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Abstract

Compared to supervised machine learning (ML), the development of feature selection for 

unsupervised ML is far behind. To address this issue, the current research proposes a stepwise 

feature selection approach for clustering methods with a specification to the Gaussian mixture 

model (GMM) and the k-means. Rather than the existing GMM and k-means which are carried 

out based on all the features, the proposed method selects a subset of features to implement the 

two methods, respectively. The research finds that a better result can be obtained if the existing 

GMM and k-means methods are modified by nice initializations. Experiments based on Monte 

Carlo simulations show that the proposed method is more computationally efficient and the result 

is more accurate than the existing GMM and k-means methods based on all the features. The 

experiment based on a real-world dataset confirms this finding.
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I. INTRODUCTION

Feature selection, also known as variable selection, is a popular machine learning (ML) 

approach for high-dimensional data. The goal is to select a few features (i.e., explanatory 

variables) from many candidates, such that the result can be better interpreted and 

understood. Feature selection is particularly important in the case when the number of 

features (i.e., p) is larger than the number of observations (i.e., n), known as the large 

p and small n problem. Currently, feature selection is mostly applied to supervised ML 

problems, where it assumes that there is a response variable to be interpreted by the 

explanatory variables. Although unsupervised ML problems are also important in practice, 

the corresponding feature selection method has not been well-understood. This motivates the 

goal of the current research.

Rather than supervised ML, unsupervised ML assumes that there is no response in the data. 

A well-known problem is clustering. Basically, clustering treats all variables as features. It 

huan1182@purdue.edu . 

HHS Public Access
Author manuscript
IEEE Int Conf Smart Cloud. Author manuscript; available in PMC 2024 May 05.

Published in final edited form as:
IEEE Int Conf Smart Cloud. 2023 September ; 2023: 164–169. doi:10.1109/
smartcloud58862.2023.00036.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



assumes that there is no response in the data. The goal is to partition the data into many 

clusters (i.e., subsets), such that observations within clusters are the most homogeneous 

and observations between clusters are the most heterogeneous. Many clustering methods 

have been proposed. Examples include the k-means [1], the k-medians [2], the k-modes [3], 

the generalized k-means [4], and the Gaussian mixture model (GMM) [5]. Among those, 

the k-means and the GMM are considered the most straightforward and popular. In the 

literature, clustering is carried out based on all the features. An obvious drawback is that 

the resulting model may be too complicated if the number of features is large. To address 

this issue, an convenient way is to apply a feature selection method to select a subset of 

features. Here we propose a stepwise feature selection approach for clustering methods with 

specifications to the GMM and the k-means, which has obvious advantages over previous 

methods.

Although our idea can be implemented in any clustering method, we focus our presentation 

on the k-means and the GMM. We assume that data with n observations and p features 

can be generally expressed as D = x1, …, xn  with xi = (xi1, …, xip)⊤ ∈ ℝp representing the ith 

observation for i ∈ ℛ = 1, …, n , where ℛ represents the set of observations (i.e., records). 

The goal of clustering is to partition ℛ into many clusters (e.g., k clusters) denoted as 

C = C1, …, Ck , which satisfies Cr ∩ Cs = ∅ for any r ≠ s and ⋃r = 1
k Cr = ℛ. To carry out the 

clustering method, it is necessary to provide the distance between Cr and Cs. The distance 

is often defined by dissimilarity between points with the form of d(xi, xj) where d ⋅ , ⋅  is a 

certain distance function between points. To carry out feature selection, we treat d(xiA, xjA) as 

the distance between the ith and jth observations, where xiA and xjA are sub-vectors of xi and 

xj with their subscripts belonging to some A ⊆ ℱ = 1, …, p , respectively. If the partition 

provided by clustering with feature selection is close to that without, then the number of 

features is reduced from p to A ; otherwise, another option of A ⊆ ℱ is investigated. If p is 

large but A  is small, then the result of clustering with feature selection is much easier to 

understand and better to interpret than that without.

In our experiments, we evaluate our method via Monte Carlo simulations and real-world 

data. In our simulation study, we find that the number of features can be significantly 

reduced in both the k-means and GMM by our method. For real-world data, we apply our 

methods to single-cell spatial transcriptomics (SCST) multi-modal dataset [6]. The dataset 

has n = 79,876 observations and p = 981 variables. Because p is large, we use our method 

to select important features for clustering. We find that our method works well when 30 

features are adopted. We successfully reduce the number of features from 981 to 30.

The contributions of this article are:

• We point out that feature selection is needed in unsupervised ML. This problem 

has not been well understood yet.

• We define the feature selection problem for a general clustering method with 

specifications to the k-means and GMM.

Huang et al. Page 2

IEEE Int Conf Smart Cloud. Author manuscript; available in PMC 2024 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• We implement our feature selection method to a real data example with many 

variables. We successfully reduce the number of features to a low level, 

indicating that our method works well. We find that this cannot be achieved 

by previous methods.

The remainder of the paper is structured as follows. In Section II, we review the relevant 

background. In Section III, we propose our method. In Section IV, we evaluate our method 

by experiments, including both Monte Carlo simulation and real-world application. In 

Section V, we conclude the article.

II. BACKGROUND

In the literature, feature selection is usually carried out by the PML approach for a 

supervised ML problem. An example is the high-dimensional linear model with a large 

number of features. The purpose is to set the estimates of the regression coefficients for 

all of the unimportant features to be zero. To achieve this goal, feature selection uses a 

Lagrangian form objective function with penalty functions added [7].

Two typical clustering methods in unsupervised ML are the GMM and the k-means. The 

GMM assumes that the data are collected from a mixture model with k components 

with the distribution of the rth component given by the PDF of N(μk, Σk) denoted as 

φ(xi; μr, Σr), r = 1, …, k. Let zi = zi1, …, zik
⊤ be the ground truth of the ith observation with 

zir ∈ 0, 1  and ∑r = 1
k zir = 1. Then, zi is the cluster assignment of xi, meaning that zir = 1 iff 

xi belongs to the r cluster. The mixture model can be expressed by a complete data version 

and an incomplete data version. The complete data version assumes that both xi and zi are 

available, leading to the complete data set as Dc = xi; zi : i = 1, …, n  with the underlying 

distribution as

xi ∣ zi ∼iid ∑
r = 1

k
zirφr xi; μr, Σr .

(1)

The incomplete data version treats zi as unobserved latent variables, leading to the observed 

data set as D = x1, …, xn . Assume that zi are iid from a Dirichlet distribution with 

probability vector π = π1, …, πk
⊤. By integrating zi out from (1), the distribution of D is 

obtained as

xi ∼iid ∑
r = 1

k
πrφr xi; μr, Σr .

(2)

A usable clustering method can only be developed under (2), implying that (1) can only be 

used for theoretical evaluations.
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If Σr = σ2I for r = 1, …, k, then (2) is the k-means (i.e., spherical) model. If Σr for all 

r = 1, …, k are distinct, then (2) is the quadratic discriminant analysis (QDA) model. The 

linear discriminant analysis (LDA) model is derived if we assume that all Σr are identical. To 

be consistent with the k-means problem, it is usually assumed that μr are all distinct, leading 

to the GMM with distinct mean vectors.

The GMM clustering is carried out by an EM algorithm. At the current iteration (i.e., the 

tth iteration), the EM-algorithm updates current iterated values πr
t , μr

t , and Σr
t  of πr, μr, and 

Σr based on the previous πr
t − 1 , μr

t − 1 , and Σr
t − 1 . In the end, the EM algorithm estimates the 

partition by

Ĉr = {i: ẑir = argmax
j ∈ 1, …, k

ẑij}, r = 1, …, k,

(3)

where ẑi = ẑi1, …, ẑik
⊤ is the ith final imputed zi.

The k-means directly computes the current iterative value zi
t  of zi given the previous 

centroids μ1
t − 1 , …, μk

t − 1 . It then update the current centroids and obtains μ1
t , …, μk

t . 

In the end, it estimates the partition by Ĉr = i: ẑir = 1  and the parameters by 

μ̂r = (1/ | Ĉr|)∑i ∈ Ĉr xi, r = 1, …, k, where ẑi = ẑi1, …, ẑik
⊤ is the final imputed vector of the 

ground truth. Neither the EM algorithm nor the k-means method uses the ground truth zi in 

the derivation of Ĉr. Instead, they use the imputed ẑi. Therefore, they are usable.

Although a few variable selection methods for clustering have been proposed, computational 

prohibition has been identified in the case when the number of variables is moderate due 

to exponential growth of the computational burden with the number of variables [8]. This 

issue has been overcome by several methods, such as the sparse k-means [9], and the model-

based variable selection [10]–[13]. These methods can be implemented by the sparcl, 

clustvarsel, VarSelLCM packages of R. However, a recent study points out that most 

of those have not been evaluated by a comprehensive experimental study and there is a lack 

of theoretical evaluations about how variable selection affects the performance of clustering 

[14]. This concern is addressed by our work.

III. METHODOLOGY

Feature selection for unsupervised learning is fundamentally different from that for 

supervised ML. The goal is to select a subset of features such that the result of clustering 

based on the subset can be as accurate as or even more accurate than that based on the entire 

set. In particular, let A = j1, …, ja ⊆ ℱ be a candidate subset of features, where a = A  is the 

cardinality of A. As both a and A are unknown, there may be as large as 2p subsets to be 

considered if the brute force approach is adopted. This is impossible if p is only moderate 

(e.g., p = 20). Thus, we discard the brute force method and propose a stepwise approach to 
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determine the best A. We find that the complexity of our method is o(p2n), indicating that it 

can be easily implemented even if p is extremely large. We introduce our method below.

We present our method for the case when A is given first and then move our interest to 

the case when A is selected by the stepwise approach. For a given A, we have two ways to 

implement a clustering method. In the first, we only use the features contained by A. We 

treat xiA = (xij1, …, xija)⊤ as the feature vector of the ith observation. We obtain a partition of 

ℛ denoted as CA = C1A, …, CkA . In the second, we use all of the features. We treat xi as the 

feature vector of the ith observation. We obtain a partition of ℛ denoted as C = C1, …, Ck . 

Because the first only uses a features but the second uses all of the p features, we expect that 

CA and C are different. We need to study the difference between CA and C.

We use the likelihood approach to measure the difference between CA and C. We specify the 

approach to the GMM and the k-means methods, respectively. Because zi has been imputed, 

we can use (1) to compute the imputed complete data loglikelihood under C as

ℓ (C) = ∑
r = 1

k
∑

i ∈ Cr

log[φ(xi; μ̂r, Σ̂r)],

(4)

where μ̂r = ∑i ∈ Cr xi/ Cr  and Σ̂r = ∑i ∈ Cr (xi − μ̂r)(xi − μ̂r)⊤/( Cr − 1) are the estimates of μr

and Σr, respectively. Similarly, we can compute the imputed complete data loglikelihood 

based on CA by ℓ CA  after μ̂r and Σ̂r are replaced with μ̂rA = ∑i ∈ CrA xi/ CrA  and 

Σ̂rA = ∑i ∈ CrA (xi − μ̂rA)(xi − μ̂rA)⊤/( CrA − 1) under CA in (4), respectively. We use

d C, CA = ℓ C − ℓ CA

(5)

to measure the difference between C and CA in the GMM method. In the k-means 

method, we use Σr = σ2I for all r = 1, …, k to compute the modified imputed complete data 

loglikelihood ℓ C  under C. Similarly, we compute the modified imputed complete data log
likelihood ℓ CA  under CA. We use

d C, CA = ℓ C − ℓ CA

(6)

to measure the difference between C and CA in the k-means method. We treat the difference 

given by (5) in the GMM method or (6) in the k-means method as the loss of A. It is denoted 

as loss A .

As (5) and (6) can only be applied based on a given A, we devise our method for the 

selection of the best A. In particular, we compute loss A  under a number of A ⊆ ℱ with the 
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best A determined by the minimum loss value. To reduce the number of candidate subsets, 

we propose a stepwise approach to search for the best A. It reduces the number of candidate 

subsets from 2p to p2, implying that our method can be implemented even if p is large.

The stepwise approach starts with the empty set and adds one of the most important features 

to A once a time at each step of the iteration. The process continues until no more important 

features are identified. In the first step, we search for the most important feature in the entire 

ℱ. To achieve this, we compute loss A  with A = j  for all j ∈ ℱ. The most important j is 

determined by

jmin
1 = argmin

j ∈ ℱ
loss({j}) .

(7)

The first step provides A = {jmin
1 } with a = 1. In the tth step for any t > 1, let 

A t − 1 = j1, j2, …, jt − 1  be the set of important features selected by the previous t − 1 steps. 

In the tth step, we search the most important feature in ℱ but not in A t − 1 . To achieve this, 

we compute loss A  with A = A t − 1 ∪ j  for all j ∈ ℱ ∖ A t − 1 . The most important j is 

determined by

jmin
t = argmin

j ∈ ℱ ∖ A t − 1
loss(A t + 1 ∪ {j}) .

(8)

The tth step updates the set of important features by A t = A t − 1 ∪ {jmin
t } with a = t. We 

keep doing this until we cannot find any important features. To determine this, we can 

use the well-known BIC approach. In this research, we find that the BIC approach is not 

necessary to be used. This is fundamentally different from variable selection for a supervised 

learning problem, where BIC or a modification of BIC is considered as necessary. Then, we 

propose Algorithm 1.

Algorithm 1

Feature selection for the GMM or the k-means

 Input: Data set D = x1, …, xn  and the number of clusters k
 Output: labels 1, …, k for each xi ∈ D with the best A ⊆ ℱ
 Initialization

1: Determine the first jmin
(1)

 by (7) with loss(A) = d C, CA  given by (5) if the GMM method is adopted or 

loss(A) = d C, CA  given by (6) if the k-means method is adopted

 Begin Iteration

2: Let A(t − 1) = {jmin
(1) , jmin

(2) , …, jmin
(t − 1)} be the previous set of important features and determine the current jmin

(t)
 by (8) 

and update A(t) = A(t − 1) ∪ {jmin
(t) }
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3: Stop if t = p or no important feature is found; otherwise continue

 End Iteration

4: Output

An important issue is to specify k (i.e., the number of clusters) in Algorithm 1. This can 

be easily solved. There are two scenarios. If k is given, then we can simply use the value 

of k; otherwise, k should be determined by the GMM or the k-means with an unknown 

k. The determination of the number of clusters is considered a challenging problem in the 

implementation of a clustering method. This issue has been previously investigated in the 

literature. The idea is to implement a given clustering method to a set of candidates of k
with the best k to be selected by a predefined criterion. A few criteria have been proposed 

in the literature. Examples include the minimum message length (MML) criterion [15], the 

minimum description length (MDL) criterion [16], the Bayesian information criterion (BIC) 

[4], the silhouette score [17], and the Gap Statistics [18]. We evaluate this issue and find that 

the determination of k is not a concern. The reason is that we can use the same k determined 

by the case when all features are used. We assume that k does not vary with A in Algorithm 

1. Therefore, k can be assumed to be known in variable selection for a clustering method.

IV. EXPERIMENTS

We investigate the properties of our method via Monte Carlo simulation and a real-world 

data example. In both, we use the adjusted rand index (ARI) for the evaluation of the 

performance. ARI is one of the well-known measures for the accuracy of a clustering 

method. It is defined as the number of true positives and negatives divided by the total 

number of pairs. A true positive is a pair of observations claimed in the same cluster by a 

clustering method and also claimed by the truth. A true negative is a pair of observations 

claimed in the different clusters by a clustering method and also claimed by the truth. The 

ARI value is between −1 and 1, with a low value indicating that the result provided by a 

clustering method does not agree with the truth and 1 indicating that the result is identical 

to the truth. As the computation of ARI needs the ground truth, it is only used after feature 

selection is obtained. We determine the best A ⊆ ℛ by loss A , which does not need the 

ground truth. Therefore, ARI is only used for the performance of feature selection.

A. Simulation

We consider two cases in our simulation. In the first case, we simulate data from ℝ30

with k = 10 clusters. We represent the feature set as ℱ = 1, …, 30  and the cluster centers 

as μr = (μr1, …, μr30)⊤ for r = 1, …, 10. We assume that the first 3 features are extremely 

important, the next 3 are weakly important, and the remaining 24 are unimportant. We 

use a three-step procedure to generate the clusters. In the first step, we generate centres by 

μr1, μr2, μr3 ∼iid N 0, 1 , μr4, μr5, μr6 ∼iid N(0, ϕ2), and μr7 = ⋯ = μr30 = 0. In the second step, we 

generated the cluster sizes nr ∼iid P 25 . In the third step, we generate the observations 

within the clusters. For each cluster, we independently generate nr observations from 

N(μr, 0.12I). Thus, the total number of observations within the rth cluster is nr. The total 

Huang et al. Page 7

IEEE Int Conf Smart Cloud. Author manuscript; available in PMC 2024 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number of observations in the entire data set is n = ∑r = 1
k nr. The distance between the clusters 

is primarily controlled by the first three features with the adjustment by the second three 

features based on ϕ with ϕ = 0.0, 0.1, 0.2, 0.3, respectively.

We investigate four clustering methods. All of them assumes that Σr = σ2I for all r = 1, …, 10. 

The GMM partitions the data by loss A  given by (5) in Algorithm 1. The iterations of 

the basic k-means and the k-means++ methods are the same. They partition the data with 

loss A  given by (6) in Algorithm 1. The difference is that the basic k-means randomly 

chooses its initialization, but the k-means++ uses a probability distribution to determine 

its initialization. As the performance of both the k-means and the k-means++ is bad, we 

also consider another version of the k-means method proposed by [19]. As it improves 

the initialization of the k-means by the max-min principal, we denote this method as 

k-meansMM.

We simulate 100 datasets for each selected ϕ value. For each generated data set, we use 

Algorithm 1 to select features. After the best A is determined, we compare their performance 

by examining their ARI values. We calculate the average ARI values based on the 100 

replications (Table I). We find that the k-meansMM method is the best and the GMM is 

the worst. To understand this issue, we study the ARI curves obtained from each of the 

simulated datasets (e.g., Figure 1). We find that the curves of the GMM, the basic k-means, 

and the k-means++ are unstable, leading to their low ARI values. In the k-meansMM, 

it is enough to use the three most important features, implying that 90% of the features 

can be ignored. Overall, the K-meansMM performs the best. It is significantly better 

than the GMM, the basic k-means, and the k-means++ in feature selection, implying that 

initialization is a critical issue in the clustering methods.

In the second case, we simulated data from ℝ1000 with k = 2 clusters (i.e., p = 1000). We 

choose cluster centers as μr = (μr1, ⋯, μrp)⊤ with μ11 = μ12 = 0.16, μ21 = μ22 = − 0.16, and μrj = 0
if j ≥ 3, r = 1, 2. For each cluster, we independently generated nr = 10 observations from 

N(μr, 0.12I). We then implement the basic k-means, the k-means++, the k-meansMM, and 

the GMM to the first q features. We calculate the average ARI values based on 1000 

replications (Figure 2). We find that the ARI values decrease with q. Note that only the first 

2 features are useful. The simulation indicates that the performance of clustering becomes 

bad if non-informative features are used. If non-informative variables are removed by a 

variable selection method, then the accuracy of clustering becomes better for all of the 

methods that we have studied. Therefore, we conclude that variable selection can improve 

the performance of clustering.

B. Application

We apply our method to the single-cell spatial transcriptomics (SCST) multi-modal data set 

[6]. The SCST data set collects the gene expression based on the SCST images for lung 

cancer from the NanoString CosMx™ SMI platform (Figure 3). The date set mainly contains 

six kinds of cells, including 37281 tumor, 13368 fibroblast, 11664 lymphocyte, 7560 Mcell, 

5731 neutrophil, and 4272 endothelial cells. Regarding the NanoString Lung-9-1 dataset, 
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the composite images of the DAPI, PanCK, CD45, and CD3 channels from 20 fields of 

views (FOVs), the cell center coordinates (from the cell metadata file), the single-cell gene 

expression file of 960 genes are used. For each cell, four images of 120-by-120 pixels with 

the cell at the center are cropped from the images. The spatial adjacent graph is constructed 

based on the cell-to-cell distance (Euclidian distance) ≤ 80 pixels. NanoString’s annotations 

of cell types are obtained from their provided Giotto object. A feature extractor was applied 

to project the gene expression into the high-dimensional latent space, which provided 21 

additional variables [20].

We apply Algorithm 1 with k = 6 to three clustering methods. The first is the GMM-

LDA, which assumes that Σr are all identical. The second is the GMM-Sphere, which 

assumes Σr = σ2I for all r = 1, 2, 3, 4, 5, 6. The third is the k-means method. We consider two 

initialization frameworks. The first uses a random initialization. The second searches for 

a nice initialization by investigating hundreds of initializations with the best one reported 

by that with the minimum loss value. We carry out feature selection to the three clustering 

methods with two initialization frameworks, implying that we have six methods. For each of 

those, we use loss A  to select the best A with a number of candidates of a = A . After A is 

derived, we evaluate their performance by examining their ARI values (Table II). We find 

that the best a is about 27. To confirm this, we study the curves of 1 − R2 = SSE /SST , where 

SSE is the sum of squares of errors and SST  is the sum of squares of the total. The best 

options should have the lowest 1 − R2 values. In the end, we conclude that the GMM-LDA 

with a nice initialization is the best method for the implementation of our method.

We check the GMM-LDA, the GMM-Sphere, and the k-means when all the 981 features are 

used. Our result shows that the ARI values of the GMM-LDA and the GMM-Spheres with a 

random initialization are 0.554 and 0.280, respectively. The ARI value of the k-means with a 

random initialization is 0.375. If the nice initialization approach is considered, then the ARI 

values of the GMM-Sphere and the k-means are 0.368 and 0.463, respectively. We are not 

able to derive that for the GMM-LDA, because each computation takes more than 5 fours, 

implying the derivation needs over a thousand hours.

In the end, we compare our method with a few previous methods. These include the sparse 

clustering (by sparcl package of R) [9], the model-based clustering (by clustvarsel 

package of R) [10], and another model-based clustering (by VarSelLCM package of R) 

[11]. Our experiment shows that the sparcl was out-of-memory with an error message 

saying that it could not allocate a vector of size 47.5GB, the clustvarsel did not provide 

anything within two days, and the VarSelLCM selected all 980 features by 1.72 days with 

ARI 0.216. As the computational time was less than 15 minutes, we conclude that our 

method is more computationally efficient and more accurate than our competitors.

V. CONCLUSION AND FUTURE WORK

We treat our method as the first variable selection method for unsupervised machine learning 

problems because this problem has never been studied previously. We expect that our 

idea can be applied to arbitrary clustering methods, although we focus on the GMM and 
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k-means. To carry out variable selection, it is important to investigate the initialization issue 

in existing clustering methods. We have proposed an approach to the k-means and GMM 

methods. For other clustering methods beyond the k-means and the GMM, this should also 

be investigated. This is left to future research.
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Fig. 1: 
ARI curves obtained from a simulated dataset with feature sets selected by Algorithm 1 with 

respect to the k-meansMM ( kMM), the GMM, the basic k-means k , and the k-means++ 

(k++) methods, where the horizontal axis represents the number of clusters and the vertical 

axis represents the ARI values.
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Fig. 2: 

ARI curves obtained from simulation with 1000 replications when k = 2 and xi ∼ N(μr, 0.12I)
independently, where μ2 = − μ1, μ11 = μ12 = 0.16, μ1j = 0 for all j ≥ 3.
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Fig. 3: 
The SCST Images for Lung Cancer from the NanoString CosMx™ SMI platform
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Fig. 4: 

The 1 − R2 curves for the GMM-LDA, the GMM-Sphere, and the k-means with a nice 

initialization and a random initialization, respectively, where the horizontal axis represents 

the number of features and the vertical axis represents the values of 1 − R2 = SSE /SST .
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TABLE I:

Simulated ARI values obtained from 100 replications for the comparison of feature selection with respect to 

the k-meansMM (kMM), the GMM, the basic k-means k , and the k-means++ (k++) methods.

Number of Features a
Method ϕ 1 2 3 4 5

kMM 0.0 0.599 0.928 0.963 0.962 0.963

0.1 0.595 0.925 0.960 0.958 0.958

0.2 0.606 0.933 0.987 0.988 0.989

0.3 0.593 0.938 0.992 0.996 0.996

GMM 0.0 0.357 0.500 0.491 0.483 0.486

0.1 0.410 0.558 0.543 0.549 0.546

0.2 0.445 0.607 0.620 0.596 0.602

0.3 0.442 0.622 0.621 0.608 0.615

k 0.0 0.591 0.764 0.798 0.798 0.801

0.1 0.577 0.762 0.803 0.813 0.801

0.2 0.594 0.787 0.812 0.804 0.805

0.3 0.582 0.779 0.821 0.828 0.827

k++ 0.0 0.588 0.761 0.790 0.788 0.783

0.1 0.580 0.756 0.792 0.800 0.792

0.2 0.586 0.756 0.786 0.791 0.793

0.3 0.578 0.783 0.818 0.814 0.818
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TABLE II:

ARI of feature selection for the GMM-LDA, the GMM-Sphere, and the k-means clustering methods with 

random and nice initialization respectively for the SCST multimodal data

Number of Features a
Method 26 27 28 29 30

LDA Nice 0.450 0.659 0.536 0.537 0.537

LDA Random 0.378 0.457 0.430 0.500 0.462

Sphere Nice 0.392 0.395 0.534 0.545 0.545

Sphere Random 0.340 0.273 0.349 0.391 0.391

k-means Nice 0.387 0.499 0.518 0.535 0.534

k-means Random 0.376 0.390 0.310 0.389 0.286
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