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Abstract 

Introduction 

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our 
comprehension predominantly relies on studies within the non-Hispanic White (NHW) 
population. Here we aimed to provide comprehensive insights into the proteomic 
landscape of AD across diverse racial and ethnic groups.  

Methods 

Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues 
were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. 
Sinai School of Medicine) and were harmonized through neuropathological evaluation, 
specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC 
tissue samples (998 unique individuals), 333 were from African American donors, 223 
from Latino Americans, 529 from NHW donors, and the rest were from a mixed or 
unknown racial background. Among 280 STG tissue samples (244 unique individuals), 
86 were African American, 76 Latino American, 116 NHW and the rest were mixed or 
unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem 
mass tag mass spectrometry (TMT-MS).  

Results 

As a Quality control (QC) measure, proteins with more than 50% missing values were 
removed and iterative principal component analysis was conducted to remove outliers 
within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and 
STG proteome, respectively, of which approximately 9,000 proteins were shared 
between regions. Protein levels of microtubule-associated protein tau (MAPT) and 
amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues 
with a strong association with CERAD and Braak across racial groups. APOE4 protein 
levels in brain were highly concordant with APOE genotype of the individuals.  

Discussion 

This comprehensive region resolved large-scale proteomic dataset provides a resource 
for the understanding of ethnoracial-specific protein differences in AD brain. 
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1. Background 

Alzheimer's disease (AD) presents a significant global health challenge, with its 
prevalence affecting millions worldwide (1, 2). Notably, African Americans and Hispanic 
Americans are almost twice as likely to have AD and other dementias compared to 
Caucasians (3, 4). The mechanisms contributing to this disparity may be multifaceted, 
involving a combination of genetic differences across race and ethnicity, as well as 
societal and environmental inequities that disproportionately affect African Americans 
and Latino Americans (4-6). These include lower levels and quality of education, as well 
as higher rates of poverty (7-12). To date, the bulk of our knowledge regarding AD 
pathophysiology derives from studies conducted within the non-Hispanic White (NHW) 
population. Emerging evidence suggests differences in some molecular measures, such 
as lower cerebrospinal fluid (CSF) levels of Tau and other synaptic proteins in African 
Americans with AD compared to NHWs (13-16). However, the extent of similarities or 
differences for AD-related molecular perturbations in postmortem brain tissues from 
diverse populations remain incompletely understood. Consequently, there is a 
significant gap in our understanding of the ethnoracial disparities inherent in the 
pathophysiology of AD.  To address this gap in knowledge, the National Institute on 
Aging  and Accelerating Medicines Partnership in AD (AMP-AD) aimed to promote 
inclusivity in multi-omics AD research, to unravel unique molecular signatures and 
pathways (17). This step is crucial for achieving a more precise definition of AD that 
accounts for variations across racial, ethnic, and genetic backgrounds. 

Proteins serve as optimal markers for understanding “proteinopathies” like AD and other 
neurodegenerative disease due to their proximity to pathologic and phenotypic changes 
in disease (18). With the advancement of multiplex isobaric tandem mass tags (TMT), 
off-line fractionation, and high-resolution mass spectrometry, proteomic datasets are 
now approaching the depth of transcriptomic datasets (19-21). Integrated analyses of 
proteomic and transcriptomic data in AD post-mortem brain cohorts indicate that these 
approaches can yield both complementary and unique insights in human brain (22-24). 
However, a comprehensive and detailed proteome atlas of the human brain spanning 
various regions, races, and ethnicities is still lacking. Such studies could uncover race-
specific protein differences, shedding light on distinct pathways, pathophysiologies, 
biomarkers, and potential therapeutic targets in AD. 

Using TMT coupled with mass spectrometry (TMT-MS) we report a large-scale and 
deep proteome (~10,000 proteins) of the post-mortem dorsolateral prefrontal cortex 
(DLPFC) from 998 individuals and the superior temporal gyrus (STG) from 244 
individuals across control and pathologically defined AD cases. Of these, approximately 
50% of the samples were from racially and ethnically diverse brain donors. 
Implementing a methodology for quality control measures, we ensured the removal of 
batch-related variations from the dataset. Subsequently, variance partitioning analyses 
were carried out to identify top proteins based on individual characteristics, such as sex, 
race, and AD diagnosis, across both DLPFC and STG tissues. Through TMT-MS, we 
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characterized core proteins associated with AD pathology, including amyloid precursor 
protein (APP) and the microtubule-associated protein tau (MAPT), revealing a clear 
correlation of APP and MAPT levels with CERAD and Braak stages. Furthermore, we 
show consistency between APOE4 protein levels with APOE4 genotyping in brain. This 
comprehensive large-scale proteomic dataset not only demonstrates the validity of our 
findings but also establishes the foundation for a better understanding of ethnoracial-
specific protein modulations, distinct pathways, pathologies, biomarkers, and potential 
therapeutic targets in AD. 

 

2. Methods: 
2.1. Brain Tissue Collection and Cohort Characteristics 

The proteomics data utilized in this study were a part of AMP-AD Diversity Initiative, a 
collaborative effort involving multiple research sites. The comprehensive dataset 
includes information from different multi-omics data including proteomics, genomics, 
and metabolomics. While the mass spectrometry and case selection analysis has been 
extensively described in the data descriptor manuscript (25), this study specifically 
focuses on database search, quality control (QC) and technical validation of the 
proteomics data. 

In brief, brain samples were collected with the involvement of four institutions or data 
contribution sites: Mayo Clinic, Rush University, Mount Sinai University Hospital and 
Emory University for proteomics studies. The goal of this initiative is to include diverse 
contributions from African American and Latino American populations. Each of the data 
contribution sites gathered brain samples from affiliated brain banks, cohort studies, and 
AD Research Centers (ADRC) and were sent to Emory proteomics core for proteomic 
processing. A total of 1105 DLPFC tissues from 998 individuals were sent from all four 
data contribution sites including n= 129 from Emory University (including 22 samples 
from University of Pennsylvania), n= 399 from Mayo Clinic, n= 205 from Mount Sinai 
University Hospital and n= 372 from Rush University. Frontal brain tissues from each 
contribution site were processed separately from the others. In addition, amongst Emory 
samples, 26 samples from Mount Sinai University were replicated and among Mayo 
Clinic samples, 81 were replicated from Emory University samples.  

A total of 280 superior temporal gyrus (STG) tissues from 244 individuals were obtained 
from Emory University (n= 129) and Mayo Clinic (n= 151), and both were processed 
simultaneously. Tissue homogenization, protein digestion, TMT peptide labeling, pH 
fractionation and liquid chromatography (LC)- MS/ MS are described in detail in the 
previous publication (25). 

Collectively, LC-MS/MS led to a total of 6479 raw files from frontal cortex, and 1824 raw 
files from temporal cortex tissue samples (Fig. 1A), with the distribution as follows: 
Emory University Frontal Cortex Cohort: 431; Mayo Clinic Frontal Cortex Cohort: 2304; 
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Mount Sinai Frontal Cortex Cohort: 1344; Rush University Frontal Cortex Cohort: 2400; 
and Emory University and Mayo Clinic Temporal Cortex Cohort: 1824. 

2.2. Database Searches and Protein Quantification:  

All raw files underwent a database search using Fragpipe (version 19.0) for DLPFC and 
STG datasets, separately. The database search parameters have been described (26, 
27). Initially, mzML files were created from the original MS .raw files for frontal (6479 
raw files across 72 batches) and temporal (1824 raw files across 19 batches) using the 
ProteoWizard MSConvert tool (version 3.0) with specific options, including 'Write index,' 
'TPP compatibility,' 'Use zlib compression,' and a "peakPicking" filter setting. 

Following the creation of mzML files for each set, they were subjected to a search using 
MSFragger (version 3.5). The human proteome database used contained 20,402 
sequences (Swiss-Prot, downloaded 2/11/2019) along with corresponding decoys and 
common contaminants. The sequences include additional specific peptide sequences 
for the APOE ε4 and APOE ε2 alleles (28). 

The search settings included a precursor mass tolerance of -20 to 20 ppm, a fragment 
mass tolerance of 20 ppm, mass calibration, parameter optimization, isotope error set to 
-1/0/1/2/3, strict-trypsin enzyme specificity, and allowance for up to two missed 
cleavages. Fully enzymatic cleavage type, peptide length (7 to 50), and peptide mass 
(200 to 5,000 Da) criteria were defined. Variable modifications included oxidation on 
methionine, N-terminal acetylation on protein, and TMTpro modification on the peptide 
N-terminus, with a maximum of 3 variable modifications per peptide. Static modifications 
comprised isobaric TMTpro (TMT16) modifications on lysine, along with 
carbamidomethylation of cysteine. 

Post-MSFragger (version 3.6) search, Percolator (29) was used for PSM validation, 
succeeded by Philosopher (version 4.6.0) for protein inference using ProteinProphet 
and FDR filtering. Reports containing quantified peptides and UniprotID-identified 
proteins with an FDR < 1% were generated. The database search culminated in the 
identification of a total of 11,748 protein groups from frontal cortex samples and 11,003 
from temporal cortex samples, revealing a shared set of 10,738 protein groups (Fig. 
1B). 

2.3. Data Analysis and QC:  

The data analysis, using R statistical software (version 4.3.2), adhered to a three-step 
process to ensure the consistency of the frontal (DLPC) and temporal (STG) tissue 
proteomic datasets. 

The analysis workflow for data QC is illustrated in the flowcharts of Fig2.A and Fig.2.B 
in 3 main steps: 

2.3.1. Step 1. Pre-processing for Missing Values: Proteins with missing data in 
less than 50% of the samples were retained as described (22, 30). The ratio 
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of protein abundance to the total protein abundance for each sample was 
calculated to adjust for sample loading differences. Subsequently, a log2 
transformation was applied to enhance the normality of the distribution of 
protein abundance, addressing potential skewness and stabilizing variance 
across samples. 

2.3.2. Step 2. Outlier Detection and Removal: Iterative principal component 
analysis (PCA) was employed to identify and eliminate samples more than 4 
standard deviations from the mean of either the first or second principal 
component as previously described (31, 32). Multiple iterations of PCA were 
conducted, with outliers from each round being systematically removed 
before initiating the subsequent iteration. For the DLPFC, 19 outliers were 
removed after 5 rounds of PCA analysis. For the STG, two outliers were 
removed after three rounds of PCA analysis. 

2.3.3. Step 3. Accounting for Batch Effect:  Briefly, a linear regression model was 
fitted to estimate the effect of protein sequencing batch. We then regressed 
out the batch effect from the protein abundance before the next step of 
analysis to minimize batch effects and enhance the reliability of downstream 
analyses. Following the QC process, a total of 9,180 proteins remained for 
the DLPFC and 9,734 proteins for the STG, with an overlap of 9,015 protein 
groups shared between the two brain regions (Fig. 1C). 
 

3. Results: 
3.1. Proteomics Data Quality Control in Frontal and Temporal cortices 

In large-scale TMT-MS proteomics studies, batch effects are inevitable due to technical 
reasons, especially when processing large cohorts in multiple separate batches (33, 
34). To investigate variability and clustering patterns associated with batch effects 
among frontal cortex samples prior to normalization and batch correction, we employed 
Multidimensional scaling (MDS) plot. MDS is similar to PCA, which is used for 
visualizing high-dimensional data in lower-dimensional spaces (35). Before batch 
regression, distinctive clusters by samples from different sites were observed (Fig. 2B). 
However, after batch correction, samples clustered together, indicating the success of 
batch regression giving even distribution of data without regard to data distribution sites 
(Fig. 2C). The effectiveness of batch correction was also assessed through variance 
partition analysis, which revealed that the percentage of variance in protein abundance 
explained by batch was nearly zero after batch regression (Fig. 2D, Fig. 2E). 

Similarly, to investigate the impact of batch on temporal cortex samples, MDS plots 
were utilized on post-search and post QC proteomics data. The plots illustrated a 
distinct clustering before QC, followed by an even distribution post-QC, underscoring 
the effectiveness of batch correction (Fig. 3B, Fig. 3C). In addition, batch variance 
revealed a high impact on the proteomic profile before correction in variance partitioning 
(Fig. 3D) and a substantial reduction in variance associated with batch after QC (Fig. 
3E). 
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3.2. Variance of Protein Abundance in Frontal and Temporal Cortex 
Explained by Individual Characteristics 

To understand how sex, race, and AD diagnosis is associated with protein abundance in 
the DLPFC and STG samples, we also employed variance partition analysis. This 
approach aimed to uncover the molecular basis of sex-, race-, and AD-associated 
variations in the brain (Fig. 4, Fig. 5). In current study, the analysis was performed using 
the traits available on synapse. Additional traits for Rush samples were provided 
separately by Rush Alzheimer’s Disease Research Center (https://www.radc.rush.edu/ ). 

Initially, the relative contribution of sex to the total observed variance was examined. 
Proteins such as CD99, PUDP, and UBA1, which are associated with the X 
chromosome and known to be highly abundant in females (36, 37), contributed 
significantly to the observed variance (Fig. 4A, Fig. 5A). Conversely, EIF1Y, DDX3Y, 
and USP9Y, linked to the Y chromosome and known for their high levels in males (36, 
37), also played a role in explaining the observed variance. Subsequent analysis 
confirmed significant differences (P< 0.05) in protein levels between males and females 
(Fig. 4B, Fig. 5B), further reinforcing the importance of sex as a determinant of 
proteomic variability in our dataset. 

Key proteins associated with self-reported African American race, such as BPHL, FAIM, 
GFM2, and CLPP were identified through variance partition analysis in both frontal and 
temporal cortex samples (Fig. 4C and Fig. 5C). In addition, proteins associated with 
African American race in the temporal cortex displayed a different rank order compared 
to frontal cortex proteins (Fig. 5C). Further examination highlighted significantly higher 
levels of proteins like FAIM and CLPP in African American individuals. In contrast, the 
protein KCTD21 exhibited markedly lower levels within this demographic. (Fig. 4D and 
Fig. 5D). 

A parallel analysis explored proteins contributing to differences in AD diagnosis within 
the frontal and temporal cortex. Consistent with existing literature (22, 38, 39), top-
ranking proteins associated with AD, included amyloid precursor protein (APP) , which 
has been shown to correlate with β-amyloid plaques burden in brain (22), as well as 
other amyloid-associated matrisome proteins, CTHRC1, SMOC1, MDK, and NTN1, that 
all exhibited significantly higher levels among AD cases  (40, 41)(Fig. 4E and 5E). 
Notably, some proteins regionally unique to AD diagnosis emerged among the 20 top 
ranked proteins in the temporal cortex samples including NDP and MACROD1 (Fig. 
5E). 

This comprehensive analysis not only supports the technical validation of our 
proteomics data but also provides insights into the molecular basis of sex, race, and 
AD-associated variations in human brain proteomic data. 

3.3. Correlation between Amyloid and Tau Abundance in Human Brain 
Proteome and AD Neuropathology 
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The core pathological hallmarks of AD include β-amyloid (Aβ) plaque and 
hyperphosphorylated tau neurofibrillary tangle accumulation in the brain (42, 43). As a 
quality control measure for our dataset, we assessed the levels of the amyloid precursor 
proteins (APP) and the microtubule associated protein tau (MAPT) using TMT-MS.  

The proteomic quantification of APP revealed significantly higher levels in AD cases (p < 
0.05) (Fig. 6A). Although amyloid precursor protein (APP) is typically a full-length 
transmembrane protein consisting of 695 amino acid residues in the brain, numerous 
studies have demonstrated that its levels correlate with Aβ plaque burden in the brain, 
likely due to the abundance of the β-amyloid peptides in AD brains  (44, 45). As part of 
the amyloid cascade APP undergoes proteolytic cleavage to form Aβ species, which 
further aggregates to form the characteristic plaques observed in AD brains (46, 47). A 
further analysis was conducted to measure the correlation between proteomics levels of 
APP in the frontal cortex and Consortium to Establish a Registry for Alzheimer's 
Disease (CERAD) score. The CERAD scores, ranging from 0 to 3, define the extent of 
neuritic plaques and diffuse plaques in brain tissue, providing a measure of amyloid 
pathology (48).  A total of 980 DLPFC samples from unique individuals were analyzed 
Our analysis unveiled a stepwise increase in proteomics measurements of APP as 
CERAD score increased (Fig. 6B). This signifies a strong association between CERAD 
scoring and proteomic quantification of APP levels.  

Our proteomic analysis of MAPT, the precursor of tau protein, demonstrated significantly 
elevated levels in AD cases (P < 0.05) (Fig. 6C) likely driven by peptides derived from 
the Microtubule Binding Region (MTBR), a critical domain associated with tau 
aggregation and the formation of neurofibrillary tangles (49, 50). A similar approach was 
conducted to assess the association between the levels of measured MAPT in the 
frontal cortex and Braak staging. Braak staging ranges from 0 to 6, reflecting the extent 
of neurofibrillary tangle pathology in different brain regions, with higher scores indicating 
more advanced stages of AD pathology (51). Regionally, staging starts with the 
entorhinal cortex and progresses through various regions of the brain, culminating in the 
neocortex. Proteomic measures of MAPT levels among 980 unique individuals exhibited 
higher levels mainly in advanced Braak stages. This observation underscores the 
linkage between proteomic measures of MAPT and tau pathology progression (Fig. 
6D). In addition, the association between MAPT levels and Braak staging may be 
influenced by regional differences in tau pathology. Specifically, neurofibrillary tangles 
are predominantly encountered in the neocortex in higher Braak stages. Therefore, the 
observed elevation in MAPT levels in individuals with advanced Braak stages could be 
attributed to the assessment of tau levels in neocortical samples, where tau tangle 
pathology is pronounced. 

Our findings provide valuable insights into the concordance between proteomics 
measurements and established AD pathology scoring systems. 

3.4. Association between APOE4 Genotype and APOE4 Protein 
Abundance in Human Brain Proteome 
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In addition to Aβ plaque and tau tangles, the pathophysiology of AD is closely linked 
with APOE genotype (52, 53). APOE features three genetic variants (ε2, ε3, ε4), each 
associated with varying degrees of AD risk, amongst all the APOE ε4 allele represents a 
major genetic risk factor for non-dominantly inherited AD (53, 54). APOE protein 
variants can be differentiated by arginine-to-cysteine changes that can be detected and 
measured at the peptide level (55). As part of data validation, we measured the 
abundance of an APOE4 specific tryptic peptide (LGADMEDVR) and associated it with 
genotype data for APOE across 920 unique individuals where genotyping information 
was available in DLPFC samples. A similar analysis was employed on 244 unique 
individuals in STG samples. As expected, given the unique change in protein sequence, 
the mean fold change of APOE4 protein abundance between APOE ε4 carriers and 
non-carriers was > 8-fold (Fig. 7A and 7C). While it was expected that the APOE4 
peptide signal would not be present in non-APOE ε4 carriers, cases without an ε4 allele 
likely still exhibited residual signals for the protein abundance. These signals could be 
attributed to background chemical noise, possibly stemming from TMT isotope impurity. 
However, there were a limited number of false positive (non-APOE ε4 carriers with 
APOE4 signal) proteotypes (< 2.0%) observed between expected APOE genotype and 
APOE4 peptide levels, mainly in DLPFC samples. Specifically, we observed 14 number 
of individuals among DLPFC samples and 2 individuals among STG samples with 
APOE ε3 genotype that had levels of APOE4 equivalent to individuals with APOE ε4 
genotypes. This could also be due potentially some anticipated errors genotyping.  (Fig. 
7B and 7D). These samples could be removed from further analysis as appropriate. 
Nevertheless, approximately 97-98% of samples appeared to have the correct APOE ε4 
genotype based on APOE4 “proteotype”. 

4. Discussion 

Here, we present a comprehensive large-scale deep proteome analysis using TMT-MS 
on 1105 DLPFC and 280 STG brain tissues. This dataset covered approximately 10,000 
proteins from a racially and ethnically diverse cohort comprised of AD and controlled 
aging brain tissues. In addition, quality control measures were implemented to ensure 
the validity of our dataset for subsequent analysis. Consistent with the literature (22, 36, 
37, 40, 41), our analysis identified top proteins associated with sex, race, and AD 
diagnosis. Additionally, quantified levels of MAPT and APP showed strong associations 
with neuropathology scores of Braak and CERAD, respectively. Moreover, the protein 
abundance of APOE4 was consistent with APOE genotyping of the measured samples. 
These analyses underscore the validity of our data and quality control measures with 
respect to independent measures of AD pathology and genotype.  

This study serves as the data resource for the brain proteome that is also 
complemented by paired genomics and RNA-seq analyses on these same cases, as 
supported by the AMP-AD diversity initiative (17, 25). Moving forward, our study sets the 
stage for future investigations aimed at addressing existing knowledge gaps and 
advancing our understanding of AD across, age, race, sex and ethnicity. Below we 
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describe several use cases in which this proteomic dataset can be used to address 
these gaps. 

 

4.1. Differential abundance by diagnosis, sex, race and APOE4 genotype  

Race, sex, and APOE genotype have been shown to impact AD pathologies, including 
tau and amyloid in both brain tissue and biofluids (13, 56-61). This large-scale and 
racially diverse brain tissue proteome dataset provides a valuable resource for 
investigating differential protein abundance associated with AD diagnosis, sex, race, 
and APOE and their interactions across brain regions. Researchers can leverage this 
dataset to identify proteins that exhibit significant differences in abundance between AD 
cases and controls, as well as between different sexes and racial/ethnic groups. 
Understanding these differences in proteins influenced by these underlying traits may 
offer insights into the molecular mechanisms underlying AD risk and pathological 
burden. Moreover, exploring race-specific protein modulations can contribute to a more 
comprehensive understanding of disease pathogenesis and aid in the development of 
targeted interventions tailored to diverse populations.  

 4.2. Network analysis 

Unbiased proteomics of the human brain in AD, coupled with network analysis is a 
valuable approach for organizing and reducing large-scale complex, protein expression 
matrices data into groups or "modules" of proteins that highly correlate across tissues 
(28, 30, 62). We and others have shown that these modules reflect various biological 
functions with cell-type specificity linked to AD pathology (22, 23, 30, 63). Using this 
approach modules could reveal potential associations between sex, race, APOE 
genotype and AD diagnosis, shedding light on intersecting biological processes that 
contribute to disease susceptibility. Furthermore, bulk RNA-seq analysis will be 
available on majority of these same tissues profiles by proteomics, which will allow for 
integrated network analyses to compare transcript expression to protein level 
abundance which are not generally well correlated in human brain tissues (22, 24).  

4.3. Mapping post-translational modifications 

The phosphorylation of tau and proteolytic cleavage of APP into Aβ species are 
pathological hallmarks of AD and have important roles in disease progression and 
pathogenesis (42, 43). Other PTMs have also been described as altering the brain 
proteome in AD (64, 65). Although we did not specifically enrich with antibodies or 
chemical approaches like immobilized metal affinity chromatography (IMAC) for 
phosphorylated peptides, the raw MS data can be re-searched to determine if high 
abundance PTMs like phosphorylation on tau or cleavage of APP to amyloid species 
(Aβ40, 42 or other species) are altered in these tissues across race. 

4.4. Proteogenomics 
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Majority of these tissues profiled by proteomics in this study will have paired whole 
genome sequencing (WGS).  Notably, this offers an opportunity to investigate protein 
quantitative trait loci or pQTLs to estimate effects of genetic variants on protein 
abundance (66). Furthermore, integrating AD genome-wide association studies (GWAS) 
with these pQTLs can be used to pinpoint causal genes that confer AD risk through their 
effects on brain protein abundance. This approach is referred to as proteome-wide 
association studies (PWAS), which can now be done with African American GWAS 
summary statistics AD or related dementia (67, 68). Paired RNA-seq and proteomics 
from these same tissues can also be used to identify splicing defects in AD that 
generate alternative protein isoforms occurring in the brain across different disease 
states and ancestries (69, 70). Understanding how alternative splicing contributes to AD 
pathophysiology and its intersection with demographic factors may uncover novel 
disease mechanisms and identify splice variants as potential biomarkers or therapeutic 
targets.  

4.5. Limitations and Future Directions 

While our study provides valuable insights into the proteomic landscape of AD, several 
caveats and limitations should be considered. First, it is essential to acknowledge that 
proteomics data represent a snapshot of protein abundance at a particular point in time 
and may not capture dynamic changes in protein expression over the course of disease 
progression. Additionally, although efforts were made to minimize technical variability 
through rigorous quality control measures, the inherent complexity of brain tissues and 
potential confounding factors such as comorbidities may introduce biases or artifacts 
into the dataset. In addition, a few discrepancies were noted, for example, the number 
of controls in our study was not matched with the number of AD cases, resulting in 
fewer control cases. Moreover, the lack of post-mortem interval (PMI) information for all 
samples is another limitation of our study. Without PMI data, we were unable to account 
for the potential effects of PMI on protein degradation. It is also important to mention 
that the interpretation of race-specific protein modulations should be approached with 
caution, as the biological basis underlying these differences remains incompletely 
understood. Further validation studies and replication in independent cohorts are 
warranted to confirm and extend our findings. Future proteomic studies on biofluids from 
diverse participant from CSF and plasma will be warranted to understand how these 
changes in the post-mortem brain are reflected in the periphery and are prognostic for 
AD. Ultimately, integrated multi-omic datasets across tissues and biofluids, will be 
needed for further investigation into how AD heterogeneity varies across different 
ethnoracial backgrounds. 
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Data Availability 

Raw data files and clinical metadata are available at 
https://doi.org/10.7303/syn53420674. Search results and database, sample-to-TMT 
channel information, normalized data are available at 
https://doi.org/10.7303/syn55225561. Summary data is also available at the ShinyApp 
https://telomere.biochem.emory.edu/diversity/. 
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Figure legends: 

Fig 1. A. Schematic illustrating the cohort characteristics and the experimental 
workflow for mass spectrometry (MS) of the human brain proteome across frontal 
and temporal brain tissue samples. This study incorporated a total of 1105 
dorsolateral prefrontal cortex (DLPFC) brain tissues from 998 individuals, categorized 
as follows: 529 non-Hispanic white (NHW), 333 African American, 223 Latino American, 
and others (n= 20) as applicable. These samples were sourced from four prominent 
data distribution sites: Emory University, Mayo Clinic, Rush University, and Mount Sinai 
University Hospital. Additionally, 280 STG tissues from a subset of 244 individuals were 
included, with 116 NHW, 86 African American, 78 Hispanic, and others as applicable. 
STG samples were obtained from a racially diverse set of specimens originating from 
Mayo Clinic and Emory, distributed across 19 batches. Tissues underwent an 
experimental pipeline involving protein digestion, batch randomization, TMT labeling, 
fractionation, and subsequent mass spectrometric measurements. A total of 72 DLPFC 
batches were processed, comprising 9 batches from Emory, 24 from Mayo Clinic, 14 
from Mount Sinai, and 25 from Rush (comprising a total of 72 batches). The 
randomization of batches was conducted to ensure a representative and diverse 
dataset.  The output included a total of 6479 raw files for DLPFC samples and 1824 raw 
files for STG. B. Venn diagram of total number of proteins quantified from DLPFC and 
STG samples. A total of 11748 protein groups were identified from DLPFC and 11003 
from STG samples, with 10738 shared protein groups. C. Venn diagram of total protein 
from DLPFC and STG samples after quality control (QC) across all samples. 9180 
protein groups were identified from DLPFC samples and 9734 from STG, with 9015 
shared protein groups. 

Fig 2. Quality Control (QC) and Batch Correction for DLPFC Tissue proteins. A. 
The QC workflow is illustrated in the flowchart in 3 main steps: Step 1. Pre-processing 
for missing values: Only proteins with missing data in less than 50% of the samples 
were retained. The ratio of protein abundance to the total protein abundance for each 
sample was calculated to adjust for sample loading differences resulting in 9180 
proteins being retained across 1105 samples. Subsequently, the data was log2 
transformation Step 2. Outlier detection and removal: Iterative principal component 
analysis (PCA) was employed to identify and eliminate sample outliers. After multiple 
rounds of PCA analysis, 19 outliers were identified and removed, leaving 9180 proteins 
across 1086 samples. Step 3. Batch effect regression: Variance attributable to batching 
was mitigated through regression of the 9180 proteins in 1086 samples. B and C. 
Multidimensional scaling (MDS) plot showing variation among samples (B) before 
correcting for batch and (C) after regressing for batch effect.  The plot dimensions (dim 
1 and 2) reveal distinctive clusters formed by samples by site (Emory (red), Mount Sinai 
(blue), Rush (purple), and Mayo (green)), with some scattering observed among 
samples before regressing for batch effect (B). (C) The plot illustrates the successful 
removal of variance due to batch. After correcting for batch effects, samples from all four 
sites - Emory (red), Mount Sinai (blue), Rush (purple), and Mayo (green) - cluster 
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together, indicating a more cohesive grouping (n.b the change in scale from B to C). 
The correction mitigates the dispersion observed in panel B, highlighting the 
effectiveness of the batch correction procedure in harmonizing the sample distribution 
across different data distribution sites. D and E. Variance partition analysis using 
experimental factors to evaluate the percentage of explained variance in proteomic 
samples. Violin plots before (D) and after (E) batch correction illustrate the distribution of 
explained variances in overall proteomic values. The Y-axis represents the percentage 
of explained variance, while the X-axis depicts factors contributing to variance, such as 
age, sex, race, diagnosis, residuals, and batch. Notably, batch variance is present 
before batch correction, influencing the overall proteomic profile. Panel E displays the 
same factors on the X-axis after batch correction. Significantly, the violin plot 
demonstrates a substantial reduction in variance associated with batch, ultimately 
reaching near zero percent after batch regression. Moreover, even after batch 
correction, factors such as age, sex, race, AD diagnosis, and other individual traits 
(residual) had levels of impact on protein abundance patterns. Each point on the violin 
plot represents a specific protein, with the corresponding name next to it. This 
underscores the efficacy of the correction procedure in eliminating batch-related 
variability from the proteomic data. 

Fig 3. Quality Control (QC) and Batch Correction for STG Tissue proteins. A. The 
analysis workflow for data QC is depicted in three main steps: Step 1. Handling missing 
values: Proteins with missing data in more than 50% of the samples were removed, 
adjusting for sample loading differences through ratio calculation and log2 
transformation. This yielded 9,734 proteins across 280 samples. Step 2. Identification 
and removal of outliers: Iterative principal component analysis (PCA) was utilized to 
detect and eliminate sample outliers. Following three rounds of PCA, two outliers were 
removed, resulting in 9,734 proteins across 278 samples. Step 3. Batch effect removal: 
Regression was applied to mitigate batch effects for the 9,734 proteins in 278 samples. 
B and C. Analysis of Multidimensional Scaling (MDS) plots: MDS plots depict sample 
variation (B) before batch correction and (C) after regression for batch effect. Emory 
(red) and Mayo (green) samples form distinctive clusters, with some scattering 
observed among samples before batch regression (B). (C) demonstrates the impact of 
batch regression, revealing a more cohesive grouping of Emory (red) and Mayo (green) 
samples. The correction effectively reduces the dispersion observed in panel B. D and 
E. Variance partition analysis for proteomic samples: Violin plots (D) before and (E) after 
batch correction show the distribution of explained variances in overall proteomic 
values. Panel D's Y-axis represents the percentage of explained variance, while the X-
axis includes factors like age, sex, race, diagnosis, residuals, and batch. Similar to Fig 
2.D, batch variance revealed a high impact on the proteomic profile before correction. 
Panel E displays the same factors after batch correction, demonstrating a substantial 
reduction in variance associated with batch. In addition, after batch correction, age, sex, 
race, AD diagnosis, and other individual characteristics (residuals) remain influential 
factors shaping protein abundance patterns. Each data point represents a unique 
protein, with the corresponding protein names provided adjacent to the top points.  
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This highlights the success of the regression analysis in eliminating batch-related 
variability from the proteomic data. 

Fig 4. Variance Explained by individual Characteristics in DLPFC Tissues. The bar 
plots (A, C, E) depict the amount of variance explained by sex, race, and Alzheimer’s 
disease (AD) diagnosis across all DLPFC samples. A. Top-ranking proteins associated 
with sex in the dataset were identified through variance partitioning and depicted as bar 
plots. Boxplots in panel B illustrate the log2 normal abundance levels of four selected 
proteins exhibiting significant differences between males and females. These proteins 
serve as key indicators of sex-related variations and are depicted with statistical 
significance (p <0.05). C. Bar plots of top-ranking proteins associated with race 
differences in the DLPFC dataset. Boxplots in panel D illustrates the log2 normal 
abundance levels of four selected proteins demonstrating significant differences 
between African American individuals and other races (p <0.05). E. Bar plots identified 
top-ranking proteins contributing to the differences in the diagnosis of AD within the 
dataset. Boxplots in panel F display the log2 normal abundance levels of four selected 
proteins exhibiting significant differences between AD patients and controls, as well as 
other diagnostic categories (p <0.05).  

Fig 5. Variance Explained by individual Characteristics in STG Tissues. The bar 
plots in panels A, C, and E illustrate the partitioning of total variance for each protein 
into fractions attributable to different dimensions of variation in the STG samples. A. 
Top-ranking proteins contributing to sex differences in the dataset were identified 
through variance partitioning and are presented as bar plots, showing the proportion of 
variance attributable to sex. Boxplots in panel B demonstrate the log2 normal 
abundance levels of four selected proteins exhibiting significant differences between 
males and females (p < 0.05). C. Bar plots display the top proteins with fraction of total 
variance attributed to race differences in the STG dataset. Boxplots in panel D illustrate 
the log2 normal abundance levels of four selected proteins demonstrating significant 
differences between African American individuals and individuals of other races (p < 
0.05). E. Bar plots identify the top AD-associated proteins with fraction of total variance 
attributed to AD diagnosis within the STG dataset. Boxplots in Panel F display the log2 
normal abundance levels of four selected proteins exhibiting significant differences 
between AD samples and controls, as well as other diagnostic categories (p < 0.05). 

Fig 6. Correlation between proteomic Tau and APP measurements with Braak and 
CERAD pathological scoring. A. Box plots depicting the relative abundance of APP 
across AD (pink) and control (green) in DLPFC tissue samples (adjusted ANOVA p-
value < 0.05). B. Raincloud plots depict group differences in the relative abundance of 
Amyloid Precursor Protein (APP) (Y- axis) across distinct CERAD stages (X- axis) in 
DLPFC tissues. The analysis revealed a stepwise increase in the median APP levels 
with ascending CERAD classifications, indicating a progressive trend in APP abundance 
corresponding to different CERAD groups (score 1: green, score 2: orange, score 3: 
purple, score 4: pink). C. Box plots depicting the relative abundance of MAPT across AD 
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(brown) and control (yellow) in DLPFC tissue samples (adjusted ANOVA p-value < 
0.05). D. Raincloud plots illustrate the group differences in the relative abundance of 
Microtubule-associated protein tau (MAPT) (Y-axis) across distinct Braak stages (X-
axis) in DLPFC tissues. The Braak stages range from 0 to 6, with corresponding colors 
representing different stages (0: dark green, 1: orange, 2: purple, 3: pink, 4: light green, 
5: yellow, 6: brown). Notably, the analysis highlights elevated MAPT levels at Braak 
stages 5 and 6, aligning with the expected increase in tau tangles in later stages of 
Braak in the frontal cortex.   

Fig 7. The association between APOE4 genotype and prototype across DLPFC 
and STG samples. A. The boxplots of log2 normal abundance of APOE4 protein 
measured by TMT-MS across each APOE genotype reveal a high APOE4 abundance 
among APOE ε4 carriers among 920 unique DLPFC tissue samples. B. Histogram of 
APOE4 log2 normal abundance among DLPFC samples (Y-axis) across ε4 allele 
presence (red) and non-presence (blue) (X-axis). C. The boxplots of log2 normal 
abundance of APOE4 protein measured by TMT-MS across 244 STG unique tissue 
samples reveal a high APOE4 abundance among APOE ε4 carriers. D. Histogram of 
APOE4 log2 normal abundance among STG samples (Y-axis) across ε4 allele presence 
(red) and non-presence (blue) (X-axis). high levels of APOE4 abundance were 
observed in cases with the ε4 allele combination in both cortices, a few discrepancies 
between APOE4 genotyping and prototyping (purple) were depicted. These 
inconsistencies may be attributed to various factors, including mis-genotyping or 
potential technical challenges in mass spectrometry measurements, such as isotope 
impurity and low signal-to-noise ratio in specific samples. 
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