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• Reliable calculation of relative binding free energy changes for most protein mutations to
within ~1 kcal/mol.

• Automated Protein FEP+ Groups treatment of alternate protonation states for titratable
residues.

• Application of FEP+ methodology to “real-world” protein design projects.
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Abstract

Computational free energy-based methods have the potential to significantly improve throughput
and decrease costs of protein design efforts. Such methods must reach a high level of reliability,
accuracy, and automation to be effectively deployed in practical industrial settings in a way that
impacts protein design projects. Here, we present a benchmark study for the calculation of
relative changes in protein-protein binding affinity for single point mutations across a variety of
systems from the literature, using free energy perturbation (FEP+) calculations. We describe a
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method for robust treatment of alternate protonation states for titratable amino acids, which
yields improved correlation with and reduced error compared to experimental binding free
energies. Following careful analysis of the largest outlier cases in our dataset, we assess
limitations of the default FEP+ protocols and introduce an automated script which identifies
probable outlier cases that may require additional scrutiny and calculates an empirical correction
for a subset of charge-related outliers. Through a series of three additional case study systems,
we discuss how protein FEP+ can be applied to real-world protein design projects, and suggest
areas of further study.
Keywords: Free energy methods, Binding affinity prediciton, In silico mutational screening,
Protein binding interface optimization, Protein-protein interactions

Introduction

Optimization of protein-protein binding interfaces is central to biologics design. Such interfaces
can be altered by protein residue mutation to increase or decrease binding affinity, as well as
other properties such as thermostability, hydrophobicity, immunogenicity, and pH sensitivity
[1, 2, 3, 4, 5]. Traditionally, this has been done through a combination of chemical and structural
intuition on the part of research scientists and large-scale experimentation, via such methods as
brute-force saturation mutagenesis followed by a high-throughput assay; random or degenerate
codon mutagenesis; or library screening using a display technology [6, 7, 8, 9]. However, these
methods can be expensive, in terms of both reagents and labor costs as well as time. In recent
years, due in part to steady gains in computing power, and especially with the advent of
GPU-based calculations, computational methods for predicting the effects of mutations on
binding affinity and other physical properties have grown in popularity. At the same time,
methodological improvements have resulted in improved accuracy across a wide range of
methods, including empirical, machine learning-based, and physics-based methods
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].
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Free energy perturbation (FEP), first introduced by Zwanzig in 1954 [21], is a physics-based
method for calculating changes in free energy between closely related molecular systems using
a series of molecular dynamics (MD) simulations. Modern implementations of FEP have been
developed to incorporate substantial improvements in throughput and sampling efficiency
[22, 23, 24], as well as the accuracy of molecular mechanics force fields used to calculate
interatomic forces and system energy [25, 26, 27, 28, 29].

One such modern implementation which is widely used in structure-based drug design is FEP+
[30]. Over the past decade FEP+ has demonstrated a high level of accuracy and reliability in
predicting the binding potencies of small molecules with their protein targets, both via relative
binding FEP for congeneric ligands in lead optimization and via absolute binding FEP for diverse
ligands in hit discovery [31, 32]. Such calculations have generated positive impact on a large
number of prospective studies in active drug discovery projects, leading to faster project
progression through faster identification of novel potent chemical matter [33].

Initially developed for ligand perturbations in a protein receptor binding site, the FEP+ method
has been adapted to a variety of different applications. We have previously published
proof-of-concept studies for the application of FEP+ to predict the effects of neutral and
charge-changing perturbations on protein-protein binding affinity [17, 18], as well as protein
thermostability calculations to predict melting temperatures (Tm) for mutant proteins [34, 35, 36].
FEP+ has been demonstrated to calculate both protein residue pKa values and free energies
between different receptor conformations with high accuracy [37, 38]. It has also been used
recently to probe the effects of mutations on the interaction between the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) viral spike protein and the human angiotensin converting
enzyme 2 (ACE2) receptor, where it outperformed several other computational methods, as
determined both by the agreement of its results with experiment and by its ability to identify
stabilizing mutations [39]; and to elucidate the structural basis for the selectivity of α-conotoxin
variants for different nicotinic acetylcholine receptor subtypes [40].

The aim of the current study is to benchmark the accuracy of FEP+ for protein-protein binding
affinity, identify limitations of the current method that need further improvement, and demonstrate
how the calculations might be utilized during a protein interface optimization project. We test
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FEP+ on a curated benchmark data set of binding free energies for single mutational variants of
protein-protein binding systems collected from public sources and supplement it with several new
experimental measurements from our own work. We apply default FEP+ protocols to assess the
accuracy and reliability of the “out-of-the-box” calculations, and systematically investigate cases
with large errors. We present an automated protocol for detecting probable outlier cases, to
guide the user to more carefully examine the results of cases that satisfy certain chemical and
structural criteria in prospective studies. (In this manuscript we use the term “outlier” to refer to
cases with absolute errors in relative binding free energy, ΔΔG, larger than 2 kcal/mol relative to
experiment.) For one class of outliers, consisting of cases which result in an unpaired buried
charge, we introduce a single-parameter empirical correction to account for incomplete relaxation
of those systems. Finally, we apply this automated protocol to data from three formerly active
biologics design projects to demonstrate the potential value of the method in real-world interface
optimization scenarios.

Results

Benchmark dataset curation

To assess the performance of protein FEP+ on a range of systems and protein types, we
assembled a benchmark dataset of binding affinity measurements from publicly available
sources. For each system, we included binding affinity data for the wild-type (wt) protein
complex as well as for the complex with various single amino acid residue mutations. In total we
collected binding data for 9 systems. Binding data for 6 systems were obtained from the SKEMPI
2.0 database [41], along with 3 systems from our own previous work [42, 43, 39], including
several previously unpublished measurements (Supplemental Figure 1). To increase the
reliability of the experimental values, we limited the dataset to include only measurements made
by isothermal calorimetry (ITC) or surface plasmon resonance (SPR). The selected benchmark
systems and a summary of the included mutations are presented in Figure 1.

The full benchmark dataset comprises 208 cases, with 116 neutral perturbation cases, which
involve FEP mutation edges between neutral, non-titratable residues; 91 charged perturbation
cases, which involve one or more residues with nonzero formal charge (for the current study,
these are anionic forms of Asp and Glu; and the cationic forms of His, Lys, and Arg); and 1
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“core-hopping” perturbation case, which involves proline and the corresponding change in
protein backbone topology. The range of binding ΔΔG values relative to wt for the full dataset is
−3.79 to +4.91 kcal/mol, with mean and median mutational binding ΔΔG values of +1.05 and
+0.81 kcal/mol, respectively. Per-system statistics are presented in Table 1.

Retrospective FEP results

We ran retrospective protein FEP+ calculations for the systems in the benchmark dataset using
all-atom structural models derived from the structures deposited with the RCSB Protein Data
Bank (PDB), and prepared as described in the Methods section, including the addition of
hydrogen atoms and assignment of protonation states expected to be dominant in the bound
complex at the pH of the experimental measurements. For each system, a perturbation map was
constructed as previously described [44], as a network graph with nodes representing unique
variants and edges representing FEP+ perturbations (mutations) between node endpoints. We
included perturbations from the starting model to all alternate protonation states of the perturbed
residue for mutations to or from titratable amino acids Asp, Glu, His, and Lys. To investigate the
convergence of the calculations, the FEP+ simulations were run for 100 ns, then post-processed
to obtain the ΔΔG values for each perturbation edge at 10 ns. This post-processing was
functionally equivalent to running initial 10 ns simulations followed by extension of each
simulation to 100 ns.

The inclusion of alternate protonation states afforded us several options for analyzing binding
ΔΔG values for mutations involving titratable residues. In an initial, simplistic treatment of these
protonation states, we considered only the initial starting protonation state present in the
prepared all-atom structural model, ignoring other possible protonation states for titratable wt
residues, and reported the calculated ΔΔG value for the perturbation to a predefined protonation
state of the mutant residue. Specifically, for this “naïve” treatment, for all mutations to the
titratable residues indicated above, we used the binding ΔΔG values for mutations to negatively
charged Asp (three-letter residue code ASP) and Glu (GLU); positively charged Lys (LYS); and the
neutral tautomer of His that is protonated at the 𝜀 nitrogen (HIE). Binding ΔΔG values to other
protonation states (neutral ASH, GLH, LYN, and HID; and positively charged HIP), and the states
of titratable wt residues not represented by the prepared input model were not considered.
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Results for 10 and 100 ns FEP+ calculations with naïve treatment of protonation states are
shown in the upper panels of Figure 2. Overall root mean square error (RMSE) for these naïve
calculated ΔΔG values compared to experimentally measured values are 1.65 and 1.42
kcal/mol, and coefficient of determination (R2) values are 0.29 and 0.27, for 10 and 100 ns
results, respectively. A report of per-system dataset statistics can be found in Table 2.

We found that on average the longer 100 ns simulations resulted in smaller overall errors, but
similar correlation coefficients, compared to the more typical 10 ns simulations. This was not
surprising, as the cases where initial configurations of the mutants were in high energy
conformations were partially relaxed in the 100 ns simulations, but likely required even longer
time for full relaxation. Notably, relatively few cases showed substantial change in predicted
binding ΔΔG between the 10 ns and 100 ns timepoints, with median absolute ΔΔG shifts of 0.33
kcal/mol, as shown in Supplemental Figure 2.

Effect of Protein FEP+ Groups treatment

Several of the large outliers among the naïve treatment results involved mutation to or from
titratable residues. The preferred protonation states of these titratable residues might differ
between the relevant physical macrostates, namely the bound protein-protein complex and the
unbound protein in solution. In the physical system, these alternate protonation microstates are
able to interconvert freely, with the populations of the protonated or deprotonated microstate of
each titratable residue at the experimental pH being determined by its pKa in the given physical
macrostate. A more robust approach to analyzing such mutations requires considering all
microstates as a single statistical mechanical ensemble, to better reflect the physical system that
was tested experimentally. The method we developed to implement this robust treatment of
alternate protonation states, called Protein FEP+ Groups, groups together nodes (mutational
variants) in the FEP+ perturbation map that represent the same physical amino acid sequence
but differ in modeled protonation state, and a single, population-based, Boltzmann-weighted
predicted binding ΔΔG is calculated for the entire ensemble of protonation microstates in the
node group. The pH-dependent per-site population of each protonation microstate is obtained
via the calculated pKa of the specific amino acid residue at the given titratable site (residue
position) in the given physical macrostate. The Protein FEP+ Groups treatment is described in
more detail in the Methods section below.
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Two examples of FEP+ Groups treatment are presented in Figure 3. As shown in Figure 3(a),
1IAR A:W91 was mutated to Asp, so we considered both the deprotonated ASP as well as
protonated ASH forms for the mutant. Experimentally the Asp mutation yielded a binding ΔΔG of
+1.31 kcal/mol, but the naïve prediction of +3.42 was overly unfavorable. When all protonation
states were considered, the largely hydrophobic surrounding environment resulted in unfavorable
binding ΔΔGs for both the charged and neutral forms, but the neutral ASH form was favored over
ASP by nearly 3 kcal/mol in the binding interface, despite the presence of a nearby Arg side chain.
FEP+ Groups-calculated pKas of the mutant Asp in the unbound protein and in the context of the
protein-protein binding interface indicated a change in preferred protonation state upon binding
at the experimental pH of 7.2. In the unbound state, the deprotonated ASP form was calculated to
be dominant, with an A:D91 side chain pKa of 6.5; whereas in the bound state, a higher complex
pKa of 8.5 indicated a preference for the neutral ASH form. Accounting for this change in
dominant protonation state, the FEP+ Groups treatment yielded a more accurate predicted ΔΔG
of +1.99 kcal/mol, corresponding to a decrease in absolute error from 2.11 to 0.68 kcal/mol.

A second example, shown in Figure 3(b), is 6NRQ C:Q138D. This mutation was also
unfavorable experimentally (+1.54 kcal/mol), but the naïve predicted value was again too highly
destabilizing (+4.09). In the crystal structure, the wt C:Gln138 side chain acts both as an H-bond
donor (to the C:Glu136 side chain as well as to the D:Lys81 backbone carbonyl) and as an
H-bond acceptor (from D:Ile83 backbone N–H). Mutation to either Asp state was predicted to be
unfavorable, due to the disruption of these interactions. FEP+ Groups treatment produced a
predicted ΔΔG of +0.75, reducing the error from 2.55 to 0.79 kcal/mol. Due to hydrophobic
contacts and the proximity of C:Glu136, FEP+ Groups-calculated pKas for both physical
macrostates were significantly elevated compared to the pKa value of 3.67 for an isolated Asp in
solution [45], with calculated pKa values of 8.4 (unbound) and 10.9 (bound), thus indicating the
neutral ASH form was preferred in both unbound and bound states at the experimental pH of 7.2.
Accordingly, in this case mutating to ASH alone would have provided a good estimate of the
FEP+ Groups-treated value, due to the minimal contribution of the high-energy (and therefore
low-prevalence) ASP state, though this would not necessarily have been apparent based on the
input structure alone.
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After applying the FEP+ Groups treatment to the retrospective calculations, we observed
decreased RMSE and increased Pearson correlation coefficient (PCC) and R2 at both 10 and
100 ns time points. These results are presented in the lower plots of Figure 2. The number of
cases where this groups treatment substantially affects the results is relatively small, with
differences larger than 0.25 kcal/mol observed among the 100 mutations involving titratable
residues for 8 and 6 cases, for the 10 and 100 ns results, respectively. Importantly, Protein FEP+
Groups treatment yielded calculated ΔΔG values with reduced absolute error compared to
experiment on average: among these cases involving titratable residues, FEP+ Groups
treatment resulted in decreased RMSE at both timepoints, from 2.33 to 1.48 kcal/mol at 10 ns,
and from 1.83 to 1.35 kcal/mol at 100 ns.

Analysis of outliers

The FEP+ results from longer simulation time and rigorous treatment of titratable residues
yielded accuracy consistent with results from previous studies, with RMSE in the range of about
1.0-1.5 kcal/mol [17, 18]. However, a number of mutations exhibited absolute errors in binding
ΔΔG larger than 2 kcal/mol compared to experiment, which would reduce the prediction
accuracy in prospective studies. In an effort to investigate the limitations of the current default
protein binding FEP+ methodology and guide future methods improvement, we systematically
examined the cases from the 100 ns FEP+ Groups-treated results with the largest errors relative
to experiment and identified common features for these outliers which might be useful for
prospective application of the method. We initially focused on cases with absolute errors larger
than 2 kcal/mol, which totaled 19 cases, or about 9% of the full dataset. Close inspection of the
wt crystal structures, mutant FEP+ starting models, and FEP+ trajectories for these cases
suggested several distinct sources of error, which are summarized in Table 3. These error
sources can broadly be categorized as either sampling errors, where the system had not yet fully
relaxed or failed to sample relevant areas of conformation space; or force field errors, where
specific interaction types may not be handled properly by the current OPLS4 force field.
Examples of the various outlier classes are shown in Figure 4.

Outliers due to insufficient sampling and other conformational issues

The largest outlier class comprised 7 cases, one-third of the outlier cases, where mutation
resulted in the elimination of a salt bridge present at the binding interface in the wt structure.
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These are depicted in Figure 4(a). All seven cases were unfavorable experimentally, with binding
ΔΔGs ranging from +0.43 to +3.75 kcal/mol, but FEP+ consistently predicted them to be too
unfavorable with signed errors ranging from +2.3 to +4.5 kcal/mol. Six of the cases (which were
all mutations at one of three Arg positions in the 1IAR system: A:R81A/E, A:R85A/E, and
A:R88A/Q) disrupted trans salt bridges, that is, salt bridges involving residues from both protein
binding components, whereas one case (1VFB C:D119A) disrupted a cis salt bridge, between
two residues from the same side of the interface. We observed that the mutated residues in
these outlier cases were largely buried, such that upon mutation of one of the two residues
forming a salt bridge, the remaining partner residue was left in an unstable configuration: a
charged residue, buried at the interface with limited solvent accessibility. FEP+ correctly
predicted unfavorable positive binding ΔΔG values for all 7 of these cases, but dramatically
overestimated the magnitude: for the 6 trans salt bridge cases, FEP+ overpredicted the
unfavorability of the mutations by approximately 3 kcal/mol.

Two related outlier classes also involved unstable charged configurations upon mutation. The
first of these, shown in Figure 4(b), involved a single case where a salt bridge was disrupted upon
mutation, but the mutated residue was entirely buried within the mutated protein. Specifically, for
1DVF B:E98A (expt. +4.19; pred. −0.05), in the wt structure residue B:Glu98 forms a salt bridge
with A:Arg96 across the internal VH-VL heterodimerization interface, between the heavy and light
chain variable domains of the antibody Fv region. Although close to the binding interface, this
residue was buried in the unbound antibody and not in contact with the binding partner, and
therefore not directly involved in binding. The mutation disrupting the salt bridge between the
heavy and light chains of the antibody could significantly change the relative orientation between
the VH and VL domains, thus disrupting the binding with binding partner. However, the relatively
short timescale (100 ns) in FEP+ simulations was not sufficient to fully relax the conformations of
and relative orientation between the mutant VH and VL domains in the unbound mutant structure,
resulting in an underprediction of the unfavorability of the mutation and a large absolute error of
4.24 kcal/mol. The final charge-related outlier, shown in Figure 4(c) was 1IAR A:T13D (expt.
-0.22; pred. +3.86) where a neutral residue was mutated to a charged amino acid at a largely
buried position at the protein-protein complex interface. This sort of charge-introducing mutation
is functionally similar to the salt bridge-breaking cases, in that the end result is an unpaired
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charge in an unfavorable configuration, which likely requires substantial relaxation to adopt a
conformation not accessible on typical FEP+ timescales. We noted that there were also several
charge-flipping cases in our dataset, whose mutations inverted the sign of the charge on the
amino acid side chain, resulting in a net change in formal charge of ±2. Two of these (1IAR
A:R85E and A:R81E) were among the salt bridge-breaking cases described above, but the other
two (1IAR A:K12E and A:K84D), were also unfavorable experimentally and gave signed errors
greater than +1 kcal/mol, suggesting that these types of buried (or mostly buried) unpaired
charges resulting from charge flipping perturbations also tend to be undersampled.

Figure 4(d) depicts an outlier class conisiting of three cases (1JRH L:Y91A and H:H100BA; and
1VFB B:W52A) which involved mutations of larger aromatic residues, buried in the complex
structure, to much smaller side chains, namely alanine. All three were modestly unfavorable
experimentally (+0.6 to +1.7 kcal/mol), but FEP+ overpredicted the unfavorability by 3-5 kcal/mol.
Due to their large surface area and low solvent accessibility, the aromatic residue side chains at
these positions made numerous interactions in their respective wt structures, including
hydrophobic interactions, hydrogen bonds, and π interactions. When such large side chains were
eliminated from the structure entirely (rather than being replaced with a similarly sized amino
acid), the 100 ns FEP+ simulations appeared not to have been sufficiently long to allow for full
relaxation and rearrangement of the surrounding residues into the resulting void, thereby
producing FEP+ predictions that were too highly unfavorable. This type of slow convergence
behavior was previously observed for TRP->ALA mutations in a dataset with anti-HIV-1
antibodies in complex with HIV-1 gp120 spike proteins [17]. Notably, the wt residues for the two
1JRH cases here (L:Tyr91 and H:His100B) are adjacent and interact in the complex, suggesting
a common mode of error for both.

An outlier class with errors derived from sampling issues related to starting model
conformations, shown in Figure 4(e), included 1DVF D:H33A and three mutations on a loop in
the 1JRH system, namely I:G50A, I:E55A, and I:E55P. In the 1DVF D:H33A case (expt. +1.86,
pred. -0.26), which is presented in more detail in Supplemental Figure 3, the geometry of the wt
D:His55 residue (modeled as HIP) from the crystal structure showed its N𝜀 proton interacting
with two side chain carboxylate groups, from D:Asp52 (in cis) and B:Asp100 (in trans). In the 100
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ns FEP+ simulation, this initial geometry resulted in poorly defined, low-persistence interactions
with the two carboxylate groups for approximately the first 50 ns of the simulation, after which a
stable configuration appeared with the His55 ring flipped 180° and its N𝛿 and N𝜀 protons each
forming hydrogen-bonding salt bridge interactions with one of the two Asp side chains. The lack
of these interactions for much of the the wt trajectory from the FEP+ calculations resulted in an
underestimation of the unfavorability of the mutation. A subsequent standard MD simulation of
the wt structure resulted in rapid adoption of the stable, dual-salt bridge configuration of the
imidazole ring, which remained stable throughout the trajectory. Furthermore, running the
D:H33A mutation by FEP+ using the final frame of this MD trajectory as the input model yielded
an accurate binding ΔΔG prediction of +1.56 kcal/mol, within 0.30 kcal/mol of the experimentally
determined value of +1.86 kcal/mol. This result suggests the starting conformation of D:His33
may be the result of a modeling error in the original crystal structure; unfortunately the 1DVF
PDB entry has no associated experimental diffraction data, so it is not possible to ascertain the
degree to which this FEP+ and MD-validated conformation of D:His33 might be more consistent
with the experimental crystal context than the originally deposited conformation.

The 1JRH I:G50A (expt. +4.53, pred. +1.49), I:E55A (expt. -0.43, pred. +1.74), and I:E55P
(expt. -3.79, pred +1.63) cases, which are also depicted in Supplemental Figure 4, each involve
mutation of a residue on the flexible I:50-56 loop of the interferon γ receptor 1 (IFNγR1) antigen.
The first of these, 1JRH I:G50, is located in a tight turn with geometry resembling a γ-turn, and
backbone φ and ψ angles that make it an outlier in the Ramachandran plot for the crystal
structure (Supplemental Figure 4 a-b) This high-energy backbone conformation would require
substantial relaxation to achieve the true lowest energy conformation. Indeed, two other crystal
structures (1FYH chain B, and 6E3L chain D) show IFNγR1 adopting an alternative conformation
of the I:50-56 loop, further suggesting that the conformation in the 1JRH crystal structure may be
suboptimal. The second mutation site on this loop, 1JRH I:E55, has a side chain that is highly
solvent exposed in the complex, making no direct contact with any antibody residue in the wt
crystal structure. It is approximately 6 Å from two different primary amino groups—namely the
solvent-exposed (and therefore flexible) H:Lys64 side chain and the N-terminal amino group from
L:Ser1—and FEP+ and MD trajectories show it interacting with the charged N-terminus of chain
L. Mutation to Ala eliminated this charged interaction, thus accounting for the unfavorable
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prediction by FEP+. In this case, where the starting structure is substantially unrelaxed, random
variation in the direction and degree of relaxation among different simulations can lead to high
levels of noise in predicted results as compared to experiment. In other words, the interaction
with the charged chain L N-terminus may not be representative of the physical system. More
generally, for mutation of any non-contact residue in a crystal structure to yield a binding ΔΔG
significantly different from zero essentially requires some conformational rearrangement, either in
the unbound form, the bound form, or both. Accurate simulation of such conformational changes
would necessitate sampling beyond what is achievable in the standard protein binding FEP+
workflow, thus rendering cases of this type not typically suitable for protein binding FEP+
simulation using standard protocols. Notably mutations of 1JRH I:G50 to Ala; and I:E55 to Ala
and Pro result in errors of similarly large magnitude, but opposite signs. Whereas we attribute
the negative signed error of the I:G50A mutation to initial strain in the wt complex; the large
positive signed errors for the I:E55 mutations to Ala and especially Pro in this flexible loop
suggest that further relaxation of the mutant bound complex is required, and is more pronounced
in the Pro case, likely due to a change in the loop backbone conformation required to
compensate for the rigidity of the Pro backbone.

A final sampling-related outlier class, shown in Figure 4(f), involved mutations in the 1DVF
antibody CDR H3 loop, D:Y98A (expt. +4.74, pred. +1.32) and D:R100BY (expt. +4.09, pred.
+1.2). These outliers exhibited the negative signed FEP error common to cases involving
unsampled rearrangement in the unbound mutant protein. Both cases were predicted to be
modestly unfavorable, but experimentally were much more unfavorable. For each of these
cases, we repredicted the conformation of the CDR H3 loop in the unbound free antibody, and in
each case identified a different loop conformation with lower energy than the crystal structure-like
conformation (Supplemental Figure 5). These results suggest the error in the FEP+ predictions
may be at least partially due to this type of unsampled H3 loop rearrangement in the unbound
mutant protein.

Outlier attributed to force field limitations

For one outlier case, we hypothesized that the deviation from the experimentally measured
binding ΔΔG value resulted from a limitation of the fixed-charge force field used in FEP+
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simulations. More specifically, the case in question, 1JRH I:N53A (expt. +3.89, pred. +1.37),
involved mutation of a residue that participates in a well-defined π interaction in the wt crystal
structure. As depicted in Figure 4(g), the π interaction in question, rather than a more typically
discussed π-π or π-cation interaction, was instead a π-hydrogen bond [46] between the wt Asn
sidechain amide and the π electron cloud of the 6-membered aromatic ring of I:Trp96. Due to the
fixed-charge nature of the OPLS4 force field, it was not possible for the FEP+ calculation to
account for the contribution of this π interaction to the stability of the wt complex, which resulted
in a predicted binding ΔΔG value that was too favorable by 2.5 kcal/mol.

We investigated this putative force field-related outlier via a 100 ns FEP+ calculations run with a
developmental version of the OPLS force field which includes explicit polarization of aromatic
residue sidechains. The FEP+ results with explicit polarization resulted in substantial
improvement of the predicted binding ΔΔG, to +3.09 kcal/mol (an error of -0.8 compared to
experiment). This preliminary result reflects an increased stabilization of the wt complex by more
accurately modeling the energetics of the π-hydrogen bond between the Asn and Trp sidechains,
and suggests the inclusion of explicit polarization in future versions of the OPLS force field may
yield improved results in similar cases.

Automated detection of probable outliers

Based on the above observations about the largest outliers in the benchmark dataset, we
developed an automated method for detecting cases where a protein binding FEP+ calculation is
likely not able to accurately predict the effect of mutations on the binding affinity. These probable
outliers are identified based on information available in the output perturbation map (.fmp) file
from the protein binding FEP+ job. This map file contains structural information for the starting
models used in simulation for both wt and mutant nodes (protein variants), as well as free energy
time series data and a summary report of interactions made by the wt and mutant residues at the
mutated position for each perturbation edge (mutation).

The automated script uses two sets of empirical rules to flag probable outlier cases. The first
set identifies cases that break salt bridges or otherwise introduce or flip charges at buried or
mostly buried sites. A second set of rules identifies cases that involve either mutation of large
aromatic residues to substantially smaller residues at buried sites; or mutation to Proline, which
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has unique backbone torsional characteristics among the amino acids. These rules use the
features derived from the perturbation map as well as a set of five orthogonal, tunable
parameters: 1) a fractional solvent-accessible surface area (fSASA) cutoff to classify buried
residues; 2) a number of charged neighbors cutoff to identify interacting clusters of charged or
titratable amino acids; 3) a residue size change cutoff to identify large changes in the number of
heavy (non-hydrogen) atoms; 4) an interaction frequency cutoff as a threshold for defining
trajectory-derived interactions; and 5) a predicted ΔΔG cutoff to identify highly destabilizing
perturbations. For the results described in this manuscript, we used an fSASA cutoff of 0.1;
charged neighbors cutoff of 6; residue size change cutoff of 5; interaction frequency cutoff of 0.5;
and ΔΔG cutoff of 2.5 kcal/mol.

The automated outlier prediction script flagged 22 potentially problematic cases among a total
of 208 mutations from the 100 ns FEP+ Groups-treated benchmark dataset. This included 12 out
of 19 outlier cases with absolute errors > 2 kcal/mol (63%). Additionally we marked as probable
outliers 7 cases out of 55 with absolute errors between 1-2 kcal/mol (13%). Of the 134 well
predicted cases with absolute errors < 1 kcal/mol, only 3 (2%) were flagged as likely outliers. A
summary of the flagged cases is presented in table Table 4.

Empirical correction of charged outlier cases

We observed that the magnitudes of the errors for the automatically flagged charge-related
outlier cases from the benchmark dataset were relatively consistent across the individual outlier
categories, with a mean absolute error of 2.8 ± 1.0 kcal/mol. Indeed, when one considers that
the source of the error in each of the categories is the same—namely, insufficient sampling after
burial of a charge without an oppositely charged partner residue—this is not unexpected.
Therefore, we sought to define an empirical correction term that could be applied generally to
such automatically flagged charge-related cases.

In each case, the sign of the error relative to experiment depended only on the location of the
offending charged residue, regardless of whether the charge was introduced with the mutation or
left unpaired by mutation of a neighboring residue. Specifically, unpaired charges at the binding
interface always exhibited a positive signed error in the FEP+ prediction relative to experiment,
that is, the predicted binding ΔΔG values were too unfavorable. Whereas, leaving an unpaired
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charge internal to one of the proteins and not involved in binding, as described above for 1DVF
B:E98A, resulted in a negative signed error. This was consistent with our interpretation that in the
case of a positive signed error, the mutant bound complex was insufficiently relaxed in
simulation, thereby causing the predicted ΔΔG to be too unfavorable. Conversely, for 1DVF
B:E98A (which was the only example among these cases with a negative signed error), the
antibody Fv must retain or adopt the binding-competent conformation observed in the crystal
structure in order to bind the antigen, but in order to alleviate the buried charge at the VH-VL

interface, the unbound antibody Fv region in the physical system would readily relax to a
lower-energy conformation, which was unable to be sampled on the timescale of these
calculations. The associated reorganization penalty in the unbound mutant state was missing
from the FEP+ calculation, resulting in a predicted ΔΔG value that was too favorable compared
to experiment. Given these well-defined criteria for determining the sign of the charged outlier
correction term, starting with the predicted ΔΔG value for each case we either subtracted (all
binding interface charged outlier cases) or added (1DVF B:E98A only) 2.8 kcal/mol to produce
empirically corrected predicted ΔΔG values.

After applying the empirical correction to the charged outlier cases, and excluding the other
automatically flagged cases, which we treat as lower confidence predictions more likely to
require extensive investigation or non-default FEP+ protocols, or in some cases to be beyond the
domain of applicability of FEP+, we observed improved overall error and correlation statistics for
the benchmark dataset. These results are presented in Figure 5(a), and demonstrated a marked
improvement in both RMSE (which decreased from 1.35 to 1.03) and R2 (which increased from
0.3 to 0.42) compared to the full 100 ns FEP+ Groups treated dataset as shown in the lower right
panel of Figure 2.

Utility of FEP+ calculations for prospective design

For in silico free energy predictions to be generally useful in prospective design, they should be
able to classify the relative binding ΔΔG values of mutations as favorable, unfavorable, or neutral
with good accuracy. In Figure 5(b) we show a 3-class confusion matrix for the 100 ns FEP+
Groups-treated results after applying the empirical correction for charged outlier cases described
above and excluding the other automatically flagged cases indicated in Figure 5(a). Mutations
were classified as either favorable (binding ΔΔG ≤ -0.5 kcal/mol), neutral (ΔΔG between -0.5
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and 0.5 kcal/mol), or unfavorable (ΔΔG ≥ 0.5 kcal/mol), using experimentally observed and
FEP-predicted relative binding free energy changes. We found that the FEP+ predictions
successfully classified cases from the benchmark dataset with an overall balanced accuracy
(arithmetic mean of sensitivity and specificity) of 0.69. Additionally, only 3 outlier cases remained
with a classification error larger than 1 class, indicating that the automatic flagging procedure
successfully identified for removal from the high confidence dataset many of the predictions with
the largest errors.

Computational results are often used as a “pre-filter” step in the molecular design process, to
narrow the scope and cost of a project by limiting the number of designs taken forward into the
experimental validation stage of the process. For the typical goal of identifying experimentally
favorable “active” mutations, if we were to take the full benchmark set as a hypothetical example
and consider the most restrictive application of these classification results with only cases having
calculated ΔΔG of -0.5 kcal/mol or less (using the unflagged 100 ns cases after FEP+ Groups
treatment of protonation states and automated outlier flagging and empirical correction) to be
tested by experiment, this would result in the experimental testing of only 13 variants, with a
positive hit rate of 31%, and a recovery of 4 out of 8 actives, or 50%. If we were to use a less
stringent approach and include neutral mutations—that is, proceeding with experimental testing
of all cases with calculated ΔΔG of +0.5 kcal/mol or less, this would result in experimental
measurement of 100 variants, a positive hit rate of 7%, and recovery of 88%, with 7 out of 8 true
actives in the experimental dataset classified as neutral or favorable in FEP+ predictions, and
leaving only 1 false negative (experimentally active but predicted unfavorable by FEP+), while
reducing the number of experimental mutations by 50%, potentially providing significant speedup
and cost savings.

Case studies for application of protein binding FEP+ calculations

We also sought to validate the automated outlier classification scheme above using “real-world”
test data. In Figure 6(a), we present the results of running 100 ns protein binding FEP+
calculations with FEP+ Groups treatment of alternate protonation states and automated probable
outlier classification and empirical correction, as described above, on a dataset of three case
studies from previously active protein biologics design projects. The experimental dataset
included SPR measurements for wt and single-residue mutation variants for two
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antibody-antigen systems and one peptide-target system. The antibody-antigen systems
included PDB 3SKJ, a complex between the Fab region of the 1C1 antibody and EphA2, with
SPR binding affinity measurements for the wt complex and 18 Fab 1C1 mutations (presented in
Supplemental Table 1); and PDB 5L6Y, a complex between the Fab region of tralokinumab and
IL-13 antigen, with measurements for wt plus 6 tralokinumab variants (Supplemental Table 2).
The cyclic peptide-target complex, presented in Supplemental Table 3, were based on PDB
structure 6SBA, a complex between VGL4-mimetic cyclic peptide 4E and mouse TEAD, and
included the wt complex and 18 peptide variants, including several measurements from a
previous study [47]. The experimental binding data, including kinetics measurements for the two
antibody systems, are also available in machine-readable form in the GitHub repository
accompanying this study (see Data Availability).

The results for the case studies dataset were similar to those from the benchmark set, with
initial RMSE of 1.32, though due to a large proline mutation outlier, a relatively low initial R2 of
0.15 for the full FEP+ Groups-treated 100 ns dataset. The effect of the automated outlier flagging
and empirical correction procedure was also similar, with 4 out of 5 outlier cases being
automatically flagged and 3 of those empirically corrected. After empirical correction of the
charged outlier cases and exclusion of the flagged proline mutation case, RMSE was improved
to 0.79 kcal/mol, and R2 increased substantially to 0.46.

After applying the empirical correction for the charged outlier (using the value fit to the
benchmark dataset only) and excluding other automatically flagged cases, only 1 outlier case
remained. This remaining outlier, 6SBA B:T20A (expt. 2.88, pred. 0.05), was located at a
position on the 6SBA cyclic peptide which, like 1JRH I:E55A in the benchmark dataset, did not
interact directly with the target protein in the crystal structure. The large unfavorable
experimental binding ΔΔG, in this case, suggests that—as previously hypothesized [47]—a
substantial rearrangement occurs for the unbound mutant peptide in the physical system, which
was not sampled in simulation, and which would incur a reorganization penalty to adopt the
binding-competent conformation present in the complex structure and FEP+ calculations. This is
another instance where for mutation of a non-contact residue to have non-negligible effect on
binding affinity there must necessarily be a substantive change in conformation. This sort of
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conformational change can be generally thought to be beyond the domain of applicability of FEP.

As with the benchmark dataset, we achieve good accuracy in three-class classification of the
case studies results, as depicted in Figure 6(b). Across classification results for the three
systems, overall balanced accuracy was 0.70, and after outlier flagging and empirical correction,
no cases resulted in a classification error larger than 1 class. Treated collectively as a
hypothetical design project, using the same strict cutoff criteria as described in the previous
section, this classification would result in the experimental testing of only 8 variants, with a
positive hit rate of 50%, and a recovery of 4 out of 7 actives, or 57%. Using the less stringent
approach and including neutral mutations would result in experimental measurement of 28
variants, a positive hit rate of 25%, and recovery of 100%, with 7 out of 7 true actives in the
experimental subset corresponding to neutral or favorable FEP+ predictions, and leaving no
false negatives, while reducing the number of experimental mutations by 32%.

Discussion

Here, we have presented results from protein binding FEP+ calculations for a benchmark
dataset with a variety of systems. We demonstrated how the overall results were improved using
FEP+ Groups treatment to account for the effect of pH and alternate protonation states on
binding, and how potentially problematic results were identified, and in some cases empirically
corrected, based on chemical, structural, and energetic features from the FEP+ simulations.
After the automated flagging and empirical correction, and removal of the flagged probable
outlier cases (for which FEP+ results using default protocols were identified as likely to yield
ΔΔG results with large errors), for the remaining high-confidence set of 186 cases FEP+
predictions agreed well with experiment, with an RMSE of 1.03 kcal/mol and R2 of 0.4. These
results are consistent with previous protein FEP+ results where accuracy has been at or near the
1 kcal/mol level[17, 18, 36, 35, 39, 40]. This level of accuracy is approaching the intrinsic
uncertainty expected from experimental results, which has been proposed to be in the range of
0.4-0.9 kcal/mol for protein-protein and protein-ligand SPR binding measurements [34, 48, 39].

Some of the largest errors in the full benchmark dataset arose for cases where conformational
rearrangement was either observed (as seen with the change in conformation of 1DVF wt
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residue D:H33) or expected (e.g. when mutating to or from proline in a surface loop, or when
mutating a solvent-exposed polar residue to hydrophobic Ala in a small cyclic peptide). Cases
where substantial rearrangement is required in the physical system may be considered beyond
the domain of applicability for protein binding FEP+ calculations run with default protocol.
However, we note that if such cases—including the relevant conformations involved—can be
identified, potential solutions exist to account for the energetics of well-defined conformational
changes. Specifically, protein reorganization FEP has been applied successfully to account for
changes in loop conformation in absolute binding FEP calculations with protein-ligand complexes
[38]. While the application of protein reorganization FEP to the outlier cases in the benchmark
and case studies datasets is beyond the scope of the current study, further investigation of the
potential combination of protein binding and protein reorganization FEP may prove valuable.

Perturbations involving proline in particular warrant additional discussion. Proline mutations
have been treated before in protein stability FEP+ with reasonable success [35]. However, we
have found (both in the current work and in our previous experience with other systems not
discussed here) that protein binding FEP+ predictions for proline are significantly more
challenging. One reason may be that the solvent and complex legs of binding FEP calculations
necessitate two different protein contexts, whereas stability calculations have a linear peptide in
the unbound solvent leg with far fewer degrees of freedom and therefore a greater likelihood of
achieving adequate sampling of conformational space, similarly to the unbound ligand in a small
molecule FEP calculation. Proline perturbations in flexible loops are particularly challenging, as
they are prone to adopting different conformations from those preferred by other less torsionally
constrained residues. We note that both proline cases in the datasets considered here (one each
in the benchmark and case studies sets) were mutations to or from proline in flexible loops at the
binding interface.

In addition to sampling errors, we found disruption of a π interaction likely contributed to at least
one outlier case in the benchmark set. The current default OPLS4 force field used in FEP+
calculations uses fixed charges only. This leaves it unable to account for π-based interactions,
which result from induced polarization upon movement of electronic negative charge relative to
the atomic nuclei. The effect here is twofold: first, the energetics of the interactions do not
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contribute to the energies reported by FEP+ calculations; and second, the lack of explicit
stabilization of these interactions in simulation could lead to increased sampling of less relevant
conformations, thereby adding energetic noise to the results. Our analysis of the 1JRH I:N53A
outlier case, which disrupts a well-defined π-hydrogen bond (Figure 4(e)), demonstrated marked
improvement with a developmental force field with explicit polarization. Rigorous validation of a
force field with explicit polarization for aromatic and other residue types with delocalized π
electrons may help to eliminate some of these kinds of errors, by better accounting for the
energetics of π interactions.

The ultimate goal for FEP+ calculations in many use cases is to help guide and ideally
streamline and accelerate the experimental component of a molecular design project. While it is
possible retrospectively to modify protocols and perform extensive investigations of sampling,
starting conformations, and other factors that may affect the accuracy of an FEP-predicted
binding ΔΔG result, these sorts of analyses are far more difficult to justify in the absence of data
showing some deviation from experiment in the initial prediction. The automatic probable outlier
flagging and empirical correction script may serve as a means of prioritizing FEP+ results, such
that unflagged or corrected cases may be treated as higher confidence and used more directly
as input to a downstream experimental validation pipeline.

It is also prudent to consider that although applying the empirical correction for charged cases
does improve accuracy, in most practical biologics optimization use cases, it would be
undesirable to leave an unpaired charge buried at the binding interface, and from a design
standpoint, there is little difference between an unfavorable predicted ΔΔG of, say, +5 kcal/mol
and the corresponding empirically corrected ΔΔG of approximately +2 kcal/mol—neither value
would be likely to be pursued experimentally. Finally, we acknowledge that the current probable
outlier flagging mechanism, and ongoing development of the method in general, would benefit
from a larger dataset with a distribution of mutations less skewed toward alanine, and enough
outlier cases of each error class available to allow for a statistically rigorous test/train process,
complete with cross-validation, though this is also beyond the scope of the current study.

In summary, the results presented here demonstrate that, for a majority of mutations from a
variety of systems, protein binding FEP+ calculations are able to produce accurate results and
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may provide insight suitable for guiding the experimental component of biologics design projects.

Methods

Benchmark dataset curation

Systems were selected from the SKEMPI database to use for FEP+ benchmarking which had a
minimum of 20 mutations available for study with ITC or SPR experimental binding
measurements; resolution of 2.8 Å or better; and no missing residues or disordered loops in the
structure near the experimental mutation sites. Three additional systems from the authors’
previous work were added to the dataset, each with more than 10 mutations with SPR binding
measurements and similarly reliable structural coordinates.

For comparison to FEP-calculated binding free energies, experimental binding affinities (𝐾𝐷)
were converted to ΔG values (in kcal/mol) via the standard relation

Δ𝐺 = 𝑅𝑇 ln(𝐾D/𝐶) (1)

where 𝑅 is the gas constant, 𝑇 is experimental temperature, and 𝐶 is the standard reference
concentration of 1 M; and ΔΔG values were determined relative to the wt complexes after
averaging all available ΔG values for each variant.

Model preparation

Initial structures were obtained from the Protein Data Bank using the accession numbers listed
in Table 1. All-atom models were produced using the Protein Preparation Workflow in Maestro
(Schrödinger, Inc.), assigning initial protonation states at the experimental pH for each set of
measurements using PROPKA [49]. Protein chain termini where the model was truncated
compared to the experimental system were capped using acetyl (ACE) and N-methylamide (NMA)
monomers, for the amino- and carboxyl-termini, respectively. Alternate conformations were
removed, keeping the highest-occupancy conformation, or the first conformation listed when two
conformers were tied for highest occupancy; and any atom clashes were resolved by local
minimization. Models were exported to Maestro format (.mae) and are available in the GitHub
repository associated with this manuscript (see Data Availability).
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Free energy perturbation calculations

FEP calculations were performed using FEP+ (Schrödinger Suites, 2022-2 release), and run
with a production stage of 100 ns for each mutation in the assembled dataset, including all
possible alternate protonation states for both wt and mutant residues using default protocols.
Briefly, a graph of mutations was prepared to include all possible direct mutations from the WT
node (direct perturbations between proline and charged residues are not supported) as well as
connecting edges to allow cycle-closure analysis as described previously [44]. For each
perturbation edge, complex (bound) and solvent (unbound) simulation legs were run, the former
comprising the full prepared complex, and the latter only the component which contained the
mutated residue, which in some cases included more than one protein chain. For each leg, the
model was placed into an orthorhombic SPC water box with either a 5 Å buffer for neutral and
core-hopping (proline) perturbations, or 10 Å buffer for charged perturbations. Sodium or
chloride ions were added to neutralize the system, plus additional NaCl ions to 150 mM total
concentration for charged perturbations.

Each perturbation leg was run using 12, 16, or 24 lambda windows for neutral, core-hopping, or
charged mutations, respectively. Charged perturbations utilized an alchemical ion procedure to
maintain system neutrality across all lambda windows, as previously described [18]. Replicas
were initialized with the default series of minimization and restrained relaxation steps including a
Grand Canonical Monte Carlo (GCMC) solvation protocol in the region around the mutating
residue [24], followed by a 100 ns lambda-hopping production stage using the replica exchange
with solute tempering (REST) protocol described previously to enhance sampling [23]. All FEP+
calculations used the default OPLS4 force field, except in the analysis of one outlier case, as
described in the Results, where a developmental version of a force field with explicit polarization
was used. A final analysis stage for each leg included relative ΔG calculations using the
multistate Bennett acceptance ratio (MBAR) method [50] along with other automated tasks such
as trajectory alignment and parching.

FEP+ Groups treatment of alternate protonation states

To account for the potential shift in pKa of titratable residues upon protein-protein binding, we
developed a protocol to be applied to the output FEP+ results for each system. We have adapted
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the method from [51] for protein systems, using literature micro pKas for titratable residues,
along with ΔΔG values between the physical states. Initially, FEP perturbations between NMA-
and ACE-capped single amino acid residues, which represent the “model” physical state, were
run in triplicate for all possible amino acid permutations permitted by FEP+, including those not
involving titratable residues, and in both directions for each pair of residues (e.g. ALA->ASP as
well as ASP->ALA). We manually compiled these results into CSV format with 4 columns: the
protonation state-specific start and end 3-letter residue codes, mean model ΔG for the
perturbation, and standard deviation among the 3 independent calculations. Typical standard
deviations were on the order of 0.02-0.03 kcal/mol, indicating good convergence among the
replicates.

To apply the FEP+ Groups treatment to each system, the output FEP+ perturbation map (.fmp)
file, the pH value of the experimental measurements, and the aforementioned CSV file with
precalculated model leg ΔG values were provided as input to the protein_fep_groups.py
script available in the Schrödinger Suites 2024-2 release, and the resulting grouped ΔG and pKa
values were written to CSV output file. Briefly, this script reads the FEP+ graph; loads the
applicable model ΔG from the CSV into each perturbation edge; and applies a cycle closure
correction to minimize hysteresis around closed thermodynamic cycles. The script aggregates
nodes that differ only by protonation or tautomeric state into node groups and reports an FEP+
Groups predicted binding ΔG value for each node, which is the same for each node in the node
group.

We calculate fractional populations 𝑝 for each node 𝑖 in each physical state for the node group
using the following equation:

𝑝1
𝑖 = 1

∑
𝑗∈𝑋

𝑝0
𝑗

𝑝0
𝑖
𝑒−ΔΔ𝐺0→1

𝑖→𝑗 /𝑘𝑇
(2)

where 𝑋 is the physical ensemble of states represented by the nodes 𝑗 of the node group
(including 𝑖), 𝑝0 represents a known starting population, and −ΔΔ𝐺0→1

𝑖→𝑗 is the FEP-calculated
ΔΔG between each pair of nodes 𝑖𝑗 in the node group for the specified physical transition,
namely either the model-to-solvent ΔΔG, or solvent-to-complex (binding) ΔΔG. Initial model 𝑝0
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values for each node in the node group are calculated via the Henderson-Hasselbalch equation:

[protonated]
[deprotonated] = 10pKa−pH (3)

in combination with the differences between precalculated model and solvent leg Δ𝐺 values for
each 𝑖𝑗 node pair from the protein binding FEP+ calculation, are used to calculate solvent leg
populations 𝑝1. The process is repeated using the same formula to calculate complex leg
populations (𝑝2), using the solvent leg populations 𝑝1 and binding ΔΔ𝐺1→2

𝑖→𝑗 values. After
calculating the fractional populations for each node 𝑖, the group predicted binding ΔG is
calculated by applying state penalties for the complex (2) and solvent (1) states to the original
FEP+ predicted ΔG value (Δ𝐺1→2

𝑖 ) via:

Δ𝐺1→2
𝑋 = Δ𝐺1→2

𝑖 + 𝑘𝑇 ln 𝑝2
𝑖 − 𝑘𝑇 ln 𝑝1

𝑖 (4)

After this FEP groups treatment, all nodes belonging to the same node group—that is,
representing the same protein variant—reported identical predicted ΔG values, and mutational
binding ΔΔG values were calculated for each node group (variant) by subtracting the Protein
FEP+ Groups-predicted binding ΔG value for the wt node group for each system.

Classification of outliers

To identify limitations in the default protein FEP+ protocol, we individually analyzed cases with
calculated binding ΔΔG that deviated from the experimentally determined ΔΔG by more than 2
kcal/mol. We identified several classes of mutations that appeared to be problematic. These
were broadly classified as either related to insufficient conformational sampling or due to
limitations in the OPLS4 force field, and more specifically into the outlier classes presented in
Table 3 and Figure 4.

As an automated solution to identify lower-confidence cases that may require additional
attention or potentially be beyond the domain of applicability of FEP+ calculations, we developed
two scripts that, based on an output perturbation map file from an FEP+ job, report a list of
individual mutations that meet the criteria for one of the outlier categories. The first script extracts
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a set of chemical and structural features from the models in the perturbation map file. The
second script uses the features to identify probable outliers based on empirical observations
from the Protein FEP Benchmark dataset, and reports and applies an (optionally user-supplied)
empirical correction to charged outlier cases. The source code for both scripts is available in the
GitHub repository accompanying this manuscript (see Data Availability).

Loop prediction

Prediction of loop conformations for two cases on the 1DVF antibody H3 loop were done for the
unbound antibody (chains D and E) using the loop_predictor.py script available in the
Schrödinger Suite, 2024-1 release. For each mutant loop, residues D:94-102, the crystal
structure conformation was optimized in-place using the -repredict_input command-line flag
to allow meaningful comparison of energies. Subsequent conformational searches for each loop
were performed with Cα distance constraints of 4, 6, and 8 Å from the crystal structure
conformation, and restricting nearby sidechain sampling to include only the residue sidechains
sampled in the initial repredict-input calculation. The Prime Energy and loop backbone RMSD
were reported for the lowest-energy loop model from among the three conformational searches
and compared to those of the lowest-energy loop from the optimized crystal structure
conformation.

Data analysis and figure preparation

Raw FEP data and structural features were extracted and compiled using Python [52] and the
Schrödinger Python API, and downstream analyses were done using either Python or R and
RStudio [53]. Plots were made using ggplot2 R package [54]. Structural figures were created
using PyMOL [55]. The manuscript was prepared using Quarto and RStudio [56, 57].

Data availability

Experimental data, prepared all-atom structural models, and all code needed to run the the
probable outlier flagging protocol are available in the GitHub repository accompanying this
manuscript (https://github.com/schrodinger/protein_fep_benchmark).
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Figures and Tables

Figure 1: Overview of systems and mutations in the benchmark dataset. (a) Ribbon representation of each model in
the benchmark dataset, colored by chain, with Cα positions of mutated residues shown as dark grey spheres. Original
PDB accession codes are indicated. (b) Number of mutations per system, colored by FEP perturbation type. (c)
Distribution of experimental binding ΔΔG values across all systems, also colored by perturbation type. Median and
mean experimental values are shown as dashed and dotted vertical lines, respectively. (d) Heat map showing coverage
of amino acid mutation space. Due to the distribution of mutations in the underlying experimental data, mutations to
ALA are visibly over-represented.
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Figure 2: FEP+ results versus experiment. Correlation plots of FEP+ predicted binding ΔΔG vs. experimental binding
ΔΔG relative to WT for the benchmark dataset mutations. Results are shown for 10 ns (left) and 100 ns (right) FEP+
calculations, with both naïve (top) and FEP+ Groups (bottom) treatment of protonation states. Grey and light grey
diagonal shaded areas represent regions of absolute error less than 1 and 2 kcal/mol, respectively. A least squares
best fit line (bold) and relevant correlation statistics are indicated for each plot.
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Figure 3: Protein FEP+ Groups treatment example cases. Ribbon representations of either the wt input structure or a
representative mutant trajectory frame, with the chain(s) for the binding component that includes the mutation shown in
light grey, the binding partner chain(s) in tan, and key polar interactions as dashed yellow lines. FEP-calculated 100 ns
binding ΔΔG values for mutation edges are shown along solid arrows, and FEP-based calculated pKas for titration edges
in the bound (complex) and unbound (solvent) forms are shown along the horizontal dashed arrows. Experimental,
naïve, and FEP groups-treated ΔΔG values are listed in kcal/mol. (a) For 1IAR A:W91D the calculated pKas for the
mutant Asp91 carboxylate indicated a change in dominant protonation state between the unbound and bound forms at
experimental pH. FEP+Groups treatment resulted in reduced absolute error compared to the naive result. (b) The 6NRQ
C:Q138D mutant Asp138 carboxylate had elevated FEP-calculated pKa values in both unbound and bound states,
reflecting the largely hydrophobic residue environment, limited solvent access, and the conformational change required
to form a salt bridge with D:K81. FEP+ Groups treatment again increased accuracy with respect to the experimental
value.
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Figure 4: Classes of outlier cases with absolute errors greater than 2 kcal/mol. Structural images in ribbon
representation, with key wt sidechains shown as thin sticks, colored by chain and atom type. Mutations are indicated
above each panel and mutated residues are shown in ball-and-stick representation. (a) Salt bridge-breaking cases
include trans (left two panels) and cis (second from right panel) interface salt bridges, and an internal salt bridge
between the heavy and light chains of an antibody Fv region (right panel). (b) Two outlier cases introduced a buried
charge. (c) A variety of sampling related cases. (d) Outliers resulting from mutation of buried aromatic residues to much
smaller alanine. (e) One force field-related case involved a disrupted π-hydrogen bond interaction.
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Figure 5: Automated classification and empirical correction of FEP+ outliers for the benchmark dataset. (a) Correlation
plots 100 ns FEP+ Groups-treated results vs. experiment, before and after automated outlier flagging and empirical
correction of charged outlier cases. Flagged outlier categories are indicated. The direction and magnitude of the applied
correction for charged outlier cases is indicated by orange vertical tails. One case (1JRH I:N53A) which demonstrated
substantial improvement in preliminary testing of a force field with explicit polarization is indicated by a green circle
and a green vertical tail in the right plot. Diagonal shaded areas, least squares fit line, and statistics are shown as in
Figure 2. (b) Three-class confusion matrices for the data from (a), with ΔΔG values classified as either favorable (ΔΔG
≤ -0.5 kcal/mol), unfavorable (ΔΔG ≥ 0.5), or neutral (-0.5 < ΔΔG < 0.5).
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Figure 6: Application of automated outlier flagging and correction to the case studies dataset. (a) Correlation plots
and (b) three-class confusion matrices for the 100 ns FEP+ Groups-treated results vs. experiment, before and after
automated outlier flagging and empirical correction of charged outlier cases as in Figure 5. The magnitude of the
empirical correction applied to the flagged charged outlier cases in (a) was determined using the flagged cases from
the benchmark dataset only.
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Table 1: Summary of experimental data for each system in the benchmark dataset. Binding ΔΔG values are given in
kcal/mol.

Binding ΔΔG Number of mutations

System Description Min Mean Max Range Neutral Charged Core-hopping Total

1DVF IgG1-κ D1.3 Fv / E5.2 Fv 0.34 2.15 4.74 4.40 15 10 0 25

1IAR Interleukin-4 / Interleukin-4 receptor -0.58 0.88 3.75 4.33 8 19 0 27

1JRH mAb A6 / Interferon-γ receptor -3.79 1.39 4.91 8.70 24 13 1 38

1KTZ TGF-β3 / TGF-β type II receptor 0.22 1.56 4.04 3.82 10 10 0 20

1OGA HLA-A2 + peptide / JM22 T-cell receptor -0.46 0.53 1.93 2.39 19 10 0 29

1VFB IgG1-κ D1.3 Fv / HEW Lysozyme -0.21 0.95 3.04 3.25 17 9 0 26

5EO9 Dpr6 / DIP-α -0.91 0.75 2.15 3.06 4 4 0 8

6M0J SARS-CoV-2 RBD / human ACE2 -0.75 0.05 0.62 1.37 11 11 0 22

6NRQ Dpr10/DIP-α -1.39 0.80 2.18 3.57 8 5 0 13

All -3.79 1.05 4.91 8.70 116 91 1 208

Table 2: Summary of retrospective FEP+ results compared to experimental data for each system in the benchmark
dataset. Predicted binding ΔΔG error and correlation statistics are shown for 10 and 100 ns simulations, with naïve
and FEP+ Groups treatment of protonation states for each. Root mean square error (RMSE) values are given in
kcal/mol.

10 ns 100 ns

Naïve FEP+ Groups Naïve FEP+ Groups

System RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2 RMSE 𝑅2

1DVF 1.83 0.30 1.57 0.36 1.74 0.26 1.70 0.27
1IAR 2.45 0.44 1.97 0.57 2.04 0.50 1.76 0.57
1JRH 1.83 0.26 1.82 0.26 1.78 0.20 1.77 0.21
1KTZ 0.87 0.74 0.87 0.74 0.85 0.78 0.85 0.78
1OGA 0.61 0.15 0.63 0.19 0.68 0.08 0.68 0.12

1VFB 1.86 0.33 1.86 0.33 1.36 0.27 1.36 0.27
5EO9 1.55 0.61 1.55 0.61 1.02 0.78 1.02 0.77
6M0J 0.66 0.31 0.66 0.31 0.67 0.47 0.67 0.47
6NRQ 1.95 0.54 1.22 0.66 1.05 0.64 0.80 0.67
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Table 3: Manual classification of outlier cases with absolute error > 2 kcal/mol relative to experiment. Cases within each
outlier class are sorted by decreasing absolute error. All ΔΔG and error values are given in kcal/mol.

Error type Outlier class System Mutation Exp. ΔΔG Pred. ΔΔG Error Abs. Error

1IAR A:R88Q 2.83 6.71 3.88 3.88

1IAR A:R85E 1.22 4.55 3.33 3.33

1IAR A:R85A 0.43 3.40 2.97 2.97

1IAR A:R88A 3.75 6.69 2.94 2.94

1IAR A:R81E 1.46 4.04 2.58 2.58

Disrupted salt bridge (interfacial, trans)

1IAR A:R81A 0.48 2.80 2.32 2.32

Disrupted salt bridge (interfacial, cis) 1VFB C:D119A 0.95 5.48 4.53 4.53

Disrupted salt bridge (internal) 1DVF B:E98A 4.19 -0.05 -4.24 4.24

Introduced charge 1IAR A:T13D -0.22 3.86 4.08 4.08

1JRH L:Y91A 0.58 5.76 5.18 5.18

1JRH H:H100BA 1.70 5.23 3.53 3.53Buried aromatic, large size change
1VFB B:W52A 0.64 3.36 2.72 2.72

1JRH I:G50A 4.53 1.35 -3.18 3.18

1JRH I:E55A -0.43 1.74 2.17 2.17Problematic starting conformation
1DVF D:H33A 1.86 -0.26 -2.12 2.12

1DVF D:Y98A 4.74 1.32 -3.42 3.42
Loop rearrangement

1DVF D:R100BA 4.09 1.20 -2.89 2.89

Sampling

Proline 1JRH I:E55P -3.79 1.49 5.28 5.28

Force Field Disrupted π interaction 1JRH I:N53A 3.89 1.37 -2.52 2.52

Table 4: Summary of automatic flagging of probable outlier cases by magnitude of FEP+ predicted binding ΔΔG error
vs. experiment.

Error range Flagged Unflagged % Flagged

>2 kcal/mol 12 7 63

1-2 kcal/mol 7 48 13

0-1 kcal/mol 3 131 2
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Supplemental Information

Supplemental Methods

Experimental methods for the DIP/Dpr system

For the 5EO9 and 6WNA systems, Drosophila melanogaster defective proboscis extension
response (Dpr) and Dpr-interacting protein (DIP) proteins were produced as previously described
[42]. Briefly, DNA sequences encoding DIP and Dpr extracellular regions were amplified by PCR
and sub-cloned into the mammalian expression vector VRC-8400, modified with a N-terminal BiP
signal peptide (BiP: MKLSLVAAMLLLLSAARA) and a C-terminal hexa-histidine tag. Point
mutations were introduced into the constructs using the KOD hot start polymerase (Novagen)
following the standard QuikChange protocol (Agilent). The constructs were expressed in
suspension-adapted HEK293 Freestyle cells (Invitrogen) in serum-free media using
polyethylenimine as a transfectant (Polysciences). Growth media was harvested 5 days after
transfection, and the secreted proteins were purified by nickel affinity chromatography followed
by size exclusion chromatography. Most proteins were stored in a buffer of 10 mM Bis–Tris
pH 6.6 and 150 mM NaCl. DIP-α and its mutants were stored in a modified buffer (10 mM
Bis–Tris pH 6.0 and 150 mM NaCl) to improve stability. UV absorbance at 280 nm was used to
determine protein concentration and verification of purity was determined by gel electrophoresis.

SPR binding assays for DIP/Dpr binding were performed using a Biacore T100 biosensor
equipped with a Series S CM4 sensor chip. DIP-α and DIP-α M131F were immobilized over
independent flow cells using amine-coupling chemistry in HBS-P pH 7.4 (10 mM HEPES,
150 mM NaCl) buffer at 25°C as described by the manufacturer (Cytiva), resulting in typical
immobilization levels of 700-900 resonance units (RU). BSA was immobilized on the reference
flow cell.

Binding analysis was performed at 25°C in a running buffer of 10 mM Tris-HCl, pH 7.2, 150 mM
NaCl, 1 mM EDTA, 1 mg/ml BSA and 0.01% (v/v) Tween-20. Dpr analytes were prepared in
running buffer using a three-fold dilution series and tested at the following concentration ranges:
1) Dpr10 A86M, 81-0.0123 μM, 2) Dpr10 H90A, 27-0.0123 μM, 3) Dpr10 H94A, 9-0.0014 μM, 4)
Dpr10 S146M, 27-0.0123 μM, 5) Dpr10, 27-0.004 μM. In each experiment, every concentration
range was tested in duplicate. Dpr association phase was monitored for either 30 or 40 s,
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followed by 120 s dissociation phase, each at 50 μl/min. A buffer wash at 100 μl/min for 60 s was
performed at the end of the binding cycle. The analyte was replaced by buffer every three
binding cycles to double-reference the binding signals by removing systematic noise and
instrument drift. The responses were plotted against the concentration of Dpr and the data was
fit to 1:1 interaction model and the 𝐾𝐷 was calculated as the analyte concentration that would
yield half-maximal response. The data was processed using Scrubber 2.0 (BioLogic Software).

Experimental methods for the EphA2/mAb 1C1 system

Soluble EphA2 protein was produced as previously described [58]. Fab of 1C1 [59] and its
variants were expressed and purified as previously described [60] and monomerized by size
exclusion chromatography before use.

SPR binding affinity measurements between Fab and EphA2 were conducted using a Biacore
8K (Cytiva). N-terminal Avi tag biotinylated soluble human EphA2 was titrated on a streptavidin
surface prepared on a C1 chip using the standard amine coupling protocols recommended by
the manufacturer (Cytiva). Fab was then passed over the immobilized antigen using serial
dilutions (400 nM to 3.125 nM including blank controls) with a 180 s association injection,
followed by a 600 s dissociation phase, and regeneration with 2 pulses of 3.0 M MgCl2 for 20 s,
all at a flow rate of 50 μl/min.

Experimental methods for the Interleukin-13/Tralokinumab system

Tralokinumab variants were generated, expressed as IgG, and purified as previously described
[61]. SPR binding affinities were measured between Tralokinumab and its variants and IL-13
using a Biacore T100 instrument as previously described [61]. During each analysis cycle, after
titration of between 42 and 155 RU of IgG onto the protein G′ surface at 5 μl/min, binding to
human IL-13 (PeproTech) was assayed at a flow rate of 50 μl/min for a 5 min association step,
followed by dissociation for 10-30 min.

Experimental methods for peptide synthesis of TEAD peptides

Peptides were synthesized on a Syro I peptide synthesizer (Multisyntech) following standard
Fmoc-protocols for solid-phase peptide synthesis. Peptide synthesis was performed on Rink
amide LL AM/MBHA resin (Merck, 0.28 mmol/g, 0.05 mmol). To prepare the solutions, the amino
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acids were dissolved in a solution of oxyma pur 0.5 M in DMF, to obtain a final concentration of
0.5 M, HATU was dissolved in DMF to get a concentration of 0.5 M, DIPEA was dissolved in NMP
to get a concentration of 2 M, piperidine was dissolved in DMF with a concentration of 25% and
acetic anhydride was dissolved in NMP with a concentration of 10%. For the coupling, 400 μl of
amino acids solution (0.2 mmol, 4 eq.) was mixed with 400 μl of HATU solution (0.2 mmol, 4 eq.)
and 200 μl of DIPEA solution (0.4 mmol, 8 eq.) and added to the resin for 40 min. The amino acid
couplings were followed by a capping of the remaining free amino groups with 800 μl of Ac2O
solution in presence of 200 μl of DIPEA solution for 2 min. Fmoc-deprotection was performed
with 25% piperidine in DMF for 10 min. The subsequent aspartic acid and threonine residues in
the sequence were introduced as a pseudoproline building block (Cas no. 920519-32-0). The
resulting peptide resin was washed six times with 2 ml of DMF between each step. Each amino
acid was coupled twice or thrice.

Experimental methods for the mTEAD4/Peptide 4E system

Soluble mouse TEAD4 (mTEAD, residues 210-427) was expressed and purified, and mutational
variants of cyclized peptide 4E were synthesized and purified as previously described [47].

SPR experiments were performed on a Biacore S200 unit as previously described [47], with
mTEAD4 tethered to the biosensor dextran surface, and serial dilutions of cyclized peptide
analyte in 0.3% (v/v) DMSO, typically starting from a peptide concentration of 30 μM. Association
time was 45 s, with dissociation monitored for 6 min.

Surface plasmon resonance of TEAD peptides

The SPR experiments were either performed on a Biacore S200 optical biosensor unit or a
Biacore 8K optical biosensor unit using Series S CM5 (Research grade) sensor chips (Cytiva).
Prior to use, the sensor chips were equilibrated at room temperature for 15 min to prevent water
condensation on the detector side of the sensor chip surface. A running buffer was prepared
composed of 10 mM HEPES, 150 mM NaCl, and 0.05% (w/v) Tween-20, pH 7.4, and the system
was equilibrated at 20°C using a flow rate of 30 μl/min after docking of the sensor chip. Ligand
binding experiments were performed applying the concept of multi-cycle kinetics. A contact time
of 45 s was selected, followed by a 6 min dissociation phase to allow for complete dissociation of
the analyte prior to the next cycle. The peptides were dissolved in DMSO to a stock concentration
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of 10 mM. A digital dispenser (HP D300, Tecan) was used to dispense varying concentration of
the ligands into running buffer provided in a standard 384-well plate and normalized with DMSO
to 0.3% (v/v). Typically, seven concentrations of the analytes were examined, applying a
threefold dilution pattern with 30 μM as the top concentration. For the analysis, five running
buffer blanks were injected to equilibrate the instrument. The data collection rate was set to
10 Hz, and all experiments were repeated at least three times to allow for error estimations. The
data were analysed using Genedata Screener for SPR using the implemented steady-state data
fitting routines and by applying a 1:1 binding model for the estimation of peptide affinities.

Surface tethering of GST-hTEAD1 and mTEAD4 for SPR

For the covalent tethering of mTEAD4 onto the CM5 biosensor chip, running buffer at a
flow-rate of 10 μl/min was used. The carboxyl-dextran surface was activated for 7 min with 0.05 M
NHS and 0.2 M EDC, followed by an injection of the mTEAD protein in 10 mM MES pH 6.4 at a
concentration of 30-50 μg/ml. Contact times of 2-3 min were sufficient to achieve the desired
densities of 2000-3000 RU. This was followed by a deactivation of the residual esters by injecting
a solution of 0.5 M ethanolamine pH 8.0 for 7 min before engaging in ligand binding experiments.
Reference surfaces were prepared accordingly, omitting the injection of protein over the
activated reference surface.
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Supplemental Figures

Supplemental Figure 1: SPR measurements for the Dpr10/DIP-α (6NRQ) system. (a-b) Binding traces for (a) Dpr10
mutants A86M, H90A, H94A and S146M binding to DIP-α; and (b) Dpr10 to the DIP-α M131F mutant. (c-d) Binding
isotherms from the experiments in (a) and (b) were used to calculate 𝐾D values for the (c) Dpr10 and (d) DIP-α mutants,
respectively, which are shown next to each binding curve with experimental fitting uncertainties.
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Supplemental Figure 2: Summary of absolute shifts in predicted binding ΔΔG between 10 and 100 ns timepoints for
Naïve and FEP+ Groups-treated results for the benchmark dataset. The number of cases is shown for each bin, and
median ΔΔG values of 0.33 and 0.33 kcal/mol, respectively, are indicated by vertical dashed lines. The vast majority of
cases (86 and 88% for naïve and FEP+ Groups-treated results, respectively) produced ΔΔG values at 10 ns that were
within 1 kcal/mol of the corresponding value at 100 ns.
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Supplemental Figure 3: Analysis of the 1DVF D:H33A outlier case. (a) The starting conformation of D:H33 in
the prepared 1DVF crystal structure was suboptimal, with a single H33 side chain N-H group interacting with both
carboxylates. (b) During 100 ns standard MD, these three side chains quickly relaxed to form two salt bridges, shown
here in the configuration present in the final frame of the MD trajectory. Distance measurements 1 and 2 are indicated
between D:HIP33.ND1—D:ASP52.CG (cis) and D:HIP33.NE2—B:ASP100.CG (trans), respectively. (c) Distances
1 and 2 as defined in (a) and (b) are shown for the 100 ns MD trajectory and the HIP endpoint trajectory from the
D:HIP33->HID perturbation edge. The two-salt-bridge conformation in (b) was only sampled after approximately 50
ns in the FEP+ simulation (upper panels), but was maintained nearly exclusively throughout the MD trajectory (lower
panels). (d) FEP+ simulation of the D:H33A mutation (including perturbation to alternate His protonation states) using
the original starting model produced an absolute error over 2 kcal/mol; but using an MD-relaxed model—namely, the
final frame from the 100 ns MD simulation shown in (b)—yielded an accurate prediction with an absolute error of only
0.3 kcal/mol after Protein FEP+ Groups treatment.
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Supplemental Figure 4: Analysis of the 1JRH I:G50A and I:E55A/P outliers. (a) IFNγR1 residues I:G50 and I:E55
are part of a flexible loop (I:50-56) that, in the 1JRH complex with the A6 Fab fragment, adopts a tight antiparallel
structure resembling that of a β-hairpin, but lacks the typical β-strand hydrogen bonding pattern. Here the loop is
shown (omitting the rest of the IFNγR1 protein for clarity) in orange with Cα atoms of G50 and E55 as spheres. The
Fab A6 heavy and light chains are shown in green and light blue, respectively. (b) Residue I:Gly50 is an outlier in the
crystal structure Ramachandran plot, with Phi/Psi angles of 137°/-88°. The presence of a Ramachandran outlier in a
flexible loop suggests either an error in model building or crystal packing-induced strain, and in either case represents a
high-energy starting conformation, from which relaxation to the true lowest-energy conformation in relatively short FEP
timescales is uncertain. (c) Other crystal structures of IFNγR1, including PDB 1FYH chain B (yellow) and 6E3L chain
D (violet), are aligned to 1JRH chain I backbone atoms and adopt conformations that are similar to each other, but
distinct from the conformation of 1JRH chain I (orange), suggesting a lower energy conformation for the I:50-56 loop in
the absence of the antibody and/or 1JRH crystal context. Gly50 and Glu55 Cα atoms are shown as a spheres for each
IFNγR1 chain. Sampling between distinct conformations like these is challenging within the relatively short timescales
used for FEP+. (d) Wild-type IFNγR1 residue I:E55 does not contact the antibody or form any specific interactions in
the 1JRH crystal structure, suggesting any effect of its mutation on binding affinity must involve conformational change
of the I:50-56 loop, overall domain orientation, or both.
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Supplemental Figure 5: Analysis of the 1DVF D:Y98A/D:R100BA outlier cases. CDR H3 loop conformations for (a)
D:Y98A and (b) D:R100BA variants. The crystal structure light and heavy chain variable regions are shown in violet
and yellow, respectively. An optimized crystal structure-like conformation is shown in orange, and the lowest energy
predicted loop in teal, with Cα atoms of the mutated residues shown as spheres. Backbone RMSD of the lowest energy
loop compared to the crystal structure loop, and ΔΔG of the lowest energy loop relative to the repredicted crystal
structure conformation are indicated.
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Supplemental Tables

IgG Variant 𝑘a(M−1s−1) 𝑘d(s−1) 𝐾D(nM)

WT 2.67e+05 1.60e-02 59.6
H:G52R 3.61e+05 1.99e-02 55.1
H:A100CI 1.46e+04 1.35e-02 929
H:V100DM 2.82e+05 1.05e-02 37.3
H:A100EF 2.22e+05 2.41e-01 1090

H:A100EI 2.23e+05 6.56e-02 294
H:A100EK 3.17e+05 1.80e-03 5.67
H:A100EM 3.41e+05 8.01e-03 23.5
H:P100GY 1.61e+03 2.42e-01 150000
L:S30W 6.39e+05 3.48e-02 54.5

L:T31F 3.05e+05 1.26e-02 41.3
L:T31H 2.75e+05 1.56e-02 56.7
L:T31K 4.78e+05 3.85e-03 8.06
L:T31Q 3.53e+05 7.47e-03 21.1
L:T31R 5.20e+05 1.05e-02 20.2

L:N53R 4.12e+05 1.94e-02 47.1
L:N53Y 2.20e+05 4.29e-02 195
L:T56F 2.92e+05 1.23e-02 42.0
L:T56W 2.70e+05 1.21e-02 44.7

Supplemental Table 1: SPR measurements for the 3SKJ system. Binding kinetics association (𝑘a) and dissociation
(𝑘d) constants and binding affinities (𝐾D) are indicated for heavy (H) and light (L) chain Fab 1C1 variants binding to
immobilized EphA2 antigen. Mutations are listed using Kabat numbering.
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Fab Variant 𝑘a(M−1s−1) 𝑘d(s−1) 𝐾D(pM)

WT 5.17e+06 3.25e-04 63
H:S99A 6.07e+06 3.46e-04 57
L:I27A 4.95e+06 2.57e-03 519
L:I27N 4.90e+06 4.60e-03 940
L:D50A 6.00e+05 1.63e-03 2700

L:G68E 5.20e+06 2.70e-03 520
L:G68W 4.20e+06 3.80e-04 90

Supplemental Table 2: SPR measurements for the 5L6Y system. Binding kinetics association (𝑘a) and dissociation
(𝑘d) constants and binding affinities (𝐾D) are indicated for IL-13 antigen binding to immobilized heavy (H) and light (L)
chain Tralokinumab IgG variants. Mutations are listed using Kabat numbering.
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Peptide Variant Sequence 𝐾D(μM)

WT SVEDHFAKALGDTWLQIKAA 1.2 ± 0.1
B:S8A AVEDHFAKALGDTWLQIKAA 2.7 ± 0.25
B:V9A SAEDHFAKALGDTWLQIKAA 1.5 ± 0.37
B:D11A SVEAHFAKALGDTWLQIKAA 1.6 ± 0.69
B:K15A SVEDHFAAALGDTWLQIKAA 2.8 ± 0.06

B:T20A SVEDHFAKALGDAWLQIKAA 113.0 ± 3.5
B:W21A SVEDHFAKALGDTALQIKAA 15.0 ± 0.85
B:L22A SVEDHFAKALGDTWAQIKAA 2.0 ± 0.14
B:Q23A SVEDHFAKALGDTWLAIKAA 1.3 ± 0.11
B:I24A SVEDHFAKALGDTWLQAKAA 4.4 ± 1.35

B:V9F SFEDHFAKALGDTWLQIKAA 17.4 ± 1.1
B:V9W SWEDHFAKALGDTWLQIKAA 7.32 ± 0.06
B:V9Y SYEDHFAKALGDTWLQIKAA 9.16 ± 0.25
B:K15F SVEDHFAFALGDTWLQIKAA 2.77 ± 0.04
B:K15R SVEDHFARALGDTWLQIKAA 0.208 ± 0.02

B:K15W SVEDHFAWALGDTWLQIKAA 6.03 ± 0.12
B:K15Y SVEDHFAYALGDTWLQIKAA 4.72 ± 0.11
B:A16V SVEDHFAKVLGDTWLQIKAA 2.17 ± 0.007
B:Q23R SVEDHFAKALGDTWLRIKAA 0.13 ± 0.01

Supplemental Table 3: SPRmeasurements for the 6SBA system. Binding affinities (𝐾D) are indicated for cyclic peptide
4E variants binding to immobilized mTEAD. Complete peptide sequences (residues 8-27) are shown; macrocyclization
was achieved via an amide bond between the Glu10 and Lys25 sidechains in each case.
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