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Abstract6

A key challenge in cancer genomics is understanding the functional relationships and dependencies between7

combinations of somatic mutations that drive cancer development. Such driver mutations frequently exhibit pat-8

terns ofmutual exclusivity or co-occurrence across tumors, and many methods have been developed to identify such9

dependency patterns from bulk DNA sequencing data of a cohort of patients. However, while mutual exclusivity10

and co-occurrence are described as properties of driver mutations, existing methods do not explicitly disentangle11

functional, driver mutations from neutral, passenger mutations. In particular, nearly all existing methods evaluate12

mutual exclusivity or co-occurrence at the gene level, marking a gene as mutated if any mutation – driver or pas-13

senger – is present. Since some genes have a large number of passenger mutations, existing methods either restrict14

their analyses to a small subset of suspected driver genes – limiting their ability to identify novel dependencies –15

or make spurious inferences of mutual exclusivity and co-occurrence involving genes with many passenger mu-16

tations. We introduce DIALECT, an algorithm to identify dependencies between pairs of driver mutations from17

somatic mutation counts. We derive a latent variable mixture model for drivers and passengers that combines ex-18

isting probabilistic models of passenger mutation rates with a latent variable describing the unknown status of a19

mutation as a driver or passenger. We use an expectation maximization (EM) algorithm to estimate the parame-20

ters of our model, including the rates of mutually exclusivity and co-occurrence between drivers. We demonstrate21

that DIALECT more accurately infers mutual exclusivity and co-occurrence between driver mutations compared to22

existing methods on both simulated mutation data and somatic mutation data from 5 cancer types in The Cancer23

Genome Atlas (TCGA).24
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1 Introduction27

Cancer is an evolutionary process driven by a small number of somatic driver mutations against a larger background28

of random and functionally neutral (or slightly deleterious) passenger mutations [28, 80, 49]. Distinguishing driver29

mutations from passenger mutations and understanding the function of driver mutations is critical for understanding30

cancer progression and for developing targeted cancer therapies [25]. To this end, large-scale sequencing projects31

such as the International Cancer Genome Consortium (ICGC) [32, 81] and The Cancer Genome Atlas (TCGA) [51,32

9, 44, 37, 76, 5] have measured somatic mutations in large cohorts of tumor samples, allowing for the systematic33

analysis of driver mutations across many different cancer types.34

Beyond the prioritization of individual driver mutations and genes, another important problem in cancer ge-35

nomics is understanding the functional relationships and dependencies between combinations of driver mutations.36

For example, it has been empirically observed that certain pairs or sets of driver mutations are mutually exclusive,37

meaning that these driver mutations are observed in the same tumor sample less frequently than expected by chance38

[78]. A widely held explanation for such observed mutual exclusivity is that driver mutations are grouped into a39

small number of biological pathways, such that a single driver mutation is sufficient to perturb a pathway in a40

tumor. Combined with the relatively small number of driver mutations in a single tumor, two driver mutations41

rarely occur in the same pathway. For example, driver mutations in the KRAS and BRAF genes – two oncogenes42

in the Ras/Raf/MAP-kinase signaling pathway – have been observed to be mutually exclusive across large cohorts43

of colorectal cancer samples [18, 7]. Another explanation for mutual exclusivity is synthetic lethality where a pair44

of mutations – but not the individual mutations – result in cell death [56, 34]. On the other hand, some pairs or45

sets of driver mutations are co-occurring, meaning that they are observed in the same tumor sample more often46

than expected, e.g. the VHL/SETD2/PBRM1mutations in renal cancer [73]. Co-occurrence between driver mutations47

is observed to be much rarer than mutual exclusivity [10] and may result from some pathways requiring multiple48

mutations to be perturbed [72].49

Numerous computational methods have been developed over the past decade to identify pairs (or larger sets)50

of genes with mutually exclusive or co-occurring mutations (reviewed by [63, 70, 53]). Importantly, although de-51

pendency relationships such as mutual exclusivity and co-occurrence are often described as properties of individual52

driver mutations, the typical practice is to analyze these dependencies at the gene level, treating all observed nonsyn-53

onymous single-nucleotide mutations in a gene identically [52, 72, 41, 43, 15, 10, 42, 68, 36, 16, 35, 2, 45]. (Some meth-54

ods also analyze larger alterations such as copy number aberrations (CNAs) or DNAmethylation changes [59, 41, 10],55

but we restrict our attention to single nucleotide somatic mutations, which are the vast majority of somatic mutations56

analyzed by existing methods.) There are three major reasons why mutual exclusivity and co-occurrence analysis is57

typically performed at the gene level. First, it is often unknown a prioriwhich somatic mutations are drivermutations58

and which are passenger mutations, and the classification of mutations as drivers or passengers remains an active59

area of research [63]. Second, beyond a small number of mutational hotspots [74], individual genomic positions60

are mutated infrequently in the available cohorts of hundreds to thousands of patients. Third, it is computationally61

intractable to analyze all combinations of somatic mutations in a cohort, as most cancers are estimated to contain62

1,000-20,000 somatic mutations [48].63

Methods for identifying dependencies between driver mutations at the gene level do not explicitly account for64

passenger mutations. Instead, existing methods typically aggregate all somatic mutations in a gene – both drivers65

and passengers – into a single mutational event. Most of these methods use ad hoc procedures to restrict analysis to66

a small subset of genes that are predicted to be driver genes. However, requiring such prior knowledge substantially67

limits the ability of these methods to identify novel sets of mutually exclusive or co-occurring driver mutations. On68

the other hand, if existing methods are used to analyze larger lists of genes, then these methods will identify many69

spurious dependencies involving non-driver mutations. For example, we show that existing methods often identify70

mutual exclusivity involving mutations in the genes TTN orMUC16, two genes which are hypothesized to not carry71

any driver mutations and instead have large numbers of passenger mutations due to their length (>60,000 base-pairs)72

and high background mutation rates [40]. This empirical observation suggests that separately modeling driver and73

passenger mutations is a promising approach for identifying dependencies between drivers.74

Separately, there is a large line of work on identifying individual driver genes from somatic mutation data (e.g.75

[69, 20, 40, 75, 67, 21, 27, 30, 4, 55, 26, 3, 13, 12]). Some of these algorithms implicitly (or explicitly) model the76

number the number of passenger mutations inside each gene, i.e. a backgroundmutation rate model, and they identify77

individual genes whose number of observed somatic mutations is significantly greater than expected under the78

background mutation model. Critically, such algorithms do not identify genes like TTN or MUC16 as driver genes,79
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Figure 1: Overview of DIALECT. (A) From DNA sequencing data, one obtains a count matrix 𝑪 = [𝑐𝑖 𝑗 ] indi-
cating the number of nonsynonymous somatic mutations in genes across tumor samples. (B) Existing methods for
identifying mutually exclusive driver mutations first create a binarized count matrix 𝑿 = [𝑥𝑖 𝑗 ] = [1{𝑐𝑖 𝑗>0}] and (C)
test for independence between pairs of genes. By binarizing the somatic mutation counts, these methods conflate
driver mutations versus random, passenger mutations. (D) Separately, several algorithms estimate background mu-
tation rate distributions, or the distribution of the number of passenger mutations inside a gene, in order to identify
individual driver genes. (E) DIALECT explicitly models the distribution of somatic mutation counts 𝐶𝑖 = 𝑃𝑖 + 𝐷𝑖

and 𝐶′
𝑖 = 𝑃 ′

𝑖 + 𝐷 ′
𝑖 for two genes as a sum of passenger mutations 𝑃𝑖 , 𝑃 ′

𝑖 , respectively, and latent variables 𝐷𝑖 ,𝐷 ′
𝑖 ,

respectively, indicating the presence or absence of driver mutations. DIALECT incorporates background mutation
rate distributions P(𝑃𝑖 ) learned by prior approaches. (F)DIALECT learns the parameters 𝜏 = (𝜏00, 𝜏01, 𝜏10, 𝜏11) of the
driver mutation distribution P(𝐷𝑖 ,𝐷 ′

𝑖 ) which describes dependencies between drivers including mutual exclusivity
and co-occurrence.

as they derive background mutation models using genomic features correlated with increased passenger mutation80

rates including gene length, replication timing, and synonymous mutation rate [40]. However, these algorithms81

only model the distribution of passenger mutations inside individual genes, and have not been used to model the82

distribution of driver mutations inside pairs or larger sets of genes.83

We introduce a new algorithm, Driver Interactions and Latent Exclusivity or Co-occurrence in Tumors (DIALECT),84

to identify pairs of genes with mutually exclusive and co-occurring driver mutations. We derive a latent variable85

model for dependencies between driver mutations in a pair of genes, which combines existing probabilistic models86

of background mutation rates with latent variables that describe the presence or absence of driver mutations in each87

gene. Importantly, by incorporating existing background mutation rate models, we identify combinations of driver88

mutations de novo; unlike existing approaches, we do not need ad hoc heuristics to analyze small subsets of previ-89

ously studied driver genes. We derive an expectation-maximization (EM) algorithm to learn the parameters of our90

model, which describe the rates of mutual exclusivity and co-occurrence between a pair of driver mutations. We use91

DIALECT to identify dependencies in simulated data and to identify pairs of genes with mutually exclusive driver92

mutations in real somatic mutation data across 5 cancer subtypes. We show that DIALECT has improved statistical93

power and lower false positive rate compared to existing methods.94

2 Methods95

We derive a latent variable model for evaluating mutual exclusivity and co-occurrence between driver mutations96

in a pair of genes. We assume we are given as input a count matrix 𝑪 = [𝑐𝑖 𝑗 ] ∈ R𝑁×𝐺 indicating the number of97

non-synonymous somatic mutations in 𝐺 genetic loci (e.g. genes) across 𝑁 tumor samples. We aim to test whether98

each pair ( 𝑗, 𝑗 ′) of genes has mutually exclusive driver mutations. For ease of notation, we omit the subscripts 𝑗 and99

focus our exposition on a single pair of genes, where the first gene has somatic mutation counts 𝒄 = [𝑐𝑖 ] ∈ R𝑁 and100
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the second gene has somatic mutation counts 𝒄 ′ = [𝑐′𝑖 ] ∈ R𝑁 .101

Let 𝐶𝑖 and 𝐶′
𝑖 be random variables indicating the number of somatic mutations observed in two genes, respec-102

tively, in tumor sample 𝑖 = 1, . . . ,𝑁 . We assume the somatic mutation count 𝐶𝑖 (resp. 𝐶′
𝑖 ) in each sample 𝑖 is equal103

to the sum of two independent random variables: (1) the number 𝑃𝑖 (resp. 𝑃 ′
𝑖 ) of passenger mutations in sample 𝑖 ,104

and (2) an indicator variable 𝐷𝑖 ∈ {0, 1} (resp. 𝐷 ′
𝑖 ∈ {0, 1}) describing the presence or absence of a driver mutation105

in the gene in sample 𝑖 , i.e.106

𝐶𝑖 = 𝑃𝑖 + 𝐷𝑖 and 𝐶′
𝑖 = 𝑃 ′

𝑖 + 𝐷 ′
𝑖 . (1)

We note that we assume that there is at most one driver mutation in a gene in a given sample, which is a reasonable107

assumption in many cases1.108

We aim to estimate the joint distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) of driver mutations, which describes dependencies between109

driver mutations, i.e. when the random variables 𝐷𝑖 and 𝐷 ′
𝑖 are not independent. For example, mutual exclusivity110

(ME) corresponds to P(𝐷 ′
𝑖 = 1 | 𝐷𝑖 = 1) < P(𝐷 ′

𝑖 = 1) while co-occurrence (CO) corresponds to P(𝐷 ′
𝑖 = 1 | 𝐷𝑖 = 1) >111

P(𝐷 ′
𝑖 = 1). (Note that if 𝐷𝑖 and 𝐷 ′

𝑖 are independent, then 𝑃 (𝐷 ′
𝑖 = 1 | 𝐷𝑖 = 1) = 𝑃 (𝐷 ′

𝑖 = 1).)112

We emphasize that existing methods do not model the distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) of driver mutations. Instead, these113

methods first binarize the somatic mutation counts, forming the matrix 𝑿 = [𝑥𝑖 𝑗 ] where 𝑥𝑖 𝑗 = 1{𝑐𝑖 𝑗>0} , and then114

analyze the binarized mutation counts 𝒙 = [𝑥𝑖 ] ∈ {0, 1}𝑁 and 𝒙′ = [𝑥 ′𝑖 ] ∈ {0, 1}𝑁 for a pair of genes, respectively115

(Figure 1A-C). Typically, each binarized counts 𝑥𝑖 (resp. 𝑥 ′𝑖 ) is modeled as a sample of a random variable 𝑋𝑖 (resp.116

𝑋 ′
𝑖 ), and one aims to test whether the random variables𝑋𝑖 and𝑋 ′

𝑖 are independent. For example, a classical approach117

for testing CO and ME is Fisher’s exact test, which tests for independence by using a hypergeometric model for the118

entries of a 2 × 2 contingency table formed from the binarized counts (𝑥𝑖 , 𝑥 ′𝑖 )𝑁𝑖=1.119

The key challenge in estimating the distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) of driver mutations is that we only observe the total120

number𝐶𝑖 ,𝐶′
𝑖 of somatic mutations in a sample and not the number 𝑃𝑖 , 𝑃 ′

𝑖 of passenger mutations (or equivalently the121

value of 𝐷𝑖 ,𝐷 ′
𝑖 ). Although the number 𝑃𝑖 of passenger mutations is unknown, many methods have been developed122

to predict driver genes [69, 20, 40, 75, 67, 21, 27, 30, 4, 55, 26, 3, 13, 12] and some of these implicitly (or explicitly)123

estimate the distribution P(𝑃𝑖 ) of the number 𝑃𝑖 of passenger mutations – sometimes called a background mutation124

rate (BMR) distribution (Figure 1D). Note that distributions P(𝑃𝑖 ) may differ across samples 𝑖 = 1, . . . ,𝑁 for a variety125

of reasons, e.g. some tumor samples being hypermutators [65]. In the next section, we show how to use the BMR126

distributions P(𝑃𝑖 ) to estimate the distribution of driver mutations.127

2.1 Driver distribution for a single locus128

We start by studying the simple problem of estimating the driver mutation distribution P(𝐷𝑖 ) in a single genetic129

locus. We will then demonstrate that our approach readily extends to learning the distribution of driver mutations130

in a pair (or any larger combination) of genetic loci.131

Wemake the simplifying assumption that the drivermutation random variables𝐷𝑖 are independent and identically132

distributed (i.i.d.) across all tumor samples 𝑖 = 1, . . . ,𝑁 , i.e. the probability of a locus having a driver mutation does133

not depend on the specific tumor sample. This assumption is motivated by many standard models of tumor growth,134

where the probability of a cell receiving a driver mutation does not depend on which other mutations are present in135

the cell [8, 23]. The assumption that a particular driver mutation is identically distributed across tumor samples may136

not always hold, but we demonstrate below that this assumption allows for tractable estimation of the distribution137

𝑃 (𝐷𝑖 ) of driver mutations and works well in practice. Under this assumption, the driver mutations 𝐷𝑖 are each138

independently distributed according to a Bernoulli distribution Bern(𝜋) with a shared parameter 𝜋 , representing the139

driver mutation rate across all samples 𝑖 = 1, . . . ,𝑁 .140

Then, the distribution P(𝐶𝑖 ) of somatic mutation count 𝐶𝑖 in sample 𝑖 is given by141

P(𝐶𝑖 = 𝑐𝑖 ) = P(𝐶𝑖 = 𝑐𝑖 | 𝐷𝑖 = 0)P(𝐷𝑖 = 0) + P(𝐶𝑖 = 𝑐𝑖 | 𝐷𝑖 = 1)P(𝐷𝑖 = 1)
= P(𝑃𝑖 = 𝑐𝑖 ) (1 − 𝜋) + P(𝑃𝑖 = 𝑐𝑖 − 1)𝜋, (2)

where we use that passenger mutations 𝑃𝑖 and driver mutations 𝐷𝑖 are independent in the second equation. We142

set P(𝑃𝑖 = −1) = 0 for notational simplicity, so that the probability of zero somatic mutations in a loci is given143

1One notable exception are tumor suppressor genes where both copies of the gene are typically inactivated (“two hit hypothesis”). However,
it is common for one of these mutations to be a copy number aberration.
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by P(𝐶𝑖 = 0) = P(𝑃𝑖 = 0) (1 − 𝜋). Thus, the log-likelihood ℓ𝐶 (𝜋) = log P(𝐶1, . . . ,𝐶𝑁 ;𝜋) of the observed somatic144

mutation counts 𝒄 for a gene is given by145

ℓ𝐶 (𝜋) = log P(𝐶1 = 𝑐1,𝐶2 = 𝑐2, . . . ,𝐶𝑁 = 𝑐𝑁 ;𝜋) =
𝑁∑
𝑖=1

log
(
P(𝑃𝑖 = 𝑐𝑖 ) (1 − 𝜋) + P(𝑃𝑖 = 𝑐𝑖 − 1)𝜋

)
. (3)

Given observed mutation counts 𝒄 and BMR distributions P(𝑃1), . . . , P(𝑃𝑁 ), we compute the driver mutation rate146

𝜋 that maximizes the log-likelihood ℓ𝐶 (𝜋) of the observed data:147

𝜋 = argmax
𝜋∈ [0,1]

ℓ𝐶 (𝜋) = argmax
𝜋∈ [0,1]

𝑁∑
𝑖=1

log (P(𝑃𝑖 = 𝑐𝑖 ) (1 − 𝜋) + P(𝑃𝑖 = 𝑐𝑖 − 1)𝜋) . (4)

The maximum likelihood problem (4) is challenging to solve exactly as it is often a non-convex optimization148

problem, depending on the form of the background distributions P(𝑃𝑖 ). We solve this optimization problem by149

making the observation that the mutation count distribution (2) may be viewed as a latent variable model, where the150

unobserved, binary driver mutations 𝐷𝑖 are the latent variables and the somatic mutation counts 𝐶𝑖 are distributed151

according to a mixture of two distributions, P(𝑃𝑖 ) and P(𝑃𝑖 − 1).152

The standard approach for computing an MLE for a latent variable model is the expectation maximization (EM)153

algorithm [6]. Thus, we solve (4) using the EM algorithm, whose steps we describe below.154

E-step. Given an estimated driver mutation rate 𝜋 (𝑡 ) at iteration 𝑡 , we compute the responsibility 𝑧𝑡𝑖 = P(𝐷𝑖 |155

𝐶𝑖 = 𝑐𝑖 ;𝜋 (𝑡 ) ), i.e. the probability of the latent variable 𝐷𝑖 = 1 being equal to 1 conditioned on the observed mutation156

count 𝐶𝑖 , for each sample 𝑖 = 1, . . . ,𝑁 as157

𝑧 (𝑡 )𝑖 = P(𝐷𝑖 = 1 | 𝐶𝑖 = 𝑐𝑖 ; 𝜋
(𝑡 ) )

=
P(𝐷𝑖 = 1;𝜋 (𝑡 ) ) · P(𝐶𝑖 = 𝑐𝑖 | 𝐷𝑖 = 1;𝜋 (𝑡 ) )

P(𝐷𝑖 = 1;𝜋 (𝑡 ) ) · P(𝐶𝑖 = 𝑐𝑖 | 𝐷𝑖 = 1;𝜋 (𝑡 ) ) + P(𝐷𝑖 = 0;𝜋 (𝑡 ) ) · P(𝐶𝑖 = 𝑐𝑖 | 𝐷𝑖 = 0;𝜋 (𝑡 ) )

=
𝜋 (𝑡 ) · P(𝑃𝑖 = 𝑐𝑖 − 1)

𝜋 (𝑡 ) · P(𝑃𝑖 = 𝑐𝑖 − 1) + (1 − 𝜋 (𝑡 ) ) · P(𝑃𝑖 = 𝑐𝑖 )
.

(5)

M-step. Given the responsibility 𝑧 (𝑡 )𝑖 for each sample 𝑖 , we estimate the driver mutation rate 𝜋 (𝑡+1) for iteration158

𝑡 + 1 as159

𝜋 (𝑡+1) =
1

𝑁

𝑁∑
𝑖=1

𝑧 (𝑡 )𝑖 . (6)

2.2 Driver distribution for a pair of loci160

We next extend the approach presented above to estimate the distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) of a pair of driver mutations.161

We start by observing that the driver mutations (𝐷𝑖 ,𝐷 ′
𝑖 ) ∈ {0, 1}2 are distributed according to a bivariate Bernoulli162

distribution. A bivariate Bernoulli distribution is specified by four parameters [17]:163

1. the probability 𝜏00 = P(𝐷𝑖 = 0,𝐷 ′
𝑖 = 0) that neither locus has a driver mutation;164

2. the probability 𝜏10 = P(𝐷𝑖 = 1,𝐷 ′
𝑖 = 0) that first locus has a driver mutation;165

3. the probability 𝜏01 = P(𝐷𝑖 = 0,𝐷 ′
𝑖 = 1) that the second locus has a driver mutation; and166

4. the probability 𝜏11 = P(𝐷𝑖 = 1,𝐷 ′
𝑖 = 1) that both loci have driver mutations,167

where one of the parameters is redundant since 𝜏00 + 𝜏10 + 𝜏01 + 𝜏11 = 1. We note that the bivariate Bernoulli168

distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) is equivalent to a categorical distribution on binary strings 00, 01, 10, 11 with corresponding169

probabilities 𝜏00, 𝜏01, 𝜏10, 𝜏11.170

The parameters 𝜏 = (𝜏00, 𝜏01, 𝜏10, 𝜏11) of the bivariate Bernoulli distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) describe whether there is a171

statistical interaction [71] between the driver mutation 𝐷𝑖 in the first locus and the driver mutation 𝐷𝑖′ in the second172

locus. If 𝜏11𝜏00 < 𝜏01𝜏10, then the driver mutations are more likely to be mutually exclusive across samples than not173
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(i.e. a negative interaction) while if 𝜏11𝜏00 > 𝜏01𝜏10, then the driver mutations are more likely to co-occur across174

samples than not (i.e. a positive interaction). Driver mutations 𝐷𝑖 and 𝐷 ′
𝑖 are independent (i.e. no interaction) if and175

only if 𝜏11𝜏00 = 𝜏01𝜏10.176

More concisely, the interaction between driver mutations is quantified by the log-odds ratio 𝐿 = log
(
𝜏01𝜏10
𝜏00𝜏11

)
,177

which has previously been previously used to measure ME and CO for binarized mutations [38, 60, 14, 58]. The178

sign sgn(ℓ) of the log-odds ratio ℓ determines the type of interaction: a positive log-odds ratio 𝐿 > 0 describes ME179

between the driver mutations 𝐷𝑖 ,𝐷 ′
𝑖 while a negative log-odds ratio 𝐿 < 0 describes CO.180

Following a similar derivation as in the previous section, the distribution P(𝐶𝑖 ,𝐶′
𝑖 ) of mutation counts is given181

by182

P(𝐶𝑖 = 𝑐𝑖 ,𝐶
′
𝑖 = 𝑐′𝑖 ) = P(𝑃𝑖 = 𝑐𝑖 , 𝑃

′
𝑖 = 𝑐′𝑖 )𝜏00 + P(𝑃𝑖 = 𝑐𝑖 − 1, 𝑃 ′

𝑖 = 𝑐′𝑖 )𝜏10
+ P(𝑃𝑖 = 𝑐𝑖 , 𝑃

′
𝑖 = 𝑐′𝑖 − 1)𝜏01 + P(𝑃𝑖 = 𝑐𝑖 − 1, 𝑃 ′

𝑖 = 𝑐′𝑖 − 1)𝜏11,
(7)

and the log-likelihood ℓ𝐶,𝐶′ (𝜏) = P(𝐶1 = 𝑐1,𝐶′
1 = 𝑐′1, . . . ,𝐶𝑁 = 𝑐𝑁 ,𝐶′

𝑁 = 𝑐′𝑁 ;𝜏) is equal to183

ℓ𝐶,𝐶′ (𝜏) = log P(𝐶1 = 𝑐1, . . . ,𝐶
′
𝑁 = 𝑐′𝑁 ;𝜏)

=
𝑁∑
𝑖=1

log
(
(P(𝑃𝑖 = 𝑐𝑖 )P(𝑃 ′

𝑖 = 𝑐′𝑖 )𝜏00 + P(𝑃𝑖 = 𝑐𝑖 − 1)P(𝑃 ′
𝑖 = 𝑐′𝑖 )𝜏10

+ P(𝑃𝑖 = 𝑐𝑖 )P(𝑃 ′
𝑖 = 𝑐′𝑖 − 1)𝜏01 + P(𝑃𝑖 = 𝑐𝑖 − 1)P(𝑃 ′

𝑖 = 𝑐′𝑖 − 1)𝜏11
)
.

(8)

Given observed mutation counts 𝒄, 𝒄 ′ for a pair of genes and passenger mutation distributions P(𝑃1), . . . , P(𝑃 ′
𝑁 )184

across 𝑁 tumor samples, we compute the parameters 𝜏00, 𝜏01, 𝜏10, 𝜏11 of the driver mutation distribution that maxi-185

mize the log-likelihood of the observed data:186

(𝜏00, 𝜏01, 𝜏10, 𝜏11) = argmax
𝜏00,𝜏01,𝜏10,𝜏11

𝑁∑
𝑖=1

log
(
P(𝑃𝑖 = 𝑐𝑖 )P(𝑃 ′

𝑖 = 𝑐′𝑖 )𝜏00 + P(𝑃𝑖 = 𝑐𝑖 − 1)P(𝑃 ′
𝑖 = 𝑐′𝑖 )𝜏10

+ P(𝑃𝑖 = 𝑐𝑖 )P(𝑃 ′
𝑖 = 𝑐′𝑖 − 1)𝜏01 + P(𝑃𝑖 = 𝑐𝑖 − 1)P(𝑃 ′

𝑖 = 𝑐′𝑖 − 1)𝜏11
)

subject to 𝜏00 + 𝜏01 + 𝜏10 + 𝜏11 = 1,

0 ≤ 𝜏00, 𝜏01, 𝜏10, 𝜏11 ≤ 1.

(9)

The maximum likelihood problem (9) is difficult to solve as, for many background distributions P(𝑃𝑖 ), it a non-187

convex optimization problem over a three-dimensional simplex. Thus, similar to the previous section, we solve (9)188

using the EM algorithm, whose steps we briefly describe below.189

E-step. Given the estimated driver mutation probabilities 𝜏 (𝑡 ) =
(
𝜏 (𝑡 )00 , 𝜏

(𝑡 )
01 , 𝜏

(𝑡 )
10 , 𝜏

(𝑡 )
11

)
at iteration 𝑡 , we compute190

the responsibility 𝑧 (𝑡 )𝑖,𝑢𝑣 = P(𝐷𝑖 ,𝐷 ′
𝑖 | 𝐶𝑖 = 𝑐𝑖 ,𝐶′

𝑖 = 𝑐′𝑖 ;𝜏
(𝑡 ) ) for each driver mutation probability 𝜏 (𝑡 )𝑢𝑣 and sample191

𝑖 = 1, . . . ,𝑁 as192

𝑧 (𝑡 )𝑖,𝑢𝑣 =
𝜏 (𝑡 )𝑢𝑣 · P(𝑃𝑖 = 𝑐𝑖 − 𝑢) · P(𝑃 ′

𝑖 = 𝑐′𝑖 − 𝑣)∑
(𝑥,𝑦)∈{0,1}2

(
𝜏 (𝑡 )𝑥𝑦 · P(𝑃𝑖 = 𝑐𝑖 − 𝑥) · P(𝑃 ′

𝑖 = 𝑐′𝑖 − 𝑦)
) (10)

M-step. Given the estimated responsibilities 𝑧 (𝑡 )𝑖 =
(
𝑧 (𝑡 )𝑖,00, 𝑧

(𝑡 )
𝑖,01, 𝑧

(𝑡 )
𝑖,10, 𝑧

(𝑡 )
𝑖,11

)
at iteration 𝑡 , we compute the esti-193

mated driver mutation probabilities 𝜏 (𝑡+1)𝑢𝑣 at iteration 𝑡 + 1 as194

𝜏 (𝑡+1)𝑢𝑣 =
1

𝑁

𝑁∑
𝑖=1

𝑧 (𝑡 )𝑖,𝑢𝑣 . (11)

2.3 Testing for statistical significance195

We test the null hypothesis 𝐻0 that the driver mutations 𝐷𝑖 ,𝐷 ′
𝑖 are independent against the alternative hypothesis196

𝐻1 that the driver mutations 𝐷𝑖 ,𝐷 ′
𝑖 are not independent. We perform this test using the likelihood ratio test (LRT),197
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whose test statistic is equal to the following scalar multiple of the difference between the log-likelihoods under the198

null hypothesis 𝐻0 and alternative hypothesis 𝐻1:199

𝜆 = −2
((
ℓ𝐶 (𝜋) + ℓ𝐶′ (𝜋 ′)

)
− ℓ𝐶,𝐶′ (𝜏)

)
, (12)

where 𝜋, 𝜋 ′ are the estimated driver mutation rates assuming that driver mutations are independent, which are200

computed by solving (4), and 𝜏 = (𝜏00, 𝜏01, 𝜏10, 𝜏11) are the estimated parameters of the driver mutation distribution201

𝑃 (𝐷𝑖 ,𝐷 ′
𝑖 ) computed by solving (9). We compute a 𝑝-value assuming that the LRT statistic 𝜆 follows a 𝜒2-distribution202

with one degree of freedom, which holds asymptotically by Wilks’ theorem [77]. We say a pair of genes has ME or203

CO driver mutations if the 𝑝-value is less than a threshold 𝜖 .204

2.4 DIALECT205

We implement the EM algorithm for the latent variable model described above in an algorithm called Driver Inter-206

actions and Latent Exclusivity or Co-occurrence in Tumors (DIALECT, Figure 1). Given a mutation count matrix C207

(Figure 1A) and estimated BMR distributions P(𝑃𝑖 ), P(𝑃 ′
𝑖 ) for each gene (Figure 1D), DIALECT estimates the pair-208

wise driver mutation parameters 𝜏 by solving (9) for each pair of genes, and estimates the individual driver mutation209

rates 𝜋 by solving (4) for each individual gene (Figure 1E-F). DIALECT identifies mutually exclusive (resp. co-210

occurring) pairs as those with 𝑝-value less than a threshold 𝜖 (see previous section) and with a positive log-odds211

ratio 𝐿 = log
(
𝜏10𝜏01
𝜏00𝜏11

)
> 0 (resp. negative log-odds ratio 𝐿 < 0). We emphasize that the BMR distributions P(𝑃𝑖 ) used212

by DIALECT may be estimated using one of several methods, e.g. [40, 75, 67].213

3 Results214

3.1 Simulations215

We evaluated the ability of DIALECT to identify dependencies between mutations, including mutual exclusivity and216

co-occurrence, in simulated somatic mutation data.217

Data. We simulated somatic mutation counts (𝑐𝑖 )𝑁𝑖=1, (𝑐′𝑖 )𝑁𝑖=1 for a pair of genes with lengths 𝑙 and 𝑙 ′, respectively, in218

nucleotides following equation (1). The passenger mutation count 𝑃𝑖 (resp. 𝑃 ′
𝑖 ) in sample 𝑖 is drawn from a binomial219

distribution Binom(𝑙, 𝜇) (resp. Binom(𝑙 ′, 𝜇′)) where 𝜇 (resp, 𝜇′) is a per-nucleotide mutation rate. Such binomial220

distributions are often used in background mutation rate (BMR) models [40]. We drew each driver mutation (𝐷𝑖 ,𝐷 ′
𝑖 )221

from a bivariate Bernoulli distribution with parameters 𝜏 = (𝜏00, 𝜏01, 𝜏10, 𝜏11), where we choose the parameters 𝜏 to222

describe either mutual exclusivity or co-occurrence of driver mutations.223

Mutual exclusivity. We first assessed DIALECT in identifyingmutually exclusive driver mutations. We compared224

DIALECT with two approaches for identifying mutual exclusivity from binarized mutations: Fisher’s exact test [22],225

a classical statistical test of independence; and MEGSA [31], a recent method for identifying mutually exclusive226

driver mutations.227

We simulate somatic mutation counts (𝐶𝑖 )𝑁𝑖=1, (𝐶′
𝑖 )𝑁𝑖=1 across 𝑁 = 1000 samples with the following parameter228

choices. The driver mutation distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) has parameters 𝜏11 = 0, i.e. no co-occurrence between drivers,229

and 𝜏01 = 𝜏10 = 𝜏 , where 𝜏 represents the rate of mutual exclusivity between driver mutations. To specify the230

passenger count distributions, we use gene lengths 𝑙 = 𝑙 ′ = 10000 and we use nucleotide mutation rate 𝜇 = 10−6231

for the first gene, which was chosen so that the probability P(𝑃𝑖 > 0) ≈ 0.01 of this gene having more than one232

passenger mutation matches the median probability P(𝑃𝑖 > 0) across all genes in real data. In order to model how233

power varies with the presence of passenger mutations, we vary the nucleotide mutation rate 𝜇′ of the second gene234

such that that the BMR probability P(𝑃 ′
𝑖 > 0), or the probability of the second gene having more than one passenger235

mutation, varies between 0.01 and 0.10. We assume there are no hypermutated samples, i.e. samples 𝑖 with mutation236

factor 𝑠𝑖 > 1.237

We run DIALECT with the true BMR distributions P(𝑃𝑖 ), P(𝑃 ′
𝑖 ) for each sample 𝑖 = 1, . . . ,𝑁 . Since the power238

and specificity improves with an increasing number 𝑁 of samples, we choose the 𝑝-value threshold 𝜖 based on the239

number 𝑁 of samples: if 𝑁 ≥ 1000 then we set the 𝑝-value threshold to be 𝜖 = 0.05, while if 𝑁 < 1000 then we240
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Figure 2: Statistical power and false positive rate for detecting dependencies between driver mutations
in simulated data. (A) Power (sensitivity) of DIALECT, Fisher’s exact test, and MEGSA for identifying mutually
exclusive driver mutations from 𝑁 = 1000 tumor samples, for different choices of the rate 𝜏 of mutual exclusivity
of driver mutations and different probabilities P(𝑃 ′

𝑖 > 0) of a gene having passenger mutations. Dashed red line
indicates median estimated passenger mutation probability across all genes. (B) Power of DIALECT, Fisher’s exact
test, and MEGSA versus number 𝑁 of samples, which we vary from 100 to 5000, in detecting mutually exclusive
driver mutations. (C) Power (sensitivity) of DIALECT and Fisher’s exact test for identifying co-occurring driver
mutations with co-occurrence rate 𝜏11 = 0.01 from 𝑁 = 300 tumor samples, for different probability P(𝑃 ′

𝑖 > 0)
of having passenger mutations. (D) Power of DIALECT and Fisher’s exact test versus number 𝑁 of samples in
detecting co-occurring driver mutations. (E) False positive rate versus percentage of samples with driver mutations
for 𝜏10 = 0.05 across 𝑁 = 1000 samples.

set the 𝑝-value threshold to 𝜖 = 0.001. For Fisher’s exact test, a gene pair was identified as mutually exclusive if241

the resulting 𝑝-value was less than 0.05. For MEGSA, a gene pair is identified as mutually exclusive if the MEGSA242

𝑝-value, i.e. the MEGSA LRT statistic under the 𝜒2-distribution, is less than 0.10.243

We observe (Figure 2A) that DIALECT has greater power compared to Fisher’s exact test and MEGSA across a244

range of driver mutual exclusivity rates 𝜏 and BMR probabilities P(𝑃 ′
𝑖 > 0). In particular, DIALECT has substantially245

larger power than Fisher’s exact test and MEGSA when the gene pairs have small rates 𝜏 of mutually exclusivity246

(𝜏 ≤ 0.05) and there are a small number of passenger mutations (P(𝑃 ′
𝑖 > 0) ≤ 0.01) — parameters which describe247

many pairs of driver genes in real data. For these parameter choices, we also performed a power analysis and assessed248

the number of samples needed to achieve a given statistical power. We found (Figure 2B) that 𝑁 > 1000 samples249

are needed for DIALECT to achieve power > 0.75, while 𝑁 > 2500 samples are needed for Fisher’s exact test and250

MEGSA to achieve the same power. We emphasize that most large cohort studies only measure 𝑁 = 100 − 1000251

samples, meaning that DIALECT, as well as existing approaches like Fisher’s exact test, may not have sufficient252

power to detect gene pairs with small rates 𝜏 of mutual exclusivity. Nevertheless, our simulations demonstrate that253

for sufficiently large cohort sizes, DIALECT more accurately identifies pairs of mutually exclusive driver mutations254

compared to standard approaches.255

Co-occurrence. Wenext evaluatedDIALECT in identifying co-occurring drivermutations. We comparedDIALECT256

with Fisher’s exact test [22] which tests for co-occurrence in binarized mutations between a pair of genes. We do not257

compare to MEGSA as it only identifies genes with mutually exclusive mutations. We simulated somatic mutation258

counts (𝐶𝑖 )𝑁𝑖=1, (𝐶′
𝑖 )𝑁𝑖=1 for 𝑁 = 300 tumor samples where (1) the passenger mutation count distributions P(𝑃𝑖 ), P(𝑃 ′

𝑖 )259

are distributed as previously described and (2) the driver mutation distribution P(𝐷𝑖 ,𝐷 ′
𝑖 ) has parameters 𝜏11 = 0.01260

and 𝜏01 = 𝜏10 = 0.261

We observe that DIALECT has greater power compared to Fisher’s exact test across a range of BMR probabilities262

P(𝑃 ′
𝑖 > 0) (Figure 2C) and number 𝑁 of samples (Figure 2D). We emphasize that a much smaller number 𝑁 of263

samples are needed to achieve a power of 1 for identifying co-occurring mutations (𝑁 ≈ 600, Figure 2D) compared264
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to identifying mutually exclusive mutations (𝑁 ≈ 5000, Figure 2B), reflecting that co-occurrence is easier to detect265

than mutual exclusivity. This analysis demonstrates that for small cohort sizes, DIALECT more accurately identifies266

co-occurring driver mutations than existing approaches.267

False positive rate. We assessed the false positive rate (FPR, i.e. 1−specificity) of DIALECT and other methods by268

simulating somatic mutations for a driver gene (i.e. a gene with driver mutations, i.e. 𝐷𝑖 = 1 for some samples 𝑖) and269

a passenger gene with no driver mutations (i.e. 𝐷 ′
𝑖 = 0) and a large number 𝑃𝑖 of passenger mutations. Following the270

simulation set-up described previously, we set the passengermutation distribution parameters as 𝑙 = 10000, 𝜇 = 10−6271

for the driver gene and 𝑙 ′ = 100000 and 𝜇′ = 10−5 for the passenger mutation. The distribution 𝑃 (𝐷𝑖 ,𝐷 ′
𝑖 ) of driver272

mutations has parameters 𝜏11 = 𝜏01 = 0, and 𝜏10 = 𝜋 , where 𝜋 represents the driver mutation rate for the driver273

gene. Furthermore, in this simulation we assume driver mutations are not identically distributed across samples;274

instead, we draw driver mutations 𝐷𝑖 ,𝐷 ′
𝑖 for a 𝜌 fraction of all 𝑁 samples selected uniformly at random, where we275

vary 𝜌 between 0.05 and 0.5, and set 𝐷𝑖 = 𝐷 ′
𝑖 = 0 for the other (1 − 𝜌)𝑁 samples.276

We find (Figure 2E) that DIALECT consistently exhibits lower FPR (i.e. higher specificity) than the existing277

methods across different proportions 𝜌 of samples with driver mutations. In particular, DIALECT achieves FPR278

close to zero when 𝜌 < 0.4, which is larger than the mutation rate of nearly all driver genes, while Fisher’s exact279

test and MEGSA have FPR above 0.02. We emphasize that even relatively small FPRs result in the inference of many280

spurious dependencies in real data analyses. For example, using an algorithm with FPR = 0.01 – which is lower than281

the FPRs of Fisher’s exact test and MEGSA but larger than DIALECT’s FPR – to identify dependencies between all282

pairs of 𝐺 = 100 genes will result in 0.01 ·
(𝐺
2

)
≈ 50 spurious dependencies. We also emphasize that these results283

show that DIALECT is robust to model mis-specification, since DIALECT assumes driver mutations are identically284

distributed across tumor samples while our simulated driver mutations are not identically distributed. Such behavior285

is hypothesized to occur in some cancer types; for example, [70] observed that certain driver mutations are more286

likely to occur in colorectal cancer subtypes with lower overall mutation loads.287

3.2 Analysis of mutations in TCGA288

We next evaluated DIALECT using somatic mutation data from The Cancer Genome Atlas (TCGA) [76]. We used289

DIALECT to identify mutual exclusivity, as mutual exclusivity between driver mutations is observed more often290

than co-occurrence [10, 43]. We compared DIALECT to two state-of-the-art statistical tests for identifying mutual291

exclusivity: Fisher’s exact test [22] and DISCOVER [10]. Fisher’s exact test implicitly assumes that each sample is292

identically distributed, while DISCOVER performs a statistical test where genes have different, sample-specific mu-293

tation rates (the DISCOVER test is also asymptotically equivalent to the test used by [42]). However, both Fisher’s294

exact test and DISCOVER use binarized mutations as input, and thus do not distinguish between driver mutations295

and passenger mutations. Since DIALECT analyzes missense mutations and nonsense mutations in a gene sepa-296

rately (since these mutation types often have different background mutation rates), we additionally ran DISCOVER297

with somatic counts separated into gene events including only nonsynonymous missense mutations (indicated by298

GENE_M) and only nonsense mutations (indicated byGENE_N ). We denote these results using DISCOVER*. For DIS-299

COVER and DISCOVER* (resp. Fisher’s exact test), a gene pair was identified as mutually exclusive if the resulting300

𝑞-value (resp. 𝑝-value) was less than 0.05.301

Data. We analyzed non-synonymous mutations from tumor samples in 5 different cancer types from TCGA. Each302

cancer type contains 100-1000 tumor samples. We obtained the somatic mutation data in Mutation Annotation For-303

mat (MAF) from the TCGA PanCancer project, available through cBioPortal [24]. We separately analyzed missense304

and nonsense mutations, appending gene names with 𝑀 for missense mutations and 𝑁 for nonsense mutations, and305

we excluded mutations classified as ‘Silent’, ‘Intron’, ‘3’ UTR’, ‘5’ UTR’, ‘IGR’, ‘lincRNA’, and ‘RNA’. For computa-306

tional efficiency, we restricted our analysis to the 500 most frequently mutated genes across samples – a criterion307

that is typically used in other mutual exclusivity analyses – yielding a total of 124, 750 gene pairs that we analyze. We308

obtained background mutation rate distributions P(𝑃𝑖 ) for each gene and mutation type (missense, nonsense) using309

CBaSE [V1.2] [75]. We emphasize that DIALECT could also be run with other methods for estimating background310

mutation rate distributions such as MutSigCV2 [40] or Dig [67].311

Mutual exclusivity. DIALECT identified between 5 and 14 gene pairs in each of the five different cancer types.312

In contrast, DISCOVER, DISCOVER*, and Fisher’s exact test reported a higher number of pairs across all cancer313
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Figure 3: Comparison of pairs of genes identified by DIALECT, DISCOVER, and Fisher’s exact test for 5
cancer subtypes in The Cancer Genome Atlas (TCGA). (A) Suspicious gene fractions, or the fraction of gene
pairs where at least one gene is in a list of “suspicious” genes that are likely not driver genes, as annotated in [40],
for DIALECT, DISCOVER, DISCOVER*, and Fisher’s exact test. DISCOVER* is a variant of DISCOVER that is run
separately on missense and nonsense mutations, similar to DIALECT. We select all gene pairs with 𝑞-value less than
0.05 for DISCOVER, DISCOVER*, and Fisher’s exact test. (B) The average mutation frequency of the two genes in
each gene pair identified by DIALECT, DISCOVER, DISCOVER*, and Fisher’s exact test.

subtypes, including over 300 pairs for colon adenocarcinoma and rectum adenocarcinoma (COADREAD) and uter-314

ine corpus endometrial carcinoma (UCEC). This pattern suggests that these methods may be prone to identifying315

interactions between genes with high numbers of mutations, many of which are likely passengers. Thus, for each316

method, we next evaluated the fraction of “suspicious” genes, or genes that are likely not driver genes as annotated317

by [40], in the mutually exclusive pairs identified by each method. Such suspicious genes have high numbers of318

passenger mutations, and are commonly identified or removed from the analyses by existing mutual exclusivity319

methods. We find that DIALECT does not identify pairs with suspicious genes, while 5-10% of the pairs identified320

by DISCOVER, DISCOVER*, and Fisher’s exact test contain suspicious genes (Figure 3A). As another assessment, we321

find that DIALECT identifies gene pairs with lower average mutation frequencies compared to gene pairs identified322

by DISCOVER, DISCOVER*, and Fisher’s exact test (Figure 3B). Genes with high mutation frequencies are often323

falsely identified by other methods, and contribute to the larger number of gene pairs identified by these meth-324

ods. These analyses indicate that DIALECT does not identify mutual exclusivity between likely passenger genes325

with large numbers of mutations, in contrast DISCOVER, DISCOVER*, and Fisher’s exact test which often identify326

suspicious or highly mutated genes.327

Focusing on breast cancer, the largest cohort in the dataset with𝑁 = 1084 patients, we observed (Table 1) that the328

gene pairs with the highest rates of mutual exclusivity, i.e. the pairs with largest log-odds estimated by DIALECT, are329

comprised of genes that are reported as drivers in breast cancer. Pairs such as CDH1_N:TP53_M (DIALECT 𝑝-value330

= 0.002) and AKT1_M:PIK3CA_M (DIALECT 𝑝-value = 0.015) have been found to reflect distinct functional modules331

within breast cancer, e.g. TP53, CDH1, AKT1, and PIK3CA are all known breast cancer driver genes [57, 37, 62].332

In contrast, DISCOVER* and Fisher’s Exact Test identify spurious pairs that contain at least one “suspicious” gene.333

In particular, both DISCOVER* and Fisher’s exact test identify the pair AKT1_M:TTN_M. TTN has many random334

passenger mutations due to its extraordinary length and likely does not contain any driver mutations [39, 40]. The335

identification of the suspicious gene TTN by Fisher’s exact test agrees with its low specificity as we demonstrated336

in simulations (Figure 2E).337

DISCOVER and DISCOVER* are particularly prone to identifying interactions between genes with highmutation338

rates, an issue exacerbated in types like COADREAD and UCEC which exhibit higher background mutation rates. In339

particular, COADREAD and UCEC samples typically exhibit a higher number of mutated genes per sample (median340

of 78.5 genes per sample for COADREAD and 57.5 genes per sample for UCEC) [42]. DISCOVER and DISCOVER*341

report over 500 significant pairs in COADREAD and over 1000 pairs in UCEC. In contrast, DIALECT identifies a far342

more selective 8 and 5 mutually exclusive pairs for COADREAD (Table S2) and UCEC (Table S3), respectively.343

DIALECT also identifies novel mutual exclusivity between driver mutations that were not identified by exist-344

ing methods. In particular, DIALECT identifies mutual exclusivity between STAB2_M:TP53_M. This pair was not345

identified by DISCOVER* or Fisher’s exact test (Figure 4, Table 1) due to the low mutation rate of STAB2. STAB2346

overexpression has been observed to cause increased tumor metastasis rates [29] and poor tumor prognosis [79],347
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and may explain the observed mutual exclusivity between missense mutations in TP53 and STAB2. These examples348

demonstrate how by modeling driver and passenger mutations separately, DIALECT is able to identify novel driver349

mutations and mutual exclusivity relations that are missed by current approaches.350

DIALECT DISCOVER* Fisher’s Exact Test
Pair LLR Pair q-value Pair p-value

CDH1_N:TP53_M 14.728 PIK3CA_M:TP53_M 4.45 ∗ 10−7 CDH1_N:TP53_M 7.46 ∗ 10−4
TP53_M:TP53_N 12.132 TP53_M:TP53_N 9.57 ∗ 10−6 PIK3CA_M:TP53_M 1.08 ∗ 10−3

PIK3CA_M:TP53_N 11.153 CDH1_N:TP53_M 2.13 ∗ 10−5 TP53_M:TP53_N 1.39 ∗ 10−3
AKT1_M:PIK3CA_M 10.463 PIK3CA_M:TP53_N 4.98 ∗ 10−5 PIK3CA_M:TP53_N 1.56 ∗ 10−3
PIK3CA_M:TP53_M 9.933 AKT1_M:PIK3CA_M 4.44 ∗ 10−4 AKT1_M:PIK3CA_M 1.84 ∗ 10−3
MAP3K1_N:TP53_M 8.877 MAP3K1_M:TP53_M 3.54 ∗ 10−3 MAP3K1_N:TP53_M 1.08 ∗ 10−2
NCOR1_N:TP53_M 7.049 MAP3K1_N:TP53_M 5.24 ∗ 10−3 MAP3K1_M:TP53_M 1.61 ∗ 10−2
ARID1A_N:TP53_M 6.239 FOXA1_M:TP53_M 6.88 ∗ 10−3 FOXA1_M:TP53_M 2.43 ∗ 10−2
FOXA1_M:TP53_M 5.813 AKT1_M:TTN_M 1.01 ∗ 10−2 NCOR1_N:TP53_M 2.82 ∗ 10−2
MYH9_M:TP53_M 4.750 MYH9_M:TP53_M 1.92 ∗ 10−2 CBFB_M:TP53_M 3.58 ∗ 10−2

MAP3K1_M:TP53_M 4.728 NCOR1_N:TP53_M 3.78 ∗ 10−2 MYH9_M:TP53_M 3.66 ∗ 10−2
CBFB_M:TP53_M 3.898 AHNAK2_M:TP53_M‡ 4.44 ∗ 10−2 AKT1_M:TTN_M 4.34 ∗ 10−2
STAB2_M:TP53_M‡ 3.676 GREB1L_M:TP53_M‡ 4.55 ∗ 10−2
AKT1_M:TP53_N 3.519 ARID1A_N:TP53_M 4.55 ∗ 10−2

Table 1: Mutually exclusive pairs of mutations identified by DIALECT, DISCOVER*, and Fisher’s Exact Test on
TCGA breast cancer (BRCA) data. Higher LLR, lower q-values, and lower p-values indicate stronger mutual exclu-
sivity. Suspicious genes are shown in bold. Pairs uniquely identified by a method are shown with ‡.

4 Discussion351

We introduce DIALECT, a method for identifying dependencies between pairs of driver mutations from somatic352

mutations counts. DIALECT explicitly models the observed somatic mutation counts as a sum of driver mutations353

and passenger mutations, in contrast to nearly all other methods which conflate drivers with passengers in a gene by354

binarize the mutation events in a gene. DIALECT models the distribution of driver mutations using a latent variable355

model while accounting for passenger mutations by incorporating existing background mutation rate (BMR) models.356

We derive an expectation maximization (EM) algorithm to estimate the parameters of our model which describe357

the degree of mutual exclusivity or co-occurrence between driver mutations. We demonstrate that DIALECT has358

improved performance compared to the standard mutual exclusivity and co-occurrence tests on simulated and real359

data.360

Our approach for jointly modeling passenger and driver mutations can be readily extended in several directions.361

First, there are many methods for modeling BMRs, with each method having different strengths and weaknesses.362

In large-scale cancer studies, a standard practice is to form a “consensus” list of driver genes using BMRs estimated363

by different methods. Likewise, we imagine that it would be beneficial to run DIALECT with different BMR models364

in order to form a consensus list of mutually exclusive driver mutations. Second, although DIALECT allows for365

sample-specific BMRs (as demonstrated in simulations), existing tools do not readily output sample-specific BMRs366

for real data. Thus it would be useful to evaluate DIALECT using accurate sample-specific BMRs on a large-scale367

cohort. Similarly, DIALECT assumes that each tumor sample has an equal probability of a driver mutation, and we368

show in simulations that DIALECT has large power even when this assumption does not hold (i.e. when there is369

model mis-specification). Nevertheless, it may be useful to derive a more general model that incorporates sample-370

specific driver probabilities. Third, in the present work we used DIALECT to identify mutual exclusivity between371

driver mutations in real data, which provides a signal that the driver mutations perturb different biological pathways.372

Preliminary analysis suggests that there is no statistically significant co-occurrence in the TCGA data consistent with373

previous studies [10], but further analysis of this issue is necessary. Finally, we believe that our novel approach for374

separately modeling driver and passenger mutations would be advantageous for other problems in cancer genomics,375

particularly for learning cancer progression models (CPMs) which describe patterns in driver mutation accumulation376

over time [46, 64, 19, 1, 11, 54, 66, 47, 33].377
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Figure 4: Mutually exclusive pairs of genes detected by DIALECT and DISCOVER* in breast cancer
(BRCA). (A) Network of mutually exclusive gene pairs identified by DIALECT, where nodes represent genes, solid
edges indicate mutual exclusivity between driver mutations, and dashed edges indicate novel gene pairs not iden-
tified in prior literature. (B) Network of mutually exclusive gene pairs identified by DISCOVER*. Red highlighted
node indicates “suspicious” gene as annotated by [40].
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