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Abstract
The hippocampus contains many unique cell types, which serve the structure’s specialized functions, including 
learning, memory and cognition. These cells have distinct spatial organization, morphology, physiology, and 
connectivity, highlighting the importance of transcriptome-wide profiling strategies that retain cytoarchitectural 
organization. Here, we generated spatially-resolved transcriptomics (SRT) and single-nucleus 
RNA-sequencing (snRNA-seq) data from adjacent tissue sections of the anterior human hippocampus in ten 
adult neurotypical donors to define molecular profiles for hippocampal cell types and spatial domains. Using 
non-negative matrix factorization (NMF) and label transfer, we integrated these data by defining gene 
expression patterns within the snRNA-seq data and inferring their expression in the SRT data. We identified 
NMF patterns that captured transcriptional variation across neuronal cell types and indicated that the response 
of excitatory and inhibitory postsynaptic specializations were prioritized in different SRT spatial domains. We 
used the NMF and label transfer approach to leverage existing rodent datasets, identifying patterns of 
activity-dependent transcription and subpopulations of dentate gyrus granule cells in our SRT dataset that may 
be predisposed to participate in learning and memory ensembles. Finally, we characterized the spatial 
organization of NMF patterns corresponding to non-cornu ammonis pyramidal neurons and identified 
snRNA-seq clusters mapping to distinct regions of the retrohippocampus, to three subiculum layers, and to a 
population of presubiculum neurons. To make this comprehensive molecular atlas accessible to the scientific 
community, both raw and processed data are freely available, including through interactive web applications. 
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1 | Introduction 
Spatio-molecular organization in neuronal tissue reflects patterns of cellular composition and circuit 
connectivity that underlie fundamental structure-function relationships in the brain. Mapping patterns of gene 
expression onto brain topography using spatially-resolved transcriptomics (SRT) has facilitated the ability to 
glean novel biological insights into the molecular mechanisms that link structure to function, and better 
understand how these relationships change over time, development or disease progression (1–3). In the 
human brain, these techniques have enabled molecular delineation of cortical laminae beyond classic 
histological definitions (4,5), identified novel cell types and their topographical organization in the noradrenergic 
locus coeruleus (6), and described differentiation trajectories at multiple gestational stages of the human fetal 
brain (7). These technologies have been deployed to better understand disease states in the brain, including 
mapping the local microenvironment of multiple sclerosis lesions (8,9) and infiltration patterns of malignant 
glioblastoma (10). 

Comprehensive spatio-molecular mapping of the human hippocampus (HPC) is critical to understand how its 
unique organizational structure supports many fundamental biological processes (11,12). The HPC includes 
the dentate gyrus (DG) and the cornu ammonis (CA) regions, subdivided into CA1-4, each of which contains 
specialized cell types and distinct laminar organization. The organization of these specialized neuronal cell 
types into neuropil-enriched layers, including the DG molecular layer (ML), stratum lucidum (SL), and stratum 
radiatum (SR), support well-defined functions within the canonical HPC circuitry. The trisynaptic loop, which 
supports various features of learning, memory and the stress response, initiates with inputs from the entorhinal 
cortex (ENT), which traverse from DG to CA3 to CA1, culminating with a relay to the subiculum (SUB), the 
major output nucleus of the HPC (13,14). Output circuits from the SUB to numerous cortical and subcortical 
regions control important cognitive and motivated behaviors (11,15), and are implicated in multiple 
neuropsychiatric and neurodevelopmental disorders (16,17). 

Defining the molecular composition of cell types that play specialized roles in HPC circuit function is a 
prerequisite to targeting their function for therapeutic interventions. However, available transcriptomic profiles 
generated using single-nucleus RNA-sequencing (snRNA-seq) from postmortem human HPC tissue (18–21) 
lack important spatial information and do not retain cytosolic or synaptic transcripts (22). Additionally, many 
existing transcriptomic datasets have focused specifically on the DG given its importance in development and 
aging (23–28), or have inconsistently sampled across HPC subregions, resulting in cellular composition 
differences between donors. To investigate gene expression at cellular resolution across the human HPC, we 
curated postmortem human tissue specimens with well-defined HPC neuroanatomy that systematically 
encompassed all subfields and sampled across the structure’s diverse longitudinal axis. We deployed a 
discovery-based experimental design using a well-validated platform to measure gene expression 
transcriptome-wide in a spatial context, and generated paired snRNA-seq data from adjacent tissue sections to 
investigate gene expression at cellular resolution. To maximize the utility and value of this data resource for the 
community we sourced HPC tissue from the same adult, neurotypical brain donors for which we recently 
provided comprehensive, paired SRT and snRNA-seq data in the human dorsolateral prefrontal cortex (dlPFC) 
(5). 

We used spot-level deconvolution and non-negative matrix factorization (NMF) to integrate the SRT and 
snRNA-seq datasets, providing novel biological insights about the molecular organization of HPC cell types, 
cell states, and spatial domains in the human brain. We also deployed new computational strategies for 
overcoming inherent limitations of postmortem human tissue by incorporating functional molecular data in 
model organisms. Specifically, we used the human gene expression data to identify latent factors, then 
incorporated existing rodent datasets that feature information on circuit connectivity and neural activity 
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induction to make predictions about axonal projection targets and likelihood of ensemble recruitment in 
spatially-defined cellular populations of the human HPC. The ability to infer functional roles for human cell 
types within the context of intact circuitry has profound potential for understanding how function in the human 
brain is disrupted in disease. 

2 | Results

2.1 | Experimental design and overview of profiling human hippocampus
We obtained tissue blocks of postmortem human brain containing anterior HPC from the same 10 neurotypical 
adult brain donors used in our previous study investigating spatial gene expression in the dlPFC (Figure 1A, 
Supplementary Table 1)  (5). We used histological staining to determine neuroanatomical orientation and 
inclusion of major subfields. Then, we used the 10x Genomics Visium Spatial Gene Expression (Visium-H&E) 
and 3’ Single Cell Gene Expression platforms to generate paired SRT maps and snRNA-seq data of the 
human HPC. For each donor, we first collected 1-2 100μm cryosections for snRNA-seq, and then mounted 
10μm cryosections across multiple Visium capture areas to profile all major subfields (CA1-4, DG, SUB, 
Supplementary Table 2). We performed Visium-H&E for n=36 capture areas (2-5 per donor) (Figure 1B-C, 
Extended Data Fig. 1). We visualized cytoarchitecture from the H&E images and confirmed expected gene 
expression patterns of SNAP25 and MBP across HPC structure (Figure 1C, Extended Data Fig. 1). We 
applied standard preprocessing and quality control workflows to all n=36 capture areas to remove low-quality 
spots (Extended Data Fig. 2, Extended Data Fig. 3). We retained 150,917 spots from n=36 capture areas, 
hereafter referred to as the SRT dataset. 

Following tissue collection for SRT experiments, we collected a second set of 1-2 100μm cryosections from 
each donor, which were pooled with the cryosections that were collected earlier for snRNA-seq (Figure 1C, 
Methods 4.5). We collected two populations of nuclei for snRNA-seq: a NeuN+ population to enrich for 
neurons, and a PI+ population. Following sequencing, we applied standard processing and quality control (QC) 
workflows to remove empty droplets, doublets, and poor-quality nuclei (Extended Data Fig. 4, Extended Data 
Fig. 5, Methods 4.6). After processing, we retained 75,411 high-quality nuclei across all 10 donors. 

2.2 | Molecular profiles for spatial domains in the human hippocampus using 
spatially-resolved transcriptomics 
To define hippocampal tissue domains in SRT data, we used a data-driven, multi-sample workflow to generate 
spatially informed clusters. We employed nnSVG (29) to select 2000 spatially variable genes (SVGs) which 
were then used as input to generate unsupervised spatially-aware clusters with PRECAST (30) (Extended Data 
Fig. 6A, Methods 4.4, Figure 1D, Supplementary Table 3). nnSVG and PRECAST were chosen for their 
ability to improve on non-spatially aware feature selection and clustering methods and their computational 
efficiency (31,32). 

We considered a range of clustering resolutions (k) and used Akaike Information Criterion (AIC) to focus our 
search on clusters generated with k=16, k=17, and k=18 (Extended Data Fig. 6B). These clusters 
corresponded with known hippocampal regions based on marker gene expression, and all resolutions 
identified a sparsely distributed GABAergic cluster (Extended Data Fig. 6C). In addition to probing the 
expression of known marker genes, we evaluated the fidelity of PRECAST clustering output to known 
anatomical organization by comparison to histological annotations of all n=36 capture areas (Methods 4.4, 
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Extended Data Fig. 7). This helped us to select PRECAST k=18 clusters due to the presence of a single 
cluster that roughly mapped to both the stratum lacunosum-moleculare (SLM) and the subgranular zone (SGZ) 
of the dentate gyrus (Extended Data Fig. 6D-E). 

PRECAST clusters were readily split into broad spatial domains of neuron cell-body rich regions (Neuron), 
neuropil-rich regions (Neuropil), white matter (WM), and vasculature and choroid plexus (Vasc/CSF) based on 
nuclei density and expression of key non-neuronal genes like MOBP, TTR, and PDGFRB (Figure 1E). 
Neuronal PRECAST clusters have unique expression of canonical marker genes that agree with anatomical 
organization (Figure 1E, Extended Data Fig. 6C). Due to similar gene expression, clusters corresponding to 
CA2-4 and CA1 were collapsed into their respective domains (Extended Data Fig. 8A-B). Neuropil clusters 
were annotated based on a combination of gene expression and anatomical localization to the stratum lucidum 
(SL), stratum radiatum (SR), dentate gyrus molecular layer (ML), SLM, and SGZ (Extended Data Fig. 8C-D). 

The final spatial domains (Extended Data Fig. 9, Supplementary Table 2) identify the dentate gyrus granule 
cell layer (GCL), the cornu ammonis (split into the CA1 and CA2-4), the subiculum (SUB), cortical neurons of 
other retrohippocampal regions (RHP), and a domain that appears to be transitional between the SUB and 
RHP (SUB.RHP). Our spatial domains further include neuropil regions ML, SL.SR, SR.SLM, and SLM.SGZ. 
We also assigned annotations for populations of cell types that are not traditionally associated with fixed HPC 
anatomical regions: GABA, vasculature (Vasc), and choroid plexus (CP). As the SLM and SGZ are comprised 
of distinct cell types and exhibit distinct functions, we expected these two domains would cluster independently. 
However, we reasoned that including a grouping that corresponded to the combined transcriptional variation 
across these two HPC domains provided us a better opportunity to elucidate gene expression differences 
present in these regions than if we utilized k=16 clusters, where 4825 of the 7820 SLM.SGZ spots belonged to 
cluster 5 (n=37003 spots total) and the remaining 38% of SLM.SGZ were distributed across many clusters. 
Further, the combinatorial nature of the SLM.SGZ spatial domain was consistent with other neuropil regions 
SL.SR and SR.SLM, where the k=18 PRECAST clusters were most accurately annotated to a combination of 
adjacent regions.

Within the RHP and SUB.RHP spatial domains, we identified spatially-restricted spots corresponding to 
thalamus (33,34) and amygdala (21,35,36) based on anatomy and gene expression (Methods 4.4, 
Extended Data Fig. 10). With the exception of one capture area that was entirely amygdala tissue, these 
spots were not very abundant and were present in only a few donors. We examined the ability of alternative 
clustering approaches to separate the SLM.SGZ cluster and to distinguish thalamus and amygdala. We 
explored GraphST, which utilizes graph-based autoencoders (Extended Data Fig. 11), and BayesSpace, 
which we used in previous studies (5,24) (Extended Data Fig. 12). We compared these strategies with the 
spatial domains annotated from PRECAST clusters and observed strong agreement in most domains. However, 
the distribution of the neuropil clusters did not correspond to the canonical organization of neuropil layers in the 
HPC, and neither thalamus- or amygdala-specific clusters were present (Extended Data Fig. 11, 
Extended Data Fig. 12, Extended Data Fig. 13). Spots corresponding to the thalamus and amygdala were 
removed from downstream differential expression (DE) analysis to focus on HPC and RHP transcriptomes. 

Next, we asked if we could discern transcriptomic profiles for HPC spatial domains using DE analysis. We first 
pseudobulked data by capture area, aggregating all UMIs within all spots for each of the 16 spatial domains 
(Figure 2B). Principal components analysis (PCA) revealed that top components of variation stratified the 
pseudobulked data by spatial domain (Figure 2C, Extended Data Fig. 14) and that more variance was 
explained by spatial domain compared with other covariates such as capture area, donor, Visium slide, sex, or 
age (Extended Data Fig. 15). 
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To identify differentially expressed genes (DEGs) across the spatial domains, we employed a ‘layer-enriched’ 
linear mixed-effects modeling strategy to test for differences between one domain versus all others (adjusted 
for sex, age, and sequencing batch) as previously described (4,5) (Extended Data Fig. 16, Extended Data 
Fig. 17, Supplementary Table 4). We used the results from this enrichment model to identify DEGs for spatial 
domains (Figure 2D). We confirmed canonical marker genes for spatial domains, such as PPFIA2 for GCL 
(Figure 2E), PRKCG for pyramidal neuron layers CA1-4 (Figure 2F), and MOBP for WM. We also identified 
several novel marker genes, particularly with respect to HPC neuropil-enriched domains. These included 
APOC1, enriched in ML, SR, and SL (Figure 2G), and SFRP2, which marks SLM/SGZ (Figure 2H). 

Using the same modeling strategy, we asked if we could identify genes specific to broad domains 
(Supplementary Table 5). This analysis identified genes enriched in each of the 4 broad domains (Figure 2I), 
and revealed marker genes that were enriched across all spatial domains within each broad domain, including 
CLSTN3 for neuron-rich areas, SLC1A3 for neuropil-enriched domains, SHTN1 for WM domains, and TPM2 
for vascular/CSF domains (Figure 2J). Altogether, these findings reveal widespread differences in spatial gene 
expression across the HPC corresponding with both discrete subregions and broad domains.

2.3 | Molecular profiles for cell types in the human hippocampus using 
paired single-nucleus RNA-sequencing
We used snRNA-seq data from all ten donors to define human HPC cell types (Figure 1C). After QC and batch 
correction (Methods 4.6, Extended Data Fig. 18), we applied graph-based clustering and identified k=60 
fine-grained clusters (Extended Data Fig. 19). Preliminary annotations of these clusters using known marker 
gene expression identified many non-neuronal cell types (3 CP, 4 vascular, 1 ependymal, 3 astrocyte, 2 
oligodendrocyte, 2 oligodendrocyte precursor, and 3 immune cell clusters, Extended Data Fig. 19F) and many 
neuronal cell types (11 GABAergic, 1 Cajal Retzius, 5 GC, 7 HPC pyramidal, 12 RHP pyramidal, 5 amygdala, 
and 1 thalamus cluster, Extended Data Fig. 20). We next sought to expand our understanding of these cell 
types and improve cluster annotations by performing DE analysis using the pseudobulk approach 
(Supplementary Table 6). Informed by the significant results from DE analysis, we generated 24 cell types 
(Figure 3A-B) that did not exhibit donor-specific bias (Extended Data Fig. 21). 

Using these differentially expressed genes (DEGs), we were further able to resolve minute differences between 
cell classes (Figure 3D), including distinguishing oligodendrocyte progenitor cells (OPCs) from committed 
oligodendrocyte precursors (COPs) (37) (Extended Data Fig. 22A). Some DEGs reflected specific cellular 
functions shared across cell types. For instance, both ependymal cells and CP cells showed enrichment of 
genes related to motile cilia, such as DNAH11, which circulate CSF through ventricles (Extended Data Fig. 
22A). Although we were able to find genes that distinguished RHP clusters, our ability to make biological 
inferences from these DEGs was impaired by the limited characterization of HPC-proximal RHP pyramidal 
subtypes (Extended Data Fig. 22B). We were similarly restricted in our interpretation of the amygdala clusters, 
as the amygdala was not systematically targeted and was only present in a few donors (Extended Data Fig. 
22C). Our results demonstrate the continuum of gene expression in HPC pyramidal neurons while still 
distinguishing gene expression that was unique to the SUB (Extended Data Fig. 22D). The GABAergic nuclei 
belonged to several different subtypes, highlighting the mosaic nature of the HPC inhibitory neuron population 
(Extended Data Fig. 22E, F). Intriguingly, we observe subsets of GCs that express distinct forms of activin 
receptors (ACVR1, ACVR2A, ACVR1C), suggesting a stable heterogeneity within the DG GCL during 
adulthood (Extended Data Fig. 22G). These results were further validated using an alternative analysis that 
implemented scVI (38,39) where we found consistent cell types (Methods 4.6, Extended Data Fig. 24, 
Extended Data Fig. 25). 
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We then leveraged our paired SRT data in two ways. First, to ascertain the similarity of snRNA-seq clusters 
with spatial domains detected with SRT, we correlated the gene-level enrichment model t-statistics for each of 
the snRNA-seq superfine clusters (Supplementary Table 6) with the t-statistics from the enrichment model of 
the SRT domains (Supplementary Table 4). These analyses were strongly correlated across many clusters 
and domains, indicating appropriate assignment of hippocampal nuclei despite lacking a priori spatial 
information (Extended Data Fig. 23). Gene expression profiles for some cell types and spatial domains 
overlapped strongly (e.g. GCs with GCL; CP cells with CP domain), while other domains contained multiple cell 
types (e.g., GABAergic cell types correlated strongly with the GABA domain). We then compared snRNA-seq 
DEGs with those identified between spatial domains. We find multiple DEGs significant in both data modalities, 
including canonical and novel markers of pyramidal cell types (Figure 2D, Figure 3C). We identify that KIT, a 
CA3 marker in SRT, is expressed in pyramidal cell types from CA3 and CA1 but also in a specific GABAergic 
population. POU3F1 is expressed at similar levels in CA1 and Sub.1 clusters in snRNA-seq data, but is 
restricted to the CA1 in SRT. Additional genes that were expressed in the SUB spatial domain included 
COL24A1 and KCNH5, which were expressed in the continuum of Sub.1, Sub.2, and RHP clusters, and 
PART1 and TESPA1, which exhibited more cluster-specific expression in the Sub.1, Sub.2, and RHP clusters. 

The HPC is implicated in many pathological conditions, but the specific cell types and spatial domains driving 
these associations remain unclear (16,40–42). To identify cell types and spatial domains associated with 
genetic risk for diseases and disorders, we used stratified linkage disequilibrium score regression (S-LDSC) 
(43–45) to calculate enrichment of heritability of multiple polygenic traits, including neuropsychiatric and 
non-psychiatric conditions (46–61). S-LDSC regression coefficients represent contribution of a given 
annotation (e.g. spatial domain or cell type) to heritability of a given trait (Methods 4.7). We performed S-LDSC 
regressions for each superfine cell type. We observed many expected associations, including enrichment of 
Alzheimer’s disease (AD) risk in microglia (47) (Extended Data Fig. 26B). We then performed the same 
analysis for each spatial domain, and observed enrichment of genetic risk for schizophrenia (SCZ) in the CA1 
domain, and multiple disorders, including SCZ, in the RHP (Extended Data Fig. 26A). We thus sought 
additional integration strategies for our snRNA-seq and SRT data to enable better understanding of the 
diversity of HPC cellular populations and their spatial organization. 

2.4 | Subfield-specific changes in cell type composition using patterns 
shared between snRNA-seq and SRT data 
We capitalized on the variation and the diversity of cellular populations in the snRNA-seq data (Figure 3) to 
further explore cell type composition across spatial domains using spot-level deconvolution algorithms (62). 
While many algorithms have been developed to predict cell type proportions within individual Visium spots 
using single cell reference data, these methods have not yet been comprehensively benchmarked across 
various brain regions or in heterogeneous tissues. To provide a robust spot deconvolution reference dataset for 
postmortem human anterior HPC, we generated data using the Visium Spatial Proteogenomics assay 
(Visium-SPG). Visium-SPG, which replaces H&E histology with immunofluorescence (IF) staining to label 
proteins of interest, was performed on tissue from two donors (one male and one female) with particularly clear 
anatomical orientation. 

With Visium-SPG, we labeled cell type-specific proteins: NEUN (marking neurons), OLIG2 (marking 
oligodendrocytes), GFAP (marking astrocytes), and TMEM119 (marking microglia) (Extended Data Fig. 27A). 
Multispectral fluorescence imaging was performed followed by the standard Visium protocol to generate gene 
expression libraries from each tissue section, as previously described (5). Following QC (Extended Data Fig. 
27B-E), we used RcppML for transferring spatial domain labels identified in our larger SRT dataset into the 
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Visium-SPG data (Extended Data Fig. 27F). We then benchmarked cell2location (63), RCTD (64), and 
Tangram (65) on their ability to predict cell type composition at multiple snRNA-seq classification depths 
(Methods 4.8, Extended Data Fig. 28, Extended Data Fig. 29). Performance of different deconvolution tools 
was evaluated by comparing algorithm-predicted cell compositions to cell identities determined from 
fluorescence intensity in each IF channel, providing an orthogonal validation (Methods 4.8, Extended Data 
Fig. 30, Extended Data Fig. 31, Extended Data Fig. 32, Extended Data Fig. 33, Extended Data Fig. 34, 
Extended Data Fig. 35, Extended Data Fig. 36, Extended Data Fig. 37) similar to our previous work (5). 
Given the challenge of deconvolving transcriptionally fine cell types (Extended Data Fig. 29), these 
benchmark analyses confirmed RCTD showed the most consistent performance at both mid and fine resolution 
across all cell types and samples (Extended Data Fig. 36, Extended Data Fig. 37). We thus applied RCTD to 
the SRT dataset (Figure 4A-B, Extended Data Fig. 29, Extended Data Fig. 37). 

While spot-level deconvolution methods are valuable, most methods rely on a priori classification of data into 
discrete clusters, thereby overlooking transcriptional heterogeneity within cell types. Coupling non-negative 
matrix factorization (NMF) with transfer learning provides an intuitive approach to identify continuous gene 
expression patterns that may be more functionally relevant (66). NMF decomposes high-dimensional data into 
k lower-dimensional latent spaces (67) (Methods 4.9, Extended Data Fig. 38). When applied to snRNA-seq 
data, latent factors represent distinct gene expression patterns that can define biological or technical variation. 
Patterns may be specific to cell types, cell states, or other biological processes (68,69). Transfer learning can 
map identified patterns onto independent datasets (69), allowing for discernment of patterns shared across 
species and data modalities.

Here, we used NMF to define gene expression patterns within the snRNA-seq data and then mathematically 
project the patterns to transfer the weights onto SRT data in order to probe the spatial organization of these 
patterns (Extended Data Fig. 38). Using the RcppML R package (67), we performed NMF on the normalized 
snRNA-seq counts matrix at rank k=100 to define 100 NMF patterns (Extended Data Fig. 39, Extended Data 
Fig. 40A, Supplementary Table 9). To enable comparisons between the contributions of specific genes and 
nuclei to each pattern, pattern weights are normalized such that both nuclei-level and gene-level NMF weights 
are interpreted as proportions of a given pattern. We used transfer learning to predict spot-level weights for the 
100 patterns in the SRT data to allow for spatial visualization and analysis of patterns (Methods 4.9, 
Extended Data Fig. 38). We limited further investigation to patterns that were found in >1050 spots and thus 
removed 32 patterns based on limited expression in the SRT dataset (Extended Data Fig. 40C). We checked 
for donor-specific effects in the remaining patterns, identified one pattern that encapsulated the donor origin of 
CP tissue, and removed an additional two that corresponded to donor sex (Methods 4.9, Extended Data Fig. 
41, Extended Data Fig. 42, Extended Data Fig. 43)

We found 47 patterns that corresponded strongly to specific cell types and spatial domains, which is 
unsurprising given that they are built from snRNA-seq gene expression (Extended Data Fig. 40A,D). We 
examined an astrocyte-dominant pattern (nmf81, Figure 4C) and an oligodendrocyte- and WM-dominant 
pattern (nmf44, Figure 4D). Among the several NMF patterns corresponding to oligodendrocyte snRNA-seq 
clusters (Extended Data Fig. 40A), we highlighted nmf44 due to the specific increase in weights in 
observations annotated to WM (Extended Data Fig. 44A,C,E). In contrast, nmf81 was specific to the astrocyte 
snRNA-seq clusters but spot-level weights were distributed throughout spatial domains, consistent with the 
ubiquitous presence of astrocytes throughout the HPC (Extended Data Fig. 44B,D,F). We compared the 
spot-level NMF weights with orthogonally-validated spot-level deconvolution results and found strong 
agreement in spatial organization that corresponded to strong correlations for between RCTD-predicted cell 
type and NMF pattern weights (nmf81-Astro = 0.904, nmf44-Oligo = 0.876) (Figure 4A-D, Extended Data Fig. 
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36). This confirms that both NMF and spot-level deconvolution algorithms can be useful to identify cell type 
identity across data modalities. 

An advantage to NMF over spot-level deconvolution is the ability to identify individual genes that contributed to 
the construction of each pattern without DE analysis, which first requires clustering to define cell populations. 
For a given NMF pattern, the gene-level weight is representative of the amount of transcriptional variation that 
is attributable to each gene. While the top ten genes weighted to each NMF pattern are informative 
(Supplementary Table 10), the number of top-weighted genes required to explain a substantial proportion of 
the transcriptional variation captured by the NMF patterns is variable and difficult to define for the majority of 
patterns (Extended Data Fig. 45). Therefore, we performed gene set enrichment analysis (GSEA) which 
utilizes the ordinal rank of gene weights to examine whether genes contributing to the transcription patterns 
captured in nmf81 and nmf44 were consistent with known biology. Genes including NRXN1 (70), NCAN (71), 
and PLEC (72) contributed to the significant enrichment of “Extracellular matrix organization” in the top 
astrocyte-related nmf81-weighted genes (Figure 4G). In oligodendrocyte-related pattern nmf44, top-weighted 
genes include ANK3 (73) and DLG1 (74), which contributed to the significant enrichment of “L1CAM 
interactions” and “Axon guidance” terms (Figure 4H). These results provide evidence that NMF patterns 
capture gene expression programs that are attributable to known biological function. 

Another advantage of NMF is the ability to capture transcriptional variation beyond cell type definition. We 
observed 19 patterns that were present across cell types and spatial domains (Extended Data Fig. 40A,D). 
We examined two of these “general” patterns (nmf13 and nmf7), which both exhibited increased spot-level 
weights in multiple neuronal cell types and hippocampal spatial domains (Figure 4E-F, Extended Data Fig. 
46A-F). These two patterns were anti-correlated in most cell types and spatial domains (Extended Data Fig. 
46G-H), yet GSEA identified that both nmf13 and nmf7 were significantly enriched for genes participating in 
“Transmission across Chemical Synapses” and “Neurotransmitter receptors and postsynaptic signal 
transmission” (Figure 4I-J). However, the individual genes that contributed to the identification of these 
neuronal pathways represent distinct neuronal functions. The biological function of top nmf13-weighted genes, 
like CAMKK1 (75), LRFN2 (76), and DLGAP3 (77), suggests that nmf13 represents gene expression patterns 
highly relevant to excitatory postsynaptic response. In contrast, the biological function of top nmf7-weighted 
genes, like GABRA1, KIF5A (78–80), and DYNLL2 (81), led us to conclude that nmf7 represents gene 
expression patterns highly relevant to the structure and maintenance of inhibitory postsynaptic specializations. 
Given the domain-restricted increase in nmf13 (GCL, CA2-4, CA1 domains and associated cell types  
Extended Data Fig. 46A,C,E) and nmf7 (SUB, RHP, GABA, and associated cell types Extended Data Fig. 
46B,D,F), these data indicate that NMF can identify subfield-specific differences in neuronal structure and 
function, in addition to cell type composition. 

2.5 | NMF captures activity-dependent transcription programs
We identified two NMF patterns (nmf91 and nmf20) that captured stimulus-dependent transcriptional programs 
(Methods 4.9, Extended Data Fig. 47). Many of the genes highly weighted to nmf91 were immediate early 
genes that are transiently and robustly expressed immediately following neuronal activity (e.g., FOS, JUN, 
NR4A1 (82)) (Extended Data Fig. 47B). For nmf20, three genes stand out as being most highly weighted: 
SORCS3, HOMER1, and PDE10A, which is highly expressed in medium spiny neurons of the nucleus 
accumbens (83) (Extended Data Fig. 47D). Notably, while a previous study was unable to detect PDE10A 
RNA expression in the human HPC, our snRNA-seq data is consistent with rodent data that Pde10a transcripts 
and PDE10A protein are expressed in the HPC (84,85) (Extended Data Fig. 47I-K). In addition to known roles 
in modulating synaptic response to activity (86–89), these highly-weighted nmf20 genes exhibit 
stimulus-dependent expression in response to neuronal activity (SORCS3 (90))  and dopamine signaling 
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(PDE10A (91)), while HOMER1 expression can be constitutive or activity-dependent for different splicing 
isoforms (92) (Extended Data Fig. 47D). To further investigate the ability of NMF patterns to capture gene 
expression programs relevant to neuronal activity, we transferred the NMF patterns from our human 
snRNA-seq dataset onto a mouse snRNA-seq dataset of HPC neurons activated by electroconvulsive seizures 
(ECS) or HPC neurons under control conditions (Sham) (93). As we observed when transferring human 
snRNA-seq nuclei-level weights into human SRT data, NMF patterns mathematically projected onto mouse 
snRNA-seq nuclei were both “general” and cell type-specific (Extended Data Fig. 48B). Although some 
patterns exhibited differential nuclei weights based on ECS status (Extended Data Fig. 48C), all patterns 
exhibited cell type specificity, and we observed no NMF patterns that were more highly weighted to the ECS or 
sham group across all cell types.

We found that nmf91 and nmf20 were more highly weighted onto nuclei from GCs in the ECS condition than 
the sham-activated group, supporting our hypothesis that these patterns capture activity-dependent 
transcriptional programs (Figure 5A). We further found that many of the top-weighted genes to nmf91 and 
nmf20 were significantly increased in ECS GCs compared to sham. For nmf91, these genes included many 
canonical activity-dependent transcripts (Figure 5B). Although the genes highly weighted in nmf20 are less 
clear, the high weight and increased expression of genes including BDNF (94) and SORCS3 and SORCS1, 
which are mediators of intracellular BDNF signaling (90,95), indicate that this pattern may represent genes 
involved in secondary activity response (Figure 5C). We investigated if this pattern was more specifically 
enriched in synapse-rich domains and found that 98.0% of spots with non-zero nmf20 weights were found in 
the Neuron (91.0%) or Neuropil (7.0%) broad domains, while 68.9% of spots with non-zero nmf91 weights 
occurred in these regions (42.8% in Neuron, 26.1% in Neuropil).

In further examining the mouse ECS dataset, we found two additional NMF patterns of interest. Mouse GC 
nuclei exhibited specific increases in nmf14 and nmf10 weights, and these patterns were also associated with 
GC clusters and the GCL in our human datasets (Extended Data Fig. 40A,D). While nmf14 weights were 
mildly increased in ECS GCs, nmf10 weights were robustly decreased in ECS GCs compared to 
sham-activated GCs (Figure 5A). In our human data, nmf10 was weighted to spots throughout the GCL while 
spots highly weighted to nmf14 exhibited a more restricted localization to the superficial GCL (Figure 5D,E).

Examination of genes that are both highly weighted to nmf10 and decreased in ECS GCs revealed that this 
pattern likely represents transcriptional programs contributing to synaptic adhesion and the cementing of 
established synapses (cell adhesion molecules CNTN1, ADAM22; calcium-dependent cell adhesion molecules 
FAT4, CDH10; production of cell adhesion molecules ST6GALNAC5, CHST9) (Figure 5F). The decrease in 
expression of these genes in ECS GCs likely facilitates synaptic remodeling following neuronal activity. In 
contrast, we identified GC.4 cluster markers BDNF and ACVR1C (Extended Data Fig. 22G), as well as 
SORCS3 and SGK1 as key genes with higher nmf14 weights that were increased in ECS GCs (Figure 5G). 
Given the functional importance of BDNF (96), ACVR1C (97), SORCS3 (86), and SGK1 (98,99) in neuronal 
response to activity and synaptic plasticity, we hypothesize that nmf14 represents gene expression patterns 
that promote synaptic scaling. The elevated weight of nmf14 in ECS GCs and the superficial GCL suggests 
that a subset of GCs may be uniquely poised to promote activity-dependent synaptic scaling. Examining the 
nuclei-level weights of nmf10 and nmf14 and the expression of top-weighted nmf10 and nmf14 genes indicated 
that the GC.4 cluster fits the criteria for poised GCs (Figure 5H-J).

These data indicate that NMF can identify activity-regulated gene expression in the context of cell type-specific 
recruitment. Activity-regulated transcription is intimately related to physiological function, recruitment of cellular 
ensembles, and synaptic connectivity, all of which fundamentally contribute to cellular behavior. However, 
these properties are not often considered when annotating cell types in transcriptomic studies. Here, we used 
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NMF to translate information from animal models into human brain datasets to make predictions across 
species about functional properties of human cell types. This approach can also be extended to understand 
cell type function in the context of circuit connectivity in the HPC.

2.6 | NMF and transfer learning enable spatial mapping and inference of 
circuit connectivity of pyramidal neurons in the hippocampal formation 
Both the HPC and RHP contain multiple classes of pyramidal neurons with distinct molecular profiles 
(18,19,100), physiological properties (101), axonal projection targets (102), and spatial organization (103–105). 
Although the RHP has been anatomically classified as a transition zone between the three layer allocortex and 
five layer agranular cortex, it has historically been difficult to delineate distinctions between neuronal 
populations from RHP subregions (e.g. subiculum vs entorhinal cortex (ENT)) with snRNA-seq alone. Indeed, 
our snRNA-seq analysis identifies 7 pyramidal neuron clusters from the HPC and 12 from the RHP. We aimed 
to better understand these clusters by examining the spatial organization of SRT spots weighted to specific 
NMF patterns. We find that Sub.1 cluster-specific nmf40 and Sub.2 cluster-specific nmf54 exhibit distinct 
laminar organization in situ (Figure 6A). Recent studies indicate that the diversity of excitatory neuron types 
within the rodent SUB and RHP correspond to multiple efferent target regions  (13,14). We asked if performing 
NMF pattern transfer onto another dataset where the axonal projection targets of HPC and RHP neurons are 
known could elucidate whether these different subicular layers corresponded to different circuits. We utilized 
data from a recent study in mice that coupled retrograde viral circuit tracing with single-cell methylation 
sequencing (snmC-seq) (106). We mapped NMF patterns from the human snRNA-seq data onto mouse 
snmC-seq data after filtering to excitatory neurons obtained from the HPC and RHP (n=2004 nuclei) 
(Extended Data Fig. 38, Methods 4.9). We removed patterns that corresponded to <45 nuclei, which included 
nmf54/Sub.2 (Extended Data Fig. 49A), and were thus unable to investigate if these two cell types 
corresponded to SUB populations that targeted distinct brain regions. However, we found that patterns specific 
to CA1, SUB, and RHP cell types/clusters mapped to mouse HPC neurons with distinct efferent targets 
(Figure 6B). These results recapitulated known projections from the SUB to the thalamus (107) and 
hypothalamus (108), and from the ENT to the HPC and prefrontal cortex (109). We thus further investigated 
whether the NMF patterns corresponding to distinct snRNA-seq RHP clusters exhibited spatially restricted 
organization, and if the spatial information could provide insight into the cell type identity of RHP clusters. 

We discovered that NMF patterns corresponding to three superficial pyramidal neuron clusters and one L5 
pyramidal neuron cluster (nmf84, nmf45, nmf27, and nmf51) were spatially restricted to the distal RHP, 
suggesting these populations are ENT-specific (Figure 6C-D). By leveraging NMF to represent transcriptional 
patterns shared across the snRNA-seq dataset and the SRT dataset, we observed that pyramidal neuron 
clusters were labeled by a series of non-overlapping patterns that exhibit stereotyped laminar organization 
throughout the transition of ENT to SUB (Figure 6C-F). Unlike more superficial patterns, those corresponding 
to deeper layer neurons (nmf68, nmf22, nmf53, and nmf65) were not restricted along the transverse axis 
(CA1-distal to CA1-proximal) but were present throughout the SUB-ENT transition (Figure 6E). One pattern 
(nmf65) ran along the border of WM and SUB, adjacent to the middle layer of SUB spots highlighted by nmf54 
(Figure 6E). Given that nmf65 labeled two snRNA-seq clusters (L6.1 and half of L6b) (Figure 6F), we 
hypothesized that one of those cellular populations may represent the deep SUB rather than ENT. We 
compared the expression of SUB marker genes and top NMF pattern genes in L6.1 nuclei and in L6b nuclei 
with non-zero nmf65 weights (Extended Data Fig. 49E-F). The consistent expression of SUB DEGs like TOX, 
TSHZ2, and ZNF385D in L6.1 suggests this snRNA-seq cluster comprises the deep SUB layer in situ, and we 
thus re-labeled this cluster as Sub.3. 
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We were especially surprised to find that the L2/3.1 cluster-specific pattern nmf17 exhibited a dramatically 
different spatial location than the ENT-specific L2/3 patterns across all donors (Figure 6G, Extended Data Fig. 
50, Extended Data Fig. 51). The differential distribution of this pattern in samples from more anterior donors 
(including Br6423 and Br2743), in which nmf17 expresses alongside the SUB, and more posterior donors 
(including Br3942 and Br8325), in which nmf17 is expressed at the curve of the SUB, suggests that nmf17 
expression follows previous anatomical description of the presubiculum (109,110). Supporting this hypothesis, 
nmf17 is expressed in an island-like pattern in some donors, again consistent with anatomical studies. 
However, to our knowledge, there are no molecular markers that have been identified for the presubiculum, 
highlighting the ability of our approach to uncover novel biology even in the well-studied HPC.  

Based on the spatial information, we refined our snRNA-seq cluster annotations to reflect the discrete 
populations of superficial ENT pyramidal neurons, the three layers of SUB pyramidal neurons, a population of 
presubiculum neurons, and a group of deep pyramidal neurons present across the RHP continuum. The 
expression of common cortical layer markers may or may not be sufficient to identify these populations in 
future experiments (Figure 6H). The use of the canonical SUB marker gene FN1 may be helpful to isolate 
superficial SUB neurons (Sub.1), but our data indicate that COL24A1, which was identified as a SUB DEG in 
both SRT and snRNA-seq datasets (Figure 3C), identifies superficial and middle SUB neurons. TOX, another 
DEG for the SUB in both SRT and snRNA-seq data, appears to be a more general subicular complex indicator, 
labeling the presubiculum as well (Figure 6H). The spatial organization of cluster L2/3.5 was not examined in 
this study, as the corresponding specific NMF pattern (nmf78) mapped to fewer than 1050 spots. However, it 
appears likely this cluster also represents SUB complex neurons based on the expression of TOX and TSHZ2 
(Extended Data Fig. 22B). We performed additional differential expression analysis focused on discovering 
new gene markers that could be useful for future studies looking to annotate subicular complex neurons 
(Methods 4.9). We set a very robust threshold and identify multiple genes that, in combination with traditional 
regional and laminar markers, will be useful for future research (Figure 6I, Extended Data Fig. 52). 

2.7 | Data Access and Visualization
This atlas of integrated single cell and spatial transcriptomic data is the most comprehensive map of the 
human HPC to date. To enable exploration of these rich data resources, we created multiple interactive data 
portals, available at research.libd.org/spatial_hpc/. The pseudobulked snRNA-seq and SRT data are freely 
available through iSEE apps (111) to allow users to visualize expression for genes of interest across cell types 
and spatial domains. To facilitate exploration of SRT data in anatomical context, we merged all Visium capture 
areas from each donor for visualization of high resolution images and corresponding gene expression data, 
NMF patterns, and spot-level deconvolution results at the donor level using a web-based interactive tool, 
Samui Browser (112) (10 donors, n=36 Visium-H&E capture areas; 2 donors, n=8 Visium-SPG capture 
areas. Raw and processed data are available through Gene Expression Omnibus (GEO) (113) under 
accession GSE264624 to facilitate access for methods development and in depth analysis. Finally, to make the 
data accessible for broader neuroscience community, we created an ExperimentHub Data package 
(https://bioconductor.org/packages/humanHippocampus2024) within the Bioconductor framework such that 
processed snRNA-seq and SRT data can be downloaded conveniently.   

3 | Discussion
By integrating SRT and snRNA-seq data, we generated a comprehensive transcriptomic atlas of the adult 
human hippocampus (HPC). We characterized the molecular organization of the human HPC with both spatial 
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and cellular resolution, identifying discrete spatial domains and a rich repertoire of HPC cell types. Spot level 
deconvolution and non-negative matrix factorization (NMF) uncovered gene expression patterns representing 
cell type-specific molecular signatures. NMF enabled us to also capture gene expression profiles shared 
across biological processes, such as synaptic signaling (Figure 4). Integration of these patterns with 
cross-species functional genomics data (Figure 5) provides spatial context to behaviorally-relevant cell types, 
cell states, and molecular pathways. To molecularly define the organization of the subicular complex, we 
leverage cross-species neuronal circuit data and anatomical insight from our SRT dataset (Figure 6). 

Measuring transcriptomic changes in response to experimental manipulations is not possible in human 
postmortem brain tissue, while functional studies in rodents that can test causality of cellular and molecular 
associations may lack direct relevance to human brain function and behavior. Therefore, integrating human 
transcriptomic data with functional genomics data from animal models has the potential to facilitate 
interpretation of cellular responses to various stimuli. To illustrate the biological insights that can be gleaned 
using this approach, we mapped NMF patterns from the human HPC onto snRNA-seq data from a mouse 
model of induced electroconvulsive seizures (ECS) (93) to identify gene expression patterns that are putatively 
associated with neural activity in the human brain (Figure 5). Identifying and localizing expression patterns 
associated with activity-regulated genes in the human HPC is important because expression of these genes is 
critical for recruitment of HPC neuronal ensembles controlling learning, memory and other cognitive processes 
(114). NMF patterns that reflected processes known to be regulated by activity, including immediate early gene 
expression and synaptic signaling, were enriched in activated mouse neurons (Figure 5). In the rodent, the 
majority of GCs are relatively silent under both baseline conditions (115) and during exploration of novel 
environments (116,117). However, a small fraction of GCs rapidly increase their firing activity during behavior, 
supporting a sparse coding scheme that facilitates precision in the detection of novelty and the animal's 
location during learning (118). NMF patterns that differentially map to control versus activated neurons may 
represent the population of GCs that are more quiescent versus those that are either actively firing or 
intrinsically primed for activity (119). Indeed, active and quiescent mouse GCs have substantially different 
transcriptomic profiles (93). Differences in GC activity levels may reflect differences in their ability to be 
recruited into neuronal ensembles in response to behavioral experiences (120–125). These analyses provide 
insight into the putative spatial and molecular organization of cellular activity states in the human DG, which is 
critical to better understand circuit function in the HPC. Circuit activity in the HPC flows from the DG, extending 
through the pyramidal, subicular and retrohippocampal regions, which have not been well-characterized in the 
human at molecular scale.  Since annotations for the retrohippocampal transition region rely on a priori 
knowledge of spatial organization and no molecular profiles are available, we were unable to manually 
annotate subdivisions in this region. While analysis of the snRNA-seq data enabled identification of many 
individual cell types along this transition region, unbiased clustering strategies were also unable to fully identify 
and differentiate across subdivisions. However, application of NMF afforded a more biologically meaningful 
interpretation of these cell types by mapping their spatial organization in the SRT dataset. With this approach 
we were able to identify novel gene signatures attributable to specific subdivisions of the ENT and subicular 
complex (Figure 6). These findings highlight the future potential of these approaches for incorporating human 
transcriptomic data with rapidly emerging viral circuit labeling tools, which have recently enabled the profiling of 
neuron populations in rodent models based on their innervation patterns (126,127). 

We demonstrate that NMF is an effective approach to integrate transcriptomics data with other datasets, 
particularly across species and data modalities. This approach has some limitations. Namely, NMF can be 
sensitive to initialization values, patterns corresponding with noise may be incorrectly attributed to distinct 
biological processes, and NMF weights can be scaled differently across different factorizations. Despite these 
limitations, the illustrated strategy can be iterated upon to map existing and forthcoming datasets to our atlas. 
NMF is able to transfer continuous patterns of expression, such as cell types (Figure 4, Figure 6) and 
transcriptional activity (Figure 5), while other tools, including PCA and spot-level deconvolution, are not able to 
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find these gradients of expression. NMF also enabled the integration of our snRNA-seq and SRT data, which 
leveraged the spatial information provided by the SRT dataset and the cellular resolution of snRNA-seq to 
enable the discovery of molecular signatures in human tissue. Ultimately, these signatures can be extended 
with targeted gene panels at single cell resolution for validation, or reverse-translated to test causality in rodent 
or cellular models. Importantly, snRNA-seq and SRT data from dorsolateral prefrontal cortex (dlPFC) is 
available from the same donors as those used in this study (5), and emerging computational methods may 
enable modeling molecular connectivity patterns across this clinically-relevant circuit in the future. This is an 
important endeavor with significant potential to improve clinical outcomes given strong scientific rationale and 
precedence for normalizing circuit-level dysfunction to improve symptoms of neuropsychiatric disorders 
(128–130). Understanding functional dynamics in HPC circuits is important because their dysregulation is 
implicated in various neuropsychiatric and neurodevelopmental disorders (131,132). Defining the human HPC 
at cellular resolution with spatial fidelity is necessary for designing molecular approaches that can facilitate 
more precise circuit manipulation. Ultimately, the identification of unique molecular identities for 
spatially-organized HPC cell types based on their innervation targets in the human brain is necessary for the 
development of circuit-specific therapeutics. 

In summary, this highly integrated, well-annotated single cell and spatial transcriptomics dataset of the human 
HPC provides unique biological insight into the molecular neuroanatomy of the hippocampal formation, 
including activity-dependent transcriptomic profiles in the GCL and molecular definition of the retrohippocampal 
transition zone between the ENT and SUB. Our innovative approach can be effectively used to map external 
data to this and other transcriptomic atlases as illustrated. To facilitate wide access to our data, we provided 
the human HPC snRNA-seq and SRT atlas as a resource to the scientific community through multiple 
avenues, including interactive web applications for visualization and exploration.

4 | Methods

4.1 | Postmortem human tissue samples 
Postmortem human brain tissue from neurotypical adult donors of European ancestry were obtained at the 
time of autopsy following informed consent from legal next-of-kin, through the Maryland Department of Health 
IRB protocol #12–24, and from the Western Michigan University Homer Stryker MD School of Medicine, 
Department of Pathology, the Department of Pathology, University of North Dakota School of Medicine and 
Health Sciences, and the County of Santa Clara Medical Examiner-Coroner Office in San Jose, CA, all under 
the WCG protocol #20111080. Using a standardized strategy, all donors underwent a comprehensive 
retrospective clinical diagnostic review to exclude for any lifetime history of psychiatric or substance use 
disorders. Macro- and microscopic neuropathological examinations were performed, and subjects with 
evidence of neuropathological abnormalities were excluded. Additional details regarding tissue acquisition, 
processing, dissection, clinical characterization, diagnose, neuropathological examination, RNA extraction and 
quality control (QC) measures have been previously published (133). Demographic information for all donors in 
this study is listed in Supplementary Table 1.  

4.2 | Tissue processing and quality control 
All hippocampus dissections in this study were performed by the same neuroanatomist (co-author TMH). The 
hippocampus was dissected as uniformly as possible using anatomical landmarks to include the anterior 
portion of the hippocampus proper plus the subicular complex (42). Frozen samples were mounted in OCT 
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(TissueTek Sakura) and cryosectioned at -12°C (Leica CM3050s). To ensure high-quality samples, we 
measured RNA Integrity Number (RIN) in the sample blocks from a subset of donors and ensured that RIN in 
our dissected tissue samples was comparable to RIN calculated at time of brain donation 
(Supplementary Table 1). 10μm sections were mounted on standard microscopy slides for staining with 
hematoxylin and eosin (H&E) for orientation and quality control. Following QC, 2-4 100μm cryosections, 
totalling approximately 50mg of tissue, were transferred into a low-adhesion tube (Eppendorf) kept on dry ice 
and reserved from the anterior portion of the HPC for snRNA-seq. Then, two 10μm sections were mounted on 
standard microscopy slides and reserved. The tissue block was then scored using a razor blade, so that tissue 
sections approximately the size of a Visium capture area could be positioned and placed onto chilled Visium 
Spatial Gene Expression slides (part number 2000233, 10x Genomics). Following the successful completion of 
Visium experiments, additional 100μm cryosections were collected for single-nucleus RNAseq. In some cases, 
multiple Visium experiments were performed to ensure inclusion of relevant subfields. In these cases, distance 
along the anterior-posterior axis between experiments did not exceed 500μm. To assist in the reassembly of 
scored tissue sections, H&E staining was performed on one slide adjacent to the scored Visium sections. 
RNAscope (ACD) was performed on the other to guide histological annotation of canonical subfields, using 
previously defined markers of dentate gyrus (PROX1), CA3 (NECAB1), CA1 (MPPED1) and SUB (SLC17A6). 

4.3 | Spatially resolved transcriptomics (SRT) data generation
Visium Spatial Gene Expression slides were processed as previously described (4,134). To ensure the optimal 
time duration of exposure to permeabilization enzyme, tissue optimization experiments were performed 
according to the manufacturer’s protocols (protocol CG000160, revision B, 10x Genomics). Tissue sections 
were scored to include the dentate gyrus to facilitate orientation, and exposed to permeabilization enzyme for 
differing time durations. cDNA synthesis was performed using a fluorescently-labeled nucleotide (CG000238, 
revision D, 10x Genomics). The slide was then coverslipped and fluorescent images were acquired at 10x 
magnification with a TRITC filter (ex 550nm/em 600nm) on a Cytation C10 Confocal Imaging Reader (Agilent). 
Following this experiment, 18 minutes was selected as the optimal permeabilization time. For each Visium 
slide, H&E staining was performed (protocol CG000160, revision B, 10x Genomics), after which slides were 
coverslipped and high-resolution, brightfield images were acquired on a Leica CS2 slide scanner equipped with 
a 20x/0.75NA objective and a 2x doubler. Following removal of the coverslips, tissue was permeabilized, cDNA 
synthesis was performed, and sequencing libraries were generated for all Visium samples following the 
manufacturer’s protocol (CG000239, revision C, 10x Genomics). Libraries were loaded at 300 pM and 
sequenced on a NovaSeq System (Illumina) at the Johns Hopkins Single Cell Transcriptomics core according 
to manufacturer’s instructions at a minimum depth of 60000 reads per spot. 

4.4 | SRT data processing and analysis
Visium raw data processing
FASTQ and image data were pre-processed with the 10x SpaceRanger pipeline (version 1.3.1) (135). Reads 
were aligned to reference genome GRCh38 2020-A. For analysis steps, we used R (version 4.3.2, unless 
otherwise noted) and Bioconductor (version 3.17) for analysis of genomics data (136). Outputs from the 
SpaceRanger pipeline were read into R and stored in a SpatialExperiment (137) (SPE) object using the 
read10xVisiumWrapper() from the spatialLIBD package (138). For each donor, we first rearranged the 
order of capture areas. This was done such that overlapping or adjacent capture areas were adjacent to one 
another when plotted on a grid (2x2 grid for donors with 3 or 4 capture areas, 1x2 or 2x1 grid for donors with 2 
capture areas, or 3x2 grid for donors with 5 capture areas, Extended Data Fig. 1). After rearrangement, 
images from each capture area and spatial coordinates in the SPE were rotated to ensure that neighboring 
regions from each donor were spatially adjacent and correctly oriented to recapitulate the organization of the 
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initial, unscored cryosection as well as possible. We performed these rotations with the imgData() function 
from the SpatialExperiment package. For a given H&E, imgData() can transform the raster 
representation of the image data by some user-specified rotation values (in degrees). In our SPE object, we 
also independently rotated both the pixel coordinates for each spot (stored in the spatialCoords slot) and 
the capture area array coordinates for each spot (stored in colData slot as array_row and array_col). 
These rotations were performed to correspond with image rotations. 

H&E Image Processing  
The high-resolution images obtained as part of the 10x Genomics Visium protocol were processed using 
VistoSeg, a MATLAB-based pipeline that integrates gene expression data with histological data (139). First, the 
software splits the high-resolution H&E image of the entire slide into individual capture areas (.tif file format) 
and the capture areas of a single brain sample are rotated accordingly to orient to each other forming the 
hippocampal structure. The individual tif files are used as input to 1) Loupe Browser (10x Genomics) for 
fiducial frame alignment, and 2) SpaceRanger (version 1.3.0) to extract the spot metrics/coordinates. We then 
used the VNS() function from VistoSeg to obtain the initial nuclei segmentations. The refineVNS() 
function with adaptive thresholding was used to segment out the more accurate nuclei from background 
signals. Segmented regions within the size range of 40 to 4,000 pixels were only retained and a watershed 
was applied to split the nuclei clusters. These final segmentations were used to obtain the nuclei count per 
Visium spot. We took two approaches for spot level counting with different stringencies: 1) we counted all 
segmented nuclei whose centroids were within a given Visium spot and 2) we calculated the proportion of 
pixels within a given Visium spot in which a segmented nucleus was present. A function in VistoSeg then uses 
the spot metrics and coordinates from SpaceRanger to integrate the segmented nuclei counts with gene 
expression data to obtain the number of nuclei per spot. 

Visium quality control and count normalization
We filtered the data to remove all undetected genes and spots with zero counts. We used the 
addPerCellQC() function from the scuttle Bioconductor package to compute and store standard quality 
control metrics, such as mitochondrial expression rate, library size, and number of detected genes (140,141). 
We applied a 3x median absolute deviation (MAD) threshold to discard spots with low library sizes and/or low 
numbers of detected genes (Extended Data Fig. 2). Mitochondrial expression rate was not used to define 
low-quality spots as this metric appeared to correlate with true biological variation (Extended Data Fig. 3). 
Specifically, hippocampal neuropil-enriched layers, such as dentate gyrus molecular layer, stratum radiatum, 
stratum lucidum, and stratum lacunosum-moleculare, showed enrichment of mitochondrial genes. These 
regions are characterized by large numbers of synapses and a paucity of neuronal cell bodies. In neurons, 
mitochondria are known to be enriched at both presynaptic and postsynaptic sites  (142,143). After applying 
these QC steps, the number of genes x the number of spots was 31,483 x 150,917. Counts were normalized 
by library size and log2-transformed using computeSumFactors() from scran (140) and 
logNormCounts() from scuttle (141).

Feature selection, spatially variable genes
Highly variable genes do not necessarily capture spatial expression patterns. Thus, for feature selection prior 
to unsupervised clustering of SRT data, we used the nnSVG Bioconductor package (29) to select the top 2,000 
spatially variable genes (SVGs) that exhibited expression patterns that varied across the 2D space of the 
tissue sample (144). The nnSVG package uses a nearest-neighbor Gaussian process model and measures up 
against other SVG detection methods in improving spatial domain detection in RNAseq data, compared to 
non-spatial feature selection approaches (31). nnSVG aims to identify genes with varying expression patterns 
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across different regions within the tissue by estimating gene-specific spatial ranges and retaining detailed 
spatial correlation information. The model offers linear scalability and efficient handling of large datasets.

We first filtered out genes with fewer than 100 counts across all spots across all capture areas. For each 
capture area, we also filtered genes with less than 3 counts in at least 0.5% of spots in that capture area. We 
did not filter out the mitochondrial genome. We then ran nnSVG separately on each capture area using the 
default parameters. After running nnSVG for each sample, we ranked all genes within each capture area by 
spatial variance. We averaged gene ranks across all capture areas and ranked genes by mean rank. We 
retained the top 2,000 genes for clustering analysis (~10% of all genes retained after filtering steps), 
constraining to genes ranked in the top 1,000 genes in at least 2 different capture areas 
(Supplementary Table 3, Figure 1D).

Unsupervised clustering of spatial transcriptomics data 
For spatially-aware unsupervised clustering of SRT data, we used PRECAST v1.5 (30). PRECAST was chosen 
based on its ability to leverage spatial information when performing clustering, its use of joint embeddings that 
allow for integration across samples and batches, and its relatively fast runtime which allows for optimization of 
the number of desired clusters (32) (Extended Data Fig. 6A). We ran PRECAST across all donors using k=5 
through k=20. We used the top 2,000 SVGs calculated using nnSVG. Following PRECAST, we extracted BIC 
values from each PRECASTObj and prioritized k=15 through k=20 as these had the lowest BIC values 
(Extended Data Fig. 6B). We visualized spatial domain membership for k=15 through k=20 and found similar 
results. However, k=18 included a spatial domain that appeared to map to SLM and SGZ, which other 
clusterings lacked (Extended Data Fig. 6C-E). 

To ensure robustness of spatial domain predictions across computational algorithms, we compared PRECAST 
results with those generated from two other leading clustering methods designed specifically for spatial 
transcriptomics. We looked at a domain detection algorithm using graph-based autoencoders, GraphST (145). 
Following the GraphST tutorial, features were selected by the highly variable gene method and GraphST was 
performed for each individual slide. Samples were integrated with Harmony (146) and we generated k=16 
clusters. The GraphST results were somewhat consistent with the PRECAST assignments, but generated a 
very large cluster corresponding to many distinct HPC regions containing pyramidal neurons (Extended Data 
Fig. 11). We believe this could be due to the use of highly variable genes as recommended in the tutorial, 
rather than an inherent limitation of the GraphST model itself. We also compared  BayesSpace (147) which is 
similar to PRECAST in that it implements a hidden Markov random field but does so within a Bayesian model 
framework. For BayesSpace implementation, we utilized the same set of SVGs input to PRECAST to generate 
PCs that were MNN-corrected for donor identity, and used k=18 clusters. The spatial organization of the 
BayesSpace clusters were very similar to that of PRECAST (Extended Data Fig. 12). Given the similarities 
and lack of improved ability to distinguish thalamus and amygdala spots (Extended Data Fig. 13, introduced 
below), we used PRECAST clusters from k=18 to define our HPC spatial domains. 

Histologically-defined annotations
All histologically-defined annotations were performed by experienced neurobiologists (co-authors EDN, SCP). 
To annotate SRT data, we built a temporary shiny application using spatialLIBD::run_app() (4,138). 
We annotated the following anatomical regions: granule cell layer (GCL), subgranular zone (SGZ), molecular 
layer (ML), CA4 pyramidal cell layer (PCL-CA4), PCL-CA3, PCL-CA1, subiculum (SUB), stratum oriens (SO), 
stratum radiatum (SR), stratum lucidum (SL), stratum lacunosum-moleculare (SLM), white matter (WM), 
choroid plexus (CP), thalamus (THAL), and cortex (CTX) (Extended Data Fig. 7). We used marker genes from 
snRNA-seq studies in both human HPC (18,19) and mouse HPC (13,100). We also used H&E images for 
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histological reference. To identify GCL, we used PROX1 and SEMA5A and were also guided by high levels of 
hematoxylin staining due to densely packed granule cell bodies. To identify SGZ, we used SEMA5A, but not 
PROX1, expression. We also used GAD1/GAD2 due to the presence of GABAergic neurons in SGZ (148). To 
identify ML, we noted low UMIs and detected genes in areas between GCL and SLM. To identify PCL-CA4, we 
used NECTIN3, AMPH, SEMA5A, SLC17A7, and the presence of higher UMIs and detected genes compared 
with adjacent SGZ. For PCL-CA3, we used NECTIN3, NECAB1, AMPH, and MPPED1. For PCL-CA1, we used 
FIBCD1, MPPED1, CLMP, and SLC17A7. For SUB, we used FN1, NTS, and SLC17A6. For SO, we used 
PVALB, SST, GAD1/GAD2. For SR, we looked for regions between SLM and PCL-CA1/PCL-CA3 with high 
levels of GFAP, but lower levels of MBP/MOBP compared with SLM and WM. For SL, we looked for regions 
between SR and PCL-CA3 with low UMIs/detected genes and higher levels of GFAP and MBP/MOBP than 
adjacent PCL-CA3. For SLM, we noted a strip of darker staining compared with adjacent ML and SR along 
with expression of MBP/MOBP and GFAP. To identify WM regions, we looked for very high levels of 
oligodendrocyte markers such as MBP, MOBP, and PLP1. To identify CP, we used TTR, PRLR, and MSX1. CP 
tissue also had a distinctive sponge-like appearance, making visual identification easy. For thalamus, we used 
TCF7L2. Finally, for CTX, we used CUX2, RORB and BCL11B.

Spatial domain annotation 
We annotated spatial domains based on anatomical location and expression of canonical marker genes 
(Figure 1E). We found two domains each mapping to CA2-4 (CA2-4.1 and CA2-4.2) and CA1 (CA1.1 and 
CA1.2). Gene expression profiles for each of these domains were similar (Extended Data Fig. 8A), however, 
the number of nuclei per spot was higher in CA1.1 compared with CA1.2 and CA2-4.1 compared with CA2-4.2 
(Extended Data Fig. 8B). Therefore, we collapsed CA2-4.1/CA2-4.2 to CA2-4 and CA1.1/CA1.2 to CA1 
spatial domains for further analysis. Domains mapping to GCL, Cornu Ammonis pyramidal cell layers 
(CA2-4.1, CA2-4.2, CA1.1, CA1.2), subiculum (SUB), subiculum and retrohippocampal region (SUB.RHP), 
retrohippocampal region (RHP), and GABAergic neuron-rich spots (GABA) were grouped as neuron cell 
body-rich domains at the broad domain level. To assist in annotation of neuropil-rich domains, we referenced 
the manual annotations (Extended Data Fig. 8C). We also examined the expression of genes enriched in the 
CA1 (MPPED1, FIBCD1), CA3 (TSPAN18, NECTIN3, AMPH), DG (PROX1, SEMA5A), and astrocytic genes 
since we had a cluster with SGZ-proximal spatial organization (Extended Data Fig. 8D). With these aids we 
annotated domains mapping to dentate gyrus molecular layer (ML), stratum lucidum/stratum radiatum (SL/SR), 
stratum radiatum/stratum lacunosum-moleculare (SR/SLM), and stratum lacunosum-moleculare/dentate gyrus 
subgranular zone (SLM/SGZ). Domains mapping to white matter (WM.1, WM.2, and WM.3) were grouped as 
white matter domains at the broad domain level. Domains mapping to vascular and choroid plexus tissue were 
grouped as vascular/cerebrospinal fluid (CSF) domains at the broad domain level. The final HPC domain 
annotations used throughout the manuscript are present in Extended Data Fig. 9.

Identification of thalamus and amygdala spots
During manual annotation we identified the presence of a small amount of thalamus tissue in one capture area 
using thalamus-specific marker TCF7L2 (33,34) (Extended Data Fig. 10A-C). In this capture area, thalamus 
tissue was incorrectly annotated to the SUB and SUB.RHP PRECAST domains. The thalamic SUB/SUB.RHP 
spots were the only spots from SUB or SUB.RHP spatial domains in this capture area. These spots were 
therefore excluded from differential expression (DE) analyses. In another donor we identified a large, 
homogenous expanse of tissue that comprised an entire capture area and was annotated to RHP. Based on 
the anatomy of the region, we believed this region was in fact amygdalar tissue based on the expression of 
several genes known to be enriched in amygdala: SLC17A6, CDH22 (21), OPRM1 (36), and CACNG4 (35) 
(Extended Data Fig. 10E-H). We identified 3 total capture areas from two donors containing tissue from 
adjacent amygdala based on expression of these genes, all of which were annotated to the RHP spatial 
domain. These spots were not included in DE analyses. 
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Pseudobulk processing
Following unsupervised clustering, Visium spots were pseudo-bulked by their spatial domain and capture area, 
as previously described (4). Briefly, we summed the raw gene expression counts for across all spots in a given 
capture area in a given spatial domain. We performed this aggregation using the 
aggregateAcrossCells() function from scran (140). We refer to these aggregated samples as 
pseudobulk samples. We discarded pseudobulk samples that were composed of less than 50 spots and spots 
identified as the thalamus or amygdala. We then identified and removed lowly expressed genes using the 
filterByExpr() function from the edgeR package (149,150). Counts were normalized by library size, 
converted to counts per million (CPM), and log2 transformed using the calcNormFactors() function from 
edgeR. QC metrics were computed for each pseudobulk sample, again using addPerCellQC() from 
scuttle (141). We performed principal component analysis (PCA), retaining the first 100 principal 
components (PCs) to confirm that pseudobulked samples primarily captured biological variation rather than 
technical or experimental variables. We used the getExplanatoryPCs() function from the scater 
package (141) to compute, for each PC, the percent of variance explained by different metadata variables, 
including spatial domain, donor, capture area, slide, age, sex, and QC metrics (Extended Data Fig. 14, 
Extended Data Fig. 15). 

Pseudobulk differential expression analysis
We performed differential expression (DE) analysis using pseudobulk log2-transformed CPM values to model 
differences in gene expression across domains or broad domains using spatialLIBD functions (138). These 
functions are wrappers for various functions from the limma package (151). We followed a modeling approach 
similar to Maynard et al. (4). We accounted for age, sex, and slide as covariates. After model matrix 
construction, we ran registration_block_cor() from spatialLIBD, blocking by capture area. This 
function wraps duplicateCorrelation() from limma to calculate correlation between pseudobulk 
samples within each block. This approach accounted for capture area-specific variation. For the enrichment 
model, we used registration_stats_enrichment() from spatialLIBD, wrapping the same limma 
functions to test for gene expression differences between each domain and all other domains. For each gene 
and domain, this model computed fold change (FC), Student’s t-test statistics, and two-tailed p-values. 
P-values were corrected for the false discovery rate (FDR) (152). Genes were considered significant if log2FC 
> 1 or log2FC < -1 and FDR < 0.01 (Extended Data Fig. 16, Extended Data Fig. 17, Supplementary Table 4, 
Supplementary Table 5). 

4.5 | snRNA-seq data generation
snRNA-seq data collection and sequencing 
Using previously mentioned 100μm cryosections collected from each donor, we conducted single-nucleus 
RNA-sequencing (snRNA-seq) using 10x Genomics Chromium Single Cell Gene Expression V3 technology. 
Cryosections for each donor were first pooled with chilled Nuclei EZ Lysis Buffer (MilliporeSigma #NUC101) 
into a glass dounce. Sections were homogenized using 10-15 strokes with both pestles (loose and tight-fit). 
Homogenates were filtered through 70 μm mesh strainers and before centrifugation at 500 x g for 5 minutes at 
4°C using a benchtop centrifuge. Nuclei were resuspended in fresh EZ lysis buffer, centrifuged again, and 
equilibrated in wash/resuspension buffer (1x PBS, 1% BSA, 0.2U/μL RNase Inhibitor). Nuclei were washed in 
wash/resuspension buffer and centrifuged 3 times. We labeled nuclei with Alexa Fluor 488-conjugated 
anti-NeuN (MilliporeSigma cat. #MAB377X), diluted 1:1000 in nuclei stain buffer (1x PBS, 3% BSA, 0.2U/μL 
RNase Inhibitor) by incubating at 4°C with continuous rotation. Following NeuN labeling, nuclei were washed 
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once in stain buffer, centrifuged, and resuspended in wash/resuspension buffer. Nuclei were labeled with 
propidium iodide (PI) at 1:500 in wash/resuspension buffer before being filtered through a 35um cell strainer. 

We then performed fluorescent activated nuclear sorting (FANS) for using a Bio-Rad S3e Cell Sorter. Gating 
criteria were selected for whole, singlet nuclei (by forward/side scatter), G0/G1 nuclei (by PI fluorescence), and 
neuronal nuclei (by Alexa Fluor 488 fluorescence). Nuclei from each donor were split into two equal samples. 
The first sample was sorted based on PI+ fluorescence, thereby including both neuronal and non-neuronal 
nuclei. The second sample was sorted based on both PI+ and NeuN+ fluorescence to facilitate enrichment of 
neurons. 

This approach initially gave n=20 for snRNA-seq (1 PI+ and 1 PI+NeuN+ sample for all 10 donors) with a total 
of 18,000 sorted nuclei per donor (9000 per Chromium sample). Samples were collected over multiple rounds, 
each containing 1-3 donors for 2-6 samples per round. We had poor nuclei yields from one sequencing round, 
comprising both PI+ and PI+NeuN+ samples from 3 donors. We collected additional PI+ and NeuN+ samples 
from these 3 donors and performed nuclei sorting steps again, this time with better final nuclei yields. 
Therefore, we had a final n=26 for snRNA-seq (1 P1+ and 1 PI+NeuN+ sample for 7 donors, 2 PI+ and 2 
PI+NeuN+ samples for 3 donors). 

All samples were sorted into reverse transcription reagents from the 10x Genomics Single Cell 3′ Reagents kit 
(without enzyme). Enzyme and water were added to bring the reaction to full volume. cDNA synthesis and 
subsequent sequencing library generation was performed according to the manufacturer’s instructions for the 
Chromium Next GEM Single Cell 3’ v3.1 (dual-index) kit (CG000315, revision E, 10x Genomics). Samples 
were sequenced on a Nova-seq (Illumina) at the Johns Hopkins University Single Cell and Transcriptomics 
Sequencing Core at a minimum read depth of 50000 reads per nucleus. 

4.6 | snRNA-seq data analysis
snRNA-seq data processing and quality control
Following sequencing, we mapped reads to Genome Reference Consortium Human Build 38 (GRCh38 
2020-A) using cellranger count (version 7.0.0). The raw feature matrices were used to generate a 
SingleCellExperiment (136) object that was then filtered with the emptyDrops() function from the 
dropletUtils (153) Bioconductor package. We computed quality control metrics using the 
addPerCellQC() function from the scuttle Bioconductor package (141).

To identify poor-quality nuclei, we applied a 3x median absolute deviation (MAD) threshold for key QC metrics 
(percentage of UMIs mapping to mitochondrial genes, library size, and number of detected genes) (141). 
Because neurons have larger library sizes and numbers of expressed genes compared with non-neuronal cells 
in human brain tissue (154), and because our PI+NeuN+ samples are enriched for neurons, these initial 
thresholds were computed on a per-sample basis (Extended Data Fig. 4A-C). We recognized that this 
approach resulted in an inconsistent threshold for the rate of mitochondrial expression that resulted in several 
samples retaining nuclei with >10% of reads originating from the mitochondrial genome (Extended Data Fig. 
4A) and that these samples with the highest proportion of mitochondrial reads had the lowest number of nuclei 
removed (Extended Data Fig. 4D). Instead of pooling nuclei for MAD calculation on a per-sample basis, we 
calculated a new 3MAD threshold by pooling the higher quality samples with original thresholds of <5% 
expression from the mitochondrial genome (Extended Data Fig. 4G). This increased the number of nuclei 
excluded based on mitochondrial fraction, particularly in samples from sequencing round 3 that exhibited low 
cDNA abundance and were re-run (Extended Data Fig. 4J). The initial 3MAD thresholds for the other two QC 
metrics resulted in no nuclei being excluded from almost all PI+ sorted samples and many PI+NeuN+ sorted 
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samples (Extended Data Fig. 4E-F). For these samples, we manually set the library size and number of genes 
detected threshold to 1,000 counts and 1,000 detected genes (Extended Data Fig. 4H-I), increasing the 
number of nuclei excluded (Extended Data Fig. 4K-L). Following nuclei quality control, the dimensions of our 
dataset were 36,601 genes x 86,905 nuclei.  

We observed that one sample of PI+NeuN+ nuclei remaining after QC filters possessed noticeably lower library 
sizes and fewer detected genes than all other PI+NeuN+ samples (Extended Data Fig. 5B-C). To see if this 
discrepancy was likely the result of a neuronal population unique to that sample (17c-scp), we performed 
rudimentary clustering with the quickCluster() function from scran and estimated the number of neurons 
present in each cluster based on raw expression of SYT1 >1 count (Extended Data Fig. 5D). We found that 
across neuronal clusters, sample 17c-scp displayed an increased number of nuclei with low library size and 
few detected genes, but that there remained 17c-scp nuclei that matched the distribution of these QC metrics 
present in the other PI+NeuN+ samples (Extended Data Fig. 5E). We reasoned that many of the nuclei in 
sample 17c-scp were low-quality neurons. To prevent detrimental impact on downstream analyses, we took a 
conservative approach and removed all nuclei with fewer than 5000 detected genes in this sample only. 
Following this removal step, the dimensions of our dataset were 36,601 genes x 80,594 nuclei (Extended Data 
Fig. 5F). 

snRNA-seq feature selection, dimensionality reduction, and clustering
For feature selection and dimension reduction, we used the methods developed in scry (155) which fit a 
Poisson model to the raw counts of each gene and then rank genes by deviance from the null hypothesis that 
the modeled expression is equal across all cells. The ranks were used to select highly deviant genes (HDGs) 
via devianceFeatureSelection(), and the Pearson residuals from the Poisson model for these 2000 
HDGs (obtained with nullResiduals()) were used as input for principal component analysis (PCA) that 
was implemented with scater (141). Utilizing the Pearson residuals rather than log-normalized count data as 
input for PCA avoids biases introduced by log-normalization of UMI count data (155). Mutual nearest neighbors 
(MNN) correction was implemented with batchelor (156) and was applied to the top 50 PCs to correct for 
batch effects introduced by donor and sequencing rounds. Visualizing these results with UMAP embedding 
shows this approach was highly effective (157) (Extended Data Fig. 18). Gene expression count data was 
then normalized using scran (140). We computed cluster-specific size factors by generating rough cluster 
assignments using the quickCluster() function followed by the calcSumFactors() function from scran 
(158). These size factors were used to normalize the count matrix before implementing log transformation. 

We implemented graph-based clustering to identify cell types present in the snRNA-seq dataset. A 
nearest neighbor graph was generated with scran (140) based on the 50 MNN-corrected PCs using k=5 
nearest neighbors and Jaccard weights followed by igraph (159) implementation of Louvain clustering (160). 
This resulted in 59 clusters. We annotated these clusters as neuronal or non-neuronal based on expression of 
neuron-specific genes, such as SYT1 (Extended Data Fig. 19A). We identified three low-quality neuron 
clusters based on fewer detected genes (Extended Data Fig. 19B). We also identified one cluster of likely 
doublets, which were marked by coexpression of oligodendrocyte, astrocyte, OPC, and microglia markers in 
the same nuclei (Extended Data Fig. 19C). These 4 clusters were removed, together accounting for 5% of all 
nuclei. 

After removing low quality neurons and likely doublets, we repeated feature selection, dimensionality 
reduction, batch correction, and graph-based clustering using the same parameters as before. This resulted in 
62 clusters which we classified as neuronal and non-neuronal based on SYT1 expression (Extended Data 
Fig. 19D). Using the number of detected genes and co-expression of distinct glial markers, we identified one 
low-quality neuron cluster (Extended Data Fig. 19E) and one low-quality non-neuronal cluster, respectively 
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(Extended Data Fig. 19F). These two clusters contained 1.6% of all nuclei, and so we did not reprocess the 
dataset after removal. Our final dataset contained 75,411 nuclei classified into 60 clusters.

Preliminary snRNA-seq cluster annotation
We utilized markers from published snRNA-seq data in humans (18) to label broad cell types including glia cell 
types (Extended Data Fig. 19F), inhibitory/GABAergic neurons, and excitatory/glutamatergic neurons 
(Extended Data Fig. 20A). Within excitatory neurons, we were able to identify distinct clusters of cornu 
ammonis pyramidal cells, dentate gyrus granule cells, and subiculum pyramidal cells based on marker genes 
like PROX1, CALB1, FNDC1, TSPAN18, CARTPT, and FN1. We knew that we should have a small thalamus 
population and identified this population by looking for a cluster with elevated TCF7L2 expression based on our 
SRT data (Extended Data Fig. 10A-C, Extended Data Fig. 20B). Most of the remaining excitatory cell 
clusters likely comprise the retrohippocampal regions which exhibit laminar organization akin to cortical layers 
and are often annotated based on the expression of CUX2 (superficial marker), SATB2 (deep callosal 
projection marker), TLE4 (deep subcortical projection marker) (Extended Data Fig. 20A). We also knew that 
there should be some amygdalar neurons present, but were unable to identify these clusters based on the 
expression of genes used to classify amygdalar domains in the SRT dataset (SLC17A6, CDH22, OPRM1, and 
CACNG4) (Extended Data Fig. 10D-H). To identify amygdala neuron clusters in the snRNA-seq data we 
isolated the RHP spots from SRT data and used scran::findMarkers() to implement a binomial test for 
gene markers that distinguished the spots annotated to the amygdala (n= 4519 spots) from the true RHP 
domain (n= 3940 spots). Evaluating markers increased in either population at an FDR<.05 and log2FC>.3, we 
identified 73 genes increased in amygdala spots and 86 genes increased in RHP spots. We examined the 
expression of these genes in all excitatory cells annotated to RHP layers and identified 5 clusters that we 
relabeled as amygdalar neurons (n= 5524 nuclei) (Extended Data Fig. 20C). Importantly, these nuclei 
overwhelmingly came from the donors with amygdala domains identified in SRT (Br6432 n= 3380 nuclei, 
Br6423 n= 1338 nuclei), although we did annotate 721 nuclei from Br8667 to these amygdala clusters. 
 
Pseudobulk processing
Following unsupervised clustering, nuclei were pseudo-bulked by cluster (n=60) and sample. We dropped all 
genes with zero counts across all nuclei and summed the raw gene expression counts for across all nuclei in a 
given sample in a given cluster using the aggregateAcrossCells() function from scran (140). We 
discarded pseudobulk samples that were composed of less than 10 nuclei (864 remaining pseudobulk 
samples). This resulted in the complete removal of one cluster (cluster 58) that had already been identified as 
Cajal Retzius cells by the expression of RELN. We then identified and removed lowly expressed genes using 
the filterByExpr() function from the edgeR package (149,150) (21,104 genes remaining). Counts were 
normalized by library size, converted to counts per million (CPM), and log2 transformed using the 
calcNormFactors() function from edgeR. QC metrics were computed for each pseudobulk sample, again 
using addPerCellQC() from scuttle (141).

Pseudobulk differential expression analysis
We performed differential expression (DE) analysis on the n=60 clusters using pseudobulk log2-transformed 
CPM values. As with SRT DE analysis, we used spatialLIBD functions (138). We accounted for age, sex, 
and sequencing round as covariates. After model matrix construction, we ran registration_block_cor() 
blocking by sample to account for sample-specific variation. We then fit an enrichment model as described in 
Maynard et al. (4), taking the block correlation into account. For each gene and cluster, this model computed 
fold change (FC), Student’s t-test statistics, and two-tailed p-values. P-values were corrected for the false 
discovery rate (FDR) (152) (Supplementary Table 6). 

Detailed snRNA-seq cluster annotation
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We used the significant markers (log2FC > 2 and FDR < 0.0001) from pseudobulk DE analysis to provide 
greater detail to the cluster labels and identified differentially expressed genes (DEGs) that distinguished nearly 
all 60 clusters as unique in some way (Extended Data Fig. 22, Figure 3D). With this approach we were able 
to annotate small populations of distinct non-neuronal cell types through the cluster-specific expression of 
LAMA2 (fibroblast population of vascular lepto-meningeal cells (VLMCs)) (161), DLC1 (pericytes/ smooth 
muscle cells (PC/SMC)) (162), MECOM (endothelial cells) (163), and GRP17 (committed oligodendrocyte 
precursors (COPs)) (37) (Extended Data Fig. 22A). DEGs across the six superficial retrohippocampal (RHP) 
pyramidal neuron clusters indicated the grouping of two clusters (L2/3.1 and L2/3.5) based on the expression 
of TESPA1 and TSHZ2 (Extended Data Fig. 22B, Figure 3D). Even across the amygdala neurons we 
identified genes distinguishing the clusters from one another, even though the number of donors contributing to 
this population was small as the amygdala was not systematically targeted for dissection (Extended Data Fig. 
22C). We were able to annotate two subiculum clusters based on CNTN6 expression (13) and all HPC 
pyramidal neurons exhibited a gradient of NUP93 expression that may serve to drive HPC identity (164) 
(Extended Data Fig. 22D). 

GABAergic neurons aggregated into cell types based on the expression of cell type-specific gene expression 
(Extended Data Fig. 22E) and gene expression that indicated broader GABAergic families (Extended Data 
Fig. 22F). Using these DEGs, we annotated GABAergic families corresponding to central ganglionic eminence 
(CGE) origin (consisting of VIP and HTR3A cell types) based on ADARB2 expression (154) and lack of 
NXPH1, a LAMP5+ family of ADARB2 expressing interneurons (165) (consisting of CXCL14, LAMP5.CGE and 
LAMP5.MGE cell types), a group of GABAergic neurons from the medial ganglionic eminence (MGE) 
(consisting of CRABP1, C1QL1, PV.FS, CORT, and SST cell types) based on LHX6 expression (154,165), and 
a population of PENK+ interneurons that originates prior to the major GABAergic/ glutamatergic split (165). We 
noted that the CXCL14 cluster exhibited high RELN expression but confirmed these were not mis-labeled Cajal 
Retzius neurons based on the lack of TP73 expression (Extended Data Fig. 22F) and likely represent a 
population of LAMP5+ interneurons that have been shown to continue to express RELN into adulthood (166).

Even the smallest clusters (like GC.5 n=96 nuclei, thalamus n=35 nuclei, COP n=57 nuclei, AHi.4 n=73 nuclei) 
exhibited clear expression of marker genes unique from similar clusters. Some clusters were difficult to 
distinguish even with DEG expression (e.g., Micro.1 vs Micro.2, CP.1 vs CP.2 vs CP.3, Extended Data Fig. 
22A). However, our ability to discern gene markers unique to each of the 60 clusters suggested that the high 
resolution with which we determined our cell clusters did not result in over-clustering. 

It is often useful to classify nuclei at a broader resolution, so we generated several different classification levels 
based on the n=60 superfine cluster annotations (Extended Data Fig. 28). The “fine” classification level is 
used for visualization throughout the manuscript, and the “broad”, “mid”, and “fine” classifications were used in 
cell type deconvolution. We verified that across these resolutions we did not see donor-specific enrichment that 
was unexpected (e.g., amygdala enrichment expected) (Extended Data Fig. 21). 

Validation of snRNA-seq analysis approach
Given the importance of cluster identity for downstream analysis, we performed two additional checks to 
increase confidence in the cell types identified in the snRNA-seq results. First, we correlated the gene-level 
enrichment model t-statistics for each of the 60 snRNA-seq clusters with the t-statistics from the enrichment 
model of the SRT domains (Extended Data Fig. 23). Second, we performed a re-analysis of the snRNA-seq 
data from the initial QC through to clustering. Our rationale with this re-analysis is that, if we identify similar cell 
clusters using an orthogonal framework with different computational tools, then the conclusions generated from 
our n=60 clusters are generalizable. Re-analysis was performed while blinded to whether individual nuclei were 
included or excluded in the original analysis.
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In our re-analysis, instead of identifying empty droplets with Bioconductor tools, we started with the filtered 
feature matrix from which empty droplets were already removed during cellranger processing. We removed 
the samples from sequencing round 3 that had increased debris during sorting and exhibited high 
mitochondrial fraction (starting nuclei = 118,415) (Extended Data Fig. 24A). Because the samples from 
sequencing round 3 had been re-collected, there were still N=10 donors represented. After evaluating a 
maximum initial mitochondrial fraction of 20%, we further filtered out all nuclei with >10% reads from the 
mitochondrial genome (remaining nuclei = 116,494) (Extended Data Fig. 24B-C). Minimum thresholds for 
library size and the number of detected genes were evaluated separately for PI+ and PI+NeuN+ samples due 
enrichment of neurons in the PI+/NeuN+ population, the increased number of reads in the larger neuronal 
nuclei, and the distinct distribution of these metrics across the two sorting methods (Extended Data Fig. 
24D,H). For the PI+NeuN+ data, one sample in sequencing round 2 (sample 17c-scp) exhibited a substantially 
shifted distribution and was therefore excluded when determining QC thresholds (Extended Data Fig. 24F,J). 
Our final thresholds for re-analysis were a maximum of 10% mitochondrial fraction for any sample, a minimum 
of 750 detected genes for PI samples (Extended Data Fig. 24E), a minimum of 1000 detected genes for 
PI+NeuN+ samples (Extended Data Fig. 24G), a minimum of 2000 reads for PI samples (Extended Data Fig. 
24I), and a minimum of 3500 reads for PI+NeuN+ samples (Extended Data Fig. 24K). The total number of 
nuclei after QC filters was 81,838, with 22.5% of the 36,577 discarded nuclei originating from sample 17c-scp 
with reduced quality round 2 (all remaining samples constituting 2.85% to 6.80% of excluded nuclei, consistent 
with Extended Data Fig. 5F). 

Feature selection for dimensionality reduction for re-analysis was conducted using the same binomial deviance 
approach as before, given the ability of this method to handle raw count data and account for batch effects. For 
dimensionality reduction we performed scVI (38) analysis in python to generate latent representations that 
replaced PCA followed by MNN batch correction. Our scVI model included the covariates of sequencing 
round, donor ID, mitochondrial fraction, age, and postmortem interval. Scanpy (167) was then used to 
construct a nearest neighbors map of k=15 neighbors based on the scVI latent representations, and then to 
generate cell clusters utilizing the Leiden algorithm at a resolution of 0.5 (Extended Data Fig. 25A). scVI 
latent representations were also used to calculate UMAP embeddings for visualization. Clusters were then 
refined based on the expression of MALAT1, which has been shown to indicate the quality of nuclei in 
snRNA-seq data, and based on mitochondrial fraction (168) (Extended Data Fig. 25B-F). After filtering out low 
quality clusters, new neighbors (k=10) and clusters were found, and new UMAP embeddings computed 
(Extended Data Fig. 25G-H). Two small clusters (less than 100 nuclei) were removed due to size, and one 
additional small cluster was removed because it comprised nuclei from mostly one sample (110 of 138 nuclei 
from one sample). 

Despite the very different approach to QC, re-analysis within a python framework produced a highly similar set 
of nuclei: 64,251 were nuclei present in both the new set (74,216 total) and our original set (75,411 total) 
(Extended Data Fig. 25I). To examine the similarity of the cell clusters generated, we performed the 
pseudobulk enrichment model on the re-analysis clusters. Specifically, we found that the clusters identified with 
scVI re-analysis correlated strongly with our original n=60 clusters when comparing the gene expression 
patterns captured by the nuclei groupings (Extended Data Fig. 25J). This shows that the same cell types were 
found in the re-analysis and that the nuclei that were present in only one of the two datasets were spread 
across all clusters, suggesting we were not “missing” any cell types in either analysis.
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4.7 | Stratified Linkage disequilibrium score regression (S-LDSC)
Prior to S-LDSC, we defined gene sets for each set of labels. For snRNA-seq superfine cell types and SRT 
spatial domains, we used t-statistics from our pseudobulk DE analysis enrichment model (each 
domain/superfine cell type vs all other domains/cell types). For each unique domain or superfine cell type, 
genes were ranked by enrichment model t-statistics. The top 10% of genes by t-statistic were selected as the 
gene set for each unique domain or superfine cell type. For NMF patterns, we first calculated z-scores for each 
gene across all patterns not mapping to batch effects or technical variables. We then ranked genes by z-score 
for each pattern. The top 10% of genes by z-score were selected as the gene set for each unique NMF pattern. 
To construct a genome annotation for each unique label (spatial domain, snRNA-seq superfine cell type, or 
NMF pattern), we added a 100Kb window upstream and downstream of the transcribed region of each gene in 
that label’s corresponding gene set. 

We performed stratified LD score regression (S-LDSC) to evaluate the enrichment of heritability of 
brain-related traits for gene sets defined for different domains. We also included two non-brain traits, human 
height and type 2 diabetes, as negative controls to examine whether our findings are specific to brain-related 
traits. We downloaded GWAS summary statistics of each trait (46–61). Following recommendations from the 
LDSC resource website (https://alkesgroup.broadinstitute.org/LDSCORE), S-LDSC was run for each gene set 
with the baseline LD model v2.2 that included 97 annotations to control for the LD between variants with other 
functional annotations in the genome. We used HapMap Project Phase 3 SNPs as regression SNPs, and 1000 
Genomes SNPs of European ancestry samples as reference SNPs, which were all downloaded from the LDSC 
resource website. To evaluate the unique contribution of gene sets to trait heritability, we utilized the metric 
from S-LDSC: the z-score of per-SNP heritability. This metric allows us to discern the unique contributions of 
candidate annotations while accounting for contributions from other functional annotations in the baseline 
model. The p-values are derived from the z-score assuming a normal distribution and FDR was computed from 
the p-values based on Benjamini & Hochberg procedure.

4.8 | Spot-level deconvolution algorithm benchmarking 
Spot deconvolution benchmarking
Given that individual Visium spots often contain multiple cell types (Extended Data Fig. 29), we performed 
spot deconvolution (Extended Data Fig. 29) to better understand the cellular composition of spots mapping to 
unsupervised spatial domains (Extended Data Fig. 29). While several algorithms have been developed to 
predict cell type proportions within individual Visium spots using single cell reference data, they have not yet 
been comprehensively benchmarked across various brain regions due to limited availability of complete 
reference datasets which contain 1) paired SRT and snRNA-seq data from the same donors, 2) known cell 
type abundances in each gene expression spot, 3) anatomical regions enriched for specific cell types. Given 
that the morphological organization of the hippocampus presents a unique computational challenge for these 
algorithms, we present the first gold standard spot deconvolution dataset for 4 broad cell types in postmortem 
human anterior HPC using the Visium Spatial Proteogenomics assay (Visium-SPG), which replaces H&E 
histology with immunofluorescence staining to label proteins of interest with fluorescent dyes (Extended Data 
Fig. 27) similar to previous work in the dlPFC (134). We selected 2 out of the 10 brain samples, one male and 
one female, based on exceptional morphology and inclusion of all spatial domains. We performed 
immunofluorescent staining for established cell type-specific proteins, including NEUN (marking neurons), 
OLIG2 (marking oligodendrocytes), GFAP (marking astrocytes), and TMEM119 (marking microglia) 
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(Extended Data Fig. 27). Following multispectral fluorescence imaging, we proceeded with the standard 
Visium protocol to generate corresponding gene expression libraries from the same tissue section. This 
provided an orthogonal measure of broad cellular identity for each spot. 

Visium-SPG data generation
To enable labeling with four cell-type marker proteins (NeuN for neurons, TMEM119 for microglia, GFAP for 
astrocytes, and OLIG2 for oligodendrocytes) (Extended Data Fig. 27A), we performed combinatorial 
immunofluorescence staining paired with spatial gene expression using the Visium-SPG protocol (protocol 
CG000312, revision D, 10x Genomics) with some modifications. Briefly, gene expression slides were fixed in 
methanol, incubated in blocking buffer (3X SSC supplemented with 2% BSA, 0.1% Triton X100 and 2U/ul 
RNAse inhibitor (RiboLock, Thermofisher, Cat# EO0384)), then incubated with primary antibodies for 30 
minutes at room temperature: mouse anti-NeuN antibody conjugated to Alexa 488 (Sigma Aldrich, Cat# 
MAB377X, 1:100), rabbit anti-TMEM119 antibody (Sigma Aldrich, Cat# HPA051870, 1:20), rat anti-GFAP 
antibody (Thermofisher, Cat# 13-0300, 1:100), and goat anti-OLIG2 antibody (R&D systems, Cat# AF2418, 
1:20). Slides were washed with wash buffer (3X SSC with 2% BSA, 0.1% Triton X100, 2U/ul RNAse inhibitor 
and supplemented with ribonucleoside vanadyl complex (Concentration, NEB S1402S), then incubated for 30 
minutes with secondary antibodies at RT: donkey anti-rabbit IgG conjugated to Alexa 555 (Thermofisher, Cat# 
A-31572, 1:300), donkey anti-rat IgG conjugated to Alexa 594 (Thermofisher, Cat# A-21209, 1:600), and 
donkey anti-goat IgG conjugated to Alexa 647 (Thermofisher, Cat# A-21447, 1:400). DAPI (Thermofisher, Cat# 
D1306, 1:3000, Final 1.67 μg/ml) was included as a nuclear counterstain. The slide was coverslipped with 
glycerol containing RNase Inhibitor (2 U/μl) and scanned on a Vectra Polaris slide scanner (Akoya 
Biosciences) at 20x magnification with the following exposure time per given channel: 2.70 msec for DAPI; 185 
msec for Opal 520; 900 msec for Opal 570; 160 msec for Opal 620; 1300 msec for Opal 690; 100 msec for 
autofluorescence. Following imaging, samples were processed as above for library generation and sequencing 
(Methods 4.3). 

Visium-SPG quality control and count normalization
FASTQ and image data were pre-processed with the 10x SpaceRanger pipeline and aligned to reference 
genome GRCh38 2020-A (version 2.0.0) (135). Visium-SPG spot-level data was subject to the same quality 
control metrics and count normalization steps performed above (Methods 4.4, Extended Data Fig. 27B-D). 
Following QC, we retained 37,845 spots in n=8 capture areas for the Visium-SPG data (Extended Data Fig. 
27E).

Spatial domain projection into Visium-SPG samples 
We used the RcppML (67) R package to approximate spatial domain membership for Visium-SPG samples, 
which were not included in the PRECAST clustering analysis. We used the aggregateAcrossCells() 
function from scran (140) to pseudobulk the logcounts matrix from Visium-H&E samples only, summing all 
logcounts for all genes across all spots in each domain. We pseudobulked the logcounts by domain such that 
our pseudobulked SPE object had 16 columns, one for each domain. We filtered lowly expressed genes using 
the filterByExpr() function from the edgeR package (149,150). We rescaled columns of the 
pseudobulked matrix such that each column summed to 1, akin to the scaling diagonal used in NMF 
calculations in RcppML (67). We then used the project() function from RcppML to estimate PRECAST 
spatial domain membership of each spot in the Visium-SPG samples. This function projects a linear factor 
model by solving this equation for H when given A and W: 

A(i,j) =W(i,k)H(k,j)
where A is a matrix with dimensions i x j and W and H are orthogonal, lower-rank matrices with dimensions i x 
k and k x j, respectively. In the context of RcppML, this function is generally used to project an NMF model of 
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rank k trained in one dataset into a new dataset. We detail this process further in Methods 4.8. Here, we 
instead used this function to predict PRECAST domain membership of each spot in the Visium-SPG samples (H 
matrix), given the Visium-SPG logcounts matrix (A matrix) and the pseudobulked domain-level matrix 
described above (W matrix). In this context, the A matrix was the Visium-SPG logcounts matrix, the W matrix 
was the pseudobulked logcounts matrix described above, and the H matrix was a matrix of spatial domain 
membership predictions for Visium-SPG spots. These predicted domain membership values were continuous. 
Therefore, for each spot, we assigned domain membership based on the highest predicted domain value 
(Extended Data Fig. 27F). 

Image-based cell type classification 
We leveraged the immunofluorescence (IF) images in the Visium-SPG assay to directly quantify cell type 
abundance and provide an imaging-based calculation of cell counts for comparison with outputs from spot 
deconvolution tools. Starting from the cyto model provided by Cellpose 2.0 (169), nuclear segmentations of 
Br3942 and Br8325 were iteratively improved in the Cellpose GUI, and a new model was trained until DAPI 
segmentations visually satisfied our accuracy standards (Extended Data Fig. 30A). The final refined model 
was used to segment all 8 capture areas to produce masks. Segmentation masks were read into python 
3.8.12, and mean fluorescence intensity for the NeuN, OLIG2, GFAP and TMEM119-marked channels was 
quantified using skimage.measure.regionprops_table() from the scikit-image (170) v0.19.2 
library. For 2 capture areas (V12D07-332_D1 and V12D07-335_D1) which represented all HPC regions, an 
expert experimenter (co-author SCP) used Samui Browser (112) to randomly select and annotate a spatially 
diverse set of 200 cells of each immunolabeled cell type – e.g. neuron, oligodendrocyte, astrocyte, microglia, 
or other (i.e. presence of DAPI, but absence of other immunofluorescent signals). The resulting dataset 
included ~1000 cells with a cell type label, and the corresponding mean fluorescence intensities from the 
respective channels (Extended Data Fig. 30A). We then calculated the actual number of neurons, astrocytes, 
microglia, and oligodendrocytes per spot by segmenting individual nuclei and implementing a classification and 
regression tree (CART) approach in scikit-learn (171) to categorize all nuclei into either one of the 4 
immunolabeled cell types or “other” (Extended Data Fig. 29, Extended Data Fig. 30B). 

Input marker gene detection
We considered both the “fine” and “mid” cell type classifications from the snRNA-seq data (Figure 3B-C, 
Extended Data Fig. 28). The get_mean_ratio2() function from DeconvoBuddies (version 0.99.0) (172) 
was applied to rank each gene in the snRNA-seq data in terms of its suitability as a marker for each possible 
target cell type at both resolutions (Extended Data Fig. 29). This method, termed “mean ratio”, determines the 
ratio of expression between a target cell type and the next-highest-expressing cell type (Extended Data Fig. 
31) (172). Mitochondrial genes and genes not present in the spatial data were excluded from the ranking 
process. Three snRNA-seq clusters from the fine grouping (HATA, Amy, and GABA.PENK) were also excluded 
as these were not represented in any Visium-SPG samples and could occlude marker gene identification for 
other clusters. We retained the thalamus cluster because one of the Visium-SPG samples included a very 
small amount of thalamus (Extended Data Fig. 1B, Extended Data Fig. 10) which was transcriptionally 
distinguishable from hippocampal cells. The top-25-ranked markers by mean ratio were taken for each cell 
type, and, to ensure greater expression in the target cell type than all others, we verified that the mean ratio 
exceeded 1 for each gene (Extended Data Fig. 31, Extended Data Fig. 32, Extended Data Fig. 33). This 
resulted in a total of 200 mid-resolution markers and 525 fine-resolution markers used downstream for spot 
deconvolution (Supplementary Table 7). 

To confirm the utility of the snRNA-seq-derived marker genes for spot deconvolution, we evaluated their 
proportion of nonzero expression in Visium-SPG data (Extended Data Fig. 32) and confirmed that 25 genes 
per cell type were sufficient to identify the expected cell type distribution patterns (Extended Data Fig. 33). We 
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confirmed that detected marker genes were specific to each cell type by comparing expression of the top 
genes for each cell type to canonical gene markers in the expected spatial domains (Extended Data Fig. 32, 
Extended Data Fig. 33, Supplementary Table 7). RCTD (64) dropped a high number of spots using the Mean 
Ratio marker genes compared to cell2location (63) and Tangram (65) , thus, the default RCTD marker 
gene detection strategy was employed to run RCTD (Extended Data Fig. 34).

Applying spot deconvolution softwares to Visium-SPG data
Having verified the selection of robust marker genes for each cell type at both fine and mid resolutions, we ran 
cell2location (63), RCTD (64) and Tangram (65) and calculated the predicted cell type counts and 
proportions per spot (Extended Data Fig. 29). Cell2location v0.8a0, RCTD v2.2.0 and Tangram v1.0.2 
were applied with default parameters following the respective tutorials provided by their authors, with a few 
exceptions. The marker genes derived from the Deconvobuddies package were used as training genes. This 
strategy was effective for cell2location and Tangram. However, in RCTD it failed to predict cell types in 
spots with fewer UMIs (~<100) after filtering the genes to include only the user derived marker genes 
(Extended Data Fig. 34). We observed that RCTD dropped a high number of spots when user-defined marker 
genes were used (Extended Data Fig. 34A), but performance improved when RCTD’s default marker gene 
detection strategy was employed (Extended Data Fig. 34B). Tangram requires an accurate cell count per 
spot, and thus was provided total cell counts per spot derived through nuclei segmentation with Cellpose 
v2.0 (Visium-SPG images) and through VistoSeg (Visium-H&E images). Cell2location and RCTD require 
an average count of nuclei per spot, which was calculated as 5 across all 8 Visium-SPG capture areas. While 
Tangram and Cell2location predict cell type abundances in each spot, RCTD predicts the cell type 
proportion per spot. Therefore, to more directly compare across algorithms, we multiplied the cell type 
proportions obtained from RCTD by the nuclei counts to obtain abundances for each spot. 

Evaluating performance of spot deconvolution methods
The immunofluorescence values provided an transcriptomic-independent metric to classify cell type identity 
within each spot (Extended Data Fig. 29). The cell type counts estimated by each algorithm in the 
Visium-SPG data at fine and mid resolutions were “collapsed” down to the broad categories (neuron, 
astrocytes, microglia, oligodendrocytes, and other (comprised of OPCs, vasculature, and CSF-related cells)) to 
enable direct comparison with the CART-calculated counts (Extended Data Fig. 29). We then visually 
compared the predicted cell type (of mid cell types collapsed down to broad cell types) proportion per spot from 
the 3 softwares to the CART-estimated proportions of immunolabeled cells (Extended Data Fig. 35). The 
collapsed counts from mid and fine resolutions were compared against each other which should theoretically 
match (Extended Data Fig. 358A). To quantify the comparisons, the “other” cell type was excluded from the 
benchmarking analyses and counts for each software tool and CART-quantified cell type were summed across 
each Visium-SPG section. Totals for each software method (gene expression) were compared against the 
CART-predicted (immunofluorescence) cell count totals using Pearson correlation and root mean squared error 
(RMSE) at mid (Extended Data Fig. 36) and fine (Extended Data Fig. 36) levels (Supplementary Table 8). 
Counts for each software tool and CART predictions were normalized to add to 1 across the four cell types 
which allowed the calculation of the Kulback-Lieber divergence (KL divergence) from each software tool’s 
predictions to the CART predictions. This treats the CART-predicted cell type composition as a ground-truth 
probability distribution that each software tool is attempting to estimate (Extended Data Fig. 36). 

Given the challenge of deconvolving transcriptionally fine cell types, our Visium-SPG benchmark analyses 
confirmed RCTD showed the most consistent performance at both mid and fine resolution across all cell types 
and samples (Extended Data Fig. 36) closely aligning with biological expectations and revealing spatial 
variations in cell types (Extended Data Fig. 37). Tangram predicted a similar cellular composition in each 
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domain and predicted the presence of all cell types in all spots. cell2location showed a similar pattern but 
with less pronounced consistency (Extended Data Fig. 29). In summary, these analyses confirmed RCTD is 
most suitable for spot deconvolution of Visium HPC data because it accounts for the cellular heterogeneity 
seen across the HPC. 

Applying spot deconvolution software to Visium-H&E data
Having evaluated the performance on the Visium-SPG data, we ran RCTD, the best performing method, on the 
whole SRT data for which orthogonal measures of spot-level cellular composition were not available 
(Extended Data Fig. 29, Figure 4, Extended Data Fig. 37). The RCTD deconvolutions results for Visium-SPG 
and the SRT data are available on the Samui web application for visualization (see Results 2.7).

4.9 | Non-negative matrix factorization (NMF)
NMF factorization 
We used non-negative matrix factorization (NMF) to identify continuous patterns of gene expression within our 
snRNA-seq data (Extended Data Fig. 38). We refer to the snRNA-seq data as our “source” data. NMF is a 
dimensionality reduction technique for pattern recognition (173) used across various disciplines, including 
transcriptomics (66,69). NMF decomposes a matrix A into two lower-rank matrices W and H corresponding to 
gene-level and nucleus-level weights matrices, respectively:

A(i,j) ≈ W(i,k)H(k,j)
where k is the rank of the factorization and both w and h are constrained to have only non-zero elements. The 
decomposition is performed iteratively until the difference between A and the product of w and h. Iterations 
continue until the change in mean squared error (MSE) between successive iterations falls below a specified 
level (tolerance of fit). We used the RcppML package for NMF (67), which also features a scaling diagonal D 
such that:

A ≈ WDH
where D diagonalizes columns in W and rows in H to sum to 1. In our case, k=100 patterns and A was the 
normalized snRNA-seq counts matrix with dimensions 36,601 genes x 75,411 nuclei. Therefore, W had 
dimensions 36,601 genes x 100 patterns and H had dimensions 100 patterns x 75,411 nuclei. 

We used the singlet and RcppML packages for NMF analysis. These packages leverage the RcppML 
implementation of NMF for use with snRNA-seq/scRNA-seq data. RcppML is much faster and more memory 
efficient than other NMF methods (67). Additionally, its diagonal scaling approach allows for L1/L2 
regularization and reproducible NMF loadings. 

We used the cross_validate_nmf() function from singlet to perform cross-validation of different NMF 
ranks (174). For a given number of replicate runs, this function randomly splits the data into training and test 
sets of a user-specified size. For each replicate, NMF is performed for a given number of ranks in the training 
set until the tolerance threshold is met. Model overfitting is also measured by a tolerance of overfit metric. After 
5 iterations, the factorization’s performance is evaluated in the test set and test set MSE is calculated. At each 
successive iteration thereafter, the test set MSE is calculated compared to the test set MSE at 5 iterations. If 
the test set MSE for a given iteration is greater than test set MSE at iteration 5 by a specified value, the model 
is considered to be overfit. We cross-validated using 3 replicates with parameters tolerance of fit=10-3 
(singlet-recommended threshold for cross-validation), tolerance of overfit=10-4, and L1=0.1 across ranks 
k=5, 10, 50, 100, 125, 150, and 200. Test set MSE at tolerance of fit decreased dramatically until k=100, and 
did not clearly decrease at k=125, k=150, or k=200 (Extended Data Fig. 39). Additionally, model overfitting 
was observed at k=150 and k=200 for all 3 replicates. Because models with k=100 and k=125 performed 
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similarly and did not overfit the test data, we k=100 for the sake of interpretability, reasoning that 100 patterns 
would be more easily annotated than 125. We performed the final factorization using k=100 and tolerance of 
fit=10-6 (singlet-recommended threshold for high-quality factorization results >= 10-5). The final feature 
matrix W is presented in Supplementary Table 9.

NMF label transfer approach
We took a transfer learning approach to predict pattern weights for the NMF patterns identified in human 
snRNA-seq data across other target datasets (Extended Data Fig. 38). For every observation in the target 
dataset, we generated an observation-level weight for each k=100 NMF patterns learned from the snRNA-seq 
data that we used to investigate transcriptional variation in different data modalities and experimental designs. 
We used the project() function from the RcppML (67) package for this purpose, which makes use of a fast 
implementation of non-negative least squares (175). Using the snRNA-seq data as the source, we 
mathematically project the W matrix with k=100 NMF patterns into a second, target dataset based on the target 
matrix (A’) with dimensions i’ genes and j’ observations to generate the target coefficient matrix of H’: 

WT
(k,i’)A’

(i’,j’) ≈ H’
(k,j’)

Note that i’ is the number of genes present in both source snRNA-seq (A) and target (A’) gene expression 
matrices. To assess the validity of NMF pattern transfer, we examined the frequency of non-zero weighted 
observations for each NMF pattern in the target coefficient matrix (H’) and used the empirical cumulative 
distribution function to determine a minimum threshold for NMF patterns. 

NMF transfer to SRT 
Since the goal of NMF in this manuscript is to integrate SRT and snRNA-seq data, after NMF transfer to SRT 
we excluded patterns with non-zero weights in <1050 spots (Extended Data Fig. 40C). We looked for NMF 
patterns that might represent donor sex by searching the top 50 genes weighted to each pattern for XIST and 
for genes located on the Y chromosome. We only found one pattern with XIST in the top 50 genes (nmf37) and 
one pattern with more than one chrY gene in the top 50 (nmf27) (Extended Data Fig. 41). These patterns 
were removed from downstream analysis.

We utilized average nuclei weights across the n=60 cell types and found that NMF patterns could be classified 
as either “general”, equally distributed across many cell types, or “specific” to a particular cluster or cell type 
(Extended Data Fig. 40A). We found that patterns excluded from downstream analysis due to low mapping to 
SRT spots were both general and specific. The specific patterns removed from analysis corresponded to small 
snRNA-seq clusters and after removal of patterns with <1050 spots the only cell type groupings without a 
corresponding specific pattern were the thalamus and Cajal Retzius neurons, which were similarly enriched for 
nmf23. We observed that that after transfer to SRT general patterns stayed general and that specific patterns 
corresponded with appropriate cell types (Extended Data Fig. 40D), with one exception. We found that nmf84 
was labeled as “general” based on nuclei-level weights across the snRNA-seq clusters, but, when projected to 
the SRT dataset was highly weighted in spots annotated to the choroid plexus spatial domain (Extended Data 
Fig. 42A). We determined that nmf94 encapsulated a TTR-dominant transcriptional program that recapitulated 
the donor-bias of CP nuclei and was distinct from the TTR-dominant CP-specific transcriptional program 
captured by nmf48 (Extended Data Fig. 42B-E). When nmf94 was projected onto the SRT dataset, the 
nuanced donor-specific effect was not conserved due to the strong importance of TTR expression in 
determining observation-level weights, and nmf94-weighted spots were nearly identical to nmf48-weighted 
spots (Extended Data Fig. 42F-K). This highlights the importance of close examination of NMF patterns to 
determine the biological or technical significance of the gene expression patterns they represent and whether 
they can be interpreted the same way in a dataset they are projected into. 

To ascertain if additional NMF patterns captured donor-specific effects that could confound biological 
interpretation in downstream analysis, we examined the donor-level representation in non-zero weighted 
observations across all general and specific NMF patterns (Extended Data Fig. 43). We identified two patterns 
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(nmf91 and nmf20) that were equally represented across snRNA-seq samples but exhibited substantial 
enrichment for two donors when projected to the SRT dataset (Extended Data Fig. 47A and C). These 
patterns were characterized by stimulus- and activity-dependent genes (Extended Data Fig. 47B and D). The 
increased abundance of these genes and the increased weight of nmf91 and nmf20 in nuclei across donors is 
likely due to the increased sensitivity of snRNA-seq to detect these sparsely expressed transcripts 
(Extended Data Fig. 47E-F). Thus, the apparent donor bias seemingly introduced when nmf91 and nmf20 are 
projected onto the SRT dataset (Extended Data Fig. 47G-H) is likely biologically meaningful and highlights 
specific donors in whom stimulus-dependent transcripts were enriched.

Gene set enrichment analysis 
To validate the biological relevance of genes highly weighted to individual NMF patterns, we performed gene 
set enrichment analysis (GSEA) on patterns explored in Figure 4. GSEA was implemented with fgsea (176) 
utilizing reactome.db pathways (177), limited to pathways annotated to Homo sapiens. We used the 
fgseaMultilevel function to perform our analysis, specifying a minimum gene set size of 15 and maximum 
of 500. Due to the non-negative nature of pattern weights, enrichment scores were calculated for one-tailed 
tests by setting the score type parameter to “pos”. Non-zero gene-level weights were used for the gene 
score, resulting in 4661 genes for oligodendrocyte-specific nmf44, 9030 genes for astrocyte-specific nmf81, 
7616 genes for trans-neuronal nmf13, and 7675 genes for trans-neuronal nmf7. Results were evaluated as 
significant at a FDR<.05. The FDR-adjusted p-value and normalized enrichment score (NES) for these tests 
are reported in Figure 4G-J.

NMF transfer to mouse electroconvulsive stimulation snRNA-seq dataset
For pattern transfer to the mouse electroconvulsive stimulation (ECS) snRNA-seq data (93), we downloaded 
the processed data object from the GitHub repository for the original mouse study and utilized the full dataset 
(n= 15,990 nuclei) 
(https://github.com/Erik-D-Nelson/ARG_HPC_snRNAseq/blob/main/processed_data/sce_subset.rda.xz). 
Information on how these data were processed prior to download can be found in the same GitHub repository 
(https://github.com/Erik-D-Nelson/ARG_HPC_snRNAseq/tree/main/code). To assist in interpretability with our 
human datasets, we identified human orthologs for mouse genes in the ECS dataset and removed all genes 
without orthologs. We matched these orthologs with genes in the W matrix and discarded any genes not 
included in both datasets. Following removal of genes without orthologs and genes not included in both 
datasets, we retained 17,557 genes. We used normalized, log2 transformed counts from the mouse ECS 
snRNA-seq dataset as the A’  matrix. Following label transfer, patterns were normalized to sum to 1 in each 
target dataset. We removed patterns with non-zero weights in <1000 nuclei in the mouse ECS snRNA-seq 
dataset (Extended Data Fig. 48A-B). To ease interpretation within the context of our human findings, we 
further subset to only NMF patterns that also mapped to >1050 SRT spots (Extended Data Fig. 48C). We 
found that the appropriate patterns corresponded to the relevant cell types (Extended Data Fig. 48B-C).

To investigate if the genes contributing to the differential weights of select NMF patterns between ECS GCs 
and sham GCs were associated with neuronal activation, we performed DE analysis using scran to find 
markers with a binomial test. The ECS snRNA-seq data was subset to GCs and limited to the genes with 
non-zero weights for the NMF pattern being tested (tests run for nmf91, nmf20, nmf10, and nmf14). Highly 
significant (-log10(FDR)>30 and absolute value of the log2 fold change >1) differences in gene expression were 
examined for genes that were highly weighted to the NMF pattern being tested. 

We observed that nmf55 nuclei weights were higher in ECS GCs compared to sham GCs (Extended Data Fig. 
48C carrot). However, 8 of the top 10 genes weighted to nmf55 encode ribosomal subunits (RPS24, RPL26, 
RPS27A, RPL32, RPS12, RPLP1, RPL34, RPS8), and the remaining two genes are strongly associated with 
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translation (TPT1 and EEF1A1). We performed DE analysis on non-zero weighted nmf55 genes and found that 
although these genes were significantly increased in ECS GCs, the magnitude of log2FC and adjusted p-values 
were much attenuated compared to nmf91 and nmf20 that captured activity-dependent transcriptional 
programs (Extended Data Fig. 48D, Figure 5F,G). De novo protein production in response to neuronal activity 
is critical for subsequent changes in synaptic and circuit connectivity (178) and production of translational 
machinery like ribosomes likely facilitates such changes (179). Thus, although ribosome transcript-dominant 
nmf55 is associated with activated mouse GCs, it is unlikely that nuclei or spots highly weighted for nmf55 in 
our human snRNA-seq or SRT datasets were likely to have been recently activated. This is supported by the 
ubiquitous weighting of nmf55 across SRT spatial domains (Extended Data Fig. 48E). This example highlights 
the need for biological context in the interpretation of NMF patterns. 

NMF transfer to mouse single-nucleus methylation sequencing (snmC-seq) dataset
We leveraged a mouse model linking single-nucleus methylation sequencing (snmC-seq) in neurons with their 
axon projection targets through retroviral tracing (106) to see if any NMF patterns generated from our human 
snRNA-seq data corresponded to HPC neurons with specific axonal projection targets. We downloaded the 
data from GEO (accession code GSE230782). As only the raw data was available, we reproduced the original 
authors’ pipeline by adapting code found in the GitHub repository for the snmC-seq study 
(https://github.com/zhoujt1994/EpiRetroSeq2023/blob/main/02.integration_mc_rna/03.process_RS2.ipynb). 
This required extracting CH gene body methylation counts to approximate gene expression, based on the 
premise that non-CpG cytosine methylation exhibits a strong inverse relationship with gene expression in 
neurons (180). Following the original authors’ specifications, data was QC processed and cell type clusters 
were generated by integrating with mouse single-cell RNA-seq data. We then subset the snmC-seq dataset to 
excitatory HPC and RHP neurons only (n= 2,004 nuclei). Then, following the initial study design, CH gene body 
methylation counts were extracted, log-scaled, and negated. This matrix was used for the A’ matrix for pattern 
transfer. We identified human orthologs for mouse genes in this dataset and removed all genes without 
orthologs. We matched these orthologs with genes in the W matrix and discarded any genes not included in 
both datasets. Following removal of genes without orthologs and genes not included in both datasets, we 
retained 14,452 genes. Following label transfer, patterns were normalized to sum to 1 in each target dataset. 
We isolated the NMF patterns that we previously identified as corresponding to the tissue source of the 
snmC-seq dataset (CA patterns: nmf11, nmf63, nmf61, nmf15; prosubiculum/ subiculum patterns: nmf32, 
nmf40, nmf54; RHP patterns: nmf65, nmf22, nmf53, nmf68, nmf51, nmf45, nmf84, nmf27, nmf17) 
(Extended Data Fig. 40A). We then removed those patterns with non-zero weights in <45 snmC-seq nuclei 
(Extended Data Fig. 49A). We found that the remaining patterns correctly corresponded to nuclei collected 
from relevant brain regions (Extended Data Fig. 49B).

Thresholding of NMF patterns for SRT visualization
Binarization thresholds for individual NMF patterns were determined by taking one fifth of the 95% max 
spot-level weight. After determining the laminar organization Sub.1-specific nmf40 and Sub.2-specific nmf54 
(Figure 6A), these patterns were thresholded (Extended Data Fig. 49C, D) and the union of the spots labeled 
were classified as Subiculum for visualization in Figure 6C, E along with the broad domains of Neuron, 
Neuropil, WM, and Vasc/CSF. The same approach was applied to additional NMF patterns to generate the 
following additional labels: CA1 (nmf15), CA3 (union of nmf11 and nmf63), ENT_sup (union of nmf84, nmf45, 
nmf27), and ENT_L5 (nmf51). To compile these 5 thresholds, only spots that passed a single one of the 
thresholds were kept for the combined annotation (Extended Data Fig. 50). This NMF-driven, combined, 
thresholded annotation was used for visualization and classification of the presubiculum in Extended Data Fig. 
51. 

Use of NMF to refine snRNA-seq cluster annotations and generate novel subicular complex marker genes
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In SRT data, nmf65 was present in the deep RHP but was enriched in the deep subiculum (Figure 6E). In 
snRNA-seq data we identified two clusters (L6b and L6.1) that were labeled by nmf65; the entirety of the L6.1 
cluster was highly weighted to nmf65, while only a portion of the L6b cluster was highly weighted to this pattern 
(Figure 6F). To ascertain if the two clusters corresponded to the separate populations of RHP and 
subiculum-adjacent spots labeled by nmf65, we split L6b into two portions by thresholding nmf65 weights 
(L6b_nmf65 with nmf65 weights >.00035). This grouping was used to determine that L6.1 expressed 
subiculum genes and this cluster was re-labeled to Sub.3 (Extended Data Fig. 49E, F). 

Following NMF-driven assessment of the spatial localization of the clusters corresponding to subicular and 
retrohippocampal pyramidal neurons, the following snRNA-seq clusters were re-labeled: L6.1 to Sub.3, L2/3.1 
to PreS, L2/3.4 to ENT.sup1, L2/3.6 to ENT.sup2a, L2/3.3 to ENT.sup2b, L2/3.2 to ENT.sup3, L5.1 to ENT.L5, 
L5.2 to RHP.CBLN2+ (based on Extended Data Fig. 22B), L6.2 to RHP.L6, and L6b to RHP.L6b. 

Following the identification of the superficial subiculum (Sub.1), middle subiculum (Sub.2), deep subiculum 
(Sub.3), and presubiuculum (PreS), we performed DE analysis (scran-implented binomial test) in our 
snRNA-seq dataset focused on identifying genes that could specifically identify these regions (Figure 6I, 
Extended Data Fig. 52). To test for genes that distinguished the Sub.1 and Sub.2 clusters, we subset to 
regions with similar gene expression and that are spatially adjacent (CA1, ProS, Sub.3, PreS), testing for 
enrichment across 6 groups in total and only for genes with counts in >100 nuclei (22572 genes x 8783 nuclei). 
New Sub.1 markers were considered significant at -log10(FDR)>30 and have a log2FC of >1 vs each of the 
CA1, ProS, Sub.2, Sub.3, and PreS (146 genes). After filtering to genes with an average logcount expression 
of >1 in the Sub.1 nuclei, we identified 10 superficial subiculum marker genes: AC007368.1, AL138694.1, 
ATP6V1C2, COL21A1, EBF4, FN1, NDST4, PARD3B, PRKCH, RAPGEF3 (Extended Data Fig. 52A). New 
Sub.2 markers were required to be significant at -log10(FDR)>30 and have a log2FC of >1 vs each of the CA1, 
ProS, Sub.1, Sub.3, and PreS (184 genes). After filtering to genes with an average logcount expression of >1 
in the Sub.2 nuclei, we identified 7 middle subiculum marker genes: GDNF-AS1, LHFPL3, MAMDC2, 
PCED1B, RORB, SULF1, and TRPC3 (Extended Data Fig. 52B). New ProS markers were required to be 
significant at -log10(FDR)>30 and have a log2FC of >1 vs each of the CA1, Sub.1, Sub.2, Sub.3, and PreS (17 
genes). After filtering to genes with an average logcount expression of >1 in the ProS nuclei, we identified no 
unique prosubiculum marker genes.

To test for genes that distinguished the Sub.3 cluster from other subiculum layers and other deep RHP 
clusters, we subset to regions with similar gene expression and that are spatially adjacent (Sub.1, Sub.2, 
RHP.L6b, RHP.L6), testing for enrichment across 5 groups in total and only for genes with counts in >100 
nuclei (21037 genes x 5647 nuclei). New Sub.3 markers were required to be significant at -log10(FDR)>30 and 
have a log2FC of >1 vs each of the Sub.1, Sub.2, RHP.L6b, and RHP.L6 (68 genes). After filtering to genes 
with an average logcount expression of >1 in the Sub.3 nuclei, we identified 21 deep subiculum marker genes: 
AC007100.1, AC010967.1, AC023503.1, AC046195.2, AL356295.1, CD36, COL4A1, COL4A2, DISC1, FSTL5, 
GUCA1C, LINC01194, LINC01239, LINC01821, NR2F2-AS1, PLEKHG1, RASGEF1B, SCN7A, SCUBE1, 
SNCAIP, and VEGFC (Extended Data Fig. 52C). 

To test for genes that distinguished the PreS cluster from other subiculum layers and other superficial RHP 
clusters, we subset to regions with similar gene expression and that are spatially adjacent (Sub.1, Sub.2, ProS, 
ENT.sup1, ENT.sup2a, ENT.sup2b, ENT.sup3), testing for enrichment across 8 groups in total and only for 
genes with counts in >100 nuclei (22708 genes x 9835 nuclei). New PreS markers were required to be 
significant at -log10(FDR)>30 and have a log2FC of >1 vs each of the Sub.1, Sub.2, ProS, ENT.sup1, 
ENT.sup2a, ENT.sup2b, and ENT.sup3 (38 genes). After filtering to genes an average logcount expression of 
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>1 in the PreS nuclei, we identified 5 presubiculum marker genes: AC008662.1, AL161629.1, FSTL5, MDFIC, 
and WSCD1 (Extended Data Fig. 52D). 

4.10 | Data Visualization
Multi-array integration for Visium-SPG sample visualization
To enhance interactive visualization incorporating IF images alongside transcriptomic and spatial domain 
clustering, we utilized a robust, web-based data visualization tool tailored for spatially-resolved transcriptomics 
data, Samui Browser (112). We integrated all capture areas from each donor to enable visualization of the 
intact hippocampal structure by performing the following steps, based on a previously described strategy (181). 
First, we imported the high-resolution single-channel (DAPI) images from the SpaceRanger (version 2.0.0) 
outputs in ImageJ (182) to derive approximate transformations for all capture areas per donor. Due to image 
size constraints in ImageJ, high-resolution images featuring visible tissue landmarks were employed instead 
of full-resolution images or low resolution counterparts which lacked sufficient landmarks for accurate 
alignment. The "Tracing and Evaluation of Neural Anatomy using MipMaps" (TrakEM2) plugin (182–184) 
facilitated capture area alignment to reconstruct the hippocampal structure. Final transformations were 
exported in XML format. These transformations were extracted from the XML file of all capture areas per 
donor, then scaled to full resolution by applying scaling factors from the spaceranger JSON file using custom 
Python (v3.10.12) code,  in particular PIL v10.0.0 and numpy v1.24.4. Then, the scaled transformations were 
applied to the full-resolution capture areas for each channel, and the transformed capture areas were placed 
onto a blank image encompassing the entire hippocampal structure from all capture areas from each donor. 
This composite image served as the basis for visualization in the Samui Browser. We then applied the same 
transformations to the Visium spot coordinates, where spot coordinates from all capture areas for each donor 
were concatenated into a single file. Overlapping spots from capture areas with wrinkled or curled tissue 
sections were disregarded. A SpatialExperiment object per donor was converted into an AnnData object 
in R, ensuring compatibility with the Samui Browser. Specifically, the R function 
zellkonverter::SCE2AnnData() (185) is used to convert the existing SpatialExperiment into an 
AnnData object, which allows gene expression and phenotype data to be accessible within python and 
therefore usable with the Samui API. We then used the combined image, spot coordinates and AnnData 
object to create the final Samui directory for each donor. 

Multi-array integration for Visium-H&E sample visualization
A similar approach was also used for the Visium-H&E samples. The Samui Browser (112) was used as the 
final visualization tool. Using the Fiji distribution of ImageJ, images of the individual Visium slide capture 
areas were loaded into ImageJ and manually aligned. The transformations were saved as XML files. The 
Spaceranger JSON files were used to scale transformations to full resolution. The 
zellkonverter::SCE2AnnData() function was used to convert the existing SpatialExperiment into 
an AnnData object for use by Samui Browser. As in the Visium-SPG example, above, we used the 
combined image, spot coordinates and AnnData object to create the final product that is ready to be imported 
into Samui. All SRT data is available in a joint Samui browser. 

iSEE apps
To enable exploration of the data, we created iSEE websites for pseudobulked snRNA-seq and spatial data as 
previously described (111,134). All interactive websites are available at research.libd.org/spatial_hpc/. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.04.26.590643doi: bioRxiv preprint 

https://sciwheel.com/work/citation?ids=15289801&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15746864&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=24178&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=24178,16113785,257321&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=12907669&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=15289801&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5485569,14402183&pre=&pre=&suf=&suf=&sa=0,0
https://research.libd.org/spatial_hpc/
https://doi.org/10.1101/2024.04.26.590643
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.12 | Data and Code Availability
Raw and processed data are available through Gene Expression Omnibus (GEO) under accession 
GSE264624 (113) and via ExperimentHub (https://bioconductor.org/packages/humanHippocampus2024). The 
code for this project is publicly available through GitHub at https://github.com/LieberInstitute/spatial_hpc. 
Analyses were performed using R version 4.3.2 with Bioconductor version 3.17 unless otherwise noted. Image 
alignment and transformation was performed with ImageJ (version 2.14.0). 
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Figures
Figure 1. Experimental design to generate paired single-nucleus RNA-sequencing (snRNA-seq) and 
spatially-resolved transcriptomics (SRT) data in the human hippocampus. 

(A) Postmortem human tissue blocks containing the anterior hippocampus were dissected from 10 adult 
neurotypical brain donors. 

(B) Tissue blocks were scored and cryosectioned for snRNA-seq assays (gold), and placement on Visium 
slides (Visium-H&E, blue). 

(C) Top: Tissue sections (2-4 100μm cryosections per donor) from all ten donors were collected from the same 
tissue blocks for measurement with the 10x Genomics Chromium 3’ gene expression platform. For each donor, 
two samples were generated, one sorted based on propidium iodide (PI, purple) and the second sorted based 
on PI+ and NeuN+ (green). Replicate samples were collected from three donors for a total of n=26 total 
snRNA-seq libraries. Bottom: 10μm tissue sections from all ten donors were placed onto 2-5 capture areas to 
include the extent of the HPC (n=36 total capture areas), for measurement with the 10x Genomics Visium-H&E 
platform. Orientation was verified based on expression of known marker genes. 

(D) Canonical marker genes were identified as spatially variable genes using nnSVG (29). Spots are colored by 
log2 normalized counts.

(E) SRT data was clustered using PRECAST (30) with k=18 and clusters were annotated (columns) based on 
expression of known marker genes (rows). Cluster groupings indicated at the top of the heatmap define which 
clusters contributed to the broad domains of Neuron, Neuropil, white matter (WM), and vascular/ cerebrospinal 
fluid cell-enriched (Vasc/CSF). RHP: retrohippocampus, SUB: subiculum, CA2.4: cornu ammonis (CA) regions 
2 through 4 (CA2, CA3, CA4), GCL: dentate gyrus granule cell layer, ML: dentate gyrus molecular layer, SL: 
stratum lucidum, SR: stratum radiatum, SLM: stratum lacunosum-moleculare, SGZ: dentate gyrus subgranular 
zone. Hippocampal region abbreviations are also presented in Supplementary Table 2. 
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Figure 2. Spatial domain annotation and differential expression (DE) in the human hippocampus using 
spatially-resolved transcriptomics data.

(A) Integrated and merged spot plot of four Visium capture areas from the same donor (Br3942) with spots 
colored by the 16 spatial domains annotated from k=18 PRECAST clusters. (CA: cornu ammonis) CA1.1/CA1.2 
were collapsed to CA1 and CA2-4.1/CA2-4.2 were collapsed to CA2-4. See Supplementary Table 2 for 
abbreviations.

(B) Schematic illustrating pseudobulking approach, which collapses the spot-level to spatial domain-level data 
within each capture area, summing the total unique molecular identifiers (UMIs) for each new group.

(C) First two principal components (PCs) of the pseudobulked samples with colors corresponding to spatial 
domains and labeled ovals representing four broad domains: neuron cell body-enriched (greens and light blue 
(GABA)), neuropil-enriched (greys), white matter (WM)-enriched (purples), vasculature- and cerebrospinal fluid 
cell-enriched (Vasc/CSF) (dark blue).

(D) Heatmap showing differentially expressed gene (DEG) expression (rows) across the spatial domains 
(columns). Grouping across the top shows broad domain annotations.

(E) Spot plot showing spatial expression of DEG PPFIA2, a known marker for the granular cell layer (GCL). 
Spots are filled by log2 normalized counts. Spot borders are colored by broad domain.

(F) Spot plot showing expression of DEG PRKCG, which is known to be enriched in CA1-4 domains. Spots are 
filled by log2 normalized counts. Spot borders are colored by broad domain.

(G) Spot plot showing expression of DEG APOC1, a known astrocyte cell marker which is enriched in 
molecular layer (ML), stratum lucidum(SL)-stratum radiatum (SR), and SR-stratum lacunosum moleculare 
(SLM) domains. Spots are filled by log2 normalized counts. Spot borders are colored by broad domain.

(H) Spot plot showing expression of DEG SFRP2, which was specifically increased in the SLM-subgranular 
zone (SGZ) domain. Spots are filled by log2 normalized counts. Spot borders are colored by broad domain.

(I) Volcano plots illustrating results from DE analysis for each broad-level domain, with log2 fold change on the 
x-axis and false discovery rate (FDR) adjusted, -log10 transformed p-values on the y-axis. Genes colored red 
pass both FDR and log2 fold change thresholds (FDR adjusted p-value < 0.01 and log2 fold change > 1). Top 
DEGs for each broad domain grouping are labeled. 

(J) Boxplots showing expression of DEGs for neuron-enriched regions (CLSTN3), neuropil-enriched regions 
(SLC1A3), white matter regions (SHTN1), and vascular/CSF regions (TPM2). Each data point represents a 
pseudobulked sample. Spatial domains are on the x-axis and normalized gene expression in log2 counts per 
million (cpm) is on the y-axis. Boxes are colored by broad cluster grouping.
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Figure 3. Cell type identification and differential expression (DE) in the human hippocampus using 
single-nucleus RNA-sequencing (snRNA-seq).

(A) Uniform manifold approximation and projection (UMAP) representation of the snRNA-seq dataset. 
Individual nuclei are represented as points that are colored and labeled by cell type. GC: dentate gyrus granule 
cell, CA2-4: cornu ammonis (CA) regions 2 through 4 (CA2, CA3, CA4), CA1/ProS: CA1 and prosubiculum, 
Sub: subiculum, HATA: hippocampus-amygdala transition area, Amy: amygdala, Thal: thalamus, Cajal: 
Cajal-Retzius cells, GABA.PENK: PENK positive GABAergic neurons, GABA.MGE: medial ganglionic 
eminence-derived GABAergic neurons, GABA.LAMP5: LAMP5 positive GABAergic neurons, GABA.CGE: 
central ganglionic eminence-derived GABAergic neurons, Micro/Macro/T: microglia and macrophages and 
T-cells, Astro: astrocytes, Oligo: oligodendrocytes, OPC: oligodendrocyte progenitor cells, Ependy: ependymal 
cells. Cell type abbreviations are also presented in Supplementary Table 2. 

(B) Left: Stacked bar plots of cell types indicated in (A) showing proportions of nuclei for each donor (columns). 
Right:Stacked bar plots of cell types indicated in (A), with columns indicating nuclei grouped by sort strategy 
(propidium iodide (PI)+ or PI+NeuN+), and across the overall dataset (all nuclei).

(C) Violin plots showing log2 normalized expression (y-axis) of select significant genes identified with spatial 
domain differential expression (DE) analysis and n=60 snRNA-seq cluster DE analysis. Nuclei are grouped 
based on cell types (x-axis) for improved visibility and fill color also corresponds to cell type as indicated in (A). 

(D) Heatmap showing a selection of significant genes (y-axis) from snRNA-seq DE analysis across all n=60 
clusters (columns). Heatmap is colored by mean log2 normalized counts. Additional cluster abbreviations not 
defined in (A) are AHi: amygdala-hippocampal region, CXCL14: CXCL14 positive GABAergic neurons, 
HTR3A: HTR3A positive GABAergic neurons, VIP: VIP positive GABAergic neurons, CRABP1: CRABP1 
positive GABAergic neurons, C1QL1: C1QL1 positive GABAergic neurons, PV.FS: PVALB positive fast-spiking 
GABAergic neurons, SST: SST positive GABAergic neurons, CORT: CORT positive GABAergic neurons, COP: 
committed oligodendrocyte precursor, CP: choroid plexus tissue, Endo: endothelial cells, PC/SMC: pericytes 
and smooth muscle cells, VLMC: vascular lepto-meningeal cells. Cell cluster abbreviations are also presented 
in Supplementary Table 2.
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Figure 4. Non-negative matrix factorization (NMF) reveals cell type heterogeneity and biologically 
relevant pathways in hippocampal subfields compared to RCTD deconvolution results.

(A) RCTD prediction of proportion of astrocytes (Astro, fill color) per Visium spot in example capture areas from 
donor Br3942. Spot borders are colored by spatial domain. See Supplementary Table 2 for abbreviations.

(B) RCTD prediction of proportion of oligodendrocytes (Oligo, fill color) per Visium spot in example capture 
areas from donor Br3942. Spot borders are colored by spatial domain.

(C) Spot plots displaying spot-level weights (fill color) for NMF pattern nmf81 (specifically elevated in astrocyte 
snRNA-seq clusters) in example capture areas from donor Br3942. Spot borders are colored by spatial 
domain.

(D) Spot plots displaying spot-level weights (fill color) for NMF pattern nmf44 (specially elevated in 
oligodendrocyte snRNA-seq clusters) in example capture areas from donor Br3942. Spot borders are colored 
by spatial domain.

(E) Spot plots displaying spot-level weights (fill color) for NMF pattern nmf13 (elevated in neuronal snRNA-seq 
clusters) in example capture areas from donor Br3942. Spot borders are colored by spatial domain.

(F) Spot plots displaying spot-level weights (fill color) for NMF pattern nmf7 (elevated in neuronal snRNA-seq 
clusters) in example capture areas from donor Br3942. Spot borders are colored by spatial domain.

(G) Gene set enrichment analysis (GSEA) table for nmf81 showing that genes with stronger weights 
contributed to the significant enrichment of biological pathways (like “Extracellular matrix organization”) 
associated with astrocytes. NES: normalized enrichment score, pval: p-value, padj: FDR adjusted p-value.

(H) GSEA table for nmf44 showing that genes with stronger weights contributed to the significant enrichment of 
biological pathways (like “L1CAM interactions” and “Axon guidance”) associated with oligodendrocytes.

(I) GSEA table for nmf13 showing that genes with stronger weights contributed to the significant enrichment of 
biological pathways highly relevant to neuronal signaling. Investigation of the specific genes contributing to 
these terms indicate that transcriptional variation captured by nmf13 is highly relevant to excitatory 
postsynaptic response.

(J) GSEA table for nmf7 showing that genes with stronger weights contributed to the significant enrichment of 
biological pathways highly relevant to neuronal signaling. Investigation of the specific genes contributing to 
these terms indicate that transcriptional variation captured by nmf7 is highly relevant to the structure and 
maintenance of inhibitory postsynaptic specializations.
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Figure 5: Non-negative matrix factorization (NMF) captures transcriptional programs relevant to 
neuronal activity. 

(A) Select NMF patterns projected onto a mouse snRNA-seq dataset of hippocampal neurons activated by 
electroconvulsive stimulation (ECS) or hippocampal neurons under control conditions (Sham) (y-axis, by cell 
type). These patterns (x-axis) exhibit altered dentate gyrus granule cell (GC) nuclei weights (dot color, scaled 
and averaged) between ECS and sham conditions. Dot size indicates the proportion of y-axis group with 
non-zero pattern weight for the given x-axis value. CA2-4: cornu ammonis (CA) regions 2 through 4 (CA2, 
CA3, CA4), PS/Sub: prosubiculum and subiculum neurons, L5/Po: layer 5 and polymorphic layer.

Differential expression (DE) analysis was performed on mouse GC nuclei, testing for differences in the 
expression by activity condition. For all volcano plots (B-C, F-G),  the y-axis presents the -log10 false discovery 
rate (FDR)-adjusted p value. For all volcano plots (B-C, F-G), the x-axis presents log2 fold change (FC), where 
negative values indicate greater expression in sham-activated GCs and positive values indicate greater 
expression in ECS GCs. 

(B) Volcano plot of DE results tested on genes with non-zero nmf91 weights. Points are colored by gene-level 
nmf91 weight. Gene names are shown for genes with nmf91 weight >0.0015, log2FC>1, and -log10(FDR)>30. 

(C) Volcano plot of DE results tested on genes with non-zero nmf20 weights. Points are colored by gene-level 
nmf20 weight. Gene names are shown for genes with nmf20 weight >0.00065, log2FC>1, and -log10(FDR)>30).

Spot plots isolating the dentate gyrus granule cell layer spatial domain (GCL, green outlined spots) 
demonstrate the differing spatial organization of (D) nmf10 and (E) nmf14 weights in an example capture area 
from donor Br3942. Spot fill indicates spot-level NMF pattern weight.

(F) Volcano plot of sham vs. ECS DE results from mouse snRNA-seq tested on genes with non-zero nmf10 
weights. Points are colored by gene-level nmf10 weight. Text is shown for genes with nmf10 weight >0.00065, 
log2FC< -1, and -log10(FDR)>30.

(G) Volcano plot of sham vs. ECS DE results from mouse snRNA-seq tested on genes with non-zero nmf14 
weights. Points are colored by gene-level nmf14 weight. Text is shown for genes with nmf14 weight >0.0005, 
log2FC> 1, and -log10(FDR)>30.

(H) Uniform manifold approximation and projection (UMAP) plot of (left) all nuclei present in our human 
snRNA-seq highlighting the GC clusters. Right: Zoomed UMAP plot of only GC nuclei from our human 
snRNA-seq dataset with color indicating cluster identity.

(I) UMAP plot of human GC nuclei showing (left) nmf10 nuclei-level weights and (right) log2 normalized counts 
of highly-weighted nmf10 gene CHST9.

(J) UMAP plot of human GC nuclei showing (left) nmf14 nuclei-level weights and (right) log2 normalized counts 
of highly-weighted nmf14 gene SORCS3.
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Figure 6. Non-negative matrix factorization (NMF) reveals a continuum of pyramidal cell types across 
the retrohippocampus (RHP). 

(A) Spot plots for example donor Br3942 highlight the laminar organization of nmf40 (specific to the subiculum 
Sub.1 snRNA-seq cluster) and nmf54 (specific to the subiculum Sub.2 snRNA-seq cluster), as well as the clear 
distinction from the CA1. Spots are filled by the spot-level weights for the indicated NMF pattern, with scales 
corresponding to the maximum spot-level weight of any spot in the SRT dataset. Spot border color indicates 
spatial domain. See Supplementary Table 2 for abbreviations. 

(B) Dot plot of mouse single-cell methylation sequencing (snmC-seq) with retroviral tracing (n= 2004 nuclei) 
after label transfer of NMF patterns (106). Rows indicate nuclei axonal projection target region obtained from 
retroviral tracing experiments, NMF patterns corresponding to HPC and RHP cell types are present as 
columns. Dot size indicates the number of nuclei with non-zero pattern weights and dot color indicates the 
scaled, average weight for the given pattern. HPF: hippocampal field, ENT: entorhinal cortex, MOB: main 
olfactory bulb, RSP: retrosplenial cortex, PTLp: posterior parietal cortex, ACA: anterior cingulate cortex, PIR: 
piriform cortex, STR: striatum, TH: thalamus, AMY: amygdala, HY: hypothalamus, MOp: primary motor cortex, 
PFC: prefrontal cortex. 

For spot plots C and E an example capture area from donor Br2743 was used. The capture area is mirrored 
from what is present in Extended Data Fig. 9 to have the superficial-to-deep organization presented in a 
left-to-right manner. Spot border color indicates broad domain, with the addition of the subiculum to illustrate 
the lack of overlap with the subiculum. The subiculum was labeled by thresholding nmf40 and nmf54 weights 
(Extended Data Fig. 49C-D).  Spots are filled by spot-level weights for the indicated NMF pattern, with scales 
corresponding to the maximum spot-level weight of any spot in the SRT dataset.

(C) Spot plots of entorhinal cortex (ENT) specific NMF patterns. Patterns are shown from the most superficial 
to the least, with patterns specific to L2/3 snRNA-seq clusters presented in i-iii. Panel iv shows the 
ENT-specific L5 pattern.

(D) t-distributed stochastic neighbor embedding (TSNE) plots of pyramidal nuclei from the snRNA-seq dataset 
colored by the NMF patterns in (C). Patterns are shown from the most superficial to the least (left to right). The 
snRNA-seq cluster(s) enriched for specific NMF patterns are labeled. 

(E) Spot plots of retrohippocampus (RHP) NMF patterns that exhibit spot-level weights distributed across the 
ENT and subicular complex. Patterns are shown from the most superficial to least. Panel iv exhibits low 
weights in the deep ENT with enriched nmf65 spot-level weights immediately adjacent to subiculum-labeled 
spots. The specificity of nmf65 to the deep subiculum is explored in Extended Data Fig. 49E-F., lending to the 
classification of this pattern as a third subiculum pattern (SUB.3).

(F) t-distributed stochastic neighbor embedding (TSNE) plots of pyramidal nuclei from the snRNA-seq dataset 
colored by the NMF patterns in (E). Patterns are shown from the most superficial to the least (left to right). The 
snRNA-seq cluster(s) enriched for specific NMF patterns are labeled. 

(G) Spot plots for example donor Br3942 exemplify the anatomical location of nmf17 to the presubiculum, 
indicated by the asterisk. Spot border color indicates spatial domain. Spots are filled by the indicated NMF 
pattern, with scales corresponding to the maximum nmf17 spot-level weight of any spot in the SRT dataset. An 
alternative visualization of nmf17 mapping to the presubiculum for all donors is presented in Extended Data 
Fig. 51. 

(H) Violin plots show snRNA-seq log2 normalized counts (y-axis) across HPC and RHP clusters (x-axis) for 
traditional cortical layer markers SATB2, TLE4, and CUX2. Also shown is canonical subiculum marker FN1, 
and COL24A1 and TOX, new subiculum markers explored in this manuscript. Select clusters have been 
renamed following SRT-based verification of spatial organization: Sub.3 (formerly L6.1), PreS (presubiculum, 
formerly L2/3.1), RHP.L6 (formerly L6b), RHP.L6 (formerly L6.2), RHP.CBLN2+ (formerly L5.2), ENT.L5 
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(formerly L5.1), ENT.sup3 (formerly L2/3.2), ENT.sup2b (formerly L2/3.3), ENT.sup2a (formerly L2/3.6), 
ENT.sup1 (formerly L2/3.4). The revised cell type abbreviations are also presented in Supplementary Table 2. 

(I) A dot plot detailing the results of focused differential expression analysis that was performed on snRNA-seq 
data to elucidate novel genes that distinguish between the superficial subiculum (Sub.1), middle subiculum 
(Sub.2), deep subiculum (Sub.3), and the PreS. Dot size indicates the proportion of nuclei in each cluster 
(column) with non-zero expression for each gene (row). Dot color indicates average log2 normalized gene 
counts. The box highlights the novel differentially expressed genes. Violin plots of these results are shown in 
Extended Data Fig. 52.
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