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Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a dual kinase that can phosphorylate its own 
activation loop on tyrosine residue and phosphorylate its substrates on threonine and serine residues. It is the most studied 
member of DYRK kinases, because its gene maps to human chromosome 21 within the Down syndrome critical region 
(DSCR). DYRK1A overexpression was found to be responsible for the phenotypic features observed in Down syndrome such 
as mental retardation, early onset neurodegenerative, and developmental heart defects. Besides its dual activity in phospho-
rylation, DYRK1A carries the characteristic of duality in tumorigenesis. Many studies indicate its possible role as a tumor 
suppressor gene; however, others prove its pro-oncogenic activity. In this review, we will focus on its multifaceted role in 
tumorigenesis by explaining its participation in some cancer hallmarks pathways such as proliferative signaling, transcrip-
tion, stress, DNA damage repair, apoptosis, and angiogenesis, and finally, we will discuss targeting DYRK1A as a potential 
strategy for management of cancer and neurodegenerative disorders.
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Introduction

Phosphorylation is a critical post-translational modification 
that regulates many cellular processes such as prolifera-
tion, apoptosis, differentiation, homeostasis, and metabo-
lism [8, 9]. This modification is introduced by protein 
kinases that consume adenosine triphosphate (ATP) to 
add the Ƴ-phosphate group on protein or lipid substrates 
[12]. According to the phosphorylated residue, kinases can 
be classified into tyrosine kinases (TKs) and serine/threo-
nine kinase (STKs) [16]. The addition of Phosphate group 
induces conformational changes to the protein affecting its 
function through changing its activity, cellular localization, 
stability, interaction with other proteins, and DNA [12]. 

Mutation and dysregulation of kinases are implicated in 
various human diseases such as cancer, metabolic disorder, 
neurodegeneration, autoimmunity, and cardiovascular dis-
eases [8, 21, 22].

To date, about 538 protein kinases have been identi-
fied in human cells that account for 2% of human genes 
[8]. These kinases are classified into many groups based on 
sequence homology of their catalytic domains [9]. CMGC 
(CDKs, MAPK, GSK, CLK) group which is one of the larg-
est groups including 9 kinase families among them are the 
cyclin-dependent kinases CDKs, cyclin-dependent kinases 
like CDKL, mitogen activating protein kinase MAPK, glyco-
gen synthase kinase GSK, cdc2 like kinases CLK, and dual-
specificity tyrosine phosphorylation kinase DYRKs [9, 29, 
30]. CDKs, MAPK, and GSK are the most studied families 
in this group. Their involvement in the control of cell cycle, 
cell fate decision, and metabolism attracts interest in can-
cer and metabolic disorder research [31, 32]. Although the 
DYRKs family is evolutionarily conserved from unicellular 
to multicellular organisms, which indicates their essential 
role in various cellular processes [18], they are less inten-
sively studied compared to other kinase families.

The dual-specificity tyrosine phosphorylation-regulated 
kinases (DYRKs) are kinases with dual phosphorylation 
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activity. They auto-phosphorylate their own activation loop 
on tyrosine residue motif (YxY) through cis intramolecular 
mechanism while still attached to the ribosome during trans-
lation. However, they phosphorylate their protein substrates 
on threonine and serine residues [33]. DYRKs are not exclu-
sively serine and threonine kinases. Recent studies showed 
that DYRKs preserve their ability to phosphorylate tyrosine 
residues even after maturation, which indicates their capabil-
ity to further phosphorylate tyrosine residues either on their 
activation loop or other substrates [34, 35].

Although five members of DYRKs have been identified 
in humans (Box 1), studies have focused on DYRK1A. Its 
gene location on Down syndrome critical region on chromo-
some 21 indicates its fundamental role in Down syndrome 
phenotypic features, especially in brain developmental disor-
ders. In this review, we will present an overview on DYRK1A 
tissue expression level and its clinical significance, we will 
pay particular attention to its possible role in various tumo-
rigenic pathways, and how it can serve as a new target in 
cancer therapy.

Box 1. Classification of DYRKs

According to kinase domain sequences homology, mam-
malian DYRKs are classified into class 1 (DYRK1A and 
DYRK1B) and class 2 (DYRK2, DYRK3, and DYRK4) 
[4] (Table 1). All members share a unique DYRK homol-
ogy box motif (DH box) that precedes the kinase domain. 
DH box sequence motif is important to the autophospho-
rylation event and maturation of the DYRK kinases [5, 
6]. For example, the DYRK1B DH box mutated sequence 
causes DYRK1B aggregates with tyrosine dephospho-
rylated and misfolding of DYRK1B kinase. This vari-
ant is found in abdominal obesity-metabolic syndrome 

3 that is characterized by high LDH, triglyceride, blood 
glucose, and abdominal obesity [11]. Class 1 DYRK is 
characterized by PEST sequence (sequence abundant in 
proline (P), glutamic acid (E), serine (S), and threonine 
(T)) located at the C-terminal region [13]. PEST domain 
is found to be important for protein degradation through 
anchoring the E3 ubiquitin ligase [15], however, its impli-
cation in DYRK 1 degradation is not reported. Outside 
kinase domain sequences homology, class2 DYRKs share 
the N-terminal auto-phosphorylation accessory (NAPA) 
domain [18]. According to sequence alignment, class 2 
DYRK NAPA domain is conserved among species and 
is essential for tyrosine autophosphorylation event but 
not for the substrate phosphorylation [19]. Both classes 
contain nuclear localization signals within the N-terminal 
region which indicates that DYRKs shuttles from cyto-
plasmic to nuclear compartments (Table 1) [4, 20].

Clinical correlates of DYRK1A:

DYRK1A has a wide spectrum of substrates and is involved 
in many cellular pathways. As such, it is thought to be 
involved in many pathological disorders such as neurode-
generative diseases and tumorigenesis. DYRK1A is a dos-
age-sensitive enzyme, as a consequence, both low and high 
expression exert significant effects (Fig. 1). Null DYRK1a 
mice embryos present a severe developmental delay and die 
around embryonic day 10.5, whereas heterozygous animals 
show reduction in neuron numbers and deficits in learning 
capacities [36]. For the first time, Møller et al. described 
DYRK1A gene truncation in two unrelated patients with 
microcephaly. Intriguingly, the investigators used cytoge-
netic analysis and fluorescence in situ hybridization (FISH) 
to detect the “de novo” translocation [37]. Individuals with 

Table 1  Mammalian DYRKs and their characteristics

Size 
(amino 
acids)

Chromosomal location Cellular localization Tissue expression Disease involved in

Class 1
 DYRK1A 763 21q22.13-21q22.2 (21) Nucleus, cytoplasm (145) Ubiquitous (145) Down Syndrome, intellectual 

disability, neurodegenerative 
disorders, cancer (21)

 DYRK1B 629 19q13.2 (146) Nucleus (146, 147) Ubiquitous, predominant in 
testis and skeletal muscles 
(146, 147)

Abdominal obesity-metabolic 
syndrome 3, cancer (16, 
148)

Class 2
 DYRK2 601 12q15 (149) Nucleus, cytoplasm (149) Ubiquitous (149) Cancer (150)
 DYRK3 588 1q32.1 (151) Nucleus, cytoplasm (152) Testis, hematopoietic tissue 

(153)
Highly expressed in anemia 

(154,155)
 DYRK4 520 12p13.32 (156) Nucleus, cytoplasm (157,158) Testis (158) Renal cancer (159)
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heterozygous variants of DYRK1A develop what is known 
as DYRK1A haploinsufficiency syndrome. This syndrome 
occurs due to truncation, microdeletion, and missense vari-
ant in the DYRK1A gene that affects the auto-phosphoryla-
tion capacity of DYRK1A, thus impairs its catalytic func-
tion. The phenotypic features include microcephaly, speech 
deficits, distinctive facial appearance, autism spectrum, skel-
etal, genitourinary defects, and eye abnormalities [38–40]. 
This concludes that DYRK1A enzyme expression balance 
is essential for proper neuronal development and function 
(Fig. 1).

DYRK1A and down syndrome

In 1996, Nobuyoshi Shimizu and his group identified the 
DYRK1A through performing exon trapping experiments to 
clone the Down syndrome critical region on chromosome 21. 
Sequencing this clone showed that this region has sequence 
homology with mnb gene in D. melanogaster, dyrk in rats, 
and yak1 in S. cerevisiae [41]. The homology between this 
clone (known as DYRK1A) and mnb was mainly in the 
catalytic domain which indicates that these two genes share 
similar functions [20]. Because mnb is highly expressed in 
the central nervous system of the drosophila and found to 
be implicated in postembryonic neurogenesis, DYRK1A 
attracts the attention to have a similar role in Down syn-
drome. DYRK1A gene is located on 21q22.13—21q22.2 

chromosomal region (Fig. 1) [42]. In trisomy 21, DYRK1A 
expression is 1.5-fold higher compared to normal individuals 
[36], which indicates its involvement in various phenotypic 
features characteristic of Down syndrome.

Generating the TgDYRK1A mouse model overexpress-
ing DYRK1A showed impairment in neuromotor develop-
ment, cognitive disability, and defect in memory and spatial 
learning capabilities [43, 44]. One of the possible explana-
tions of the role of DYRK1A in brain development is that 
DYRK1A regulates the cell cycle and induces differentiation 
in neuron cells by inducing G0/G1 arrest [45]. DYRK1A 
phosphorylates cyclin D which induces its degradation and 
phosphorylates P27 Kip which leads to its stabilization [45]. 
Moreover, DYRK1A enhances DREAM complex assembly 
which inhibits transcription of cell cycle genes in the G0/
G1 phase and induces quiescence [46]. A previous study 
showed that DYRK1A phosphorylates notch transcription 
factor and attenuates notch signaling in neural cells which 
induces neuronal cell differentiation [47]. Imbalanced 
DYRK1A expression was found to disrupt the transcriptional 
regulator neuron-restrictive silence factor REST⁄NRSF that 
is responsible for regulating gene expression during neu-
ron cell maturation [48, 49]. Therefore, it was reported that 
overexpression of DYRK1A might induce premature neuron 
differentiation in the developing stages [45–48]. Moreover, 
DYRK1A is involved in dendrite differentiation. DYRK1A 
is localized from cytoplasm to nucleus during dendrite tree 

Fig. 1  DYRK1A expression level affects neurological development 
and function. DYRK1A is a dosage-sensitive enzyme; both overex-
pression and low expression lead to serious consequences during neu-
ronal development. DYRK1A overexpression is associated with phe-

notypic features observed in Down syndrome. However, individuals 
with heterozygote variant DYRK1A level develop DYRK1A haploin-
sufficiency syndrome
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formation and phosphorylates Dynamin1 and affecting its 
function, which indicates the involvement of DYRK1A in 
dendrite differentiation, neurotransmission, and synapsis 
development [50, 51]. In summary, DYRK1A is a potential 
pharmacological target to manage neurological symptoms 
in Down syndrome.

DYRK1A and Alzheimer’s disease

In addition to neuronal development disorder and cogni-
tive defect, Down syndrome individuals have a higher risk 
to develop early onset neurodegenerative diseases such as 
Alzheimer’s disese (AD) [52]. They develop early onset of 
AD pathology hallmarks such as neurofibrillary degenera-
tion, β- amyloid plaque aggregation, and neuronal loss in 
their third decade of life [53, 54]. The previous studies have 
implicated DYRK1A overexpression in this risk by different 
mechanisms [55, 56]:

a) Phosphorylation of microtubule-associated “tau” pro-
tein. This phosphorylation reduces the biological activ-
ity of tau and promotes its self-aggregation and fibrilla-
tion. [53].

b) Distribution of the balance between 3R tau and 4R tau 
isoforms, through phosphorylating alternative splicing 
factor (ASF), which promotes 4R Tau isoform formation 
[57].

c) Accumulation of β- amyloid peptides (Aβ). DYRK1A 
was found to phosphorylate APP at Thr 668 in mam-
malian cells. [53].

Inhibiting DYRK1A founds to rescue some symptoms 
accompany AD in mice models [56]. In summary, targeting 
DYRK1A might reduce the risk of AD especially in Down 
syndrome individuals.

DYRK1A and Parkinson’s disease (PD)

DYRK1A has also been reported to be involved in Parkin-
son’s disease (PD), another neurodegenerative disorder, 
through phosphorylation of α-synuclein that causes aggre-
gation/inclusion formation of α-synuclein (Lewy bodies) 
which leads to the loss of dopaminergic (DA) neurons that 
are responsible for voluntary movement and behavioral 
actions [58, 59]. A Chinese Han population-based study 
comparing normal vs PD patients revealed that rs8126696 
TT DYRK1A single-nucleotide polymorphism (SNP) gen-
otype is higher in PD patients than in normal individuals 
suggesting it as a risk factor for PD development [60]. How-
ever, how this SNP affects the DYRK1A function and activity 

and its consequences on neuronal function remains to be 
elucidated.

DYRK1A and heart diseases

In addition to neurological disorders, individuals with Down 
syndrome suffer from congenital heart defects [61]. Cardiac 
specific DYRK1A overexpression mice develop dilated car-
diomyopathy and heart failure. The molecular explanation of 
this phenotype is similar to the effects of overexpression of 
DYRK1A in the brain. As in neurological tissues, DYRK1A 
impedes cardiomyocyte proliferation and induce premature 
differentiation through phosphorylating cyclin D1, cyclin 
D2, and cyclin D3, thus inducing G0/G1 arrest in DYRK1A 
overexpressing mice cardiomyocytes [62]. In line with phe-
notypic features observed in Down syndrome individuals, 
DYRK1A has been identified as a negative regulator of car-
diac hypertrophy which is a cardiac disorder that is rarely 
observed in Down syndrome [63, 64]. DYRK1A antagonizes 
the calcineurin/NFATc3 pathway. Calcineurin phosphatase 
dephosphorylates the NFATc3 transcription factor and local-
izes it to the nucleus to induce the expression of hypertrophic 
genes. DYRK1A inhibits this pathway by phosphorylating 
NFATc3 and reducing the expression of the hypertrophy-
associated genes. However, this is only observed in cultured 
cardiomyocytes. In vivo effects of DYRK1A in impeding 
hypertrophic response are compensated by pathways other 
than calcineurin/NFAT pathway [65].

Role of DYRK1A in carcinogenesis

The diseases and the distinct phenotypes observed in Down 
syndrome serve as a reference to understand how imbalanced 
expression of DYRK1A can cause adverse consequences. In 
addition to neurological and heart defects, epidemiological 
studies reported that Down syndrome patients have a higher 
risk of developing hematological malignancies but lower 
risk of developing solid carcinomas [66]. How DYRK1A 
plays a role in that and how it’s involved in tumorigenesis 
pathways will be further elucidated in the next sections.

The presvious reports highlighted that the role of 
DYRK1A in cancer is context-dependent; it behaves as a 
tumor suppressor gene in some types of cancer cells and as 
an oncogene in others [36, 67]. As many kinases, DYRK1A 
phosphorylates a wide range of substrates, and leads either 
to their activation or deactivation, thus indicating the role of 
DYRK1A in a certain context. In this section, we will focus 
on the role of DYRK1A kinase in major cellular pathways 
and how DYRK1A can behave as a tumor suppressor or 
tumor-promoting kinase (Fig. 2).
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DYRK1A expression level in cancer

DYRK1A is reported to be overexpressed in some cancer 
types in comparison to other pathological conditions of 
the same organ. Comparing DYRK1A transcript level in 
epileptic tissues and glioma showed that in glioma espe-
cially oligodendroglioma and glioblastoma multiform, the 
DYRK1A transcript level was higher. This correlates with 
the expression of DYRK1A in glioma cell lines which 
showed positive expression of DYRK1A [68]. Moreover, 
using tissue microarray-based immunohistochemical meas-
urement, DYRK1A was found to be overexpressed in 39 
out of 40 patient samples of Head and Neck squamous cell 
carcinoma (HNSCC). Moreover, it was found to be hyper-
phosphorylated in HNSCC patient samples and its inhibi-
tion reduces the tumorigenic ability of HNSCC cell line to 
form tumor xenograft in mice [69]. Immunohistochemical 
staining showed that DYRK1A localizes in the nucleus and 
is strongly expressed in pancreatic intraepithelial neoplasia 
and pancreatic ductal adenocarcinoma compared to normal 
pancreatic adjacent tissues. Inhibition of DYRK1A chemi-
cally or biologically reduced the ability of pancreatic cancer 
cell lines to proliferate and to form colonies in vitro and to 
form a tumor in vivo [70]. In comparison with normal indi-
viduals, DYRK1A was recently found to be overexpressed in 
non-small cell lung cancer (NSCLC) tumor samples and to 
be associated with poor prognosis [71].

As have been mentioned, DYRK1A overexpression 
might play a role in increasing the incidence of hemato-
logical malignancies in Down syndrome patients. Children 
with trisomy 21 have more than tenfold increased risk of 
developing acute lymphoblastic leukemia and acute mega-
karyoblastic leukemia [66]. DYRK1A was found to promote 
tumorigenesis by affecting leukemogenesis through phos-
phorylating NFATc transcription factors and promoting 

their cytoplasmic retention [72, 73]. In contradiction to this, 
DYRK1A in adult’s acute myeloid leukemia (AML) was 
reduced compared to normal controls. DYRK1A was fur-
ther suppressed in refractory/relapsed AML compared with 
the newly diagnosed AML patients [74]. Overexpression 
of DYRK1A in leukemia cell lines reduced the proliferation 
capacity through inducing G0\G1 arrest and inhibition of 
c-myc transcription factor [74]. Inhibition of certain tran-
scription factors and arresting cell cycle through phospho-
rylating cyclin D and enhancing P27 Kip function explain 
the possible role of DYRK1A in inhibiting tumor formation/
growth. However, many other pathways indicated its pos-
sible involvement in carcinogenesis which will be further 
explained.

DYRK1A sustains proliferative signaling pathways

As is well known in cancer biology, gene amplification or 
deletion variants that lead to constitutive activation of the 
receptor tyrosine kinases and their downstream pathways 
such as MAPK and PI3K/AKT are frequent in many malig-
nancies. Constitutive activation of these pathways leads to 
uncontrolled cell proliferation, transformation, and inva-
sion [75]. DYRK1A was found to sustain the activation of 
receptor tyrosine kinase pathways [68, 70, 71]. DYRK1A 
upregulates Ras/MAP Kinase Signaling and overexpression 
of DYRK1A sustains ERK activation after Nerve growth 
factor (NGF) stimulation in PC12 pheochromocytoma cell 
line. Co-immunoprecipitation experiments showed that 
DYRK1A interacts with Ras, B-Raf, and MEK1 to facilitate 
the formation of a Ras/B-Raf/MEK1 multiprotein complex 
[76]. Moreover, DYRK1A enhances RTK signaling through 
phosphorylation of Sprouty homolog 2 which is a negative 
feedback regulator of multiple receptor tyrosine kinases 
(RTK’s) including receptors for fibroblast growth factor 

Fig. 2  The duality role of 
DYRK1A in tumorigenesis: 
DYRK1A can phosphorylate a 
plethora of substrates. Based on 
the type of substrate, DYRK1A 
can act as a tumor suppressor or 
tumor-promoting kinase
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(FGF), epidermal growth factor (EGF), and hepatocyte 
growth factor (HGF) [77]. DYRK1A phosphorylates Spry2 
at Thr75 which leads to its inhibition [68, 70, 77, 78]. Also, 
studies showed a positive correlation between DYRK1A 
and C-Met in pancreatic ductal adenocarcinoma samples 
and between DYRK1A and EGFR expression in glioblas-
toma and NSCLC patients’ samples [68, 70, 71]. In NSCLC, 
inhibition of DYRK1A enhances the anti-cancer activity of 
osimertinib (an EGFR inhibitor used to treat EGFR-mutated 
NSCLC) in EGFR wild-type NSCLC cells [71]. DYRK1A 
inhibition in combination with RTK-targeted therapy might 
serve as a new therapeutic approach to sustain the effective-
ness of targeting RTK pathways in cancer treatment.

DYRK1A as a transcription regulator

In addition to its effects on receptor tyrosine kinase, 
DYRK1A was also found to affect the downstream signaling 
proteins. For example, it can act as a transcription regulator 
and modulator of gene expression through phosphorylating 
and activating various transcription factors such as STAT3, 
GLi1, and CREB transcription factors [79–81]. Activation 
and overexpression of these transcription factors are impli-
cated in various malignancies [82, 83]. Although DYRK1A 
has been reported to enhance DREAM complex assembly 
by phosphorylating LIN52 subunit and induces quiescence 
[46], the other studies have shown that DYRK1A may func-
tion as elongation factor and activate transcription by phos-
phorylating CTD in RNA polymerase 2 at Ser2 and Ser5 
in DYRK1A target genes that participate in the translation, 
RNA processing, and cell cycle [84]. Moreover, DYRK1A 
sustains open chromatin structure and activates transcrip-
tion through phosphorylating histone 3 at Thr45 and Ser57, 
and prevents heterochromatin protein 1 HP1 from bind-
ing and suppressing transcription [85]. In addition to that, 
it was recently discovered that DYRK1A acts as a kinase 
and activator for CBP and P300 histone acetyltransferases. 
Genome-wide ChIP-sequencing revealed the localization of 
DYRK1A with CBP\P300 at transcription enhancer regions 
which indicated that DYRK1A phosphorylates CBP\P300 at 
the transcription start site. Additionally, silencing DYRK1A 
decreased H3K27 acetylation at enhancer regions, and this 
confirms the positive role of DYRK1A in activating tran-
scription [86]. Collectively, interaction with transcription 
factors, RNA polymerase, histones, and epigenetic factors 
elucidates the spacious role of DYRK1A as a transcription 
regulator.

Role of DYRK1A in stress response

Adaptation to cellular stress is one of the pathways that 
cancer cells depend on to survive and to resist harsh envi-
ronmental conditions such as hypoxia, oxidation stress, 

mechanical stress, metabolic stress, and exposure to gen-
otoxic drugs [87]. DYRK1A expression level and activity 
found to be increased after exposure of cultured cells to toxic 
stimuli such as etoposide, tumor necrosis factor, hydrogen 
peroxide, and hyperosmotic pressure [88, 89], which denotes 
the possible role of DYRK1A in cellular stress pathways. 
SIRT1 which is a nicotinamide adenosine dinucleotide 
(NAD)-dependent class 3 histone deacetylase was found to 
play a major role in cellular stress. Although there are con-
tradictory studies regarding the SIRT1 role in cancer, SIRT1 
protects cells from stress by deactivating stress response 
proteins such as P53, HIC1, NF-κB, and DDR factors [90, 
91]. SIRT1 was found to sustain DNA repair which explains 
another alternative mechanism of protecting cells from geno-
toxic stress [92].

SIRT1 deacetylates P53 at Lys 383 which is reported to 
enhance cancer cell survival [93]. DYRK1A acts as a kinase 
for SIRT1 and activates its deacetylation activity [94]. Acti-
vating SIRT1 by DYRK1A promotes the inhibition of P53 
which will sustain the survival of cancer cells under stressful 
conditions (Fig. 2).

DYRK1A and P53

P53 is one of the most frequently mutated proteins in cancer. 
It is a tumor suppressor transcription factor that induces cell 
arrest and apoptosis in response to stressful conditions such 
as DNA damage. Under DNA damage, P53 is phosphoryl-
ated at ser15 by ATM (ataxia telangiectasia mutated). This 
phosphorylation boosts P53 activity in inducing cell cycle 
arrest to repair the DNA damage or to induce apoptosis in 
case of repair failure [95].

Although DYRK1A phosphorylates SIRT1 which will 
attenuate P53 activity, DYRK1A was found to directly 
phosphorylate P53 at ser 15 and induces its transcription 
activity in embryonic neuronal cells. Inducing p53 activity 
reduces neuronal cell proliferation and affects brain devel-
opment during embryonic stages [96]. However, this adds 
another contradictory role of DYRK1A in tumorigenesis. 
It is unknown if these phosphorylation events happen after 
inducing DNA damage or only during embryonical devel-
opment. Also, further studies should be done to investigate 
if this phosphorylation event acts in parallel with ATM or 
compensate for the ATM deficiency during DNA damage.

Moreover, P53 was found to act in a negative feedback 
loop in coordinating DYRK1A expression during DNA dam-
age. In response to DNA damage, P53 downregulates the 
DYRK1A through inducing the expression of miR-1246 that 
targets DYRK1A mRNA 3′-UTR region [97]. Moreover, 
activation of p53 was found to induce cellular senescence 
through the downregulation of DYRK1A and EGFR. Ectopic 
expression of DYRK1A in cancer cells reduces the ability of 
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P53 to induce senescence [98]. P53 regulates the EGFR-
DYRK1A axis through inducing the expression of MDM2, 
a ubiquitin ligase that found to ubiquitinate DYRK1A and 
induce its proteasomal degradation [98].

These studies improved our understanding of the link 
between DYRK1A and P53, and DYRK1A activates p53 and 
in turn P53 downregulates DYRK1A as negative feedback 
by inducing its ubiquitination and suppressing its transcrip-
tion through miR-1246 [97, 98] (Fig. 2).

Role of DYRK1A in DNA damage

Recently DYRK1A was reported to be involved in DNA 
DSBs repair (Box 2). Based on proteomic interaction stud-
ies, recent reports showed that RNF169 interacts with 
DYRK1A [99–101]. RNF169, which was reported to be 
phosphorylated at S368, S403, and S688, is recognized as a 
substrate for DYRK1A [101]. Phosphorylation at S368 and 
S403 was not essential for RNF169 role in DNA damage; 
however, these phosphorylated sites were important for the 
binding of RNF169 to DYRK1A [100]. On the other hand, 
RNF169 phosphorylation at S688 was essential for the activ-
ity of RNF 169 to remove 53BP1 from the DNA damage foci 
[101]. Moreover, as an interacting partner, DYRK1A was 
found to interact with RNF169 and localize to DNA dam-
age foci. Localization of DYRK1A on DNA damage foci 
was dependent on its binding with RNF169. On the other 
side, Inhibition of DYRK1A reduced RNF169 localization 
at DNA damage foci, which suggests that these two proteins 
depend on each other to be recruited to the DNA damage 
sites [101]. However, it is unknown if phosphorylation of 
RNF169 by DYRK1A is induced only by DNA damage, 
because these two proteins were found to interact in the 
absence of DNA damage which indicates their involvement 
in other cellular pathways [100, 101].

Box 2. 53BP1 and RNF169 in DNA DSBs

Induction of DNA damage is one of the fundamental 
therapeutic approaches in treating cancer. Radiation and 
many genotoxic FDA approved drugs work mainly by 
inducing DNA damage through alkylating DNA bases, 
inducing intra/inter-strand cross-links, DNA- protein 
cross-link and DNA double-strand breaks (DSBs) [1, 
2]. Cells respond to these genotoxic agents by activating 
DNA damage response and repair machinery [3]. Accord-
ing to the type and the time of damage cells activate dif-
ferent repair pathways such as base excision repair, nucle-
otide excision repair and in response to double-strand 
breaks, cells either activate the homologous recombina-
tion (HRR) or the nonhomologous end rejoining (NHEJs) 
repair pathways [7].

HRR is activated during the S and G2 phases of the 
cell cycle after DSBs and inter-strand cross-links lesions 
that impede replication and cause replication fork arrest 
and collapse [10].

HRR pathway depends on homologous recombina-
tion through inducing 5′end resection by MRN/CtIP and 
searching and invading adjacent complementary strand 
on sister chromatid through RAD51, thus repairing the 
damage by error-free mechanism [14]. On the other hand, 
NHEJs can be activated in any phase of the cell cycle 
[17]. NHEJ repair pathway is an error-prone mechanism 
of repair because it does not require any end processing 
or invasion of the strand, it directly ligates the two ends of 
the DSBs [23]. The preference of the cell to select HRR 
or NHEJs pathways depends on many factors such as the 
availability of sister chromatids and the repair proteins 
that are recruited to the DSBs site [24]. One of the early 
responses to the DSBs is the binding of 53BP1 to the 
H2A ubiquitin chains added by RNF8/RNF168 E3 ubiq-
uitin ligase in response to DSBs. Binding of 53BP1 favors 
nonhomologous end-joining repair by preventing end 
resection, thus antagonizing the homologous repair path-
way [17, 25]. A newly identified competitor of 53BP1 that 
enhances HRR repair is the E3 ubiquitin ligase RNF169 
[26, 27]. The main function of RNF169 is not ubiquit-
ination. Depending on its MIU2 domain, it recognizes 
the H2A 13/15Ub chain added by its paralog RNF168 in 
response to DNA damage [27]. This interaction is thought 
to impede 53BP1 from binding and enhancing end resec-
tion, thus RNF169 promotes the HRR pathway [26, 28]. 
Recently it was found that RNF169, by promoting end 
resection, can promote single-strand annealing and sup-
porting alternative nonhomologous end-joining repair 
pathways which are highly mutagenic [26].

Treating U2-OS cell lines with the DYRK1A inhibitor 
harmine increases 53BP localization to DNA damage foci 
[100]. Moreover, overexpressing kinase active DYRK1A 
in U2-OS and HeLa cell lines further decreases 53bp1 
foci formation after irradiation. This is in line with the 
role of RNF169 in depleting 53BP1, and as a binding 
partner for RNF169, DYRK1A kinase activation reduces 
53bp1 foci formation after DSB and induces HR repair 
pathway by RNF169 dependent mechanism [100, 101].

However, in addition to the interaction with RNF169, 
this dual kinase acquires duality in DSB repair choice. 
As DYRK1A expression dosage effects neuronal devel-
opment; DYRK1A expression level was found to affect 
DSB repair pathway choice. Overexpression of kinase 
active DYRK1A depletes 53BP1. However, the complete 
loss of DYRK1A decreased 53BP1 foci formation after 
irradiation. Moreover, DYRK1A knockout (KO) HeLa 
cell line was found to have reduced expression of 53BP1 
even before inducing damage, which might explain that 
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DYRK1A is important for 53Bp1 basal line-level expres-
sion and stability. Moreover, in DYRK1A-depleted cells, 
overexpressing RNF169 does not rescue the reduction of 
53BP1 which proves that DYRK1A might be involved in 
the NHEJ repair pathway through a mechanism independ-
ent of RNF169 [100].

DYRK1A depletion reduced RNF169 and 53BP1 local-
ization to the DNA damage sites, which adds more com-
plexity to the DYRK1A role in DNA damage response. 
Moreover, there is no effect of DYRK1A knock out on 
BRCA1 (stimulate HR repair pathway) localization to 
DNA damage sites [100]. The overall role of DYRK1A 
in DNA damage response is unknown, but a balance in 
DYRK1A activity and expression might be a new fac-
tor that determines the choice of DSB repair pathway 
(Fig. 3).

Moreover, it remains to be determined if DYRK1A is 
involved in the initial DNA damage response, although 
it activates SIRT1 which is found to affect the DRR 
pathway [90, 92], further studies are needed to unravel 
the link between DYRK1A, SIRT1, and DNA damage 
response. The involvement of DYRK1A in DNA damage 
repair might show/reveal the potential role of DYRK1A 
in tumorigenesis. On the other hand, as constitutive acti-
vation of DNA repair might lead to genotoxic drug resist-
ance, thus combining DYRK1A inhibition with chemo-
therapeutic drugs that cause DNA damage might provide 
a new therapeutic approach to overcome chemotherapy 
and radiotherapy resistance (Fig. 4).

DYRK1A and apoptosis

DYRK1A overexpression in Down syndrome patients was 
found to affect neuronal cell proliferation and differentia-
tion. However, reduced expression of DYRK1A also causes 
microcephaly and reduction in neuronal cell numbers. Apop-
tosis is a programmed cell death that has an important role 
during development. In copy-variant DYRK1A+\− mice, 
programmed cell death was highly active in dopaminergic 
neurons during the developmental stage. Overexpressing 
DYRK1A attenuated apoptosis and aid in dopaminergic 
neurons’ survival [102]. Moreover, comparing the eyes 
morphologies in Dyrk1A+/− mice and mice with triplicate 
DYRK1A showed that Dyrk1A+/− had smaller eyes and 
thinner retina compared to DYRK1A overexpressing mice. 
DYRK1A affects retinal cells number during develop-
ment through resisting apoptosis [103]. Both studies report 
that DYRK1A acts as an inhibitory kinase for caspase 9, 
thus phosphorylating it at Thr125 leading to inhibition of 
the intrinsic apoptosis pathway [102, 103]. However, this 
occurs not only during development, but DYRK1A was also 
found to phosphorylate caspase 9 under hyperosmotic stress 
in mammalian cells [89]. This phosphorylation event was 
found to inhibit caspase 9 auto-processing and sequestering 
it in the nucleus (Fig. 5A) [104]. This role of DYRK1A in 
apoptosis reflected another role of DYRK1A in tumorigen-
esis as resisting apoptosis is one of the major hallmarks of 
cancer, and inhibiting DYRK1A chemically or biologically 
was reported to activate apoptosis in many cancer cells [69, 
104].

Another study suggested a possible role of DYRK1A as a 
proapoptotic kinase. Under stressful stimuli, DYRK1A was 

Fig. 3  Crosstalk between 
DYRK1A and p53: (1) 
DYRK1A phosphorylates 
SIRT1 which, in turn, dea-
cetylates P53 and inhibits its 
transcriptional activity. (2) 
DYRK1A directly phosphoryl-
ates P53 at ser 15 and acti-
vates it. (2.A) P53 regulates 
DYRK1A expression through 
activating the transcription of 
miR-1246 that causes degrada-
tion of DYRK1A mRNA. (2.B) 
P53 inhibits the DYRK1A at 
the protein level by indirectly 
activating MDM2 transcription 
which, in turn, ubiquitinates 
DYRK1A and causes its protea-
somal degradation
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found to sustain the c-Jun N-terminal kinase (JNKs) path-
way through increasing c-jun phosphorylation. However, 
DYRK1A do not interact directly with JNK, and DYRK1A 
was found to phosphorylate and activates apoptosis signal-
regulating kinase 1 (ASK1) which is the upstream activator 
of JNK and P38α MAP kinases in response to cellular stress 
[88]. ASK1 induces the intrinsic apoptosis pathway [105], 
and interaction with DYRK1A might explain a proapoptotic 
role of DYRK1A. Moreover, ASK1 was found to be upregu-
lated in neurodegenerative diseases and, thus, has a positive 
correlation with DYRK1A [106]. In addition, ASK1 was 
found to be upregulated in melanoma and gastric cancers 
and has an important role in cell survival and inflamma-
tion, and DYRK1A as a kinase might activate ASK1 in other 
pathways than apoptosis (Fig. 5a) [107]. Collectively, further 
studies are needed to explore the possible role of DYRK1A 
in apoptosis and how it can serve as ASK1 activation factor 
in pathways other than apoptosis in cancers.

DYRK1A and angiogenesis

Angiogenesis, the formation of new blood vessels from pre-
existing ones, is one of the major hallmarks of tumorigen-
esis. As in normal tissues, cancer cells demand nourishment 
and oxygen to survive and invade adjacent tissues, so tumors 
depend highly on angiogenesis as a way to metastases and 
spreading [108]. In healthy status, angiogenesis is a highly 

regulated process, the balance between pro-angiogenic fac-
tors such as vascular endothelial growth factor (VEGF) and 
anti-angiogenic factors such as endostatin and thrombos-
pondin ensures the proper formation of blood vessels during 
developmental stages or in other physiological conditions 
such as wound healing and female menstrual cycle. How-
ever, in tumorigenesis, the hypoxia and extreme need for 
nutrient shifts this balance toward pro-angiogenic signaling 
by upregulating the expression of VEGFs or their recep-
tors such as vascular endothelial growth factor receptors 
(VGEFR) [109], and because of that VEGF and VEGFR 
became important therapeutic targets in various cancer types 
[110].

In Down syndrome, incidences of vascular malforma-
tion such as pulmonary vein stenosis, umbilico-portal 
venous system defects, vertebral, and right subclavian artery 
deformity in Down syndrome children were reported [111, 
112]. This indicates that certain genes in chromosome 21 
are responsible for proper vasculature formation. The pre-
vious studies showed that Down syndrome critical region 
expresses anti-angiogenesis inhibitors such as Down syn-
drome candidate region 1 gene (DSCR-1) and endostatin 
precursor collagen 18a which explains the reduced angio-
genesis tumor incidence and increased vascular abnormali-
ties in Down syndrome [113, 114].

Recent studies have explored the positive role of DYRK1A 
in angiogenesis. As in the case of sustaining EGFR signaling, 

Fig. 4  DYRK1A has a dual role in DSBs repair choice: (a) DYRK1A 
phosphorylates RNF169 at Ser688 which is important to impede 
53BP1 from Ub Lys 15 at H2AX on the DNA damage site. Removal 
of 53BP1 will allow end resection of the DNA strand which will fur-
ther sustain the repair via homologous recombination (HR). Still to 
be determined if DYRK1A through activation of RNF169, has a role 
in other end resection-dependent repair pathways such as alternative 

nonhomologous end-joining (aNHEJ) and single-strand annealing 
(SSA). (b) DYRK1A by undefined mechanism modulates the level of 
53BP1 at the DNA damage foci. Still to be determined if DYRK1A 
regulates 53BP1 level by induction of epigenetic modifications at Ub 
Lys 15 at H2AX or Me Lys20 at H4, which explain its potential role 
in nonhomologues end-joining repair (NHEJ) [26, 99–101]
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DYRK1A was found to sustain the accumulation VEGFR2 
receptor, and as a consequence, this leads to the upregula-
tion of intracellular calcium and calcineurin/NFAT signaling, 
a well-known proangiogenic pathway (Fig. 5b). Although 
DYRK1A was found to suppress some NFAT transcription 
factors isoforms such as NFATc2, NFATc3, and NFATc4 in 
the nucleus, in the case of angiogenesis, DYRK1A upregu-
lates NFAT transcription factors by an indirect mechanism in 
the cytoplasm [115]. Moreover, DYRK1A was found to sta-
bilize NFATc1/alpha A isoform which is the short conversion 
of NFATc1 that is induced after TCR activation and it is the 
only isoform from NFAT transcription factors that are reported 
to have an oncogenic role (Fig. 5b) [116, 117]. It is still not 

completely determined if DYRK1A sustain NFATc1/αA in 
endothelial cells as part of enhancing angiogenesis.

Furthermore, inducing mutant DYRK1A in zebrafish 
embryos showed increased cerebral hemorrhage and vas-
cular abnormality. Treatment with calcium chelating agents 
rescued the vascular permeability and defects which supports 
the involvement of DYRK1A in the calcium signaling pathway 
to regulate angiogenesis [118].

All these studies focused on DYRK1A role in developmen-
tal angiogenesis, further studies are needed to explore the role 
of DYRK1A in tumor angiogenesis, because this might serve 
as a potential therapeutic approach to resensitizes cancers that 
develop resistance toward anti-angiogenic targeted therapy.

Fig. 5  DYRK1A role in (a) Apoptosis and (b) Angiogenesis: (A.1) 
DYRK1A phosphorylates procaspase 9 at Thr125 in the nucleus 
which prevents its auto-processing, and localization into the cyto-
plasm, this will lead to apoptosis resistance. (A.2) Under cellular 
stress, DYRK1A phosphorylate ASK1 which will lead to its activa-
tion and phosphorylation JNK and P38 resulting in apoptosis, inflam-
mation, or cell survival. (B.1) DYRK1A sustains VEGFR2 accumula-

tion and signaling which increases the intracellular calcium level that 
activates calmodulin/calcineurin, and this dephosphorylates NFAT 
transcription factor and activates pro-angiogenic gene expression. It 
is still to be determined if DYRK1A sustains VEGFR2 accumulation 
through inhibiting SPRY2. (B.2) Another possible role of DYRK1A 
in angiogenesis is the phosphorylation of NFATc1/αA at multiple 
sites and inhibition of its proteasomal degradation
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DYRK1A as a target for the management 
of neurodegenerative disorders and cancer

Pharmacological inhibition of DYRK1A

Natural DYRK1A inhibitors

Several natural-based DYRK1A inhibitors have been 
discovered [reviewed in [119, 120]]. Harmine belongs 
to β-carboline family derived from vine Ban- isteriopsis 
caapi and rue Peganum harmala [119]. Harmine is an 
ATP-competitive inhibitor, inhibiting DYRK1A in higher 
potency than other kinases [121]. It has been shown to 
reduce Tau phosphorylation in vitro and to enhance the 
memory performance of APP/PS1 mice [122]. Moreover, 
harmine exerts anti-cancer effects through DYRK1A inhi-
bition in neuroblastoma, head and neck cancer, pancreatic 
cancer, and non-small cell lung carcinoma cell lines [69, 
123]. Although harmine is a good experimental chemi-
cal to target neurodegenerative disease and cancer, it has 
an off-target, multiple side effects, and cytotoxicity that 
impedes its clinical usage.

Another much safer natural non-ATP-competitive 
DYRK1A inhibitor is the epigallocatechin gallate (EGCG), 
a polyphenol extracted from green tea [124]. Adding EGCG 
to the mice diets rescues the cognitive defects, and improves 
the synaptic plasticity and brain morphology in Down syn-
drome mouse model Ts65Dn and transgenic DYRK1A over-
expressing mice [57, 125]. EGCG was found to have pre-
ventive effects. Treating DYRK1A overexpressing mice with 
EGCG at the gestation period only improves the recognition 
memory and improves neuronal function after birth [126]. 
Clinical trials have been conducted on EGCG as a potential 
treatment for AD with Down syndrome. In a study by De la 
Torre in 2013, 29 adults with Down syndrome were given 
9 mg/kg/day. The effects of EGCG were checked after 1 and 
3 months of treatment and after 3 months of treatment dis-
continuation. There was a significant improvement in social 
performance and in episodic, working, and visual memories 
compared with the control group. However, this improve-
ment disappeared after EGCG discontinuation [125]. In 
2014, another phase II clinical trial for EGCG treatment 
have been conducted. EGCG treatment with cognitive train-
ing was reported to improve memory, adaptive behavior, and 
executive function skills compared with placebo-cognitive 
training only [127].  FontUp® is a new nutritional formula 
with a chocolate taste that contains the effective EGCG 
extract dose, which is found to be safe in vivo and targeting 
DYRK1A [128].  FontUp® is currently undergoing clinical 
trial for Down syndrome individuals (clinical trial identifier: 
NCT03624556). In addition, EGCG was reported to induce 
anti-cancer effects in various cancer cell lines and can be 

used as adjuvant therapy with chemo- and radiotherapy [129, 
130]. EGCG has several targets other than DYRK1A, and 
no study indicated that EGCG preventive and anti-cancer 
effects are induced through DYRK1A inhibition specifically.

Synthetic DYRK1A inhibitors

Off-target effects are one of the problems limiting the useful-
ness of natural DYRK1A inhibitors. Therefore, efforts have 
been made to synthesize specific DYRK1A inhibitors.

A benzothiazole derivative INDY has been reported to 
be an ATP-competitive DYRK1A inhibitor. It was shown 
to rescue the phenotypic features associated with DYRK1A 
overexpression, such as reducing tau phosphorylation and 
activation of NFAT signaling. Moreover, pro-INDY was 
utilized to rescue the brain malformation associated with 
DYRK1A overexpression in Xenopus embryos. In contrast, 
INDY can inhibit DYRK1B with an IC50 of 0.23 µM [131].

Diaryl-azaindole inhibitors of DYRK1A (DANDY) 
are 3,5-diaryl-7-azaindoles derived from 3,5-diaryl-
1H-pyrrolo[2,3-b]pyridines. DANDY 28 is the most potent 
ATP-competitive DYRK1A inhibitor of this series with 
IC50 = 3 nM [132]. These compounds contain polar hydroxy 
groups which might impede blood–brain barrier penetra-
tion. Series of F-DANDY derivatives were developed by 
adding fluorine atoms replacing the hydroxy groups. Of 
them, F-DANDY derivative 5a compounds were found to 
rescue the memory and cognitive defects in Ts65Dn mice 
[133]. Further studies should be done to report the efficacy 
of F-DANDY in cancer cells overexpressing DYRK1A.

Another DYRK1A inhibitor, DYR291, has been synthe-
sized by the hybrid structure of harmine, inadazole com-
pound D15, and benzothiazole derivative INDY. This benzi-
midazole compound DYR291 was found to improve memory 
and learning defects in 3xTg-AD mice. However, it did not 
affect the NFT formation level [55]. Chronic administration 
of DYR291 into 3xTg-AD mice at an early age before devel-
oping AD prevented the development of AD hallmarks such 
as tau pathology, accumulation of β- amyloid peptides, and 
neurofibrillary tangles (NFTs) aggregates [134]. Accord-
ingly, DYRK1A inhibition could be used as prevention 
therapy for AD.

Silmitasertib (CX-4945) a CK2 kinase inhibitor with clin-
ically tested and proven safety, recently found to be an ATP-
competitive inhibitor for DYRK1A. It has a higher inhibi-
tory potency than harmine and INDY. When administered 
orally, it was found to reduce tau phosphorylation in the 
hippocampus of DYRK1A overexpressed mice. Moreover, it 
rescued the neurological defects in minibrian overexpressing 
D. melanogaster [135]. Silmitasertib reported having anti-
cancer effects through targeting CK2, not DYRK1A [136]. 
In 2017, the FDA granted Silmitasertib an orphan drug sta-
tus to treat cholangiocarcinoma [137]. This suggests that 
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Silmitasertib could be a good choice for targeting DYRK1A 
in neurodegenerative, Down syndrome, and cancer.

Targeting DYRK1A folding and proteolysis

The majority of DYRK1A inhibitors are ATP-competitive 
inhibitors. These inhibitors have limited selectivity toward 
one kinase, which makes their clinical utilization challeng-
ing [119]. As aforementioned, DYRK1A possesses an auto-
phosphorylation ability during the translational process. 
This auto-phosphorylation is important to its maturation 
and activity [138].

FINDY, a rhodamine derivative compound, found to 
inhibit DYRK1A auto-phosphorylation at ser 27 which 
interferes with the folding intermediate and prevents ATP 
incorporation and eventually leads to DYRK1A degradation. 
This means that FINDY does not inhibit mature DYRK1A, 
but it inhibits DYRK1A during its synthesis. Testing it 
in vivo was found to rescue developmental defects in Xeno-
pus laevis embryos [139].

Another way to reduce the effects of DYRK1A is to 
target its proteolysis. Decreased full-length DYRK1A and 
increased truncated DYRK1A was recently observed in the 
hippocampus of AD patients [140]. In-vitro study showed 
that truncation of DYRK1A increases its affinity to STAT3α 
which is involved in the transcription of pro-inflammatory 
cytokines. leucettine L41 a natural alkaloid extracted from 
Leucetta microraphis, reported to normalize DYRK1A 
activity and improve recognition memory in Down Syn-
drome mouse models [141]. A recent study reported a novel 
mechanism of action of L41, which is inhibiting proteolysis 
of DYRK1A in APP/PS1 mice. L41 reduces STAT3ɑ phos-
phorylation and improves microglia recruitment to amyloid 
plaques and rescue synaptic and memory deficits in APP/
PS1 mice [56]. Therefore, targeting DYRK1A folding or 
preventing its proteolysis might reduce the risk of AD and 
neuronal developmental defects associated with DYRK1A 
overexpression.

Targeting DYRK1A biologically through miRNA

miRNAs are short non-coding RNAs regulating gene expres-
sion through targeting mRNA of a specific gene and induc-
ing its degradation or activation [142, 143]. Many miRNA 
species have been identified to be implicated in various 
human diseases. Thus, targeting miRNA or enhancing their 
formation becomes one of the future therapeutic approaches, 
and these therapeutics are in phase 1 and 2 clinical trials 
[144].

The previous studies have identified miRNA that tar-
gets DYRK1A mRNA. As aforementioned, miR-1246 tar-
gets DYRK1A mRNA through the P53 transcription factor. 

Enhancing miR-1246 expression could be a possible strategy 
to treat p53 null tumors with overexpressed DYRK1A.

Another miRNA found to downregulate DYRK1A mRNA 
is miR-199b [145, 146]. Enhancing miR-199b could inhibit 
DYRK1A in neurodegeneration and tumors overexpressing 
DYRK1A.

Recently, miR-204-5p was also reported to be upregulated 
in PD patients’ samples. In dopaminergic cells, miR-204-5p 
upregulates phospo-tau and phospho-α-synuclein. In addi-
tion, miR-204-5p through upregulating DYRK1A induces 
apoptosis via activation of JNK pathway which leads to the 
loss of dopaminergic neurons [147]. In cancers, miR-204-5p 
was found to act as a tumor suppressor through apoptosis 
activation [148, 149], thus inhibiting miR-204-5p could help 
only in neurodegeneration disorders that involve DYRK1A.

Concluding remarks and future directions

The role of DYRK1A in neurological developmental defects 
and neurodegeneration is well known. The balance of its 
expression is quite important because over- or down-expres-
sion can lead to serious neurological related syndromes. 
Thus, targeting DYRK1A can serve as a single approach 
to manage Down syndrome and neurogenerative disease. 
However, its role in tumorigenesis is still to be elucidated; 
its tumor suppression or activation is context-dependent. As 
many kinases, DYRK1A phosphorylates a wide range of 
substrates, leading either to their activation or deactivation, 
thus supporting the assumption that the role of DYRK1A in 
many pathways is context-dependent.

This broad role of DYRK1A in the major players of can-
cer makes it a good pharmacological target, especially in 
combination with chemo- and radiotherapy, RTKs (approved 
to synergize with osimertinib), DNA damaging agents, and 
angiogenesis-targeted therapy. As a developmental essen-
tial kinase, inhibiting DYRK1A kinase might not introduce 
the same phenotypic features associated with its imbalance 
expression. It is also crucial to investigate other physiologi-
cal effects that could emerge accompany DYRK1A inhibi-
tion, especially in cancer patients.
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