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Abstract
The epithelial-to-mesenchymal transition (EMT) is a reversible process that may interact with tumour immunity through 
multiple approaches. There is increasing evidence demonstrating the interconnections among EMT-related processes, the 
tumour microenvironment, and immune activity, as well as its potential influence on the immunotherapy response. Long 
non-coding RNAs (lncRNAs) are emerging as critical modulators of gene expression. They play fundamental roles in 
tumour immunity and act as promising biomarkers of immunotherapy response. However, the potential roles of lncRNA in 
the crosstalk of EMT and tumour immunity are still unclear in sarcoma. We obtained multi-omics profiling of 1440 pan-
sarcoma patients from 19 datasets. Through an unsupervised consensus clustering approach, we categorised EMT molecular 
subtypes. We subsequently identified 26 EMT molecular subtype and tumour immune-related lncRNAs (EILncRNA) across 
pan-sarcoma types and developed an EILncRNA signature-based weighted scoring model (EILncSig). The EILncSig exhib-
ited favourable performance in predicting the prognosis of sarcoma, and a high-EILncSig was associated with exclusive 
tumour microenvironment (TME) characteristics with desert-like infiltration of immune cells. Multiple altered pathways, 
somatically-mutated genes and recurrent CNV regions associated with EILncSig were identified. Notably, the EILncSig was 
associated with the efficacy of immune checkpoint inhibition (ICI) therapy. Using a computational drug-genomic approach, 
we identified compounds, such as Irinotecan that may have the potential to convert the EILncSig phenotype. By integrative 
analysis on multi-omics profiling, our findings provide a comprehensive resource for understanding the functional role of 
lncRNA-mediated immune regulation in sarcomas, which may advance the understanding of tumour immune response and 
the development of lncRNA-based immunotherapeutic strategies for sarcoma.

Keywords  Sarcoma · Epithelial-to-mesenchymal transition · LncRNA · Tumour immunity · Prognostic risk model · 
Machine learning

Abbreviations
EMT	� Epithelial-to-mesenchymal 

transition
TME	� Tumour microenvironment
LncRNA	� Long non-coding RNAs
EILncRNA	� EMT and tumour Immune-related 

lncRNAs
EILncSig	� EILncRNA signature-based scoring 

model
CNV	� Copy number variation
ceRNA	� Competitive endogenous RNA
STS	� Soft tissue sarcomas
ICI	� Immune checkpoint inhibitor
UCA1	� Urothelial carcinoma-associated 1
PD1	� Programmed cell death 1
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LIMIT	� LncRNA Inducing IFN-γ, MHC-I 
and Immunogenicity of tumour

MFS	� Metastasis-free survival
RFS	� Relapse-free survival
OS	� Overall survival
GSVA	� Gene set variation analysis
IL-10	� Interleukin-10
IFNG	� Interferon
TIME	� Tumour immune microenvironment
ROC	� Receiver operating characteristic
AUC​	� Areas under the curve
TME subtypes-IE/F	� Immune-enriched, fibrotic form
TME subtypes-IE	� Immune-enriched, non-fibrotic form
TME subtypes-F	� Fibrotic form
TME subtypes-D	� Depleted form
FGES	� Functional gene expression 

signatures
sCNA	� Somatic copy number alteration
TNB	� Tumour neoantigen burden
MSI	� Microsatellite instability
CR/PR	� Complete/partial response
SD/PD	� Stable/progressed disease
P-Lipo	� PD-L1-targeting immune liposome
ICD	� Immunogenic cell death
PDL-1	� PD-ligand-1
GSEA	� Gene set enrichment analysis
NES	� Normalized enrichment score
GO	� Gene Ontology
KEGG	� Kyoto Encyclopaedia of Genes and 

Genomes
MSigDB	� Molecular Signatures Database
WGCNA	� Weighted gene co-expression net-

work analysis
PCC	� Pearson's correlation coefficients
DEG	� Differentially-expressed genes
Sarcoma DDLPS	� Dedifferentiated liposarcoma
Sarcoma LMS	� Leiomyosarcoma
Sarcoma MFS	� Myxofibrosarcoma
Sarcoma SS	� Synovial sarcoma
Sarcoma UPS	� Undifferentiated pleomorphic 

sarcoma

Introduction

Sarcomas are a heterogeneous group of primary mesenchy-
mal tumours, derived from bone, cartilage, muscle and other 
connective tissues. More than 100 different sarcoma sub-
types varying in pathology, clinical presentation, molecular 
characteristics, and response to therapy have been identified, 
80% of which are soft tissue sarcomas (STS), while 15% are 
bone sarcomas and 5% are gastrointestinal stromal tumours 
[1]. Although relatively rare, sarcomas are often fatal and are 

responsible for significant mortality as the most aggressive 
childhood cancers [2]. The clinical management of sarcomas 
is highly challenging due to misdiagnosis and late diagnosis, 
as well as their heterogeneity, aggressive nature and resist-
ance to conventional treatments such as surgery, radiation 
and chemotherapy [3]. Consequently, novel therapeutic strat-
egies are urgently needed for sarcomas. Recently, immu-
notherapy has been successfully applied in several cancers 
[4]. As a promising treatment strategy, several clinical trials 
on immunotherapy (such as immune checkpoint inhibitor 
(ICI) therapy) for sarcoma patients have shown profound 
beneficial effects on patient survival [5, 6]. However, some 
refractory patients still have disproportionate responses to 
immunotherapy [7]. Thus, it is imperative to explore bio-
markers that can function as molecular targets or modulators 
in the aspect of tumour immunology for sarcomas.

Epithelial-to-mesenchymal transition (EMT) is a com-
plex process in which epithelial cells lose their apical–basal 
polarity and acquire mesenchymal characteristics including 
a fibroblast-like morphology and increased migratory capac-
ity [8]. The reverse process, described as mesenchymal-to-
epithelial transition (MET), has also been reported [9]. EMT 
constitutes a critical characteristic in the tumour microenvi-
ronment (TME), which has been identified as playing crucial 
roles in cancer metastasis and immune escape in several car-
cinomas [10]. In contrast to carcinomas, a variable degree of 
epithelial/mesenchymal differentiation has been observed in 
various sarcoma histological subtypes, which can be either 
more epithelial-like (such as Ewing sarcoma, synovial sar-
comas) or more mesenchymal-like (such as osteosarcoma, 
chondrosarcoma), while the existence of sarcoma subtypes 
presenting both extreme phenotypes within one tumour has 
also been reported [11]. Accumulating evidence indicates 
that many sarcomas undergo EMT- and MET-related pro-
cesses to take advantage of both biological features leading 
to high aggressiveness and unfavourable clinical outcomes 
[11, 12]. However, few studies have reported any association 
among EMT, TME and tumour immunity in sarcomas or any 
potential regulators.

The long non-coding RNAs (lncRNAs), which are more 
than 200 nucleotides in length, play a pivotal role in vari-
ous biological processes including epigenetic and transcrip-
tional regulation, interaction with protein complexes and cell 
communication. They are highly-conserved molecules with 
potential abilities to regulate cell proliferation, development 
and differentiation, as well as pathogenesis [13]. Although 
a large number of lncRNAs have been identified as tumour 
suppressor genes and oncogenes, most of their functions 
and mechanisms are still unclear. Some of the well-studied 
lncRNAs such as XIST, ZEB2-AS1 and NORAD have been 
demonstrated to play a putative role in the EMT regula-
tion of various carcinomas [14]. During the past decade, 
a number of lncRNAs have emerged as critical elements in 
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the regulation of diverse biological processes including the 
EMT, where they promote or attenuate the oncogenesis of 
sarcomas [15]. Owing to the highly-conserved character-
istics of lncRNAs which are often expressed in a tumour-
specific manner, they are thought to be promising therapeu-
tic targets and biomarkers for cancer diagnosis or prognosis 
assessment. Most recently, researchers have been attempting 
to systematically identify the functions of lncRNAs in the 
processes of EMT and MET through the use of efficient gene 
editing tools [14]. Increasing evidence reveals that lncRNAs 
function as communicators and mediators, being directly or 
indirectly involved in the crosstalk between tumour cells and 
infiltrating immune cells within the tumour immune micro-
environment (TIME), where they participate in cancer onset 
and progression [16, 17]. For example, Huang et al. reported 
that the lncRNA NKILA promotes tumour immune evasion 
by sensitising T cells to activation-induced cell death [18]. 
Hu et al. identified the oncogenic lncRNA LINK-A that reg-
ulates cancer cell antigen presentation and intrinsic tumour 
suppression [19].

In this study, we integrated large-size pan-sarcoma data-
sets with multi-omics profiling. Through a machine learn-
ing approach, we identified pan-sarcoma EMT molecular 
subtypes and identified lncRNAs in the crosstalk of EMT 
and immune microenvironment across sarcomas. Based on 
the results, we constructed an lncRNA-based computational 
model and demonstrated it as a predictive biomarker for 
assessing the prognosis of patients with sarcomas, as well as 
a comprehensive resource for understanding the functional 
role of lncRNA-mediated immune regulation and developing 
potential clinical implications of lncRNA-based immuno-
therapeutic strategies in precision medicine for sarcomas.

Methods

Pan‑sarcoma data collection

Overall, we collected 19 public sarcoma datasets from the 
National Cancer Institute Genomic Data Commons—The 
Cancer Genome Atlas (NCI GDC TCGA)—Therapeuti-
cally Applicable Research to Generate Effective Treat-
ments (NCI GDC TARGET), the Gene Expression Omnibus 
(GEO) and the European Molecular Biology Laboratory's 
European Bioinformatics Institute (EMBL-EBI) databases. 
Accessions for the datasets used in the present study are as 
follows: phs000178 (TCGA-SARC Sarcoma), phs000468 
(TARGET-OS Osteosarcoma), GSE13433, GSE142162, 
GSE14827, GSE17618, GSE20196, GSE20559, GSE23980, 
GSE34620, GSE34800, GSE37371, GSE66533, GSE71118, 
GSE87437, E-MEXP-1922, E-MEXP-3628, E-MEXP-964, 
E-TABM-1202.

For the TCGA-SARC dataset, RNA-Sequencing (RNA-
Seq) data of raw count format and FPKM (Fragments Per 
Kilobase of transcript per Million mapped reads) format, 
masked somatic mutation data (mutect2), masked copy 
number segment data and survival follow-up data with 
clinicopathological characteristics were obtained from the 
TCGA data portal using the TCGAbiolinks [20] R pack-
age (version 2.20.1). TCGA-SARC molecular subtype data 
and other characteristics of patients were obtained from 
Lazar et al.’s study [21]. TCGA-SARC immune subtype 
data were curated from Thorsson et al.’s study [22]. For 
the TARGET-OS dataset, RNA-Seq data of raw count for-
mat and TPM (Transcripts Per Million) format and latest 
clinical information were obtained from TARGET data 
matrix. The Homo sapiens GRCh38.104 annotation file 
was downloaded from Ensembl [23] for gene symbol and 
biotype annotations corresponding to Ensembl identifica-
tion. DESeq2 [24] R package (version 1.32.0) was applied 
to filter out low-abundance genes, normalize RNA-Seq 
counts data and perform variance stabilizing transforma-
tion. RNA-Seq data of FPKM format was transformed to 
TPM format using a previously described method [25].

For microarray datasets, raw or processed data and the 
available clinical information were downloaded from GEO 
[26] and EMBL-EBI [27]. When possible, available Affy-
metrix CEL files within each dataset were re-processed 
and re-normalized individually into expression matrix 
through the robust multi-array average expression meas-
ure using the affyPLM [28] R package (version 1.68.0). 
The arrayQualityMetrics [29] R package (version 3.48.0) 
was applied to exclude low-quality and outlier samples of 
microarray datasets. All microarray data used in this study 
was based on Affymetrix Human Genome U133 Plus 2.0 
Array. We utilized the Combat method of sva [30] R Pack-
age (version 3.40.0) to correct the batch effect caused by 
technical variation and differences across the 17 microar-
ray datasets, and combine them into a pan-sarcoma micro-
array dataset of 1085 samples. The hgu133plus2.db [31] R 
package (version 3.13.0) was applied to map probes into 
gene symbols, in which the probe with the highest mean 
values was selected when multiple probes were mapped to 
one gene. In total, 1440 sarcoma patients were included 
in this study. Detailed information for all datasets and 
patients were documented in Supplementary file 1.

Immunotherapy data collection

RNA-Seq data and clinical information from patients 
with tumours treated with anti-programmed death-1 
(PD-1) or anti-PD-ligand-1 (PD-L1) immune checkpoint 
inhibitor (ICI) therapy were obtained from Kim et al.’s 
study (GSE176307) [32], including overall survival, 
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progression-free survival and treatment response of 89 
urothelial cancer patients.

Clustering molecular pattern of EMT signature 
expression

We collected curated EMT-related gene lists reported by 
5 pan-cancer studies via EMTome [33–38], and combined 
them into an EMT signature (Supplementary file 1). To clus-
ter EMT molecular pattern of sarcoma patients, we utilized 
the ConsensusClusterPlus [39] R package (version 1.56.0) to 
perform an unsupervised consensus clustering on expression 
of EMT signature in 1085 pan-sarcoma samples based on 
K-means algorithm. The resampling was set to be 1000 rep-
etitions to ensure the clustering stability. Distance matrix of 
consensus clustering was extracted, and a silhouette analysis 
was applied to assess how similar an individual was matched 
to its assigned cluster as compared to other clusters using the 
CancerSubtypes [40] R package (version 1.18.0).

Computation of the EMT score

EMT gene signatures with annotation of epithelial and mes-
enchymal markers from Tuan et al.’s and Hollern et al.’s 
studies were separately used to compute the EMT score [34, 
38]. The EMT score for each sample was calculated as 
∑n

1

i=1

Mi

n
1

−
∑n

2

j=1

Ej

n
2

 , in which M and E respectively represent 
the normalized expression of the mesenchymal maker genes 
and epithelial maker genes, n

1
 and n

2
 respectively represent 

the number of corresponding genes, as described in a previ-
ous study[41].

Functional enrichment analysis

The clusterProfiler [42] R package (version 4.0.5) was used 
for over representation analysis and pre-ranked gene set 
enrichment analysis (GSEA). The non-parametric gene set 
variation analysis (GSVA) was conducted using the GSVA 
[43] R package (version 1.40.1). A | normalized enrichment 
score (NES) |≥ 1.0 and adjust P value < 0.05 was consid-
ered with significance for the pre-ranked GSEA. The GSVA 
enrichment scores were applied to the limma [44] R pack-
age (version 3.48.3) to fit a linear model, and the alteration 
was considered with significance when the | log2FoldChange 
|≥ 0.2 and adjust P value < 0.05. Gene sets of Gene Ontology 
(GO) [45] Biological Process section (c5.go.bp.v7.3), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway (c2.
cp.kegg.v7.3) [46], WikiPathways (c2.cp.wikipathways.
v7.3) [47] and Reactome (c2.cp.reactome.v7.3) [48] pathway 
were downloaded from the Molecular Signatures Database 
(MSigDB) [49].

Evaluation of TME cell infiltration abundance

The CIBERSORTx [50] algorithm with the LM22 signa-
ture matrix (a signature matrix containing 22 functionally 
defined human immune subsets profiled by microarrays) 
was utilized to quantify the abundance of 22 types of TME 
infiltrating cells. We set parameters of CIBERSORTx as fol-
lows: 100 times for permutation test, batch correction—bulk 
mode, absolute mode of output scores, and RNA-Seq expres-
sion data without quantile normalization, while microarray 
expression data with quantile normalization. The overall 
fraction of stromal and immune cells infiltration in the sar-
coma samples was calculated by using the xCell [51] via the 
immunedeconv [52] R package (version 2.0.4).

Weighted gene co‑expression network analysis

Weighted gene co-expression network analysis (WGCNA) 
is commonly used for mining gene co-expression networks 
and hub genes based on pairwise correlations in genomic 
applications [53]. In the present study, to identify lncRNAs 
in gene modules that were most relevant to EMT molecular 
subtype, we applied the WGCNA [54] R package (version 
1.70-3) to construct weighted gene co-expression modules 
and module–trait relationship from the pan-sarcoma sam-
ples. The threshold of scale-free topology fitting index (R2) 
was set as 0.90. The minimum module size was set as 30 
and the threshold for merging modules was set as of 30%. 
Intramodular analysis was performed by calculating the cor-
relation of module membership and gene significance for 
EMT molecular subtype.

Identification of immune‑related lncRNAs 
in sarcoma

We downloaded curated human immune gene list with func-
tion and Gene Ontology term from the ImmPort project 
[55], and mapped gene symbols to Ensembl IDs. In total, 
we obtained 1752 immune genes in 17 immune functional 
pathways in subsequent analyses (Supplementary file 3). 
To identify potential immune-related lncRNA modifiers, 
we proposed a computational method that integrates a gene 
expression-based immunology framework as follows: (1) All 
lncRNAs were ranked based on their co-expression relation-
ship with immune marker genes; (2) Infiltrations of immune 
cells were estimated through CIBERSORTx with absolute 
score mode, all lncRNAs were ranked based on the cor-
relation between their expression and the abundance of a 
given infiltrating immune cell component; (3) GSVA enrich-
ment score of the 17 immune functional pathways were 
computed for each sample, all lncRNAs were ranked based 
on the correlation between their expression and the GSVA 
enrichment score of a given immune functional pathway. 
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Pearson's correlation coefficients (PCC) were calculated for 
each step, where a lncRNA with a PCC ≥ 0.3 and adjusted 
p value < 0.05 was considered as candidate immune-related 
lncRNAs.

Development of an EMT‑ and tumour 
immune‑related lncRNA signature scoring model

We identified lncRNAs that concurrently correlates to EMT 
molecular subtype and tumour immune in sarcoma. An 
EMT- and tumour immune-related lncRNA signature scor-
ing model (EILncSig) was constructed by a method similar 
to a previous study [56]: (1) The prognostic value of each 
candidate lncRNA was firstly evaluated by univariate Cox 
proportional hazards regression analysis; (2) A weighted 
combination was applied by using the regression coefficients 
in the multivariate Cox regression analysis. The EILncSig 
score for each patient was defined as 

∑k

i=1
(Expi ∗ Betai) , 

where Exp and Beta represent the normalized expression 
and regression coefficient of candidate lncRNA and K rep-
resent the number of lncRNAs in the EILncSig scoring 
model. We applied time-dependent ROC curves analysis 
and Kaplan–Meier survival analysis to evaluate the prog-
nostic prediction value of EILncSig scoring model through 
the survivalROC [57] and survminer [58] R packages (ver-
sion 1.0.3 and 0.4.9). The optimal cutpoint for dividing 
patients into high- and low- EILncSig levels was defined 
by the surv_cutpoint function of the survminer R package, 
where the parameter—minimal proportion of observations 
per group was set to 30% to avoid the occurrence of too 
few patients in a certain group. We additionally performed 
the ROC curves analysis to evaluate the prediction value 
of EILncSig scoring model on sarcoma subtypes through 
the pROC [59] R package (version 1.18.0). Univariate and 
multivariate Cox regression analyses were performed on 
EILncSig and available clinicopathological characteristics. 
When conducting model training and validating, we used 
completely independent dataset/cohort.

Clustering analysis of expression pattern based 
on pan‑cancer TME signatures

The categorizing method for pan-cancer TME patterns 
and 29 sets of gene expression signatures describing pan-
cancer TME characteristics were obtained from Bagaev 
et al.’s study [60] (Supplementary file 5). After performing 
GSVA on all the TME signatures for each patient, the GSVA 
enrichment scores were robustly standardized (median-
centered and scaled by median absolute deviation) within 
each cohort. By using ConsensusClusterplus [39] R pack-
age (version 1.56.0), we applied an unsupervised cluster-
ing algorithm to analysis the standardized GSVA scores of 
TME signatures. K-means clustering algorithm was used 

and resampling was set to be 1000 repetitions. An analysis 
of t-distributed stochastic neighbour embedding (t-SNE) by 
using the Rtsne [61] R package (version 0.15) was further 
conducted and visualized on a 3D map with the scatterplot3d 
[62] R package (version 0.3-41).

Analysis of somatic mutation and recurrent 
regions of somatic copy number alteration

Analysis and visualization of somatic mutations of TCGA-
SARC dataset was performed through the Maftools [63] R 
package (version 2.8.05). To determine significantly ampli-
fied or deleted regions of SCNA, we applied GISTIC 2.0 
[64] to analyze DNA copy number segmentation profiles. 
The analytic process of GISTIC 2.0 was completed on 
the GenePattern platform [65]. Parameters of GISTIC 2.0 
were set as follows: noise threshold—0.3, focal length cut-
off—0.5, confidence level—90%, q value threshold—0.25, 
copy-ratio cap—1.5 and arm-level peel-off mode enabled. 
We applied GenomicRanges [66] R package (version 1.44.0) 
to determine genes that overlapped within any “wide peak” 
region identified by GISTIC 2.0 with a residual q value less 
than 0.05.

Analysis of differentially expressed genes

The DESeq2 R package was applied to process RNA-Seq 
counts data and then identify differentially expressed genes 
(DEG) between two groups. The differential expression 
threshold was defined with a fold-change of threshold at 
1.5 and an adjusted p value < 0.05. The DEG results were 
presented in volcano plots and heatmaps by EnhancedVol-
cano [67] and pheatmap [68] R packages (version 1.10.0 
and 1.0.12).

Discovery of potential drugs based on CMAP 
database

The Connectivity Map (CMAP) database [69] provides 
large-scale pharmacogenomic data including systematic 
drug-induced perturbation. We downloaded the curated 
CMAP perturbation dataset (version 2016) via the Pharma-
coGx [70] R package (version 2.4.0). Then we ranked and 
selected the top 500 DEGs to represent the transcriptomic 
alteration for EILncSig and utilized PharmacoGx R pack-
age to measure the concordance of transcriptomic difference 
and drug induced cellular molecular alterations. The GSEA 
method was implemented for connectivity scores calculation 
and permutation testing was set as 100 times to detect the 
significance.
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Statistical analysis

Statistical tests in this study were conducted by using the 
R software (version 4.1.2, https://​www.r-​proje​ct.​org). The 
ggplot2 R package (version 3.3.5) and extensions [71] were 
used for data analysis and visualization. The Wilcoxon 
signed-rank test and Kruskal–Wallis test were applied to 
compare continuous variables for two groups and three or 
more groups, respectively. Categorical data was tested by the 
chi-square test. The Kaplan–Meier method, log-rank test and 
Cox proportional hazards regression analysis were used in 
prognostic analysis. Correlation analysis of continuous vari-
ables was performed by using the Pearson correlation test, 
while the Spearman correlation test was performed instead 
considering the influence of outliers when necessary. A sta-
tistical test is considered with statistical significance at two-
sided p < 0.05. When necessary, the Benjamini–Hochberg 
method was applied for p value adjustment.

Results

Derivation of de novo pan‑sarcoma EMT molecular 
subtypes from the perspective of EMT signature

First, we collected EMT process-related genes that were 
curated by Tuan et al. [34], Rokavec et al. [35], Kandimalla 
et al. [36], Koplev et al. [37] and Hollern et al. [38] in their 
pan-cancer studies. In total, 630 genes were annotated and 
combined into a merged EMT signature. Detailed gene sym-
bols and gene types (epithelial/mesenchymal marker) are 
delineated in Supplementary file 1. As shown in Fig. 1A, 
B, a total of 1440 sarcoma patients of various histologi-
cal subtypes were included in the present study, for whom 
RNA-Seq expression data were contained in TCGA-SARC 
and TARGET-OS and microarray expression data based on 

the same platform were contained in the other datasets. To 
obtain a comprehensive understanding of the pan-sarcoma 
EMT molecular subtypes, we combined transcriptomic pro-
filing and available clinical information of 17 datasets that 
were tested on the same platform (GSE13433, GSE142162, 
GSE14827, GSE17618, GSE20196, GSE20559, GSE23980, 
GSE34620, GSE34800, GSE37371, GSE66533, GSE71118, 
GSE87437, E-MEXP-1922, E-MEXP-3628, E-MEXP-964, 
E-TABM-1202) (Fig. S1A). A large pan-sarcoma expression 
dataset containing 1,085 samples with over 12 subtypes was 
involved in further clustering analysis.

Through an unsupervised consensus clustering of the 
expression pattern of the merged EMT signature, we clas-
sified sarcoma patients into distinct EMT molecular sub-
types, where 636 patients were assigned to EMT Cluster_1 
(EMT_C1) and 449 patients were assigned to Cluster_2 
(Supplementary file 2). Consensus matrix and silhouette 
analysis (average width: 0.93) showed satisfactory cluster-
ing results (Fig. 2A, B). To reveal the association of EMT 
molecular subtypes and prognosis of sarcoma patients, 
we performed Kaplan–Meier survival analysis on patients 
with matched expression profiling and clinical information. 
For the sarcoma cohort from Chibon et al. (GSE71118), 
we obtained a p value of 0.003596 from the log-rank test, 
indicating that patients of EMT_C2 had significantly worse 
metastasis-free survival (MFS) (Fig. 2C). A consistent result 
was also found as shown in Fig. 2D that patients of EMT_C2 
had significantly worse overall survival (OS) in the rhabdo-
myosarcoma cohort of Williamson et al. (E-TABM-1202, 
log-rank p = 0.02605). Furthermore, more patients with 
metastatic disease were found in EMT_C2 (Fig. 2E, 49% 
vs 35%, p = 0.019). To analyse the biological processes and 
pathway variations of the distinct EMT molecular subtypes, 
we implemented gene set variation analysis (GSVA). As 
shown in Fig. 2F, oxidative damage, TGF-β signalling and 
several immune-related pathways including interleukin-10 

Fig. 1   Overview of pan-sarcoma data in the present study. A Sample size of enrolled datasets. B Sample size of involved sarcoma histology sub-
types

https://www.r-project.org
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(IL-10) signalling, type II-interferon (IFNG) signalling, T/B 
cell receptor signalling pathway and NK cell chemotaxis/
cytotoxicity were significantly enriched in the EMT_C1 
group while mRNA capping/processing/splicing, nucleolus 
organisation and several DNA damage repair-related path-
ways including mismatch repair and base excision repair 
were significantly enriched in the EMT_C2 group. Accumu-
lating studies have reported a potential association between 

TME-infiltrating immune cells and dysregulated EMT/MET 
in the tumour. Thus, we applied the xCell tool, a novel gene 
signature-based ssGSEA method to estimate the overall 
TME infiltration status and found that both stromal and 
immune scores of EMT_C1 were significantly higher than 
those of EMT_C2 (Fig. 2G). Moreover, CIBERSORTx, a 
deconvolution algorithm, was applied to assess the infiltrat-
ing abundance of various immune cell types between EMT 

Fig. 2   Unsupervised consensus clustering of pan-sarcoma EMT 
molecular subtypes base on expression pattern of EMT signature. 
A The consensus matrix heatmap showing clustering result of EMT 
signature expression. B Assessment of the consensus clustering by 
silhouette analysis. C, D Kaplan–Meier survival analysis of MFS 
and OS for patients between EMT molecular subtypes in correspond-
ing cohorts, respectively. E Distribution of sarcoma with metastatic 

disease between EMT molecular subtypes. F.A Heatmap showing 
GSVA enrichment scores of differentially variated biological pro-
cesses and pathways. G Comparison of the overall TME infiltration 
status (stromal and immune scores) between EMT_C1 and EMT_C2 
via the xCell tool. H Comparison of the infiltrating abundance of var-
ious immune cells between EMT_C1 and EMT_C2 through CIBER-
SORTx
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subgroups (Fig. 2H and Fig. S1B, C). Activated memory 
CD4+ T cells, activated NK cells, γδ-T cells and CD8+ 
T cells showed high infiltration in the EMT_C1 group, 
whereas regulatory T cells (Tregs), resting NK cells and 
activated dendritic cells were more abundant in the EMT_C2 
group. In addition, we found that patients of EMT_C1 pos-
sessed higher EMT scores, which indicated a tendency to the 
mesenchymal phenotype (Fig. S1D). We further examined 
whether there existed any over-representation of sarcoma 
subtypes in the EMT molecular classification. As shown in 
Fig. S1E, samples of each sarcoma subtype were segregated 
to the EMT C1 and C2 clusters in different proportions. We 
observed that the EMT C1 cluster involved more myxofibro-
sarcoma and undifferentiated pleomorphic sarcoma patients, 
but fewer synovial sarcoma and Ewing sarcoma patients. 
However, liposarcoma, osteosarcoma, leiomyosarcoma and 
rhabdomyosarcoma were not found to be enriched in either 
the EMT C1 or C2 clusters (Fig. S1F).

WGCNA and identification of lncRNAs associated 
with EMT molecular subtypes

We used variance-stability-transformed expression data via 
DESeq2 as the input data for WGCNA. The best β value 

in the co-expression network was calculated to be 7 (Fig. 
S2A-C). A total of 21 gene modules were finally identified 
after dynamic tree cutting and module merging processes 
(Figs. 3A, S2E and Supplementary file 3). As shown in the 
module–trait relationship, many modules were found to 
be significantly correlated (p value < 0.05) with the EMT 
clusters (Fig. 3B). We screened modules with relatively 
high correlation coefficients (≥ 0.3). Furthermore, after the 
intramodular analysis, we finally identified five gene mod-
ules which showed a good correlation of module member-
ship and gene significance for the EMT molecular subtype 
(Figs. 3C and S2F). According to gene biotype annotation of 
Ensemble GRCh38.104, 72 lncRNAs in the five gene mod-
ules were identified as EMT molecular subtype-associated 
lncRNAs (Supplementary file 3).

Identification of immune‑related lncRNAs 
across pan‑sarcoma types

To identify candidate lncRNA modifiers that are relevant to 
tumour immunity across pan-sarcoma types, we proposed a 
three-line parallel computational approach, which involves 
correlations of lncRNA expression to (1) immune marker 
gene expression, (2) immune-related pathway activity and 

Fig. 3   Identification of EMT molecular subtype and tumour immune-
related lncRNA (EILncRNA) across pan-sarcoma types. A Clus-
ter Dendrogram showing the merged dynamic gene modules in the 
WGCNA process. B A heatmap for WGCNA module–trait relation-
ship. C Intramodular analysis on the correlation of module member-
ship and gene significance for EMT molecular subtype (showing the 
five modules with high correlation). D A schematic diagram showing 

the parallelly computational process for identifying immune-related 
lncRNAs. E Intersection of EMT molecular subtype and tumour 
immune-related lncRNAs (EILncRNA) across pan-sarcoma types. 
An EILncRNA signature-based scoring model (EILncSig) was con-
structed by combination of the normalized expression of prognos-
tic EILncRNAs weighted by their corresponding multivariate Cox 
regression coefficients
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(3) abundance of TME-infiltrating immune cells. Briefly, the 
Pearson correlation test on normalised lncRNA expression 
and corresponding terms was performed for each step as 
shown in the schematic diagram (Fig. 3D). LncRNAs in the 
correlation pairs with a Pearson correlation coefficient ≥ 0.3 
and an adjusted p value < 0.05 were selected. A total of 37 
lncRNAs were identified as robust candidates involved in 
tumour immunity across pan-sarcoma types (Supplementary 
file 3).

Construction and validation of a pan‑sarcoma 
EILncRNA signature scoring model

As shown in Fig. 3E, we finally identified 26 lncRNAs that 
showed a concurrent relationship to EMT molecular sub-
type and tumour immunity across pan-sarcoma types (EIL-
ncRNA). Considering the heterogeneity of sarcoma subtypes 
and the complexity of interactions between EMT and tumour 
immunity, we proposed to develop an EILncRNA signature-
based scoring model (EILncSig) to quantitatively estimate 
the crosstalk characteristics of EMT, the tumour immune 
microenvironment (TIME) and tumour immunity for indi-
vidual sarcoma patients. When conducting model training 
and validating, we used completely independent cohort 
without duplicated samples. We selected the sarcoma dataset 
of Chibon et al. (GSE71118) as the training cohort, which 
has the largest sample size (n = 311) with clinical informa-
tion (MFS) in the present study. We performed univariate 
Cox proportional hazards regression analysis to clarify the 
prognostic significance of the 26 EILncRNAs. A total of 
seven EILncRNAs (MIR22HG, LINC01140, LBX2-AS1, 
WWP1-AS1, AFTPH-DT, MIR155HG and MCM3AP-AS1) 
were then selected to construct the EILncRNA signature-
based scoring model. EILncSig score was computed as the 
sum of the normalised expression of the seven EILncRNAs 
weighted by corresponding multivariate Cox regression 
coefficients (Supplementary file 4).

As shown in the time-dependent receiver operating char-
acteristic (ROC) curve analysis for MFS prediction, areas 
under the curve (AUC) were 0.714, 0.684 and 0.680 for 
1, 3 and 5 years, respectively. By using the optimal cutoff 
value of EILncSig score, patients in the training cohort were 
stratified to high- and low-EILncSig groups. Kaplan–Meier 
survival analysis showed that patients of the high-EILncSig 
group had significantly worse MFS (log-rank p = 2.708e–9) 
(Fig. 4A1). The distribution of the EILncSig score and the 
seven-EILncRNA expression between high- and low-EIL-
ncSig groups is shown in Fig. 4A2.

To validate whether the EILncSig scoring model dem-
onstrates robust effectiveness across pan-sarcoma patients, 
we included three independent datasets as testing cohorts 
(the rhabdomyosarcoma cohort from Williamson et al., 
E-TABM-1202, n = 101; TCGA-SARC sarcoma, n = 259; 

and TARGET-OS osteosarcoma, n = 95) for further vali-
dation. The risk score for each patient was calculated and 
all patients were stratified into high- and low-risk groups. 
For the rhabdomyosarcoma cohort of Williamson et al., 
the time-dependent ROC curve analysis indicated EILnc-
Sig as a prognostic predictor for OS. Kaplan–Meier sur-
vival analysis showed significantly worse OS of patients 
in the high-risk group (log-rank p = 0.01509, Fig. 4B). 
Consistent results from the time-dependent ROC curve 
and Kaplan–Meier survival analyses on both OS and 
relapse-free survival (RFS) were also successfully vali-
dated in the other two validation cohorts (TCGA-SARC 
and TARGET-OS) as shown in Fig. 4C, D (C1: TCGA-
SARC OS, C2: TCGA-SARC RFS, D1: TARGET-OS OS 
and D2: TARGET-OS RFS). We also investigated whether 
there was any enrichment of sarcoma subtypes between the 
high- and low-EILncSig groups. We examined the sarcoma 
dataset of Chibon et al. (GSE71118) and TCGA-SARC 
dataset which involved pan-sarcoma samples. As shown 
in Fig. S3A, B, several sarcoma subtypes were observed 
to be enriched in either the high- or low-EILncSig group. 
Consistently, leiomyosarcoma was obviously enriched in 
the high-EILncSig group, while myxofibrosarcoma was 
more enriched in the low-EILncSig group.

To confirm whether the EILncSig scoring stratification 
could be an independent prognostic factor of other clini-
cal features, patients from TCGA-SARC and TARGET-OS 
with available clinicopathologic parameters were analysed 
by univariate and multivariate Cox regression analyses (Sup-
plementary file 4) to test the performance of the EILncSig 
after being adjusted for clinicopathologic parameters includ-
ing age, gender, tumour depth, tumour metastasis, residual 
tumour after surgery, local recurrence, tumour grade (his-
tological response) and sarcoma subtype. As shown by the 
multivariate Cox regression analyses in Fig. 4C4, 4D4, the 
hazard ratios (HRs) of high-EILncSig versus low-EILncSig 
for OS were 5.163 (p = 0.00008; 95% CI 2.282–11.680) 
in TCGA-SARC testing cohort and 3.938 (p = 0.04687; 
95% CI 1.019–15.217) in the TARGET-OS testing cohort. 
Therefore, the EILncSig was identified as an independent 
factor for the OS prediction. Taken together, the results of 
the training and testing cohorts indicated that the EILncSig 
scoring model could be an excellent model for predicting the 
prognosis of sarcoma patients, which may aid in formulating 
precise therapeutic strategies for patients with sarcoma. In 
addition, we preliminarily evaluated whether the EILncSig 
scoring possessed predictive value on the sarcoma subtypes. 
In the combined pan-sarcoma expression dataset (n = 1085), 
the mean EILncSig of each sarcoma subtype varied (Fig. 
S3C). We applied ROC curve analysis to assess the predic-
tive value. As demonstrated in Fig. S3D, the EILncSig scor-
ing may predict sarcoma subtypes to a certain extent—a high 
EILncSig score may predict Ewing sarcoma (AUC = 0.747) 
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and a low EILncSig score may predict liposarcoma or myxo-
fibrosarcoma (AUC = 0.711 and 0.761, respectively).

We further examined the associations of EILncSig scores 
with multiple tumour characteristics across pan-sarcoma 
patients. Chibon et al. established a prognostic gene expres-
sion signature, complexity model in sarcomas (CINSARC), 
to improve sarcoma patient grading. As shown in Fig. 4E, 
higher EILncSig scores were found in the CINSARC_C2 
group (p = 4.6e-8). As for TCGA-SARC cohort, relapse 
patients and patients with metastasis were found with higher 
EILncSig scores (p = 0.0078 and 0.00043, Fig. 4F1-2). A 
congruent result was also found in the integrative cluster-
ing (iCluster) molecular subtypes of sarcoma identified by 
Alexander et al. The iCluster_C1 group in which patients 
have the worst prognosis, possessed higher EILncSig scores, 

whereas the iCluster_C3 group had the lowest EILncSig 
scores (p < 2e–16, Fig. 4F3). In addition, we found that EIL-
ncSig scores were positively correlated with EMT scores 
and the EMT_C2 cluster had higher EILncSig scores in the 
combined pan-sarcoma dataset (Fig. S3E, F), which demon-
strated a significant association between EILncSig and EMT 
molecular phenotype across pan-sarcoma patients.

TME and immune patterns associated with EILncSig 
in sarcoma

Bagaev et al. developed 29 sets of gene expression sig-
natures describing pan-cancer TME characteristics and 
applied them in exploring TME patterns in pan-cancer 
patients. Four TME subtypes (immune-enriched, fibrotic 

Fig. 4   The EILncSig is associated with prognosis and molecular 
subtypes in sarcoma (construction and validation). A, B (1) Time-
dependent ROC curve analysis of EILncSig score for predicting 
the MFS/OS probability and Kaplan–Meier analysis on MFS/OS of 
high- and low-EILncSig groups stratified by optimal cutoff point. (2) 
Ranked distribution of EILncSig scores and a heatmap of LncRNA 
expression pattern (z score) (Training cohort: GSE71118 and Valida-
tion cohort: E-TABM-1202). C, D (1) Time-dependent ROC curve 
analysis of EILncSig score for predicting the OS probability and 
Kaplan–Meier analysis on OS of high- and low-EILncSig groups 
stratified by optimal cutoff point. (2) Time-dependent ROC curve 

analysis of EILncSig score for predicting the RFS probability and 
Kaplan–Meier analysis on RFS of high- and low-EILncSig groups 
stratified by optimal cutoff point. (3) Ranked distribution of EILncSig 
scores and a heatmap of LncRNA expression pattern (z score). (4) A 
forest plot of multivariate Cox regression analysis of EILncSig levels 
and clinicopathological characteristics on the overall survival. (c1–
c4): TCGA-SARC and (d1-d4): TARGET-OS). E The association of 
EILncSig and CINSARC subtypes (GSE71118). F The association 
of EILncSig and (1) Relapse, (2) Metastasis and (3 & 4) Integrative 
molecular subtypes (TCGA-SARC)
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(IE/F); immune-enriched, non-fibrotic (IE); fibrotic (F); 
and depleted (D)) were defined to demonstrate the role of 
TME in cancer progression and metastasis. We selected sar-
coma datasets (TCGA-SARC, TARGET-OS, GSE71118 and 
E-TABM-1202) to analyse the characteristics of TME across 
pan-sarcoma patients. After computing EILncSig scores and 
assigning patients to high- and low-EILncSig levels within 
each cohort, all patients were included in the clustering 
analysis of the TME pattern. We utilised an unsupervised 
clustering method to assign the pan-sarcoma patients to one 
of four groups by using robustly standardised GSVA enrich-
ment scores of the 29 functional gene expression signature 
(FGES) sets (Supplementary file 5 and Fig. S3G). As shown 
in the heatmap (Fig. 5A), sarcoma patients with distinct FGES 
characteristics along with high- and low-EILncSig stratifi-
cations were distributed among the four TME patterns. We 
utilised the t-SNE analysis to demonstrate the definite diver-
sity of sarcoma patients with each TME pattern (Fig. 5B). 
Furthermore, high- and low-EILncSig stratifications and 
four TME patterns presented significant concordant relation-
ships among sarcoma patients (Fig. 5C). Consistent with the 
previous results, the TME-depleted pattern with the worst 
prognosis covered 50% of the high-EILncSig group whereas 
TME-IE and IE/F patterns representing better prognosis 
were more enriched in the low-EILncSig group.

Thorsson et al. identified immune subtypes (wound heal-
ing, IFN-γ dominant, inflammatory, lymphocyte depleted 
and TGF-β dominant) to define pan-cancer immune response 
patterns that impact prognosis and tumour-immune interac-
tions. We collected information on the immune subtype of 
TCGA-SARC samples (five immune subtypes involved in 
total) (Supplementary file 5). As shown in Fig. 5D, there 
was a significant difference in EILncSig scores among the 
five immune subtypes (p = 0.00034), with extremely low 

EILncSig scores in the TGFβ-dominant immune subtype. 
Additionally, further analysis revealed that expression levels 
of five EILncRNAs (lncRNAs WWP1-AS1, AFTPH-DT, 
LBX2-AS1, MCM3AP-AS1 and miR155HG) were also 
significantly different among the five immune subtypes 
(Fig. 5E and Fig. S3H). In the aspect of TME-infiltrating 
immune cells estimated by CIBERSORTx (Supplementary 
file 5 and Fig. S3I), CD8+ T cells, activated memory CD4+ 
T cells, Tregs, γδ-T cells, monocytes and macrophages (M1 
and M2) showed high infiltration in the low-EILncSig group 
of better prognoses, whereas resting NK cells and dendritic 
cells (resting and activated) were more abundant in the high-
EILncSig group (Fig. 5F). Furthermore, Spearman correla-
tion analysis showed that the EILncSig score was negatively 
correlated with CD8+ T cells, activated memory CD4+ T 
cells, and activated NK cells, but positively correlated with 
resting NK cells (Fig. 5G).

The transcriptomic alteration, SNV and sCNA 
associated with EILncSig in sarcoma

Given that the EILncSig developed from the lncRNA mod-
ulation in the pan-sarcoma crosstalk of EMT molecular 
and tumour immune characteristics, we further assessed 
the potential value of EILncSig in the perception of tran-
scriptomic genomic alterations in sarcoma. First, we 
performed DEG analysis on the 259 samples of TCGA-
SARC dataset via DESeq2 and found that 6,621 genes 
(3,384 upregulated and 3,237 downregulated) were sig-
nificantly differentially expressed in the high-EILncSig 
group (Fig. 6A and S4A). As shown in the heatmap of 
Fig. 6B, 186 EMT-related genes belonged to the DEGs 
set, in which a major subset of mesenchymal marker genes 
were upregulated in the low-EILncSig group. This result 

Fig. 5   The EILncSig associates distinct TME and immune pat-
terns in sarcoma. A A heatmap of the robustly standardized GSVA 
enrichment scores for patients assigned into four distinct TME pat-
terns based on unsupervised consensus clustering of the TME-pattern 
signatures in combined sarcoma dataset. B A 3D t-sne distribution of 
sarcoma patients corresponding to each TME pattern. C Distinct dis-
tribution of TME patterns in high and low EILncSig groups. D Com-
parison of the EILncSig scores among TCGA-SARC immune sub-

types. E Varied expression pattern of four LncRNAs of the EILncSig 
among TCGA-SARC immune subtypes (with significance). F Dis-
tribution and Comparison of TME-infiltrating cells (CIBERSORTx 
absolute score) between high- and low-EILncSig groups. G Signifi-
cant correlations between EILncSig scores and infiltrations of CD8 T 
cells, CD4 memory activated T cells, resting NK cells and activated 
NK cells
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is also consistent with the positive correlation between 
EILncSig scores and EMT scores in the combined pan-
sarcoma microarray dataset. We further used the DESeq2 
Wald statistic as a rank list for pre-ranked gene set enrich-
ment analysis (GSEA). As shown in Fig. 6C, ridge plots 
of GSEA revealed that several gene sets, including DNA 
damage repair, TP53 activity regulation, histone methyla-
tion and protein acetylation, were enriched in the high-
EILncSig group, whereas tumour immune activity-related 
gene sets, such as immune response regulation, cytokine 
production, interferon and interleukin signalling, were 
enriched in the low-EILncSig group.

We analysed the somatic mutation data of samples with 
matched EILncSig scores from TCGA-SARC, with 98 and 
137 patients in the high- and low-EILncSig groups, respec-
tively (Figs. S4B, C and 6D). TP53 mutation was found as 
top1 mutation both in the high- and low-EILncSig groups. 
However, a higher mutation frequency (47% vs. 32%) was 
observed in the high-EILncSig group. The mutation fre-
quency of RB1, a well-known tumour suppressor gene, 
was much higher in the high-EILncSig group (ranking 2nd) 
than that in the low-EILncSig group. Another widely studied 
cancer-related gene, TTN, was also found to be mutated with 
relatively high differential frequencies in the low-EILncSig 
group. We identified specific mutation sites of TP53, RB1 

and TTN corresponding to their amino acid location between 
the high- and low-EILncSig groups (Figs. 6E, F and S4D).

As for the somatic copy number alteration (sCNA), we 
evaluated its divergence associated with EILncSig by using 
GISTIC 2.0, which involved 258 samples with matched 
EILncSig scores in TCGA-SARC (Fig. S4E). As shown in 
Fig. 6G, higher copy number deletion events were found in 
the high-EILncSig group while no significant difference of 
amplification was observed. In addition, we found a signifi-
cantly positive correlation between copy number deletion 
events and EILncSig scores (R = 0.241, p = 8.99e–05) (Figs. 
S4F and 6H). As the previous GSEA showed that DDR-
related pathways were found to be activated in the EILncSig-
high group, these results indicated that the EILncSig might 
potentially reflect genome instability in sarcoma. Moreover, 
we implemented functions of GISTIC 2.0 to identify recur-
rent focal sCNA regions. As shown in Fig. 6I, there were 
multiple obvious amplification peaks in the low-EILncSig 
group, while amplifications on chromosomes 8, 13 and 17 
and deletions on chromosomes 1, 13 and 17 were found with 
higher absolute G-scores in the high-EILncSig group. We 
identified several distinct sCNA peaks in the high-EILncSig 
group, such as focal amplification peaks, including the well-
studied cancer-driven gene MYC (8q.24.21), several onco-
genic genes TFDP1, CUL4A, GAS6 (13q34), DNA damage 

Fig. 6   Integrative analysis of EILncSig involved in transcriptomic 
and genomic characteristics of sarcoma. A A volcano plot of DEGs 
between high- and low-EILncSig groups. B A heatmap showing 
expression pattern of EMT-related genes in the DEG set. C Ridge 
plots of selected GSEA results in the gene sets of 1) Gene Ontology 
biological process and 2) REACTOME pathways. D Somatic muta-
tion landscape and top mutated genes of sarcoma patients in high- 
and low-EILncSig groups. E, F Lollipop plot showing mutation sites 

of TP53 and RB1 genes corresponding to high- and low-EILncSig 
groups. G Comparison of total CNV events (amplification and dele-
tion) between EILncSig groups. H Positive correlation between EIL-
ncSig scores and CNV deletion events. I Recurrent somatic CNV 
regions identified by GISTIC 2.0 in sarcoma patients of high- and 
low-EILncSig groups (Distinct focal peaks identified in the high EIL-
ncSig group are highlighted in purple colour)
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response related genes TOP3A, ALKBH5 (17p11.2), along 
with focal deletion peaks including the tumour suppressor 
gene TP73 (1p36.32) (Supplementary file 6).

EILncSig as a potential predictor of immunotherapy 
response

Accumulating studies are focusing on identifying robust 
indicators of immunotherapy response in cancer patients. 
Predictive efficacy of biomarkers such as expression of cer-
tain immune checkpoint inhibitors (ICI), tumour neoantigen 
burden (TNB) and microsatellite instability (MSI) have been 
studied in specific cancer types [72–74]. The clinical devel-
opment of cancer immunotherapy and advances in genomic 
analysis have also validated the important role of the TME in 
response to ICI therapy. Considering the association of EIL-
ncSig with immune-infiltrating cells and immune process 
activation, we evaluated the potential capacity of EILncSig 
as a predictor of immunotherapy response. Previous stud-
ies have demonstrated that complex crosstalk exists among 
tumour immune response, immune infiltration and expres-
sion of ICI genes.

Herein, we first compared the expression of several 
common ICI genes between patients stratified by EILnc-
Sig in TCGA-SARC dataset as shown in Fig. 7A and Fig. 
S5. We found that the expressions of multiple ICI genes 
including CTLA-4 and PD-1 were significantly higher in 
the low-EILncSig group. When considering the globally 

high level of immune infiltration of the low-EILncSig 
group, ICI genes that are highly expressed in immune 
cells are considered to be abundantly expressed. However, 
we found that expressions of PD-L1, LAG-3, SIGLEC6 
and IDO2 did not differ between EILncSig groups and 
the expression of VTCN1 was even significantly higher in 
the high-EILncSig group. In addition, VTCN1 expression 
was positively correlated to the EILncSig scores (Fig. 7B).

Next, we examined the capacity of the EILncSig to pre-
dict the ICI therapy response in an independent clinical 
cohort. The cohort of Kim et al. (GSE176307), a pub-
licly accessible PD1/PD-L1 therapy dataset with RNA-
Seq and follow-up data, was used in this study. Patients 
were stratified to high- and low-EILncSig groups using 
the same method (Supplementary file 7). Time-dependent 
ROC curve analysis showed that EILncSig scores could be 
used to predict patients’ PFS and OS. Kaplan–Meier sur-
vival analysis revealed that patients in the high-EILncSig 
group had worse OS and PFS after ICI therapy (log-rank 
p = 0.03753 and 0.01187, Fig. 7C, D). Moreover, a lower 
percentage of high-EILncSig patients achieved complete/
partial response (CR/PR) while a higher percentage suf-
fered from stable/progressive disease (SD/PD) as com-
pared to the low-EILncSig group (p = 0.018, Fig. 7E). 
Taken together, these data show that low-EILncSig 
patients experienced significant clinical benefits, better 
therapeutic responses and remarkably prolonged survival 
after ICI therapy.

Fig. 7   Potential predictive value of the EILncSig scoring model on 
response to immunotherapy. A Comparison of normalized expres-
sion of ICI genes between sarcoma patients of EILncSig groups. 
B Positive correlation between normalized expression of VTCN1 
and EILncSig scores. C, D Kaplan–Meier analysis on OS and PFS 

of high- and low-EILncSig groups stratified by optimal cutoff value 
in the GSE176307 ICI therapy cohort. E Proportions of ICI therapy 
response corresponding to high- and low-EILncSig groups. (CR com-
plete response, PR partial response, SD stable disease, PD progres-
sive disease)
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Discovery of potential drugs that target EILncSig 
in sarcoma

Exploring the complex molecular interactions and regula-
tory mechanisms of tumour immunity is indeed the exact 
route to improving immunotherapeutic efficacy. However, it 
is noteworthy that the combination of immunotherapy and 
classical chemotherapeutic drugs could be an achievable 
approach to promote the effectiveness of immunotherapy 
[75, 76]. Herein, we mined the CMAP database and inter-
actively analysed large-scale pharmacogenetic data with 
molecular characteristics of EILncSig, to discover drugs that 
may have the potential capacity to convert sarcoma from 
high-EILncSig into low-EILncSig status (Fig. 8A and Sup-
plementary file 7).

As shown in Fig. 8B, promising drugs with positive con-
nective scores were predicted, such as the topoisomerase 
I inhibitor irinotecan, the retinoid drug isotretinoin, the 
Ca2+ ionophore ionomycin and the antimetabolite drug 
tioguanine. Although these drugs have different molecular 
targets, an increasing number of recent publications have 
validated the potential of these drugs in immune modula-
tion. For example, He et al. developed a PD-L1-targeting 
immune liposome (P-Lipo) for co-delivering irinotecan and 
JQ1, which successfully elicited antitumour immunity in 
colorectal cancer through induction of immunogenic cell 
death (ICD) by irinotecan and interference in the immuno-
suppressive PD-1/PD-L1 pathway by JQ1 [77]. The anti-
tumour immunity or immune-enhancing effect of specific 

compounds still need to be further validated in sarcoma, 
while we surmised that these results may be supportive to 
expanding novel combination strategies of classic drugs with 
immunotherapy for sarcoma patients and will provide a fun-
damental basis for further experiments and clinical trials.

Discussion

Sarcoma is a highly heterogeneous malignant tumour, with a 
highly aggressive clinical phenotype and unfavourable clini-
cal outcomes. Owing to the complex molecular profiling and 
varying clinicopathological characteristics across sarcoma 
types, only a limited number of patients obtain satisfactory 
clinical benefits from common therapeutic strategies [78]. 
Immunotherapy has become a hotspot in cancer research 
and takes cancer treatment into a new era. Although immu-
notherapy for sarcoma has been successful in some cases, 
its application prospect and effectiveness are still unclear 
across heterogeneous sarcomas as compared to specific 
well-studied cancers such as leukaemia [6]. Notably, emerg-
ing evidence has presented a boosted therapeutic efficacy 
by combining immunotherapy with modulation of specific 
functional targets [79]. To explore the potential application 
of a combined immunotherapy strategy for sarcoma, it is 
worthwhile to identify biomarkers that function as molecu-
lar targets or critical regulators in tumour immunity across 
sarcoma types.

Fig. 8   Screen of compounds that have potential capacity to convert 
EILncSig phenotype based on integrative analysis of pharmacoge-
netic perturbation database. A A schematic diagram displays the 
workflow for interactively analysis of large-scale pharmacogenetic 
data with molecular characteristics of EILncSig. A connectivity score 
represents the correlation of a compound perturbation with the tran-

scriptomic characteristics of EILncSig. P value is computed by per-
mutation testing and adjusted to the determine significance of the 
connectivity. B A bubble plot presents potential compounds that have 
potential capacity to convert EILncSig phenotype. Blue: favourable 
compounds that may activate transcriptomic alternation from high- to 
low- EILncSig phenotype. Red: adverse to Blue
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EMT is a reversible process that may interact with tumour 
immunity through multiple approaches such as affecting the 
TIME. Recent studies have demonstrated the interconnec-
tions among EMT-related processes, TME, and immune 
activity, as well as the potential influence on immunother-
apy response. It is notable that increasing evidence shows 
that certain sarcomas reside in an intermediate EMT/MET-
related state, such as the metastable phenotype, which allows 
tumour cells to switch between epithelial and mesenchymal 
differentiation [11]. The combined presence of epithelial and 
mesenchymal features likely plays an indispensable role in 
the aggressiveness of such sarcomas. To precisely define the 
regulators of EMT/MET-related processes in sarcomas, we 
defined two distinct EMT-related molecular subtypes based 
on a combined EMT signature, identified 26 EILncRNAs, 
and then constructed a 7-lncRNA signature scoring model 
(EILncSig) that can stratify sarcoma patients with distinct 
prognoses, immune microenvironment characteristics, as 
well as genomic and transcriptomic variations. In the cur-
rent study, the EILncSig was validated as a robust evaluating 
tool for the prognosis of patients with sarcoma through the 
examination of multiple independent datasets incorporating 
various sarcoma types.

Over the past several decades, accumulating studies have 
revealed the important roles of the TME in sarcoma genesis, 
as well as in predicting the prognosis of sarcoma patients 
[80]. An increased understanding of TME patterns in sar-
coma is essential for improving patient outcomes and quality 
of life. Bagaev et al. developed 29 sets of gene expression 
signatures describing pan-cancer TME characteristics and 
defined four TME subtypes to uncover the bidirectional 
interaction between sarcoma cells and TME [60]. Accord-
ingly, the high-EILncSig group was mainly composed of the 
TME-depleted pattern whereas TME-IE and IE/F patterns 
were more enriched in the low-EILncSig group in our cur-
rent study. Moreover, the EILncSig score was negatively 
correlated with infiltrations of CD8 + T cells, activated 
memory CD4 + T cells, and activated NK cells. It is gener-
ally accepted that cytotoxic CD8 + T cells, following suc-
cessful priming, recognise tumour-specific (neoantigens) or 
tumour-associated antigens and exert anti-tumour function 
primarily via the release of cytotoxic molecules such as 
perforin and granzymes [81]. Taken together, our findings 
indicate that the EILncSig is closely associated with TIME 
characteristics across pan-sarcoma patients.

The EILncSig also reflects changes in the expression 
of genes involved in multiple vital hallmarks in sarco-
mas. Based on the GSVA, we found that several pathways 
involved in proliferation and metabolism were enriched in 
the high-risk group whereas tumour immune activity-related 
gene sets were enriched in the low-risk group. We also found 
that the somatic mutational profile and sCNA landscape 
also differed significantly between the high- and low-risk 

groups. The high-risk group had significantly higher muta-
tional frequency, especially when it came to the well-known 
tumour suppressor genes TP53 and RB-1. Consistent with 
the GSVA results, copy number deletion events were mark-
edly enriched with increased EILncSig scores, indicating 
the potential crosstalk between EILncSig and the genome 
instability of sarcoma. The sCNA analysis revealed that the 
high-risk group had multiple recurrent focal amplification 
peaks covering genomic regions of MYC (8q24.21), TFDP1, 
CUL4A, and GAS6 (13q34), along with focal deletion peaks 
including the tumour suppressor gene TP73 (1p36.32). The 
c-MYC proto-oncogene plays a crucial role in various stages 
of tumourigeneses, such as proliferation, growth, apoptosis, 
metabolism, DNA replication and angiogenesis, which can 
also induce radio- and chemo-resistance of sarcoma cells 
by suppressing radiation-induced apoptosis and DNA dam-
age, promoting radiation-induced DNA repair and transcrip-
tional regulation of ABC transporter family genes [82, 83]. 
The transcription factor p73 is a structural and functional 
homolog of TP53 and can mimic and/or substitute for p53 
onco-suppressive functions and has attracted considerable 
attention for therapeutic cancer management because of the 
rare mutation [84]. Galtsidis et al. demonstrated that p73 
regulated the miR-3158-containing network involved in 
EMT, thus modulating the cell migration in osteosarcoma 
[85].

Drug resistance to conventional chemotherapy is one 
of the most challenging problems in the clinical manage-
ment of sarcomas. Immune checkpoint inhibitor therapy 
has recently achieved substantial advances in clinical 
care for many cancer types including sarcoma [5, 6]. An 
early assessment of ICI therapy response by predictive 
biomarkers is crucial for the selection of patients who 
are most likely to benefit from ICI therapy. Although ICI 
genes were supposed to be highly expressed in the low-
EILncSig group with higher immune infiltration, we still 
found that the expressions of PD-L1 and LAG-3 showed 
no significant difference between EILncSig groups and 
the expression of VTCN1 was significantly higher in the 
high-EILncSig group. These findings suggest that high-
EILncSig sarcoma patients may potentially benefit from 
ICI therapy against PD-L1, LAG3 and VTCN1. Further-
more, the cohort of Kim et al. (GSE176307) [32] was used 
to compare the survival distributions of patients stratified 
by EILncSig. The low-EILncSig patients were found to 
experience significant clinical benefits, better therapeu-
tic responses and markedly prolonged survival after ICI 
therapy, indicating that the complex interplay between 
immune infiltration and ICI genes in the TME has an 
impact on sarcoma patients’ survival. In addition, we 
identified multiple drugs that may possess the potential 
to improve the immunotherapeutic response, which may 
guide the development of novel chemo-immunotherapy 
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strategies for sarcoma patients. Irinotecan is a first-line 
chemo-drug in colorectal and pancreatic cancer and 
other solid tumours, which functions as a topoisomer-
ase I inhibitor; thereby, inducing double-stranded DNA 
breakage and cell death [86]. Accumulating evidence has 
recently demonstrated that irinotecan can induce ICD and 
upregulate tumour-specific antigens, thus triggering an 
anti-tumour immune response [87]. He et  al. and Liu 
et al. have validated the superior anti-tumour effect and 
enhanced patient survival of chemo-immunotherapy by 
combining delivery of anti-PD-L1 and irinotecan [77, 88]. 
However, further validation of the immune-enhancing 
effects of specific drugs combined with immunotherapy 
are warranted in sarcoma.

Although lncRNAs lack protein-coding capability, they 
are emerging as critical regulators of gene expression in 
diverse biological processes and play pivotal roles in the 
tumourigenesis and development of cancer. Some compo-
nents of the EILncSig have been reported to be dysregu-
lated and function as imperative regulators in several can-
cers including specific sarcomas. LncRNA MIR155HG, 
also referred to as the B‑cell integration cluster, has been 
identified as an oncogene which could play a promotional 
role in EMT regulation [89]. Notably, a recent study 
showed that a 17-amino acid micro-peptide encoded by 
MIR155HG regulates antigen presentation and suppresses 
autoimmune inflammation [90]. MCM3AP-AS1 was found 
to be dysregulated in a variety of cancers. A recent study 
revealed that MCM3AP-AS1 regulates the abundance of 
M2 macrophage infiltration within the tumour immune 
microenvironment and may be a potential target to treat 
bone metastasis of prostate cancer [91]. LINC01140 has 
recently been reported to participate in the regulation of 
immune response and EMT [92]. In particular, Hu et al. 
found that LINC01140 is downregulated in metastatic 
sarcoma and low LINC01140 expression is associated 
with unfavourable prognosis of sarcoma [93]. LncRNA 
MIR22HG is located in 17p13.3, a chromosomal region 
which is frequently hypermethylated or deleted, and the 
existing studies demonstrated that MIR22HG functions 
as either a tumour suppressor or a tumour promoter in 
numerous cancer types, the regulatory mechanism of 
which involves Wnt/β-catenin, Notch, EMT and STAT3 
signalling pathways [94]. A study by Xu et al. showed 
that overexpression of MIR22HG triggers T cell infil-
tration and consequently promotes immune response in 
colorectal cancer [95]. In addition, a recent study revealed 
that MIR22HG plays an anti-tumour role in osteosarcoma 
by acting as a competing endogenous RNA (ceRNA) to 
the miR-629-5p/TET3 axis [96]. These experimentally-
validated findings provide further support to interpret 
the role of EILncSig in the crosstalk of EMT and tumour 
immunity.

Conclusion

In summary, we identified lncRNAs which play roles in the 
crosstalk of EMT and tumour immunity across pan-sarcoma 
types and constructed a lncRNA-based computational 
model. Our findings provide a comprehensive resource 
for understanding the functional role of lncRNA-mediated 
immune regulation in sarcomas. The constructed EILncSig 
in our study may serve as a robust predictor of prognosis for 
patients with sarcomas, as well as a potential biomarker of 
ICI therapy response that facilitates a more accurate selec-
tion of sarcoma patients who may benefit from immuno-
therapy. The present study established the groundwork for 
developing potential clinical applications of lncRNA-based 
immunotherapeutic strategies in precision medicine.
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