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Abstract  11 

Working memory (WM) is a critical cognitive function allowing recent information to be temporarily held in mind 12 

to inform future action. This process depends on coordination between key subregions in prefrontal cortex (PFC) 13 

and other connected brain areas. However, few studies have examined the degree of functional specialization 14 

between these subregions throughout the phases of WM using electrophysiological recordings in freely-moving 15 

animals, particularly mice. To this end, we recorded single-units in three neighboring medial PFC (mPFC) 16 

subregions in mouse – supplementary motor area (MOs), dorsomedial PFC (dmPFC), and ventromedial 17 

(vmPFC) – during a freely-behaving non-match-to-position WM task. We found divergent patterns of task-related 18 

activity across the phases of WM. The MOs is most active around task phase transitions and encodes the starting 19 

sample location most selectively. Dorsomedial PFC contains a more stable population code, including persistent 20 

sample-location-specific firing during a five second delay period. Finally, the vmPFC responds most strongly to 21 

reward-related information during the choice phase. Our results reveal anatomically and temporally segregated 22 

computation of WM task information in mPFC and motivate more precise consideration of the dynamic neural 23 

activity required for WM.   24 
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Introduction 25 

Working memory (WM) is a fundamental cognitive function allowing prior sensorimotor and rule 26 

information to be held in mind, manipulated, and protected from interference for future use1. This process relies 27 

on a distributed hierarchy of brain networks performing varying degrees of top-down and bottom-up operations2,3. 28 

The prefrontal cortex (PFC) is positioned at the top of this hierarchy, exerting the highest-order influence over 29 

WM via extensive reciprocal connections with cortical4 and subcortical structures5. It is thought to be responsible 30 

for orchestrating several key aspects of WM, including actively directing and maintaining attention toward salient 31 

features of a context, selecting strategies to accomplish goals based on contextual needs, and monitoring the 32 

outcome of enacted motor plans to change strategies if necessary6,7. Difficulty with any of these functions is a 33 

prevalent symptom across many human neurological and psychiatric disorders, and usually coincides with 34 

aberrant activation of PFC-containing networks during WM8,9. A deeper examination of PFC activity throughout 35 

the different phases of WM is critical to better understanding the potential mechanisms underlying diverse types 36 

of WM dysfunction. 37 

 Over the past decade, mice have become a standard model organism in PFC research due to rapid 38 

development of genetic tools permitting more precise targeting of cell-types and brain-wide circuits10. Extensive 39 

connectomic and genomic mapping has established that mouse PFC can be divided into subregions based on 40 

local and long-range projection patterns11,12 and cytoarchitecture13,14. However, attempts at segregating mouse 41 

PFC into subregions based on functional processing of WM task features has yielded surprisingly inconsistent 42 

findings15. A potential explanation for this variability comes from recent work showing that neural activity 43 

subserving goal-directed actions is spread across many brain areas, and the primary locus of control can shift 44 

dynamically depending on contextual needs and temporal progress through a task16–22. Thus, trying to localize 45 

multi-faceted mental processes, like WM, onto isolated mouse PFC subregions may be an unreliable approach. 46 

Instead, experiments in mice should focus on characterizing a range of WM-related computations in multiple 47 

PFC subregions over the entire time course of a single behavioral paradigm15.  48 

Most mouse studies probing PFC neural circuit contributions to spatial WM have concentrated on single 49 

subregions within the same task23–26, and reports using electrophysiological recordings from multiple subregions 50 

are not accompanied by a detailed comparison between them19,27–29. Moreover, most multi-regional WM data 51 
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have been collected from head-fixed mice30–33. Critically, more comprehensive analysis describing how distinct 52 

PFC areas selectively contribute to WM task variables across time in freely-moving mice is needed, as head-53 

fixed experiments may engage different brain networks than more naturalistic behaviors34,35. To this end, we 54 

recorded single-units in three adjacent mouse PFC subregions agreeing with modern PFC parcellation 55 

schemes15: the supplementary motor cortex (MOs), the dorsomedial PFC (dmPFC), and the ventromedial PFC 56 

(vmPFC). Activity in these subpopulations was tracked in real time as the mice performed a freely-behaving 57 

delayed-non-match-to-position WM task 36. We asked how each subregion represented the retrospective sample 58 

location and other task-related information such as prospective choices and reward across the encoding, 59 

maintenance, retrieval, and outcome phases of WM37. Our results indicate that the dmPFC population stably 60 

codes for the retrospective sample location throughout all phases in single behavioral trials, while MOs prioritizes 61 

contextual transitions and vmPFC is most sensitive to choice and outcome variables. 62 

Results 63 

Behavior and electrode implantation 64 

To examine the relationship between spatial WM and PFC subregional activity, mice were water 65 

restricted to ~90% of their initial body weight and trained on a freely-moving, delayed-non-match-to-position 66 

(DNMTP) WM task (Fig. 1A). Critically, this task was designed so that mice could not know the exact choice port 67 

they would need to visit until the end of the delay period. During training, mice that made the correct non-match 68 

choice on ≥70% of trials over three consecutive days were implanted with a custom-built, 28-wire, advanceable 69 

bundle of microelectrodes into one of three separate PFC subregions (see Methods for details): the 70 

supplementary motor area (MOs, blue, n = 4), dorsomedial PFC (dmPFC, green n = 6), or ventromedial PFC 71 

(vmPFC, pink, n = 6) (Fig. 1B). We gathered at least three daily sessions of simultaneous behavioral and 72 

electrophysiological data per mouse, advancing the electrodes ventrally into the PFC by ~60 µm after each 73 

session, so that new neurons were recorded the following day (white dots in Fig. 1B depict the final electrode 74 

bundle locations for each mouse). Single-units were isolated offline using Kilosort3, aligned to important DNMTP 75 

task events, and organized into pseudopopulations by combining the neurons recorded over all sessions within 76 

each subregion. The total neuron counts for each pseudopopulation were 304 in the MOs, 354 in the dmPFC, 77 
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and 330 in the vmPFC. A one-way ANOVA revealed no significant main effect of implant location on DNMTP 78 

performance (F(2,70) = 2.71, p = 0.073, Fig. 1C).  79 

MOs is more active and has more sample port-selective neurons during the sample/encoding phase of 80 

WM 81 

We tracked subregional neural firing activity throughout all key phases of the DNMTP task. Each 82 

pseudopopulation contained neurons exhibiting task-related changes in firing rate (FR) that consistently 83 

appeared within a brief time window around the sample phase nose poke across many trials (example neuron 84 

in Fig. 2A). Heat maps of the FR were created by first Z-scoring the spike counts in 100 ms bins for all neurons 85 

in separate pseudopopulations, followed by sorting them from highest to lowest peak Z-scored activity around 86 

the sample nose poke (Fig. 2B). Quantification of mean Z-scored pseudopopulation FR at each time point 87 

revealed that the MOs significantly increased its firing rate compared to the other two implant locations in a 200-88 

300 millisecond window before the sample poke (Fig. 2C, for details on statistics see Methods). There were no 89 

significant differences between dmPFC and vmPFC at any time points. We also quantified the percentage of 90 

neurons in each pseudopopulation that either increased or decreased their firing rate by 0.5 Z-units around the 91 

sample (Fig. 2D). In correspondence with the above findings, the MOs had the largest proportions of both 92 

increasing and decreasing units compared to the other regions around the sample poke, while vmPFC contained 93 

the lowest. In both figure panels, and throughout the rest of the paper, time bins with significant pairwise 94 

differences (p < .05, see Methods) between two mPFC subregions can be visualized in the figures as straight 95 

lines containing their two respective colors. 96 

We next looked at how selective the pseudopopulations were for the sample port location in the same 97 

period around the sample poke (examples of selective MOs neurons in Fig. 2E). Using a permutation testing 98 

method (see Methods for details), we found that the MOs also contained the most neurons that could 99 

significantly differentiate sample port location based on their FR (Fig. 2F). This was followed by dmPFC and 100 

lastly by the vmPFC. These results suggest a functional gradient, which is strongest in MOs and weakest in 101 

vmPFC, in the extent to which these different subregions encode not only the beginning of the sample phase but 102 

also the sample port location. The stability of sample location selectivity was subsequently measured using 103 

cross-temporal linear support vector machine (SVM) decoding analysis (Fig. 2G, see Methods for details). In 104 
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the MOs, the predictive ability of the decoder was nearly 100% effective within 100-200 ms of the training time 105 

bin, but this effectiveness rapidly decreased to chance levels in a few hundred milliseconds. In contrast, models 106 

trained on timepoints 0.5s before the sample poke were able to predict sample location for up to one second 107 

after the sample poke with ≥70% accuracy in both the dmPFC and vmPFC, but not in the MOs, indicating a more 108 

temporally stable population code in the former two regions.  109 

Retrospective sample information is stably maintained in the dmPFC throughout the entire five second 110 

delay 111 

 The approaches taken above were next applied to the delay phase of the task. MOs Z-scored population 112 

activity around the delay poke was elevated above the other subregions to a degree comparable to the sample 113 

phase (Fig. 3C). This poke-related difference in pseudopopulation FR between subregions did not persist into 114 

the five second delay holding period. Similar to its activity in the sample phase, the vmPFC contained fewer 115 

neurons appreciably changing their activity throughout the delay (Fig. 3D). Combined with the observation that 116 

the vmPFC also had a notably small number of selective neurons (Fig. 3F), we conclude that this subregion 117 

plays a minimal role during the delay period in our task.  118 

The most striking finding during the delay phase was a time-dependent transition in the subregion that 119 

encoded the retrospective sample location most prominently. For the 200 ms around when the mice poked the 120 

back delay port, the MOs had the highest proportion of selective neurons by a small but significant margin over 121 

the dmPFC. Slightly less than one second into the delay hold, the dmPFC became the only subregion to contain 122 

any neurons with retrospective sample port selectivity throughout the rest of the holding period (Fig. 3E,F). This 123 

pattern of sample selectivity throughout the delay holding period suggests that there may be a subset of dmPFC 124 

neurons that maintain a persistently higher firing rate on either left or right sample trials. However, alternative 125 

WM mechanisms have been theorized which rely on more dynamic representations involving chains of multiple 126 

different neurons becoming transiently selective at different points in time, leading to an unstable population 127 

code38. Using the same cross-temporal SVM analysis as before, we were able to infer that the pattern of activity 128 

was likely due to a persistent mechanism. Decoding accuracy remained above 70% from the beginning to the 129 

end of the delay holding period in the dmPFC suggesting that a stable population code was present during this 130 

time (Fig. 3G). Conversely, the MOs and vmPFC decoded at chance levels throughout most of the delay.  131 
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Retrospective sample port information is most strongly encoded by the dmPFC before and after the 132 

choice poke 133 

 Reminiscent of nose pokes in the previous phases, the MOs was again the most active subregion directly 134 

around the choice poke (Fig. 4C,D). We also recorded a large amount of activity starting ~1.5 seconds before 135 

the choice poke which appeared to be highest in the vmPFC, although this difference was not statistically 136 

significant in this time frame (Fig. 4C). Contrary to the previous two task phases, the selectivity in this pre-poke 137 

period and the period directly around the poke was most represented in the dmPFC instead of the MOs (Fig. 138 

4E,F). This significance continued in dmPFC until about one second after the choice, once again implying that 139 

the dmPFC stably represents the location of the sample port that was visited earlier in the trial. Consistent with 140 

this idea, the cross-temporal SVM uncovered a more stable code both before and after the choice poke in dmPFC 141 

compared to other areas (Fig. 4G).  142 

MOs most strongly differentiates task phase 143 

 Although selective coding of retrospective sample port identity is necessary for successful DNMTP 144 

performance, it is not the only task parameter that mice must constantly monitor to make the correct non-match 145 

choice and maximize reward. A mouse must also be aware of several other aspects of the task including tracking 146 

which phase of the task it is in so that the correct motor strategy can be enacted at specific points in time, 147 

upcoming choice port location and the location of the choice it eventually makes, and what the outcome of the 148 

choice was (correct or incorrect) so that the mouse can update its strategy on the next trial if necessary. Any or 149 

all of these factors may interact at any given point throughout the time course of a single trial, so we wanted to 150 

analyze each factor with respect to the other factors.  151 

For this, we used a general linear model (GLM) to predict how much the firing rate of each neuron in 200 152 

ms bins around pokes depended on the four following predictor variables: poke context (sample, delay, or choice 153 

poke), sample port location (left or right), choice port location (left, center, or right), and outcome (correct or 154 

incorrect). Shuffled coefficient of partial determination analysis (CPD, see Methods for details) unveiled the 155 

percent of total firing rate variability that was explained by each of these variables. For this first GLM analysis, 156 

we were mainly interested in how closely the PFC monitored task phase information around pokes. The task 157 

phase the mouse was transitioning into around a poke accounted for significantly more total neural variability in 158 
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the MOs as compared to dmPFC and vmPFC (Fig. 5A). The dmPFC furthermore encoded this variable to a 159 

larger degree than vmPFC. Poke context accounted for an overwhelming percentage of all explainable variability 160 

in each region (Fig. 5B), confirming that information about task progression is a crucial part of PFC computation 161 

regardless of the subregion. In lieu of these results, we assessed how well the population activity in separate 162 

subregions could decode the poke context around poke events. We implemented a similar SVM approach as 163 

the one described in previous sections, but we applied a multiclass coding scheme instead of a binary one since 164 

the model now had three possible choices (sample, delay, or choice) to differentiate. This method was able to 165 

decode poke context with 100% accuracy in all subregions (Fig. 5C).  166 

GLM exposes distinct subregional processing of different task variables 167 

In order to investigate the contribution of DNMTP task variables over the same wider time frame used in 168 

the first several figures, we needed to remove the poke context task variable due to its dependence on a 169 

prohibitively small window around pokes. Therefore, three predictor variables remained for this GLM over time: 170 

sample port location, choice port location, and outcome. With a similar CPD approach as above, we calculated 171 

the percent of neurons in each region that significantly (according to a shuffled CPD control analysis, see 172 

Methods for details) encoded the specified task variables in each 200 ms bin. This produced analogous results 173 

to our retrospective sample location selectivity investigation using permutation testing in Figs. 2, 3, and 4, further 174 

strengthening these findings (Fig. 6A). The time-based GLM also established that neither upcoming choice port 175 

identity nor trial outcome were encoded in the sample or delay phases of the task (Fig. 6B,C). Importantly, we 176 

only observed a considerable number of choice-port-selective neurons around the choice poke itself, with the 177 

vmPFC displaying the largest percentage (Fig. 6B). Likewise, only after the choice was made were we able to 178 

find significant subregional differences in the number of neurons encoding outcome (Fig. 6C). This was a 179 

compelling affirmation that the mice were not choosing an incorrect prospective motor plan or specific choice 180 

location before they needed to make the actual choice. Surprisingly, the MOs was the region with the most 181 

neurons encoding the outcome variable, possibly due to motor activity changing drastically on correct vs incorrect 182 

trials as mice were either consuming a water reward by licking (correct), or removing their nose from the port 183 

when no water was dispensed (incorrect). 184 
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GLM beta weights for retrospective sample location selectivity confirm its representational stability 185 

throughout trials 186 

Since sample location was the only task feature significantly encoded by all subregions throughout all 187 

phases of WM, we wanted to take a closer look at the temporal dynamics of this information in each area. We 188 

reasoned that knowledge about the way in which retrospective representations evolve is critical to fully 189 

understand the circuit mechanisms underlying WM, as most definitions of WM rely on the ease with which 190 

animals can maintain previously encoded information over time. A recurring theme in our data is that this sample 191 

location information seems to be strongly reactivated very close to poke events. We therefore investigated the 192 

extent to which the sample selectivity of neurons in each region was reactivated around these pokes. The 193 

percentages of neural selectivity that was significant across multiple pokes was quantified in the Venn diagrams 194 

in Fig. 7A. MOs and dmPFC both had a large number of neurons selective for the sample location across multiple 195 

task phases. Interestingly, there were few vmPFC neurons that were sample-selective over multiple pokes.  196 

The maximum GLM beta weights from these selective neurons were identified around pokes (600 ms 197 

before and after poke).  We sorted these beta weights by amplitude for better visualization, and plotted examples 198 

of these histograms for MOs and vmPFC in Fig. 7B. In these examples, negative beta weights represented a 199 

neuron with left sample selectivity, while positive signified right selectivity, and higher amplitude meant the 200 

neuron had a higher average difference in firing rate between left and right trials. To check temporal stability of 201 

these beta weights, we ran simple Pearson correlations between beta weights from significantly selective 202 

neurons at two different time points – for example, sample poke (light bars) versus delay poke (dark bars) as 203 

shown in Fig. 7B. The r values from these correlations are graphed as bars in Fig. 7C for every subregion across 204 

every time-based comparison. Briefly, we found that the sample-selective subpopulations of MOs and dmPFC 205 

neurons have similar beta weight distributions when comparing sample and delay pokes, while the vmPFC 206 

subpopulation is negatively correlated. The dmPFC also had similar selectivity across all adjacent time 207 

comparisons, adding more evidence that it is uses the most stable coding of all three subregions. Interestingly, 208 

none of the areas were stable from sample to choice pokes, which potentially arises from the fact that these 209 

events are separated in time by a cognitively demanding delay phase, which may largely reorganize neural 210 

activity.  211 
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vmPFC Z-scored population activity displays the largest change in reward outcome-related firing rate 212 

Up to this point, we had not detected any substantial contributions from the vmPFC to DNMTP WM 213 

performance. However, this region is known to have the densest reciprocal connections with the ventral 214 

tegmental area and amygdala out of all PFC subareas39,40, hinting at potential involvement in more valence or 215 

reward-based information processing. As a result, we subtracted the mean Z-scored firing rate of all recorded 216 

neurons on correct trials from that on incorrect trials (subsampling for the lower count of incorrect trials), which 217 

gave rise to more pronounced differences in pre-choice and post-outcome population activity in the vmPFC 218 

compared to MOs and dmPFC (Fig. 8A, positive values indicate higher FR on incorrect trials). Not surprisingly, 219 

the vmPFC was also different relative to MOs and dmPFC in terms of the percentages of neurons responding 220 

by either increasing or decreasing their firing rate based on the reward outcome (Fig. 8B).  221 

Discussion 222 

In this paper, we delineate how the neural populations in adjacent mouse mPFC subregions processed 223 

information about WM task-related variables over time. The first key finding was that each subregion exhibited 224 

characteristic and differentiated activity during the task relative to the other subregions. The second key finding 225 

was that much of the WM task-related activity appeared unrelated to storing WM information (i.e., 226 

representations of the previously visited sample port locations). Rather, it reflected changes in activity related to 227 

poke context (sample, delay, or choice poke), and rewards. The third key finding was that WM of the sample 228 

location was stored briefly (~1 second) in the MOs and dmPFC and in a sustained manner only in the dmPFC, 229 

with minimal retrospective representations detected in vmPFC. The final key finding was that vmPFC 230 

predominantly represented choice and outcome-related activity relative to MOs and dmPFC.  231 

Of note, there is a dearth of comparative analysis using single neuron and population activity of 232 

neighboring mPFC subregions during WM, particularly in rodents. Activity across mPFC subregions has been 233 

examined in rats performing DNMTP tasks41,42 and a more complex match to place task43. In these studies, 234 

single neurons responded prominently to reward locations and task phase, but in contrast to our findings in this 235 

study, no sustained neural activity related to retrospective sample port location was noted during the delay 236 

period. Expanding on these studies, our work implements complementary computational analyses to further 237 

explore the disparate functional roles and temporal dynamics/stability of subregional mPFC neural populations 238 
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during WM. In addition, we included another brain region in our experiments, the MOs, after recent evidence that 239 

it supervises more abstract functions than basic motor control and should be considered a part of the mPFC44.  240 

In our DNMTP task, the MOs behaves in a manner consistent with the theory proposed by Barthas and 241 

Kwan (2017) which posits its involvement in context-dependent selection of motor plans45,46 and the online 242 

monitoring of sequential sensorimotor tasks47. Activity in our recorded MOs neurons peaks in a tight window 243 

around all port pokes. Importantly, population-level differences in this transient activity can simultaneously 244 

differentiate which part of the task the poke is occurring in alongside distinguishing the left versus right sample 245 

port location. These transient poke-centered phenomena may represent close monitoring of the phase of the 246 

DNMTP task the animal is in at fixed intervals, while also providing information at each stage about the spatial 247 

rule of the current trial, facilitating ongoing motor plan selection and timing. Consistent with the notion that MOs 248 

is involved in context-dependent selection of motor plans, it has been reported that MOs can relay its 249 

contextual/motor information to many areas of the neocortex it connects with, including sensory and primary 250 

motor cortex48. Future timed inactivation studies may be useful in exploring these ideas further in WM tasks.  251 

With respect to retrospective sample location selectivity, our analyses uncovered strong sample port 252 

representations in both MOs and dmPFC during all task periods. The retrospective sample location was 253 

detectable using single neuron and population analyses, including using an SVM to decode the sample port 254 

location and developing a GLM to show that this port location information is significantly encoded in MOs and 255 

dmPFC neurons well after the sample phase. As mentioned above, the retrospective sample location-related 256 

activity in MOs manifests only briefly around pokes (~1 sec), and these recurring transient patterns of selectivity 257 

do not remain stable throughout a trial. We speculate that MOs may not contain the molecular or circuit 258 

architecture necessary to maintain persistent activity in a group of neurons49. In contrast, subsets of dmPFC 259 

neurons are selective for the retrospective sample port at the sample, delay and choice pokes in similar patterns, 260 

with a smaller group (~10%) exhibiting sustained retrospective sample port selectivity throughout the delay. 261 

These findings are consistent with the notion that there are overlapping ensembles of WM neurons operating 262 

with different dynamics in different PFC subregions on different timescales. They also suggest that briefly active 263 

WM ensembles may be more common than sustained ensembles. It will be useful to explore these ideas further 264 

in primates and rodents using different WM tasks with a range of delay lengths. 265 
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Perhaps the most intriguing finding in our data is the aforementioned stability of dmPFC retrospective 266 

sample port selectivity of a group of neurons throughout the course of behavioral trials, especially during the 267 

majority of the delay holding period when neither of the other subregions display sample location-related activity. 268 

A substantial body of evidence has set the precedent for the existence of persistently selective delay 269 

representations in various primate brain areas including dorsolateral prefrontal cortex50,51, and in head-fixed 270 

mice. The latter work was done in the nearby anterior lateral motor cortex (ALM) during a delayed motor response 271 

task showing sample-selective preparatory activity for an upcoming left or right lick30–32,52,53. This task differs from 272 

ours in that the head-fixed animals know the exact location of the correct choice throughout the delay period, 273 

allowing them to make a precise motor plan which may be represented as persistent activity. In our task, the 274 

prospective location that will be rewarded cannot be anticipated. Additionally, the delay lengths used in the 275 

reports cited above are relatively short (1-2 seconds) compared to ours at five seconds. We believe that this 276 

longer interval is crucial to unraveling the dynamics of WM, as we observed that most neurons coding for the 277 

retrospective sample location in MOs and dmPFC around the delay poke are not sustained beyond 1-2 sec into 278 

the delay, with a small group of neurons (~10%) in dmPFC exhibiting sustained WM activity. Other studies in 279 

freely-moving rats also found non-sustained sample-selective delay activity in the frontal orienting field during a 280 

WM motor planning task45, and in prelimbic cortex in a delayed alternation task54.  281 

An often-overlooked aspect of WM is the need to maintain some signal which updates strategies based 282 

on feedback from reward outcomes, so that behavior can be adjusted in the immediate future if results don’t 283 

match expectations. Our findings in vmPFC align with the possibility that this region is predominantly involved 284 

processing choices and outcomes. This could be communicated by different release patterns of dopamine in this 285 

region 55, or changes in firing from glutamatergic amygdala inputs 56. Overall, our results point toward a dynamic 286 

flow of information from MOs to vmPFC as the mice progress through the task. Similar dynamics across distant 287 

brain regions have been characterized before in humans 22, monkeys 57, and mice 30, but they remain poorly 288 

characterized both in primates and mice in PFC subregions involved in WM.  289 

One caveat of this study is that we did not record from these subregions simultaneously, due to the 290 

technical difficulty of probing multiple sites along the curvature of the cortex. Future studies would benefit from 291 

using more advanced electrophysiological setups (e.g., Neuropixels 2.0 probes58) to record all subregions at 292 
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once. We also did not collect video data to accompany these recordings. In future studies, video would be useful 293 

for connecting specific movements to associated neural activity patterns59. Furthermore, with the way our task 294 

was designed, we cannot definitively determine if the mice are actively remembering the retrospective port 295 

location or prospectively planning a left or right turn away from the sample port during the delay period60, although 296 

both of these scenarios require a WM mechanism. However, our GLM data showing no neurons in any region 297 

that were selective for the upcoming choice port lends support to the idea that the sustained representation we 298 

describe is most likely a retrospective one that aligns well with stored WM information very closely related to the 299 

sample port visited earlier in the trial. 300 

One ongoing challenge in neuroscience is the mapping of rodent mPFC subregions to the corresponding 301 

areas from primate PFC. Although this can be done according to common afferent and efferent projections, 302 

molecular expression, and functions61–64, there is often a lack of consensus regarding the extent of 303 

similarity/homology. Another challenge has been the difficulty in eliciting persistent WM activity in rodent PFC to 304 

be able to study the underlying mechanisms in mice. By identifying such activity, as well other types of WM 305 

activity, this study provides a foundation to perform such studies using tools that are uniquely available in mice. 306 

Our work here also paves the way for more detailed analysis of these networks and a more nuanced and dynamic 307 

view of how neighboring brain regions process information in complex and complementary ways as mice 308 

progress through a complicated behavior that requires WM and other functions.  309 

Methods 310 

Animals. All animal experiments performed in this study were approved by the Veterans Affairs Portland 311 

Health Care System Institutional Animal Care and Use Committee. Nine female and seven male mice, bred on 312 

a C57BL/6J background, were housed in the Veterans Affairs Portland Health Care System Veterinary Medical 313 

Unit on a reverse 12-hour light cycle with lights turning off at 8:00 AM (PST), and on at 8:00 PM (PST). All mice 314 

were group-housed before electrode implantation, after which they were single-housed until the completion of 315 

the experiment to prevent them from damaging each other’s implants. Mice had ad libitum access to water 316 

(unless restricted for experimentation) and PMI PicoLab 5L0D Laboratory Rodent Diet (LabDiet, Inc., St. Louis, 317 

MO, USA). Mice were housed in rooms with constant temperature (22-26 ºC dry bulb) and humidity (30-70%) 318 

monitoring.  319 
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One day prior to the start of initial behavioral training, mice were water restricted to 85-90% of their initial 320 

body weights so that they were motivated to seek out water rewards. This weight-based water restriction 321 

continued for the duration of active behavioral experimentation (but not during recovery from surgery), after 322 

which they were promptly returned to ad libitum water until they were sacrificed for implant location confirmation. 323 

The long-term water restriction protocol consisted of giving the mice about one gram of a 98%-water, gelatinous 324 

hydrocolloid mixture (HydroGel®, ClearH20, Westbrook, ME, USA) daily, after behavioral tasks, to keep the mice 325 

at a constant water-motivated weight. Furthermore, during the one-week recovery from surgery, mice were 326 

supplemented with an electrolyte-based recovery diet (DietGel® Recovery, ClearH20, Westbrook, ME, USA). 327 

Behavioral setup and training. On the first day of delayed-non-match-to-position (DNMTP) behavioral 328 

training, water-restricted mice were acclimated to the behavioral chamber (Fig. 1A, Bpod, Sanworks LLC, 329 

Rochester, NY, USA). The main hardware components of this chamber included a state machine control board 330 

and illuminable, photo-gated, water-dispensing ports. Integration of this system with MATLAB software 331 

(MathWorks, Natick, MA, USA) and our electrophysiological recording system allowed for precise closed-loop 332 

control over specific DNMTP task parameters via custom MATLAB scripts. These parameters included the timing 333 

of task phases, lighting of ports, delivery of water rewards or signaling of incorrect behavior with negative 334 

reinforcers, and online synchronization with electrophysiological data for accurate timestamping of neural firing 335 

and important behavioral events.  336 

After a 15-minute habituation session on day one, mice were taught on day two that only lit ports could 337 

dispense water rewards. To do this, we randomly lit and pre-baited one of the four (three “front” and one “back”) 338 

ports so that water was available as soon as the port light turned on. This allowed mice to initially learn the simple 339 

Pavlovian association that water was available from lit, but not dark, ports. Once the mice were familiar with this 340 

association (usually after one 15-minute session), we changed to a slightly more instrumental design where 341 

water was not dispensed until the mice poked their nose in the lit port and broke the plane of the infrared 342 

photogate, prompting them to learn that their active engagement with the port was required for water to be 343 

dispensed.  344 

The next step in training was a modified version of the final DNMTP task with intertrial intervals (ITIs), 345 

sample phase, delay phase, and choice phase. After a five second ITI, either the left or right front port had a 346 
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50% chance to randomly light up on a given trial (sample phase), and the mouse was required to poke its nose 347 

in the lit port to get a small water reward (3 µL) and activate the back delay port. The mouse then turned around 348 

to poke in the back delay port, which dispensed a one µL reward immediately after the poke. Poking in any of 349 

the dark ports during the sample or delay phases led to a punishment consisting of illumination of a bright house 350 

light and a behavioral timeout for 15 seconds, after which the exact same trial restarted. Successful progression 351 

through the delay led to the choice phase, where the previous sample port lit up along with one of the other two 352 

front ports (randomly, 50% chance). The mouse had to poke the lit port that it did not previously visit during the 353 

sample phase to complete a correct non-match choice and get a larger seven µL reward. Consumption of this 354 

reward typically took about two to three seconds, after which the mice left the port. Leaving the port after water 355 

consumption initiated a five second ITI period in which the mouse could not enter any other ports, or the ITI timer 356 

would reset. An incorrect choice similarly led to an illumination of a bright house light and a fifteen second 357 

timeout, but in this case a new trial with new port locations started afterwards.  358 

Once mice achieved 70% non-match performance on this training task with no delay, we removed the 359 

sample phase reward and implemented a slow walk-up of delay length in each session to help the mice get to 360 

the final delay period of five seconds. The mice had to hold their nose in the back port until the delay timer ended 361 

to get the small one µL reward and enter the choice phase. After each successful delay hold, the timer went up 362 

from zero by 0.10 seconds until a five second delay was reached. We let the mice do this until they reliably got 363 

to 5 seconds for the delay period. The final version of the task had the mice starting the delay at zero seconds 364 

and walking up by one second per trial to the final five second delay. These first five trials were removed from 365 

analysis. The final task sessions, in which we also recorded brain activity, usually lasted around one hour and 366 

the mice completed anywhere from 48 to 141 trials, depending on motivation for water based on hydration status. 367 

Once mice performed at >70% for three consecutive sessions they were implanted with electrodes. 368 

Electrode implantations and single-unit recordings. Custom 28-channel implantable electrode bundles 369 

were constructed in-lab. The process consisted of threading 32-channel electrode interface boards (EIB-36-370 

Narrow-PTB, Neuralynx, Inc., Bozeman, MT, USA) with 12 µm diameter tungsten wire (California Fine Wire 371 

Company, Grover Beach, CA, USA), and securing the wires in the board with gold pins (Neuralynx, Inc., 372 

Bozeman, MT, USA). Four slightly larger diameter local field potential wires were implanted in various mPFC-373 
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connected brain regions, although none of the data collected with these wires was used for analysis. Silver 374 

ground and reference wires were also soldered onto the EIB. The apparatus was built on a custom 3D-printed 375 

scaffold (Grey V4 resin, Formlabs, Somerville, MA, USA), with holes for drivable screws (McMaster Carr, 376 

Elmhurst, IL, USA) that allowed for advancement of the electrodes after every recording session. The wires were 377 

affixed to the EIBs using dental cement (UNIFAST Trad, GC America Inc., Alsip, IL, USA) to protect them from 378 

damage.  379 

For implantation, mice were lightly anesthetized with 3% vaporized isoflurane (Covetrus, Dublin, OH, 380 

USA) and transferred to a stereotaxic surgery apparatus (David Kopf Instruments, Tujunga, CA, USA) where 381 

they were kept at ~1% isoflurane for the remainder of the surgery. Body temperature was monitored with a 382 

Physitemp TCAT-2LV temperature controller system, which held animals between 36 and 37 ºC. Prior to initial 383 

incision, they were injected with carprofen and dexamethasone for pain management, along with a topical 384 

application of lidocaine to the skull and surrounding skin. Electrode bundles were implanted on the left side of 385 

the skull at the following coordinates (from bregma): supplementary motor area (MOs): +1.80 mm anterior, -386 

1.50 mm lateral left, -1.00 mm ventral to brain surface; dorsomedial prefrontal cortex (dmPFC): +1.80 mm 387 

anterior, -0.40 mm lateral left, -0.50 mm ventral to brain surface; ventromedial prefrontal cortex (vmPFC): 388 

+1.80 mm anterior, -0.40 mm lateral left, -1.70 mm ventral to brain surface. A larger diameter reference wire was 389 

implanted in the left striatum: +0.50 mm anterior, -1.60 mm lateral left, -2.50 mm ventral to brain surface. A 390 

ground screw was also placed in the skull over the right cerebellum. The full setup was secured to the skull using 391 

the same dental cement mentioned previously. This included threading screws into skull-secured acrylic cuffs 392 

so that they could be advanced and drive the electrodes deeper into the brain.  393 

Mice were allowed to recover for at least one week with daily health monitoring before returning to water 394 

restriction and behavioral testing. Electrical recordings during behavior began after two to three re-habituation 395 

sessions while plugged into the electrophysiological tether and commutator (Doric, Quebec, Canada). Data was 396 

collected with a CerePlex Direct neural acquisition system connected via a 32-channel CerePlex µ (mu) 397 

headstage (Blackrock Neurotech, Salt Lake City, UT, USA) to the implanted EIB. Unfiltered data was sampled 398 

at 30 kHz throughout an entire behavioral session. Single-units were isolated offline using Kilosort3 and 399 

timestamped to behavioral events. Since the geometry of our bundle was unknown, we used a random linear 400 
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arrangement for our probe configuration parameter. We also turned off the option for registration and drift 401 

correction so that Kilosort would not try to re-order the channel map and match templates based on the random 402 

arrangement of our bundle. Units considered “good” by the Kilosort algorithm (consistently similar waveform 403 

shape and clean autocorrelations) were then manually curated and thrown out if their amplitudes or template 404 

presence drifted significantly over the course of the recording, or if cross-correlations with other units determined 405 

that they were duplicates. In the second case, the highest amplitude duplicate was kept, and the rest removed.  406 

Analyses and statistics 407 

The following analyses were completed using custom MATLAB (R2022a) scripts, and the use of specific 408 

built-in MATLAB functions is noted when appropriate. These analyses were performed with the goal of testing 409 

for differences between these subregional pseudopopulations. 410 

Z-scoring and comparison of Z-scored firing rate across subregions. After spike sorting, we created three 411 

pseudopopulations by combining all neurons within each of the PFC subregions across all recording sessions. 412 

The first analysis involved Z-scoring the firing rate of every neuron around key behavioral events. This was done 413 

by summing the spikes in every 100 ms time bin five seconds before and after the sample, delay, or choice 414 

pokes for every correct trial (one hundred total bins for each poke). We then normalized each trial of each neuron 415 

across the time bins to create time-based Z-scores. These Z-scores were averaged across all correct trials in 416 

that neuron’s session to get the mean Z-score for every neuron around important DNMTP task events, and this 417 

result is depicted in the heatmaps seen in Figs. 2B, 3B and 4B. We could then take the mean across all neurons 418 

in each pseudopopulation to see how the regions differed in terms of simple firing rate changes over time (Figs. 419 

2C, 3C and 4C).  420 

To evaluate if the pseudopopulation Z-scored firing rate differed between subregions, we ran a separate 421 

one-way ANOVA (MATLAB function anovan) at every relevant time bin shown in the figures (this number was 422 

different between task phases). After uncorrected p-values for each ANOVA were found, we adjusted them for 423 

false discovery rate (FDR) using the Benjamini-Hochberg method 65. Each time point that still had a corrected p-424 

value of < .05 was taken, and unpaired t-tests in that bin were conducted on each combination of subregional 425 

comparisons. The p-values from these multiple comparisons were then Bonferroni post-hoc corrected, and only 426 

comparisons with adjusted p-values still below .05 were considered significantly different at the corresponding 427 
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timepoint. The above ANOVA strategy was also used to calculate significant subregional differences in the 428 

changes in Z-scored firing rate on incorrect vs correct trials in Fig. 8, except that that incorrect scores were 429 

subtracted from correct scores before analysis.  430 

We took a related approach to analyze the percentages of neurons in each region that exhibited an 431 

increase or decrease by 0.5 Z-units (Figs. 2D, 3D and 4D). However, instead of running ANOVAs on each time 432 

point, we ran a χ2 test for homogeneity of proportions across the three groups (MATLAB function crosstab). Like 433 

the ANOVA approach, we also adjusted p-values for false discovery rate over time using the Benjamini-Hochberg 434 

method. If adjusted p-value was still less than .05 for a time bin, we ran separate pairwise χ2 tests for each 435 

combination of subregions and corrected for these multiple comparisons using the Bonferroni-Holm method 66. 436 

Any adjusted p-value below .05 after these conservative corrections was considered to represent a significant 437 

difference in the proportion of neurons either increasing or decreasing their firing rate between two groups at 438 

that time point. Moreover, this χ2 strategy was similarly employed in Fig. 8, to study the differences in percentages 439 

of neurons that increase or decrease their firing rates in response to incorrect trials.  440 

Determining retrospective sample location selectivity using permutation testing. Retrospective sample 441 

location selectivity was analyzed in several ways throughout the paper. In Figs. 2F, 3F and 4F, we used a 442 

permutation testing method to compare the raw spike counts in 100 ms time bins between left and right sample 443 

location trials (correct trials only). Since sessions rarely had an equal number of correct left and right sample 444 

trials, for each session we randomly subsampled trials from the greater of the two to match the number of trials 445 

from the lesser. Next, we randomly sampled two trials from a combined subpopulation of left and right samples, 446 

such that the spike counts for these random two trials could be from two left trials, two right trials, or a left and a 447 

right trial. We took the difference between two randomly sampled trials 1000 times and created a shuffled 448 

distribution of differences. We then calculated the true mean difference between all left and right trials, compared 449 

that to the shuffled distribution, and counted the number of shuffled differences that were greater than or less 450 

than the true mean difference. Neurons were considered to be significantly selective for a sample location if < 451 

25 out of 1000 shuffled differences were greater in magnitude than the actual difference (approximating a p-452 

value of < .025). This was done for every time point around key poke events.  453 
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Support vector machines (SVMs) for cross-temporal decoding of sample location and prediction of poke 454 

context. To track the stability of location selectivity across time in each region, we trained linear SVMs (MATLAB 455 

fitcsvm) to decode retrospective sample location every 100 ms using binned raw spike counts from each neuron 456 

in a pseudopopulation on all correct trials. We then assessed how well each time point’s trained model could 457 

predict sample location based on the pseudopopulation activity at all time points (including the one it was trained 458 

on). A stable population representation would display above-chance predictive accuracy (> 50%) at time points 459 

far from the training time. A leave-two-out cross-validation scheme was applied to protect against overfitting the 460 

model. This consisted of holding out one trial from both left and right location samples and testing how the model 461 

trained on the remaining trials predicted the identity of these held out trials. Importantly, we subsampled all left 462 

and right trial counts to 12, which was the lowest left or right sample location trial count across all sessions, 463 

although most sessions had much more than 12. Our leave-two-out strategy was therefore repeated 12 times, 464 

with each value from this subsampling appearing once without replacement in the testing set. The prediction 465 

accuracy of the model for each subsample was calculated as the number of correct classifications of all held out 466 

trial combinations, out of 24. The overall subsampling procedure was repeated 20 times, for a total of 480 model 467 

predictions to calculate prediction accuracy for each cross-temporal comparison.  468 

A second SVM was used in Fig. 5 to classify the poke context (sample, delay, or choice poke) in a brief 469 

window around the three poke events across correct trials. Because there were three contexts, a multiclass SVM 470 

was needed. We used the fitcecoc MATLAB function with a ‘one-vs-one’ coding design and 5-fold cross 471 

validation per comparison. We also ran a shuffled version of this model to confirm that the model was not overfit, 472 

and that chance level was ~33%.  473 

General linear modeling of multiple task parameters over time. We used a general linear model (GLM, 474 

MATLAB function fitlm) to study how neurons in each region encoded multiple DNMTP task variables 475 

simultaneously around all task pokes. For Fig. 5, the GLM predictor variables included poke context (is the poke 476 

occurring during the sample, delay, or choice phase), sample location identity (right or left), choice location 477 

identity (left, center, or right), and outcome (correct or incorrect). This particular analysis with poke context (Fig. 478 

5) was done in a brief time frame around poke events, because mice took inconsistent amounts of time to 479 

progress to different pokes, and we wanted to make sure the task phases in question were temporally well 480 
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isolated. We took a similar GLM approach to Akam et al. (2021), in which a GLM was run on every time bin for 481 

every neuron centered around poke events, which initially included the contributions of all predictor variables 482 

(known as the “full” model). In other words, our GLM is attempting to predict the firing rate of each neuron at 483 

every categorical level (e.g. sample, delay, or choice poke) of our predictor variables at all time points in question.  484 

The sum of squares error (SSE) of this full model represents the amount of residual variance in a neuron’s 485 

firing rate that cannot be explained by changes in the predictor variables. The full model should account for more 486 

firing rate variability and therefore have a relatively low SSE since it contains more relevant predictor variables. 487 

To uncover the extent to which pseudopopulations encoded singular task variables, we found the coefficient of 488 

partial determination (CPD) for each individual variable. This can be calculated by removing the singular task 489 

variables from the full model and running the GLM again on the reduced model. Since the reduced model should 490 

have a higher error term than the full, subtracting the full model from each reduced model should approximate 491 

the contribution of each removed variable to the full model’s firing rate prediction. The resulting number is the 492 

CPD for that singular variable, and it represents the percentage of total firing rate variability for a given neuron 493 

explained by that variable. A CPD was generated for each neuron at each time point, and the mean CPD for 494 

each pseudopopulation was reported over time and analyzed for significance with the same ANOVA approach 495 

as mentioned in Z-scoring and comparison of Z-scored firing rate across subregions. Using CPDs from all 496 

predictor variables, we could then compare the contributions of each variable to the explainable (not total) firing 497 

rate variance in each region.  498 

For Fig 6., significantly strong CPDs (now measured across all relevant time points) for each variable 499 

were determined by comparing the true CPD value to a shuffled distribution of CPDs generated from randomly 500 

shuffling the relationship between firing rate and predictor variables 1000 times. As a very conservative cutoff, 501 

CPDs were only considered significant if none of the shuffled CPD values were higher than the unshuffled one, 502 

and we calculated the proportion of neurons at every time point that fulfilled this criterion. We then could 503 

determine differences in proportions of complex DNMTP task variable encoding between regions using the same 504 

χ2 approach employed at the end of the section Z-scoring and comparison of Z-scored firing rate across 505 

subregions. We then took these significant neurons and followed their sample location selectivity throughout the 506 
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entire behavioral trial. Venn diagrams in Fig. 7 depict the percent of neurons with significant CPDs in each region 507 

taken from 3 bins (600 ms) on either side the labeled poke. 508 

Among the most informative GLM outputs are beta-weights representing the strength and direction of the 509 

relationship between the firing rate of every neuron and the levels of each predictor variable.  As another 510 

approach to visualize the stability of retrospective sample port location encoding, we recovered the maximum 511 

beta-weight amplitudes for every neuron with significant selectivity in a 600 ms time window around pokes. In 512 

this case, the beta-weights of significant neurons could be positive or negative with respect to the sample port 513 

location predictor variable, with negative signifying neurons that fired more on the left side of the box and vice 514 

versa. We quantified how these beta-weights changed over time using Pearson correlations (r, MATLAB function 515 

corr) comparing the significant beta-weight population vector at one point to the beta-weight population of those 516 

same neurons in the future. The significance levels of these correlations were also reported in Fig 7C and 517 

represent the confidence that the reported correlations are different from zero. 518 
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Figures 661 

 662 

Figure 1. A freely-moving delayed non-match-to-position task allows for the examination of prefrontal neural activity during 663 
spatial working memory in mice. A, Schematic of the delayed non-match-to-position task. (Top) Time course of a single 664 
trial. Diagonal parallel slashes represent variable amounts of time between task phases. (Bottom) Diagram of a correct 665 
trial. Progression through the task starts with the sample phase (left panel), during which one of the two outer front ports 666 
lights up. The lit sample port location has a 50% chance of being on either the left or right side, but only a left side example 667 
trial is shown here. The mouse pokes its nose into the lit sample port to make the delay port on the opposite side (“back”) 668 
of the box available (center panel). Then the mouse pokes and holds its nose in the delay (“back”) port for five seconds, 669 
after which it receives a 1 µL reward. This leads to a choice phase (right panel), where both the initial sample port and one 670 
of the remaining other front ports lights up, and the mouse is required to nose poke the lit port that it has not visited 671 
previously. Non-match choices also have a 50% chance of being either of the two non-sample locations on any given trial. 672 
A much larger 7 µL reward is dispensed after a correct non-match choice. Panel A was created with BioRender.com. B, 673 
Mice were implanted with recording electrodes in either MOs (blue), dorsal mPFC (green), or ventral mPFC (pink). Example 674 
coronal mouse slice showing the final electrode bundle locations after up to five electrode advancements of ~60 µm (white 675 
dots). Brain slice image credit to the Allen Mouse Brain Atlas. C, Electrode location did not significantly affect task 676 
performance (n.s. = not significant). Each circle represents performance during one session.  677 
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 678 

Figure 2. Sample location selectivity is highest in the MOs during the sample phase of the DMNTP task. A, Example raster 679 
plot from an MOs neuron increasing its firing rate around the sample port poke on all correct trials. B, Z-scored heat maps 680 
of all neurons recorded from each region around the sample poke (white dashed line) sorted by each neuron’s mean Z-681 
scored firing rate 500 ms before the sample poke. C, The mean Z-scored pseudopopulation firing rate is higher in MOs 682 
leading up to the sample poke compared to the other regions. D, The percent of neurons either increasing or decreasing 683 
their firing rate is also higher in the MOs. E, Example sample location-sorted raster plots of two MOs neurons exhibiting 684 
transient selective firing for the right or left sample location, respectively. Red line separates left from right sample trials. F, 685 
MOs contains the highest percentage of neurons selective for a specific sample location in a ~1 s window around the sample 686 
poke. G, Sample location decoding accuracy of a linear support vector machine trained and tested on every combination of 687 
100 ms time bins from the sample window. White lines indicate sample port poke. In panels C, D, and F, double-colored 688 
straight lines represent statistically significant differences (p-value < .05) between the two respective subregions in that time 689 
bin, after correcting for both false discovery rate and family-wise error rate. 690 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2024. ; https://doi.org/10.1101/2024.04.25.591167doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.25.591167
http://creativecommons.org/licenses/by/4.0/


29 
 

 691 

Figure 3. Delay activity in dorsal mPFC is persistently selective for retrospective sample location. A, Example raster plot 692 
from a dmPFC neuron aligned to the start of the delay hold period for all correct trials. B, Z-scored heat maps of all neurons 693 
recorded from each region, sorted by each neuron’s mean Z-scored firing rate during the delay phase (5 s period after the 694 
white dashed line). C, The mean Z-scored pseudopopulation firing rate is higher in MOs around the delay poke compared 695 
to the other regions. D, The percentage of neurons either increasing or decreasing their firing rate is also higher in the MOs 696 
at delay start. E, Example sample location-sorted raster plots of two dmPFC neurons exhibiting persistent selective firing 697 
for retrospective right or left sample location throughout the delay phase. Red line separates left from right sample trials. F, 698 
MOs and dmPFC contain similar percentages of neurons selective for a specific sample location in a ~1 s window around 699 
the delay poke, but only the dmPFC shows persistent sample location selectivity throughout the entire delay phase. G, 700 
Sample location decoding using a linear support vector machine that was trained and tested on every combination of 100 701 
ms time bins during the delay phase confirms the existence of persistent selectivity only in the dmPFC. White lines indicate 702 
the start of the delay period (back port poke). In panels C, D, and F, double-colored straight lines represent statistically 703 
significant differences (p-value < .05) between the two respective subregions in that time bin, after correcting for both false 704 
discovery rate and family-wise error rate. 705 
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 706 

Figure 4. During the choice phase, vmPFC has a higher pseudopopulation pre-choice Z-scored firing rate, and dmPFC 707 
contains more neurons selective for retrospective sample location. A, Example raster plot from a vmPFC neuron aligned to 708 
the non-match choice poke for all correct trials. B, Z-scored heat maps of all neurons recorded from each region, sorted by 709 
each neuron’s mean Z-scored firing one second before the choice poke (white dashed line). C, The mean Z-scored 710 
pseudopopulation firing rate is higher in vmPFC leading up to the choice compared to the other regions, while activity right 711 
around the choice poke is highest in MOs. D, The percentage of neurons increasing their firing is higher and the percentage 712 
of neurons decreasing their firing rate is lower before the choice in vmPFC. E, Example sample location-sorted raster plots 713 
of two dmPFC neurons exhibiting transient selective firing for the right or left sample location during the delay phase. Red 714 
line separates left from right sample trials. F, Although activity is higher in vmPFC leading up to the choice poke, dmPFC 715 
contains the most retrospective sample port selective neurons out of all three regions. G, Sample location decoding 716 
accuracy of a linear support vector machine trained and tested on every combination of 100 ms time bins during the non-717 
match choice phase. White lines indicate when the mice poked the choice port. In panels C, D, and F, double-colored 718 
straight lines represent statistically significant differences (p-value < .05) between the two respective subregions in that time 719 
bin, after correcting for both false discovery rate and family-wise error rate. 720 
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 721 

Figure 5. Encoding of poke context (sample, delay, or choice poke) accounts for the large majority of explainable firing rate 722 
variability in all three regions. A, The coefficient of partial determination (CPD) from a general linear model was used to find 723 
the fraction of total firing rate variance around pokes that can be explained by the poke context. The CPD is highest in the 724 
MOs pseudopopulation. Double-colored straight lines represent statistically significant differences (p-value < .05) between 725 
the two respective subregions in that time bin, after correcting for both false discovery rate and family-wise error rate. B, 726 
CPD was also calculated for the sample port, choice port and outcome (correct vs incorrect trials) variables. When combined 727 
with these other three predictor variables, poke context variability accounts for over 75% of explainable firing rate variance 728 
in all regions. C, Poke context is decodable with nearly 100% accuracy in all regions using a linear support vector machine 729 
(SVM). Chance level decoding in the shuffled control (dashed lines) is 33%.   730 
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    731 

Figure 6. General linear model (GLM) reveals PFC subregion-specific patterns of information encoding across task phases 732 
of a working memory task. After removing the poke context regressor, a GLM uncovers the percent of neurons in each 733 
region that significantly encode working memory task variables (sample ports, choice ports, and outcome (correct vs 734 
incorrect)) at key timepoints. A, The region with the highest percentage of significant sample location neurons shifts from 735 
MOs to dmPFC as the mice progress through task phases. B, Prospective choice port location is not detectible in any region 736 
until the choice phase, during which vmPFC shows the highest selectivity. C, The trial outcome (correct vs incorrect), is 737 
similarly not encoded by any region until the choice is made. Each region encoded the outcome (correct vs incorrect) after 738 
the choice was made, with the MOs having the largest proportion of outcome-encoding neurons. Double-colored straight 739 
lines in any panel represent statistically significant differences (p-value < .05) between the two respective subregions in that 740 
time bin, after correcting for both false discovery rate and family-wise error rate.  741 
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 742 

Figure 7. Sample location selective firing rate representations have higher stability in MOs and dmPFC compared to vmPFC 743 
as the mouse progresses through working memory task phases. A, Venn diagrams depicting the percent of neurons in each 744 
region that were selective for the sample location around the poke initiating each task phase. Overlapping circles in the 745 
Venn diagram represent the percent of neurons that share retrospective sample location selectivity around either two or all 746 
three task phase pokes. B, Example GLM-derived beta weight histograms from significant sample location-encoding 747 
neurons in the GLM showing how most neurons in the MOs remain selective for the same port across sample and delay 748 
pokes (top), but neurons in the vmPFC switch initial sample location selectivity from sample to delay (bottom). C, Pearson 749 
beta weight correlations quantifying the similarity in location selectivity between pokes initiating one task phase, to pokes 750 
initiating another one. MOs location selectivity is similar from sample to delay pokes, but destabilizes over the course of the 751 
task. dmPFC remains the most stable across time. vmPFC shifts location selectivity from the sample to delay pokes, but 752 
then stabilizes later in the task. Asterisks represent an r value that is significantly different from zero, while O (Orthogonal) 753 
represents an r value that is not different from zero. The reason for the non-significant r value from the vmPFC correlation 754 
in the Delay Poke vs Late Delay correlation is because of the much smaller number of selective neurons in vmPFC during 755 
this time.  756 
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 757 

Figure 8. Differences in pseudopopulation activity between correct and incorrect trials are more pronounced in the ventral 758 
mPFC before and after the choice poke. A, Z-scored firing rate differences between correct and incorrect trials in each 759 
region over time. vmPFC shows the largest decrease in activity on incorrect trials before the poke, and the largest increase 760 
in activity in response to an incorrect outcome after the choice. Grey bars represent the time windows used for the pre-761 
choice and post-outcome calculations in panel B. Double-colored straight lines represent statistically significant differences 762 
(p-value < .05) between the two respective subregions in that time bin, after correcting for both false discovery rate and 763 
family-wise error rate. B, Proportion of neurons in each region that have a higher Z-scored firing rate on Correct () or 764 
Incorrect (X) trials, or showed no difference in Z-scored firing rate between correct and incorrect trials (n.d.). The proportion 765 
of neurons modulating their firing rate on correct vs incorrect trials is also greater in vmPFC. White marks instead of black 766 
represent statistically significant proportions of the neurons with higher firing rate on that trial type in the vmPFC compared 767 
to the other 2 regions. There were no differences between the other regions.  768 
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