLC) − Prenew−FLC

DPrenew(P&O/FLC) = Prenew−FLC − Prenew−P&O

Figure 9.   Membership functions for input variable e, input variable Ce and output variable.

Table 4.   FLC rules.

epv, eTb

NG NP ZE PP PGCepv, Cepv

NG ZE ZE PG PG PG

NP ZE EZ PP PP PP

ZE PP ZE ZE ZE NP

PP NP NP NP ZE ZE

PG NG NG NG ZE ZE
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Figure 10.   Flowchart of HPV (P&O/FLC).

Table 5.   Comparative analysis study of the studied MPPT methods.

Aspect Perturb and Observe MPPT FLC-MPPT

Operation principle Adjusts PV voltage and measures power Uses fuzzy logic control to track the MPP

Advantages

Simple implementation Robustness against variations

Widely used Good performance in partial shading

Fast convergence Efficient in uncertain environments

Drawbacks

Oscillations around the MPP Complexity in implementation

Susceptible to local minimas Requires more computational resources

Sensitive to temperaturevariations Choice of system rules
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Figure 11.   Comparative of the three MPPT methods in PV. (a) in terms of powers. (b) in terms of response 
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While integrating supercapacitors alongside batteries in an energy storage system offers several advantages, it 
also presents trade-offs and challenges that must be carefully managed to realize the full potential of the hybrid 
storage configuration. Balancing factors such as energy density, cost, system integration, control, and safety is 
crucial to designing an effective and reliable hybrid energy storage solution.

Figures 25 and 26 show the differences in battery and SCs performance in terms of SOC, power, current, 
and voltage. The voltage of the batteries and SCs fluctuates with the amount of power absorbed/injected into 
the DC bus.

Monitoring these voltage profiles is vital for making certain the energy storage components are correctly 
charged and discharged. The batteries and SCs SOCs are depicted concurrently for each day (Fig. 27) to examine 
their fluctuations. The battery’s state of charge (SOC) is appropriately controlled and maintained at 72.99% (in 
October) and 90%, but the supercapacitor’s SOC ranges from 38.87 (in January) to 90%. Regardless of fluctuations 
in PV, wind turbine, and load power profiles, the SOCs of the batteries and SCs remain within acceptable limits.

Proposed PMC of optimized PV/wind turbine system HESS
The system’s operation is dependent on power availability and the dynamics of needs comprising the PV, wind 
turbine, and the load. The two storage components (batteries and SCs), possess the capability to operate in both 
charge and discharge scenarios. This flexibility allows them to adapt to the varying power needs of the system.A 
prolonged power imbalance within the PV/wind turbine/storage system isc onsidered a potential problem. Such 
imbalances could have negative consequences, including deep discharge oover loading of the storage system.
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Figure 13.   Photovoltaic power gain using the different MPPT strategies.
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We have:

The studied system is described to operate under eleven distinct modes (Table 6). These modes encompass 
various scenarios. The full-load scenario refers to a state in which the energy storage components have reached 
their maximum load capacity, while the normal charge/discharge scenario suggests a regular, balanced energy 
flow within the system. Whereas, the transient scenario involves the system’s ability to effectively manage sudden 
or transitory changes in energy dynamics. Figure 28 depicts the flowchart of the proposed PMC for a PV/wind 
turbine system with hybrid storage.

In Mode 1, the batteries are charged, so they are disconnected, while in Mode 2, the supercapacitors (SCs) 
are fully charged, leading to their disconnection. The algorithm operates in Mode 3 to avoid deep discharge, thus 
disconnecting both batteries and SCs. In Mode 4, solar and wind power generation supply the load, with excess 
power directed towards charging the batteries.

Similarly, in Mode 5, PV and wind power generated power the load, while excess power charges the SCs. In 
Mode 6, PV and wind turbines supply the load, and any extra power is used to charge both batteries and SCs.

Mode 7 utilizes charged batteries to supply the load, while Mode 8 involves charging the batteries when 
renewable power is not zero, with all sources supplying the load. Mode 9 sees the load fed by charged SCs, while 
in Mode 10, if SOCSC > SOCSC_min, SCs compensate for the deficit of PV and wind power. Finally, in Mode 11, 
the load is not supplied.

The proposed power management controller strategy for reliable hybridization of multi-source systems using 
hybrid Maximum Power Point Tracking (MPPT) algorithms raises important considerations regarding compu-
tational complexity, real-time feasibility, scalability, and computational efficiency.

The computational complexity of the proposed power management controller strategy depends on various 
factors, including the number of energy sources (PV, Wind turbine, storage system), the complexity of the MPPT 
algorithms (P&O, FLC and the proposed hybrid P&O/FLC), and the sophistication of the control algorithms 
(Proposed algorithm). Also, Hybrid MPPT algorithms, which combine multiple MPPT techniques, require more 
computational resources compared to traditional single-source MPPT methods.

Real-time feasibility is crucial for ensuring the timely response of the power management controller to 
changes in environmental conditions (changes in weather conditions), and energy demand variations. For scal-
ability, it refers to the ability of the proposed power management controller strategy to accommodate changes 
in system size (from 1 to 10 kW), and complexity and of course, as the number of energy sources increases, the 
computational demands on the controller may grow proportionally. Also, computational efficiency is essential 
for maximizing the utilization of available processing resources and minimizing energy consumption. Efficient 
proposed algorithms, and proposed optimization technique have reduced the computational workload and 
improve overall system performance.

Simulation study
The bidirectional buck-boost converters play a crucial role in regulating and maintaining the DC bus voltage at 
the desired reference value of 24 V in a controlled and efficient manner. In this system, there are two convert-
ers—one dedicated to the batteries and the other to the supercapacitors. The converters are designed to adjust 
the output voltage to maintain a 24 V DC bus. The duty cycle of the converters is adjusted according to the dif-
ference between the actual and reference voltages in the control strategy. When the DC bus voltage is below 24 V, 
the converters boost it, and when it’s above 24 V, they buck it. This bidirectional operation allows for efficient 
control of the DC bus voltage.

By having separate converters for batteries and supercapacitors, the system can efficiently manage the energy 
flow between these storage elements and the DC bus. This integration ensures optimal charging and discharging 
of both batteries and supercapacitors. The simulationresults have been presented and analyzed. Figures 29 and 
30 show the DC bus voltage calculation under MATLAB/Simulink.The voltage on the DC bus closely matches 
the reference (Fig. 31a). It is controlled to the required voltage and keeps its reference (Vdcref = 24 V) with slight 
fluctuations with ΔVdc = 0.36% < 1% (Fig. 31b). It is concluded that the voltage Vdcref matches the load demands 
while maintaining excellent control efficiency. This result demonstrates the efficiency of DC bus voltage control 
in ensuring optimal operation.

Figure 32 depicts the several modes that resulted and Fig. 33 illustrates simultaneous battery, supercapacitor, 
and PV power.

Figure 34 shows the daily power consumption throughout four different days. The PV and wind power pro-
files alter as the weather changes. It is observed that a negative curve for batteries and SCs indicates that they are 
recovering power, whereas a positive curve indicates that they are supplying the load.

The battery receives substantial stress during the first two months, which are characterized by maximum 
average solar irradiances of 205.9 W/m2 and 465.7 W/m2 and significant wind speeds of 10.83 m/s and 7.76 m/s, 
respectively, and are supported by the SC during unexpected load shifts. M7, M8, M9, and M10 are the most often 
seen modes. Similar observations are taken for the third month, with maximum solar irradiation at 622.5 W/m2 
and wind speed of about 8.26 m/s, but with fewer demands on the batteries, aided by the SC during sudden load 
changes.There is less demand on the batteries because the solar irradiance reaches 696.1 W/m2 on sunny days and 
up to 1000 W/m2 on cloudy days, until the wind speed drops from 8.87 m/s to 4.73 m/s. From the nine month 
(September) to the twelve one (December), it is noticed average solar irradiance varying respectively around the 

(14)PLoadcalc = Ppv−optimal + Pwind−optimal + PBatt + PSC

(15)�P = PLoad −
(

Ppv−optimal + Pwind−optimal

)
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following average values 701 W/m2, 602.9 W/m2, 572.2 W/m2 and 789.2 W/m2 with an average wind speeds val-
ues 7.22 m/s, 7.93 m/s, 10.37 m/s and 13.15 m/s. These complementarities make less stress on the storage, where 
the batteries’ SOC has been kept between 73.5% and 90% while supercapacitor SOC was controlled between 42.39 
and 90%. Figure 35 shows the reference load power as well as the total power generated by all power sources.

The calculated power sometimes surpasses the developed load power. The power excess has been computed 
(Fig. 36).

Despite the appropriate size and utilization of PMC, a small maximum power surplus is collected (233.1 W) 
during some profiles).To show the significance of system design choices and the impact on the battery’s SOC, 
which is crucial for the longevity and overall performance of the energy storage components, a comparison in 
terms of SOC evolution of the proposed system (PV/Wind turbine with hybrid storage) with a classical system 
with one storage (PV/wind turbine/batteries) has been made (Fig. 37).

It is observed that the SOCmin in the traditional case (a PV/wind turbine system with batteries) varies 
between 33.15 and 51.16%, which is acceptable because it exceeds the algorithm’s 30% restriction. Battery stress 

(16)�PLoad = PLoadcal − PLoad

Figure 15.   Flowchart of power optimization calculation.
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decreases in the studied system, where the average SOCmin values vary between 38.87% and 62.42%. Inserting the 
SCs with the batteries is one of the better choices in areas with high solar radiation. Supercapacitors, with their 
high power density and rapid charge–discharge capabilities, can complement batteries by handling short-term 
power fluctuations effectively. We have tried to compare and evaluate how and whether the PMC strategy can 
scale effectively from small-scale installations to larger systems and we have re-size the system to supply a load 
of 10 kW, we have obtained the same results of course with greater powers, which confirm that the proposed 
system is scalable for all size of powers (Figs. 38 and 39).
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of response time. (c) in terms of efficiency.
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Real‑time simulation
In order to endorse the numerical simulation results and to confirm them, a series of experimental tests were 
conducted on a real-time simulator (RT Lab) to assess the proposed coordinated power management strategy. The 
system settings remained constant, mirroring those used in the MATLAB/Simulink numerical simulation. As it 
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Figure 18.   Wind power gain using the different MPPT strategies.
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may be noticed from Fig. 40, the real-time simulation bench consists of a host PC, a real-time digital simulator 
(OP5700), an HIL controller, an OP8660 data collection interface, and a digital oscilloscope.

Figure 41 depicts the reference DC bus voltage, along with its reference and a zoomed-in view of the men-
tioned quantity. It is evident that VDC tracks precisely its reference. Additionally, one can notice from the afore-
mentioned figure that voltage ripples are contained within tolerable narrow band.

Figure 42 illustrates the different modes obtained when the proposed energy management strategy is executed 
using the RT LAB real-time simulation platform.

The power developed by each energy source is shown separately in Fig. 43.
As shown in Fig. 44, the load power equals the developed load power.
This illustrates the effectiveness of the developed energy management strategy which makes power sources 

deliver exactly the required power without considerable losses. The obtained power gain was evaluated and 
represented in Fig. 45. This reflects the added value provided by the proposed coordinated energy management 
strategy and its ability to optimize the use of power sources.

The findings were validated through simulation using MATLAB/Simulink, and subsequently tested in real-
time using the RT LAB simulation platform. This indicates that the utilized control method is effective, facilitating 
the proper flow of energy and ensuring optimal system operation.

Economical study
Economic factors, including capital costs, operational expenses and financing options are critical considerations 
in the practical implementation of hybrid multi-source systems. Economic feasibility assessments, including 
lifecycle cost analysis, return on investment calculations, and sensitivity analysis to varying input parameters, can 
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Figure 21.   Renewable power gain using the different MPPT strategies.
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help evaluate the economic viability of the system. This study has been made, where an economical consideration 
will be investigated examined using the Homer Pro program (Fig. 46).

Figure 47 showcases the data for solar irradiance, wind speeds, and temperature, which were obtained utilizing 
Homer Pro software. Furthermore, Fig. 48 presents the design of the hybrid system in details. The load profile 
is given in Fig. 49 and the different components in Table 7.

The analysis took into consideration various economic factors such as system lifespan, initial costs, and 
maintenance costs. The cost of energy produced, which is represented by the cost of energy (COE), was also 
included in the assessment.

where: Ctot,ann is the total annual cost ($/year) of the hybrid energy system, Etot the total annual electricity pro-
duction (kWh/year).

Additionally, the net present cost (NPC) is HOMER’s main economic indicator, and all simulated systems 
are classified according to its value.

where t is the project lifetime, i is the annual interest rate (%) and CFR is the capital recovery factor.
After simulation, the software suggested a more affordable architecture, with an NPC cost of $5914.81, a 

levelized COE of $439 and an operating cost of $144.29 (Table 8).
The software compare the cash flow of the proposed system with a base case in the software (Fig. 50).

(17)COE =
Ctot,ann

Etot

(18)NPC =
Ctot,ann

CRF(i, t)

Iscref

Ibattref DC
DC

Batteries

SupercapacitorsIsc

PI PWM
D DC

DC

S i

Ibatt

PI PWMD

Buck-boost

Buck-boost

+

+

Pbattref/Vbatt

Pbattref

Pscref/Vsc

Pscref

PMC

SOCbatt

SOCsc

Vbatt

Vsc

Ppv

Pwind

PLoad

Figure 23.   Proposed Hybrid Energy storage system.

Figure 24.   Determination of batteries and SCs currents.
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The analysis was carried out in Bejaia, a location in North Algeria with readily available solar and wind data. 
The results indicate that the studied hybrid system is efficient with a residential electricity cost of $0.1 per kWh 
in Bejaia.
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Figure 25.   Battery performances. (a) SOC. (b) Battery power. (c) Battery current. (d) Voltage battery.
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Conclusion
The integration of renewable energy sources in islated locations using hybrid power optimization approaches 
and a multi-energy storage system with batteries and supercapacitors is discussed in this research paper. Our 
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Figure 26.   Supercapacities performances. (a) SC state of charge. (b) SC power. (c) SC current. (d) SC voltage.
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contribution on a Power Management Controller (PMC) and a multi-storage system integrated into a hybrid 
PV/Wind turbine system, optimized and validated through MATLAB/Simulink simulation and real time with 
RTlab, is a significant contribution in renewable energy systems.Thefindings show that the proposed PMC has 
successfully addressed weather conditions and geographic considerations, leading to high system performance 
throughout the year in the Mediterranean area. The reduction in stress on batteries, as compared to existing 
systems with only one storage (PV/Wind turbine/batteries), is a noteworthy advantage.

Some important practical implications can be on enhancing system efficiency, improving reliability, obtaining 
optimal power utilization, making battery management, adapting the studied system to variable environmental 
conditions, saving costs and of course reducing environmental impact. Indeed, a hybrid MPPT algorithm opti-
mizes the power extraction from multiple sources like solar panels and wind turbines. This optimization leads 
to increased overall system efficiency by ensuring that each source operates at its maximum power point (MPP) 
under varying environmental conditions. Also, by integrating multiple renewable energy sources (such as solar 
and wind), a hybrid system becomes more reliable. A well-designed power management strategy ensures that 
energy from different sources is efficiently utilized based on demand and availability. Excess energy from one 
source can be stored or redirected to other applications or storage systems.

As a further work, it is intended to use advanced intelligent techniques to enhance the performance of 
the proposed multi source renewable energy system. In addition to technical considerations, conducting an 
economic analysis would provide insights into the cost-effectiveness of the proposed configuration. This could 
include the initial setup costs, maintenance expenses, and the overall return on investment over the expected 
lifespan of the system.
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Cases Equations Scenarios
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Continued
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Cases Equations Scenarios

Mode 6 (M6)
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Cases Equations Scenarios

Mode 11 (M11)

�P < 0
Ppv−optimal + Pwind−optimal > 0
PLoad = 0
SOCBatt ≤ SOCBattmin

SOCSC ≤ SOCSC_min

HPV

(P&O/FLC)

HTb

(P&O/FLC)

PLoadPPV-optimal+Pwind-optimal

Table 6.   The different established modes and scenarios.

Figure 28.   PMC flowchart of Photovoltaic/wind turbine with storage.
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Figure 29.   DC bus voltage calculation under Matlab/simulink.
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Figure 30.   DC bus voltage and its reference.
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Figure 31.   Zooms on DC bus voltage. (a) Zoom1. (b) Zoom2.
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Figure 32.   Eleven obtained modes.
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Figure 34.   Developed powers per day. (a) Profile 1. (b) Profile 2. (c) Profile 3. (d) Profile 4. (e) Profile 5. (f) 
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Figure 34.   (continued)
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Figure 35.   Calculated PLoadcalc and developed load power PLoad.
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Figure 36.   Gained power.
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Figure 37.   Evolution of the minimum state of charge under two cases along a year.
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Figure 38.   Scalability test on load power size. (a)Load power of 1 kW/day. (b) Load power of 10 kW/day.
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Figure 40.   RT Lab real-time simulator work bench.

Figure 41.   DC bus voltage in RTlab.
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Figure 42.   Different modes obtained in RTlab.

Figure 43.   Power developed by each energy source in RTlab.
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Figure 44.   Load and developed load power in RTlab.

Figure 45.   Gained power in RTlab.

Figure 46.   Bejaia geographical loation.
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Figure 47.   Weather conditions in Bejaia site. (a) Solar irradiance. (b) Ambient temperature. (c) Wind speeds.
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Figure 48.   Configuration of the studied system.

Figure 49.   Load profile.

Table 7.   Inputs for the various components.

Component Capital cost($) O&M cost ($) Replacement ($) lifetime (years)

PV generator 1000.00 1.00 750.00 25

Wind turbine 3000.00 100.00 600 20

Batteries 167.00 8.00 167.00 10

SCs 60.00 0.00 45.00 20

Converter 400.00 9.30 300.00 20
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