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Abstract 

Event-related potentials (ERPs) are a superposition of electric potential differences generated by 

neurophysiological activity associated with psychophysical events. Spatiotemporal dissociation of 

these signal sources can supplement conventional ERP analysis and improve source localization. 

However, results from established source separation methods applied to ERPs can be challenging to 

interpret. Hence, we have developed a recurrent neural network (RNN) method for blind source 

separation. The RNN transforms input step pulse signals representing events into corresponding ERP 

difference waveforms. Source waveforms are obtained from penultimate layer units and scalp maps 

are obtained from feed-forward output layer weights that project these source waveforms onto EEG 

electrode amplitudes. An interpretable, sparse source representation is achieved by incorporating L1 

regularization of signals obtained from the penultimate layer of the network during training. This 

RNN method was applied to four ERP difference waveforms (MMN, N170, N400, P3) from the open-

access ERP CORE database, and independent component analysis (ICA) was applied to the same data 

for comparison. The RNN decomposed these ERPs into eleven spatially and temporally separate 

sources that were less noisy, tended to be more ERP-specific, and were less similar to each other 

than ICA-derived sources. The RNN sources also had less ambiguity between source waveform 

amplitude, scalp potential polarity, and equivalent current dipole orientation than ICA sources. In 

conclusion, the proposed RNN blind source separation method can be effectively applied to grand-

average ERP difference waves and holds promise for further development as a computational model 

of event-related neural signals. 
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1. Introduction 

The main source of scalp electroencephalography (EEG) is considered to be synchronous post-

synaptic potentials at dendrites of cortical pyramidal cells oriented perpendicular to the cortical 

surface [1], [2]. Electric fields due to synchronously active cortical patches of at least 6 cm2 become 

measurable from scalp electrodes [1]. Ongoing or “resting state” activity distributed broadly over the 

cerebral cortex makes raw EEG generally noisy and difficult to interpret. The event-related potential 

(ERP) technique circumvents this by averaging EEG signals recorded in response to repeated 

psychophysiological events in experiments designed to elicit associated neural signalling processes 

[3], [4]. This is made possible by the high temporal resolution of electromagnetic signal acquisition 

and the direct relationship between electric fields and underlying neurophysiology. 

The ERP waveform recorded from an individual reflects part of their stereotyped neural response to 

a specific category of sensory-cognitive event. Brain activity associated with cognitive processes can 

be further isolated by subtracting ERPs from two or more event categories to produce ERP 

difference waves [5], [6]. These waveform subtractions are intended to remove features reflecting 

common sensory processes, while retaining features reflecting the cognitive processes of interest. 

ERPs and ERP difference waves from multiple subjects in a study are often averaged together to 

produce grand-average waveforms, and generalizations about brain activity are made from these 

grand-averages [7]. 

Conventional ERP waveform analysis involves measuring amplitudes and latencies. However, at any 

time instant the amplitude at a given scalp site can reflect the summation of multiple spatially 

separate cortical patches with temporally overlapping activity [3]. Identification of these underlying 

source waveforms and their corresponding scalp distributions is desirable for interpreting ERPs and 

enhancing conventional waveform analysis. When no prior information is given about the processes 

involved in generating the observed signal of interest (i.e., the ERP waveform) the procedure of 

identifying underlying source waveforms is referred to as “blind source separation” [8]–[10]. 

The blind source separation method most widely used in EEG analysis is independent component 

analysis (ICA), which deconstructs independent EEG signals into an equal number of statistically 

independent components (ICs) [10]–[12]. ICA optimizes an unmixing matrix to transform EEG signals 

into IC signals with minimal shared information. The inverse mixing matrix, referred to as the 

unmixing matrix, transforms ICs into EEG signals, thus providing the weights (spatial filter or “scalp 

map”) required to compute scalp projections from each individual IC source waveform [12]. This 

technique is particularly effective for preprocessing EEG by correcting artifacts such as eye-blinks 
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[10], [13], [14], but can also identify separable brain processes for further examination [9], [11], [12]. 

Blind source separation of grand-average ERP waveforms can be achieved by applying ICA to a 

database of ERPs from different subjects, which can be referred to as group-ICA [15], [16]. Doing so 

produces source waveforms and scalp maps that generalize across subjects. However, two 

limitations of ICA pertinent to this study are: (i) the number of sources is fixed by the requirement 

for square mixing/unmixing matrices, and (ii) the polarity of source waveforms and scalp maps can 

be inverted, obscuring direct visual analysis [12], [17], [18]. 

A recurrent neural network (RNN) can overcome these limitations of ICA for ERP data by (i) allowing 

more sources than the number of independent EEG channels, which can be optimized for sparsity 

with L1-norm regularization, and (ii) using a rectifying activation function to enforce positive 

amplitudes from source waveforms. RNNs for analysing ERP waveforms have recently been 

developed for modelling auditory evoked potentials from mice [19], [20], human ERPs [21], [22], and 

combining with a convolutional neural network (CNN) to study visual ERPs [23]. RNNs can also be 

used for distributed source reconstruction from MEG [24], EEG [25], and simultaneously recorded 

MEG-EEG [26]. These previous studies demonstrate some of the ways that RNNs can be used for 

analysing event-related neural signals. The current paper extends this work by developing a new 

method for separating ERP source waveforms and their corresponding scalp maps. This new method 

is applied to a collection of ERP difference waveforms from multiple subjects, thus generalizing 

grand-average data. However, this method could be adapted to model single-subject ERP data. ICA 

blind source separation was applied to the same data and the results from both methods were 

compared. 
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2. Materials and Methods 

2.1. Event-related potential data 

Data from the ERP Compendium of Open Resources (ERP CORE) were analysed in this study [27]. 

This database includes normative data recorded from 40 healthy adult subjects for some of the most 

well-established ERP paradigms. Twenty-eight EEG electrode recordings were used, named by the 

International 10-20 System: FP1, FP2, F3, Fz, F4, F7, F8, FC3, FCz, FC4, C5, C3, Cz, C4, C6, CPz, P7, P3, 

Pz, P4, P8, PO7, PO3, PO4, PO8, O1, Oz, and O2. Some artifacts in continuous EEG were corrected 

with ICA [13] and ICLabel [28] by automatically removing components classified as “muscle artifact”, 

“eye blink”, “heart beat” or “channel noise”. Corrected signals were then band-pass filtered from 0.1 

to 20 Hz and re-sampled to 100 Hz before re-referencing to the channel average. Relevant epochs 

were extracted from 0.2 s before stimulus onset to 0.8 s after stimulus onset. Resulting epochs were 

averaged to produce the ERP from each subject. Some subjects were removed due to excessive 

artifacts following recommendations provided in ERP CORE. 

From the passive auditory oddball paradigm, 80 dB standard ERPs were subtracted from 70 dB 

deviant ERPs to produce mismatch negativity (MMN) difference waveforms from 39 subjects. From 

the face perception paradigm, car ERPs were subtracted from face ERPs to obtain face N170 

difference waveforms from 37 subjects. From the word pair judgement paradigm, related-word ERPs 

were subtracted from unrelated-word ERPs to produce N400 difference waveforms from 39 

subjects. From the active visual oddball paradigm, frequent non-target ERPs were subtracted from 

rare target ERPs to produce P3 difference waveforms from 34 subjects. Altogether the resulting 

dataset included 149 ERP difference waves. 

 

2.2. Recurrent neural network modelling 

The ERP difference waveforms were scaled by 106 and combined to form a label tensor � �
���������  with � � 149 difference waveforms, 	 � 101 time-samples, and ���� � 28 EEG 

channels. The label tensor � may be considered as a set of difference waveforms ���, ��, … , ��� 
where �	 � ������� is a difference waveform obtained from an individual subject, and �	��� �
������� is a row vector containing amplitudes from a single time-sample of an individual ERP 

difference waveform. A matching input tensor � � ���������� was constructed with �
��� � 4 

channels containing step-pulse signals representing each type of difference waveform. Similarly, � is 

composed of ��� , ��, … , ��� where �	 � �������� and �	��� � ��������. Only one of the four 
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channels in � had a unit step pulse from 0 to 0.2 ms during each of 149 instances of � (first channel: 

MMN, second channel: N170, third channel: N400, and fourth channel: P3); the other three channels 

not associated with the respective ERP difference waveform were zero. These data are illustrated on 

Figure 1 below a block diagram of the RNN, which learned a function ���� � ��, where the mean-

squared error (MSE) between � and �� was minimized by gradient descent. 

The RNN architecture consisted of an Input layer, four SimpleRNN hidden layers with �
�
 � 64 

hidden units each, and a Dense output layer with ����  units (layer names in italics reflect 

TensorFlow nomenclature). The Input layer configures the network to receive input data with 	 

time-samples and �
��� channels. The first SimpleRNN layer implements equation (1), where 

���� � ��������� is the output tensor,  ���� � ����������� are forward weights,  ���� � ���������� 

are recurrent weights, and !��� � �����  is the bias vector. The second and third SimpleRNN layers 

implement equation (2), which is identical to (1) but takes input from the preceding layer, so 

 ���� � ����������  for hidden layer " � 2, 3, 4. The fourth SimpleRNN layer implements equation 

(3), which is essentially the same as (1) and (2) but without the bias vector. The Dense feed-forward 

output layer also excluded a bias vector, implementing equation (4) where  ��� � ����������. Each 

row of coefficients in  ��� defines the contribution of each source signal in ���� to each electrode 

channel in �, effectively acting as a spatial filter or scalp map. The rectified linear unit $%&'�·� 
activation function returns zero when its argument is negative and returns the argument when its 

argument is positive, enforcing output tensors to be non-negative. 

)	������ � $%&' *�	��� ���� + )	����� , 1� ���� + !���- (1) 

 

)	������ � $%&' *)	�������� ���� + )	����� , 1� ���� + !���-  " � 2, 3 (2) 

 

)	������ � $%&' *)	������ ���� + )	����� , 1� ����- (3) 

 

�.	��� � )	������ ��� (4) 

 

Model training was completed in two phases. In the first phase, the RNN was trained solely to 

minimize MSE loss in equation (5), where � � 149 was the number of difference waveforms and 

	 � 101 was the number of time samples. In the second phase, the pre-trained RNN from phase 
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one was fine-tuned with an L1-norm penalty (activity_regularizer coefficient, /�� = 0.0001) applied 

to ���� and an L2-norm penalty (kernel_regularizer coefficient, /�� = 0.01) applied to the output 

layer weights, as in equation (6). This made ���� sparse and constrained the range of  ��� . The 

adaptive-moment estimation (Adam) optimizer was used with default hyperparameters 

(learning_rate = 0.001, beta_1 = 0.9, and beta_2 = 0.999). Batch size was �, and the RNN was 

trained for 5000 iterations or until 250 epochs had elapsed without reduction in loss. After 

completing this training procedure, source waveforms were obtained from units with non-zero 

elements in ���� and scalp maps were obtained from their associated rows in  ��� . 

&011�2�, ��3 � 4562�, ��3 �
1
�	77��	��� , �.	�����

�

���

�

	��

 
(5) 

 

&011��2�, ��, ����, ���3 � 4562�, ��3 + /��8����8 + /��9 ���9 (6) 
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Figure 1  Diagram illustrating the RNN modelling approach. Four model inputs (bottom) were paired 

with ERP difference waveforms from 28 EEG channels used as labels (top) to train the RNN by 

supervised learning. From left to right, inputs represent MMN, N170, N400, and P3 difference waves 

with a unit step pulse high from 0 to 0.2 s on a specific channel. The model architecture consisted of 

an input layer, followed by four recurrent layers, and a fully-connected output layer. The temporal 

structure of T = 101 time-samples was preserved throughout the network, while the number of 

channels at different layers varied from Nch = 4 at the input, to Nhid = 64 for hidden layers, and Neeg = 

28 at the output. A one-to-many mapping between each input representations and multiple ERP 

difference waveforms caused model outputs to approximate the grand-average ERP difference 

waves. Source signals were obtained from the SimpleRNN 4 layer, and weights learned by the Dense 

layer project these source waveforms onto scalp EEG channels. Difference waves plotted at the top 

for illustrative purposes are grand-averages from  subjects, with 28 channel ERPs plotted from −0.2 

to 0.8 s (the same time scale as input signals shown at the bottom). 
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2.3. Independent component analysis decomposition 

Independent component analysis was performed to extract IC sources from the same dataset of ERP 

difference waves used with the RNN method. The data in � were structured as an EpochsArray 

object using MNE-Python [29] and the extended infomax ICA algorithm [30], [31] implemented in 

MNE-Python was applied to this object. This approach can be referred to as group ICA because the 

data used to derive the ICA decomposition came from a group of subjects [16]. The data matrix rank 

was 27 because EEG channels had common-average referencing. The principal component with least 

explained variance was removed to avoid rank deficiency before applying ICA, thereby preventing 

“ghost components” [17], [32] . The subsequent full-rank ICA decomposition yielded 27 ICs that 

were averaged across subjects for each ERP difference wave [i.e., MMN (n = 39), N170 (n = 37), N400 

(n = 39), and P3 (n = 34)] and multiplied by their associated scalp maps to reconstruct grand-average 

difference waves (see Figure 3). 

 

2.4. Data analyses 

Pearson’s correlation coefficient (r) and MSE were used to compare waveforms reconstructed by 

RNN and ICA sources with grand-average ERP difference waveforms. Correlation was also calculated 

between source signals and scalp topographies, as described below. The scipy.stats.pearsonr and 

numpy.mean functions were used to calculate r and MSE, respectively. 

Shannon entropy (SE) of each source projection’s correlation with four difference waveforms was 

used to quantify the degree of component-specificity of each source; SE of zero indicates that the 

source was associated with only one ERP difference wave, and higher values indicate correlations 

across multiple difference waves. The scipy.stats.entropy function was used to compute SE. For any 

ICA-derived sources that had negative correlation with some difference waveforms, their 

correlations were transformed into absolute values before calculating SE. 

Mutual information (MI) between each pair of RNN and ICA sources was also computed. MI is equal 

to zero only if the two signals are independent, and higher values indicate greater dependency 

between the pair of signals. Source signals associated with four difference waves were compared at 

once by first concatenating them. The sklearn.feature_selection.mutual_info_regression function 

was used to compute MI. 

A similarity score (SS) was calculated for each pair of RNN and ICA sources using equation (7). Here, 

�� � ���� was the row vector containing concatenated signals from source : associated with four 
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difference waveforms [i.e., 404 � 	 ; �
���], �� � ���� contained equivalent signals from source <, 
=� � ����� was the scalp map for source :, =� � �����  was the scalp map for source <, 4>�·� was 

the mutual information function, and ?�·� was Pearson’s correlation function. Taking the absolute 

values of correlation between pairs of � and = vectors accounted for source signals and topographic 

maps produced by RNN and ICA methods potentially being anticorrelated; this can happen because 

ICA allows biphasic signals [12]. 

552�� , �� , =� ,=�3 � 4>2�� , ��3 + 8?2�� , ��38 + 8?2=� , =�38 (7) 

 

2.5. Software 

Python 3 with matplotlib 3.5.2 [33], mne 1.4.0 [29], numpy 1.25.2 [34], scikit-learn 1.3.2 [35], scipy 

1.11.2 [36], and tensorflow 2.14.0 [37] were used in this study. Data and code developed in this 

study will be shared in a public repository at publication. 
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3. Results 

RNN performance after each training phase is reported in Table 1. In each training phase 5000 

iterations were completed. After the first training phase, RNN outputs correlated almost perfectly 

with ERP difference waveforms, which all had r > 0.98 and MSE < 0.005. This fit was achieved using 

64 source waveforms in the penultimate layer. After the second training phase (i.e., fine-tuning the 

network with L1-norm regularization), only 11 source signals were required to fit the training data, 

and the other 53 hidden units in the SimpleRNN 4 layer had zero amplitude. Evaluation metrics 

comparing model outputs with grand-average ERP difference waves deteriorated slightly while 

remaining decent; all r > 0.9 and MSE < 0.035. Performance of ICA source reconstruction of ERP 

difference waveforms is also reported in Table 1. These are also highly correlated (all r > 0.96), but 

have slightly higher MSE (all < 0.066) than RNN source reconstructions. 

When referring to RNN sources the remaining parts of the results, and discussion and conclusions 

sections implicitly refer to those obtained after the second training phase, unless otherwise stated. 

RNN sources, associated scalp maps, and reconstructed difference waveforms for channels of 

interest are plotted in Figure 2. The ICA method produced 27 independent sources, whose time-

courses, scalp maps, and reconstructed ERP difference waves for channels of interest are plotted in 

Figure 3. Reconstructed ERPs for all channels from RNN sources are plotted in Figure S1 and those 

from ICA sources are plotted in Figure S2. 

Correlation and MSE between each source’s projection and ERP difference waveforms are given in 

Table S1, which also reports SE and the most similar source for each source. It can be seen that RNN 

sources generally have lower entropy (μ = 0.36, σ = 0.43) than ICA sources (from 27 sources: μ = 1.2, 

σ = 0.138). Mutual information was also lower for RNN sources (from 55 pairwise comparisons: μ = 

0.0174, σ = 0.0275) than ICA sources (from 351 pairwise comparisons: μ = 0.3, σ = 0.123). Pairwise 

comparisons between all sources in terms of MI between signals are represented in Figure S3, r 

between signals are represented in Figure S4, and r between scalp maps are represented in Figure 

S5.  

Computed similarity scores for each pair of RNN and ICA sources are displayed in Figure 4. Three 

pairs of RNN and ICA sources are reciprocally most similar with each other based on this analysis. 

These are RNN 01 and ICA 01, whose projections both correlate strongly with P3; RNN 02 and ICA 04, 

whose projections both correlate well with N170 (although ICA 04 projections also correlate well 

with MMN); and RNN 04 and ICA 02, whose projections both correlate highly with N400 (although 

ICA 02 projections also correlate well with other ERPs). These correspondences indicate that both 
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methods extract some similar features from the data. Notable similarity was also seen from RNN and 

ICA sources extracted from the same data without correcting eye-blink artifacts, examples of which 

are plotted in Figure S6; here, ICA 01 captured both phases of the eye-blink source, RNN 01 captured 

negative scalp potential phases of the eye-blink, and RNN 02 captured positive scalp potential 

phases of the eye-blink. 

RNN hidden unit activations from all layers and outputs associated with each ERP difference wave 

are plotted in Figure 5. Equivalent data from the RNN after the first training phase are plotted in 

Figure S7. The RNN model transforms simple input step signals into output waveforms 

corresponding to grand-average ERP difference waves from 28 EEG channels. The first hidden layer 

(SimpleRNN 1) outputs depict ongoing oscillations that are perturbed when its input signal changes. 

The last hidden layer (SimpleRNN 4) outputs plotted in Figure 5 are the source waveforms in Figure 2 

grouped by difference wave type. Three hidden units were active for MMN (02, 04, and 06); nine 

were active for N170 (01, 02, 03, 04, 05, 06, 07, 10, and 11); three were active for N400 (03, 04, and 

06); and six were active for P3 (01, 02, 03, 06, 08, and 09). Mathematical relationships among these 

source signals can be studied using the weights of the trained RNN. For example, the recurrent 

weights from the last hidden layer ( ����, represented in Figure S8) can be interpreted as functional 

connectivity between source signals, and signals from the preceding layer (SimpleRNN 3) can be 

viewed as drivers of each source waveform. 

 

Table 1  Summary of RNN performance after two training phases and ICA performance 

Training 

phase
1
 

Iteratio

ns 

Nonzero 

sources 

MMN N170 N400 P3 

r MSE R MSE r MSE r MSE 

1  5000 64 0.989 0.00172 0.995 0.00486 0.994 0.0024 0.997 0.00416 

2 5000 11 0.907 0.0147 0.967 0.0345 0.918 0.0344 0.983 0.0274 

ICA
2
 <500 27 0.965 0.0119 0.994 0.0651 0.988 0.0246 0.997 0.106 

1In training phase 1 equation (5) was minimized; in training phase 2 equation (6) was minimized. 

2
Extended Infomax ICA algorithm implemented in MNE-Python. 
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Figure 2  Source signals (left), scalp maps (middle), and reconstructed ERP difference waveforms 

(right) from RNN sources. Sources are arranged in reverse order of overall correlation between 

source projections and ERP difference waveforms. Scalp maps are each scaled independently and 

symmetrically about zero for maximum positive (dark red) and maximum negative (dark blue) 

values. Dashed lines represent ground truth difference waveforms; solid lines represent 

reconstructed difference waveforms from the projections of these 11 RNN sources. 
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Figure 3  Source signals (left), scalp maps (middle), and reconstructed ERP difference waveforms 

(right) from ICA blind source separation. Difference waveforms reconstructed by ICA sources have 

slightly lower amplitudes than the ground truth; this may be because source signals for each subject 

were averaged before reconstructing these grand-average ERP difference waveforms. Separate 

figures for each RNN and ICA source showing source waveforms, scalp maps, and correlation of 

projections with four ERP difference waves can be viewed from: link will be shared with published 

version. 
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Figure 4  Similarity scores between each pair of sources. These SS values were calculated using 

equation (7) and reflect contributions from MI (Figure S3) and r (Figure S4) between source 

waveforms and r between scalp maps (Figure S5). Generally, SS is lower within RNN sources than 

within ICA sources, and higher between RNN and ICA sources than within RNN sources. For the 

source in each row, its corresponding most similar source was determined from the column with the 

highest SS. Diagonal elements are omitted. 
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Figure 5  Inputs, hidden unit activations, and output signals from the RNN. The rows show model 

responses for four difference waveforms, the columns show all of the signals at each layer of the 

RNN. Outputs effectively reproduce ERP difference waves from 28 EEG channels; these are colour-

coded to match the associated input channel, although hidden unit activity traces are coloured 

arbitrarily. SimpleRNN 4 signals active for MMN are 02, 04, and 06; for N170 are 01, 02, 03, 04, 05, 

06, 07, 10, and 11; for N400 are 03, 04, and 06; and for P3 are 01, 02, 03, 06, 08, 09. All signals are 

plotted with the same time range. Input signals are binary, RNN hidden unit signals are 

dimensionless, and RNN outputs correspond with ERP amplitudes in microvolts. A corresponding 

figure for the RNN after the first training phase is presented in Figure S8. 
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4. Discussion 

4.1. Theoretical validity of RNN sources 

Interpreting results from blind source separation of grand-average data from multiple paradigms 

presents a dilemma: whether sources that contribute to multiple ERPs reflect shared 

neurophysiological/cognitive operations or distinct operations with shared scalp distributions. Both 

RNN and ICA methods produced sources involved in reconstructing multiple ERP difference 

waveforms, although RNN sources tended to be more specific. Sensory modality and theories from 

cognitive neuroscience can be considered to rationalize these findings. However, justifying all of the 

sources involved is particularly challenging for ICA, which had 26 (MMN), 27 (N170), 25 (N400), and 

25 (P3) source projections that were positively correlated with multiple ERP difference waves. 

Deciphering these source signals is problematic, and some are possibly artifacts of ICA. In contrast, 

the sparser representation of RNN sources is simpler and easier to describe, hence more likely to be 

useful for generalizing these data. Summaries of RNN source findings for each ERP difference 

waveform are given below, before directly comparing RNN and ICA methods. 

MMN  The RNN required three non-zero sources to produce the MMN difference waveform. These 

are labelled 02 (r = 0.175), 04 (r = 0.269), and 06 (r = 0.87) in Figure 2. Source 06 can be considered 

the main source of interest for MMN. These sources also had relatively high entropy compared with 

other RNN sources (SE = 0.843, 0.822, and 1.124, respectively), which suggests that the sources 

underlying MMN may also play a role in N170, N400, and P3. Functional overlap between the 

sources of these four ERP difference waveforms is plausible, as each of these ERPs can be 

interpreted in the context of predictive processing [38] and conscious perception [39]. However, it is 

also possible that functionally distinct but spatially indistinguishable (using 28 EEG channels) sources 

are being represented by different source waveforms with shared scalp distributions. 

N170  The RNN required nine sources to reconstruct N170: 01, 02, 03, 04, 05, 06, 07, 10, and 11. Of 

these, projections from source 02 had the highest correlation (r = 0.746) with the N170 waveform; 

four sources (05, 07, 10, and 11) were only active for N170 (SE = 0). Several of these signals overlap 

around the time range of 0.17 s post-stimulus, but source 05 stands out as the most likely to 

coincide with the negative peak from the bilateral fusiform face area (FFA) prominently observed 

from channels PO7 and PO8 [40], [41]. Source 10 has a scalp distribution consistent with the positive 

deflection observed at approximately 0.18 s from the FFA. The temporal dependency between 

sources 05 and 10 is illustrated by recurrent weights in Figure S8, which show that source 05 

suppresses activity of source 10, whereas source 05 is comparatively unaffected by source 10; 
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indicating unilateral influence following the temporal sequence of these source waveforms, with the 

earlier source affecting the later source. 

N400  Three RNN sources generated N400: 03 (r = 0.042), 04 (r = 0.889), and 06 (r = 0.301). Source 

04 peaks at 0.33 s then steadily decays. It has a left-dominant scalp distribution, consistent with 

prior literature on N400 [42], [43]. Source 06 peaks at 0.26 s and has a posterior scalp distribution, 

suggesting differential processing in visual association areas preceding activation of source 04. 

Recurrent weights displayed in Figure S8 show that sources 06 and 04 tend to suppress each other, 

which partly explains why source 04’s amplitude increases as source 06’s amplitude decreases. This 

temporal dependency between sources, and their corresponding scalp maps, suggests that the N400 

ERP difference is underpinned by two separate components. 

P3  Five RNN sources had projections that correlated with P3: 01 (r = 0.868), 02 (r = 0.166), 03 (r = 

0.509), 06 (r = 0.112), 08 (r = 0.205), and 09 (r = 0.2). Sources 03 and 01 are candidates for P3a and 

P3b subcomponents, respectively, whose time courses and scalp maps agree strikingly with 

illustrations in [44]. Source 03 peaks at 0.37s and has a slightly more anterior positive scalp 

distribution than source 01, which peaks at 0.46 s and has slightly posterior positive scalp 

distribution. Although activity of these sources overlaps and their scalp distributions are similar, the 

RNN cleanly distinguishes them. The other sources (02, 06, 08, and 09) may reflect neural processes 

involved in producing P3 difference waveforms that are yet to be fully characterised. 

 

4.2. Comparisons between RNN and ICA methods 

4.2.1. General comparison 

The RNN method effectively deconstructs ERP difference waveforms into a collection of underlying 

source waveform and corresponding scalp maps, producing results comparable with ICA. Weights 

learned by the feed-forward output layer of the RNN do not change, making the corresponding scalp 

maps for each source waveform static for the duration of the ERP. This matches the assumption of 

ICA that independent sources of EEG are physically static throughout the data [12], [17]. 

The EEG inverse problem is generally assumed to be underdetermined, with there being many more 

neural sources than recording electrodes [45], [46]. As seen from Figure S8, the RNN method can 

produce more sources than channels for reconstructing ERP signals when trained without L1-norm 

regularization of source signals included with the loss function. However, the number of sources 

decreased from 64 to 11 by including L1-norm regularization, which attenuates source waveforms 
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that are less consequential for fitting the data. In contrast, the number of ICs produced by ICA is 

fixed to equal the number of independent channels (i.e. ���� , 1 � 27 for 28 EEG channels with 

common average reference). This feature of ICA may produce excessive sources for ERP data, some 

of which can be artifacts. RNN performance metrics deteriorate after the second training phase 

compared with the first phase or ICA performance (Table 1), reflecting a trade-off between source 

representation complexity and these performance metrics. ERP reconstructions from more complex 

source representations achieve higher correlation and lower MSE when evaluated against the grand-

average ERP difference waves, although this partially reflects fitting noise (e.g., in the baseline 

window). Therefore, a marginal performance deterioration may be considered an acceptable 

compromise for a sparser, more interpretable source representation. 

RNN source signals were qualitatively smoother than ICA sources. By only having positive amplitudes 

they also had less ambiguity between source waveform and scalp projection polarity. Fewer, cleaner 

source signals, with directly proportional relationships with scalp potential distribution, make RNN 

sources generally easier to inspect and interpret. Nevertheless, sources from both methods 

reconstructed ERP difference waves that correlated highly with ground-truth grand-average ERP 

difference waves. However, despite having comparable correlation with ground-truth ERPs, 

waveforms reconstructed by ICA sources had higher MSE than those reconstructed by RNN sources. 

This could be due to ICA source signals being averaged across subjects, to obtain grand-average 

source waveforms, before reconstructing grand-average difference waves; rather than 

reconstructing individual subject ERPs then averaging them to obtain the grand-average ERP. 

 

4.2.2. Source waveform polarity 

The RNN enforced source waveform amplitudes to be positive using the $%&'�·� function. In 

contrast, ICA source waveforms exhibit alternate polarity amplitudes at different times. Either of 

these behaviours may be preferred for modelling certain kinds of sources. A legitimate multi-phasic 

biological source waveform comes from eye blinking. As the eyelids close, the eyeballs articulate 

within their sockets, causing the electric dipoles between anterior chambers and posterior eyeballs 

to rotate back and forth. Blinking therefore generates source potential waveforms with polarity 

inversions due to large eyeball equivalent dipole orientation changes. This process can be 

represented by a single IC that allows positive and negative amplitudes. However, the RNN 

represents the same eye-blink with two source waveforms; one for positive and another for negative 

scalp amplitudes. An example of this is given in Figure S6, which was obtained by applying RNN and 
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ICA methods to the same ERP CORE data before removing eye-blink artifacts with ICA and IClabel 

[28]. 

Eye-blinks can distort ERP waveforms when they are systematically linked to experimental events 

[3]. For example, if blinking tends to occur immediately after visual stimuli and/or is related to the 

time interval between stimuli. Source waveforms associated with each ERP in Figure S6 may thus 

reflect different stimulus timings and their systematic relation to eye-blinks. For instance, the active 

visual oddball (P3) paradigm had the longest interstimulus interval, and the corresponding eye-blink 

source signals had the earliest onset and largest magnitude. Furthermore, the eye-blink source 

waveforms for MMN had comparatively low amplitude and did not follow the same pattern as those 

associated with visually-evoked difference waves. The RNN also appeared to mix part of the eye-

blink with P3b, indicating that the eye-blink artifact was systematically related to rare target stimuli. 

Neural sources of ERP components do not exhibit dynamic changes in dipole orientation like the eye-

blink because cortical tissue does not articulate. Voltage polarity at scalp electrodes due to cortical 

pyramidal cells is influenced by four factors: (i) orientation of the active patch of cortex relative to 

the scalp, (ii) whether summed post-synaptic potentials are mostly excitatory or inhibitory, (iii) 

whether synaptic potentials are at distal or apical dendrites, and (iv) the location of active and 

reference EEG electrodes [1], [3]. Factor (iv) is fixed during an experiment, and re-referencing to the 

montage mean post-hoc reduces sensitivity of recordings to neural activity detected by the original 

reference electrode. Each neural source can be assumed to have its own patch of cortex, be either 

inhibitory or excitatory, and act mainly on apical or distal dendrites. Under these assumptions, 

biphasic source waveforms imply either different patches of cortex, switching from excitatory to 

inhibitory activity, or moving site of activation from apical to distal dendrites. If any of these 

conditions arise, resulting scalp potential polarity changes could be fairly attributed to distinct neural 

sources, insofar as different neurophysiological mechanisms are responsible for the change in 

polarity. Therefore, each independent neural source can be assumed to have fixed orientation and 

polarity, with time-varying magnitude. Providing that dipoles do not physically articulate, such as 

during eye-blinking, rectified activation of RNN sources is thus an advantage in representing distinct 

neural sources and their corresponding scalp maps. However, this behaviour of the RNN could easily 

be changed by applying different activation functions to its penultimate layer outputs. 
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4.2.3. Utility as a computational model 

ICA is enacted by a single-layer artificial neural network trained to minimize shared information 

among its output units [30], [31]. ICA thus transforms EEG signals into ICs. The reverse operation of 

transforming ICs into EEG signals is made possible by inverting the weight matrix used to convert 

EEG into ICs. This inverse matrix is therefore equivalent to the scalp distribution of each IC [12]. The 

RNN has five layers of artificial neurons that perform a sequence of nonlinear transformations on 

input signals representing events to produce waveforms matching the grand-average of waveforms 

used as labels during model training [21], [22]. The output layer of the RNN learns weights to 

transform sources into ERP signals, which performs the same role as the ICA inverse matrix. 

The ICA method does not consider temporal dependencies within the data that are crucial for RNN 

modelling. Extracting temporal relationships from neural data makes the RNN a more attractive 

model of ERP generation than the comparatively simple ICA transformation, particularly because the 

RNN’s computational structure is amenable to further study. For instance, recurrent weights from 

SimpleRNN 4 layer,  ����, plotted in Figure S7, reflect functional connectivity between sources and 

may be studied to gain insights into interactions among sources responsible for generating event-

related neural signals. Moreover, it is theoretically feasible to examine shared drivers of sources 

from connected signals in preceding layers of the network (Figure 5), although new methods are 

needed for this. 
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4.3. Limitations 

RNN and ICA methods incorporate stochastic optimization, thus producing variable solutions with 

different initial conditions [22], [30]. Source signal order is particularly variable across solutions, 

although time-courses and scalp maps tend to be fairly reproducible [12]. However, the 

computational cost of the two methods differs more considerably. Implementing ICA effectively 

involves training a one-layer feed-forward neural network, whereas the RNN method involves 

training a five-layer recurrent neural network. The computational requirements of the RNN method 

are therefore higher than that of implementing ICA. 

For EEG artifact correction, ICA is applied to continuous EEG from a single-subject [3], [13]. One 

reason for this is that ICA assumes channel properties are stationary. However, group ICA may be 

more likely to violate this assumption of stationarity. It is also desirable to have more data points for 

training the neural network used in ICA to minimize mutual information among its outputs. 

Averaged ERP waveforms in � provided 15,049 total time samples (from 28 EEG channels), 

equivalent to 2.5 min of data, which is slightly below the minimum recommended number of 

samples for implementing ICA (i.e., A 15,680 � 20 ;�����; [12]). It could also be argued that 

Extended Infomax is not the ideal ICA algorithm for benchmarking [47]. Therefore, higher MI and SE 

for ICA sources than RNN sources could be partly explained by suboptimal application of one ICA 

algorithm to grouped ERP data. 

It would be possible to estimate the position, orientation and amplitudes of each of the RNN sources 

by fitting equivalent current dipole models to their scalp projections [12], [48], [49]. However, 

arguably too few EEG electrodes were used for accurately locating sources [50]. A higher density 

montage would entail more ICA sources, but could also yield more RNN sources if scalp topographies 

of underlying neural sources become distinguishable. Nevertheless, even after being well-separated 

by RNN or ICA methods, more electrodes would be preferable for fitting equivalent current dipoles. 
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5. Conclusions 

The RNN blind source separation method generates plausible source waveforms and scalp 

topographies. This technique is effective for generalizing grand-average ERP difference waveforms, 

but could easily be adapted for single-subject ERP data by using single-trial EEG signals as model 

labels. Some of the sources proposed by the RNN are very similar to ICs from ICA applied to the 

same data, quantified by mutual information and correlation between source waveforms and 

correlation between scalp maps. Despite these similarities, RNN sources were smoother, sparser, 

more ERP-specific, and had less ambiguity between source waveform and projected scalp potential 

polarities. After training the RNN, it provides a mathematical model describing transformations from 

representations of psychophysiological events into corresponding ERP waveforms. There is scope for 

extending this approach and developing analytical methods to potentially derive insights from the 

trained RNN about computational processes underlying event-related neural processing. 
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Supplementary Information 

 

Table S1  Analysis of RNN and ICA sources 

Source MMN 

(r) 

N170 

(r) 

N400 

(r) 

P3 (r) MMN 

(MSE) 

N170 

(MSE) 

N400 

(MSE) 

P3 

(MSE) 

SE Most 

similar 

RNN 01 0 0.101 0 0.868 0.078 0.493 0.212 0.197 0.334 ICA01 

RNN 02 0.179 0.746 0 0.166 0.076 0.24 0.212 0.75 0.843 ICA04 

RNN 03 0 0.368 0.042 0.509 0.078 0.464 0.211 0.588 0.834 ICA02 

RNN 04 0.269 0.136 0.889 0 0.074 0.489 0.046 0.768 0.822 ICA02 

RNN 05 0 0.554 0 0 0.078 0.363 0.212 0.768 0 ICA04 

RNN 06 0.87 0.24 0.301 0.112 0.02 0.469 0.195 0.76 1.124 ICA04 

RNN 07 0 0.464 0 0 0.078 0.412 0.212 0.768 0 ICA05 

RNN 08 0 0 0 0.205 0.078 0.496 0.212 0.741 0 ICA17 

RNN 09 0 0 0 0.2 0.078 0.496 0.212 0.74 0 ICA15 

RNN 10 0 0.206 0 0 0.078 0.48 0.212 0.768 0 ICA06 

RNN 11 0 0.199 0 0 0.078 0.478 0.212 0.768 0 ICA19 

ICA 01 0.36 0.286 0.488 0.794 0.072 0.464 0.171 0.444 1.31 RNN01 

ICA 02 0.606 0.468 0.8 0.6 0.066 0.464 0.152 0.642 1.368 RNN04 

ICA 03 0.063 0.4 0.104 0.647 0.078 0.471 0.21 0.686 1.064 ICA01 

ICA 04 0.816 0.813 0.429 -0.027 0.048 0.315 0.184 0.786 1.116 RNN02 

ICA 05 0.468 0.603 0.473 0.268 0.072 0.457 0.201 0.752 1.349 ICA04 

ICA 06 0.491 0.439 0.326 0.242 0.073 0.439 0.203 0.737 1.352 ICA10 

ICA 07 0.486 0.508 0.186 0.292 0.071 0.458 0.206 0.716 1.315 ICA08 

ICA 09 0.154 0.229 0.61 0.184 0.077 0.485 0.185 0.75 1.215 ICA02 

ICA 10 0.141 0.068 0.445 0.381 0.077 0.494 0.19 0.74 1.181 ICA02 

ICA 11 0.205 0.156 0.054 0.373 0.076 0.491 0.211 0.741 1.21 ICA06 

ICA 12 0.367 0.441 0.145 0.088 0.076 0.482 0.209 0.765 1.215 ICA04 

ICA 13 0.007 0.104 0.261 0.346 0.078 0.494 0.208 0.76 1.047 ICA01 

ICA 14 0.179 0.344 0.213 0.029 0.077 0.465 0.207 0.767 1.18 ICA04 

ICA 15 0.096 0.238 -0.068 0.304 0.078 0.484 0.213 0.753 1.226 ICA03 

ICA 16 0.325 0.186 0.141 0.213 0.075 0.487 0.208 0.745 1.339 RNN09 

ICA 17 0.342 0.265 0.07 0.16 0.075 0.485 0.211 0.758 1.253 ICA06 

ICA 18 0.022 0.009 0.187 0.262 0.078 0.496 0.21 0.752 0.911 RNN08 

ICA 19 0.386 0.221 0.21 0.104 0.076 0.492 0.21 0.765 1.29 ICA07 

ICA 20 0.051 0.047 0.298 0.33 0.078 0.495 0.205 0.758 1.089 ICA09 

ICA 21 0.023 0.118 0.074 0.163 0.078 0.491 0.211 0.761 1.215 ICA01 

ICA 22 0.183 0.198 -0.005 0.101 0.077 0.492 0.212 0.764 1.107 ICA19 

ICA 23 0.09 0.199 0.052 0.034 0.078 0.488 0.211 0.767 1.17 ICA14 

ICA 24 0.061 0.11 0.13 0.086 0.078 0.494 0.21 0.765 1.349 ICA14 

ICA 25 0.191 0.13 0.105 0.067 0.077 0.491 0.21 0.764 1.319 ICA02 

ICA 26 -0.009 0.23 0.153 -0.002 0.078 0.491 0.21 0.769 0.802 ICA06 

ICA 27 0.074 0.055 0.072 0.05 0.078 0.495 0.211 0.766 1.371 ICA14 

Sources from each method are ranked from highest to lowest by overall correlation of their projections across four ERP 

difference waveforms 

Correlation (r) and MSE were calculated from projections of source signals onto scalp sensors, comparing against ground 

truth grand-average ERP difference waveforms 

Shannon entropy (SE) of each source was calculated from its correlations with the four ERP difference waveforms 

Most similar source was that with the maximum similarity score (SS) calculated using equation (7) 
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Figure S1  Reconstructed difference waveforms from RNN sources plotted at 28 EEG channels. 

Reconstructed waveforms are plotted in colour and ground-truth waveforms are plotted in black, 

although two traces on most plots are difficult to distinguish because they are overlapping. All of the 

electrodes in each quadrant are plotted with the same y-axis scale. 
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Figure S2  Reconstructed difference waveforms from ICA sources plotted at 28 EEG channels. 

Reconstructed waveforms are plotted in colour and ground-truth waveforms are plotted in black. Y-

axis scales are the same for each electrode in the montage, but different for different ERP difference 

waveforms (MMN, N170, N400, and P3). These reconstructed waveforms have higher MSE 

compared with those from RNN sources, but otherwise are comparably well-correlated with ground-

truth waveforms. 
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Figure S3  Pairwise mutual information between RNN and ICA sources. MI is generally higher 

between ICA sources than it is for RNN sources. There also tends to be higher MI between RNN and 

ICA sources than within RNN sources. These dependencies are reflected by signal waveforms for 

these sources. 
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Figure S4  Pairwise correlations between signals for each RNN and ICA source. A similar pattern seen 

from MI analysis is observed for correlation between source signals. However, signals can be 

anticorrelated because ICA allows positive and negative source amplitudes, which may reflect 

inversions of RNN sources. Correlations within ICA sources are higher than those within RNN 

sources, and RNN sources tend to have greater correlations with ICA sources than with RNN sources. 
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Figure S5  Pairwise correlations between scalp maps for each RNN and ICA source. There are high 

correlations within and between RNN and ICA sources, reflecting similarity of scalp distributions. For 

RNN sources, negative correlations indicate opposite polarity contributions to scalp potentials. 

However, for ICA sources this relationship is ambiguous because ICA source signals can have biphasic 

polarity. 
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Figure S6  Example of an eye-blink source represented by RNN and ICA methods. This analysis was 

performed on data before correcting eye-blink artifacts. Source ICA 01 captures both phases of 

activity caused by changes in electric dipole orientation as the eye articulates in its socket while 

blinking. RNN 01 captures negative portions and RNN 02 captures positive portions of the blink 

artifact; positive and negative polarities given in terms of scalp projections at electrode FP1. The 

summed projections from RNN 01 and RNN 02 are highly correlated with the projection from ICA 01. 

Source waveforms and projections are plotted on the same time range. Differences in the latency of 

this systematic eye-blink artifact for N170, N400 and P3 may reflect differences in stimulus duration 

and interstimulus-interval (ISI) in each of these paradigms (i.e., N170: 0.3 s duration, 1.1-1.3 s ISI; 

N400: 0.2 s duration, 0.9-1.1 s ISI before target words; P3: 0.2 s duration, 1.2-1.4 s ISI). 

 

  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.23.590794doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.23.590794
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure S7  Inputs, hidden unit activations, and output signals from the RNN after training phase 1 

(without L1 regularization applied to SimpleRNN 4 layer). All 64 hidden units from SimpleRNN 4 are 

involved in producing outputs that match ERP difference waveforms; this makes it possible to use 

the RNN method to separate more sources than the number of EEG channels. All waveforms are 

plotted from −0.2 s to 0.8 s about stimuli onsets that occurred at 0.0 s. Hidden unit activation 

waveforms have arbitrary units and output waveforms have microvolt units. 
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Figure S8  Recurrent weights from the SimpleRNN 4 layer of the RNN. These recurrent weights 

determine the influence of affector source at time  in each row with affected source at time  in 

each column; hence the direction of influence is from row to column, as presented in this figure. 

Negative values indicate the tendency for an affector source to diminish or suppress activity of the 

affected source, while positive values indicate a tendency for an effector source to enhance or 

induce activity of the affected source. These recurrent weights thus reflect functional connectivity 

among sources. It is important to remember that inputs from the preceding hidden layer 

(SimpleRNN 3) also influence the activity of these sources. 
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