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Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, 
a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to 
the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes 
in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged 
cells being eaten and processed by other cells. The ubiquitin–proteasome system (UPS) is a major cellular pathway that 
regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated 
through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic 
proteins, and small molecules targeted to enzymes associated with UPS.
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Introduction

Apoptosis, an essential process for development and homeo-
stasis in all multicellular organs, is divided into the intrinsic 
and extrinsic pathways [1] (Fig. 1). Problems with apop-
tosis give rise to numerous diseases, including cancer [1]. 
Rheumatoid arthritis and cancers are the well-known exam-
ples of under-apoptosis, whereas ischemic cardiomyopathy, 
acquired immune deficiency syndrome (AIDS), Alzheimer’s 
and Parkinson’s disease are some of the known examples 
of excessive-apoptosis [2, 3]. For the treatment of diseases 
caused by insufficient or excessive apoptosis, the protein 
levels of apoptotic proteins need to be controlled. A typi-
cal process that regulates protein levels is called the ubiqui-
tin–proteasome system (UPS). Ubiquitination is a process 
that involves degradation of a target protein [4]. The ubiq-
uitin–proteasome system proceeds through E1 (Ubiquitin-
activating enzyme), E2 (Ubiquitin-conjugating enzyme), and 
E3 (Ubiquitin-protein ligase enzyme) [5]. E1, E2, and E3 
enzymes induce the target protein to undergo proteasomal 

degradation, by forming the ubiquitin chain on the target 
protein [5]. Deubiquitinating enzymes (DUBs) cut off the 
ubiquitin chain formed on the target protein, reducing the 
amount of ubiquitination of the target protein [5] (Fig. 2).

Apoptosis

Nucleated animal cells contain substances that induce cell 
destruction in an inactive form [1]. The onset of apoptosis 
is very tightly controlled by an activation mechanism [1]. 
This is because once apoptosis is initiated, it irreversibly 
leads to cell death. Therefore, it is essential that the onset 
is strictly regulated, until apoptosis is required. The intrin-
sic pathway is activated by intracellular signals released 
when cells are stressed, and by proteins released from the 
mitochondrial intermembrane space [6]. Mitochondria are 
important organelles for eukaryotes; without mitochon-
dria, cell respiration is inhibited, leading to rapid cell 
death [6]. This is an important factor to be considered in 
cell death. Apoptotic proteins that target cells affect them 
in a variety of ways [6]. These proteins make passages on 
the mitochondrial membrane to expand the mitochondria 
or increase the permeability of the mitochondrial mem-
brane to release apoptotic substances in the mitochondrial 
intermembrane space [6]. Nitric oxide is also involved 
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in cell death [7]. Nitrogen monoxide increases the per-
meability of the mitochondrial membrane by decreasing 
the concentration gradient formed in the mitochondria, 
thereby facilitating apoptosis [7]. It is well known that 
p53 is responsible for cell cycle regulation and tumor 
suppression, and studies associating p53 and apoptosis 
have been identified [8]. Apoptosis by p53 involves the 
regulation of transcription-dependent and transcription-
independent functions of p53. When enabled, p53 transac-
tivates numerous apoptosis-related genes, including Bax, 
Noxa, PUMA, PIG3, p53AIP1, Killer/DR5, CD95 (Fas), 
and Prep [8, 9]. Most of these targets are members of the 
apoptosis-promoting Bcl-2 family genes [8]. In addition 
to these nuclear activities, p53 is also capable of inducing 
cytoplasmic death by mediating transcription-independ-
ent cytoplasm activation [10]. In particular, p53 is rapidly 
restricted to the mitochondria in response to various cell 

death signals, including ionizing radiation [11]. In mito-
chondria, p53 induces outer mitochondrial permeation 
(MOMP) to jointly release pro-apoptotic factors between 
mitochondrial membranes [10]. It is suggested that p53 
interacts with Bak, Bcl-2, and Bcl-xl in the mitochondria, 
and acts as a BH3-specific protein and a direct activator 
or inhibitor of Bax or Bak [12]. The mitochondrial outer 
membrane permeabilization pore (MAC), which creates 
channels that increase the permeability of the outer mito-
chondrial membrane, is controlled by the Bcl-2 protein. 
The Bcl-2 protein also plays a key role in apoptosis. A 
second mitochondrial-derived protein, the mitochondrial-
derived activator of caspase (SMAC), is released into the 
mitochondrial substrate [13]. SMAC inhibits the activity 
of these proteins by binding to proteins (IAPs) that inhibit 
apoptosis [13]. This inhibits the prevention of apoptosis 
by IAPs and makes it possible to initiate apoptosis. In 
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Fig. 1   Extrinsic and intrinsic pathways in apoptosis. Internal stimuli, 
including DNA damage, activate apoptotic proteins belonging to the 
Bcl-2 family Bax and Bak. And this induces formation of Bax-Bak 
complexes in the mitochondrial outer membrane. The complexes 
release cytochrome c and enhance levels of apoptotic protease acti-
vator 1 (Apaf1). Released cytochrome c promotes proteolytic matu-
ration of the activator caspase-9. Caspase-9 then cleaves and acti-
vates other effectors, caspase-2, 3, 6–8, and 10, and consequently 
induces apoptosis, and this series of processes is called the intrinsic 
pathway in apoptosis. As the death receptor and ligand bind, FAS-

associated death domain protein (FADD) and pro-caspase-8 line up 
to bind to the intracellular portion of the death receptor. At this time, 
the recruited caspase 8 can directly cleave and activate caspase-3 and 
caspase-7 and proteolytically activate the BH3-only protein BH3-
interacting domain death agonist (BID). Truncated BID (tBID) pro-
motes mitochondrial membrane permeability through activation of 
the Bax-Bak complex of the outer mitochondrial membrane, and then 
induces apoptosis through cleavage and activation of caspases, and 
this series of processes is called the extrinsic pathway in apoptosis
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addition, IAPs block the activity of caspase (cysteine pro-
tease/proteinase), and SMAC indirectly increases caspase 
activity and is involved in apoptosis [13]. The increased 
permeability of the mitochondrial membrane directly acti-
vates the enzyme that causes apoptosis [14]. One of the 
outcomes of increased caspase activity is cell death by 
mitochondrial cytochrome c [15]. Cytochrome c is pre-
sent in the inner mitochondrial membrane as an enzyme 
involved in oxidative phosphorylation [15]. Apoptosis 
causes the outflow of cytochrome c into the cytoplasm, 
and is activated to break down the DNA of the cell and 
promote apoptosis [15]. Briefly, cytochrome c is released 
into the cytoplasm due to a channel formed in the outer 
mitochondrial membrane (MAC: mitochondrial apopto-
sis-induced channel) [6]. The released cytochrome c binds 
to the apoptosis protease activating factor-1 (Apaf-1), and 
subsequently to pro-caspase-9, to form a protein com-
plex [6]. This complex activates pro-caspase-9 to form 
caspase-9 for the generation of cascades that activate 
other substances involved in apoptosis [6]. Anti-apop-
totic Bcl-2 family members such as Bcl-2, BCL2L1, and 
MCL1 inhibit the action of BH3-only proteins, thereby 
inhibiting the progression of intrinsic apoptosis [16]. The 
death ligands (DRs) such as tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL), Fas ligand (FasL), 
and tumor necrosis factor-α (TNF-α) initiate the extrin-
sic apoptosis pathway [17–19]. They belong to the TNF 
receptor family, characterized by a cysteine-rich extracel-
lular domain and a cytoplasmic death domain [20]. There 

are eight types of DRs and they are divided into two 
groups [21]. The first group includes the receptors Fas 
(DR2), TRAILR1 (DR4), and TRAIL2 (DR5) that can be 
activated by FasL and TRAIL [22]. TRAIL ligands bind 
to DR and TRAIL receptors (TRAIL-R), trigger apop-
tosis signals, and induce the formation and activation of 
death-inducing signaling complex (DISC). The second 
group includes the receptors TNFR1 (DR1), TRAMP 
(DR3), DR6, and EDAR. DR recruits the TNF-associated 
death domain (TRADD) as an adapter protein and binds 
to TNF-2,5 receptor-associated factor (TRAF2,5), the 
receptor-interacting protein kinase (RIP1 or RIPK1), and 
cellular inhibitors of apoptosis protein (cIAP). They bind 
to death receptors, and together with pro-caspase-8, FAS-
associated death domain protein (FADD) or TNF recep-
tor-associated death domain (TRADD) is aligned to asso-
ciate with the intracellular region of death receptors [19]. 
In addition, the formation of DISC by caspase-8 binding 
to FADD can be inhibited when a protein called FLICE-
like inhibitory protein (c-FLIP) is bound to FADD [23]. 
They bind to death receptors, and either FAS-associated 
death domain protein (FADD) or TNF receptor-associated 
death domain (TRADD) along with pro-caspase-8 is lined 
up to bind the intracellular region of death receptors [19]. 
Recruited caspase-8 directly cleaves and activates cas-
pase-3 and 7 [24], and it proteolytically activates a BH3-
only protein, the BH3-interacting domain death agonist 
(BID) [17]. Truncated BID (tBID) promotes mitochon-
drial membrane permeability through activation of the 
Bax-Bak complex in the outer mitochondrial membrane, 

Fig. 2   A pathway of protein 
proteasomal degradation 
through UPS and counteraction 
by DUBs. UPS requires a series 
of processes with involvement 
of E1, E2, and E3 enzymes. 
The result of ubiquitination 
is degradation of the target 
protein. (blue = E1 enzyme, 
green = E2 enzyme, purple = E3 
enzyme, gray = target protein, 
red = DUB)
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and then induces apoptosis through cleavage and activa-
tion of caspases, which are involved in an extrinsic path-
way of apoptosis [17].

UPS

Ubiquitin, a small polypeptide of 76 amino acids, is attached 
to the target protein. After several repetitions, many ubiq-
uitins form a polyubiquitin chain on the target protein [25]. 
This action has many functions, including protein degrada-
tion, DNA damage response, stress response, and translation 
[26].

Ubiquitin-specific peptidase (USP) is a DUB that spe-
cifically recognizes and removes ubiquitin from proteins 
that belong to a large family of cysteine proteases [27]. 
USP is reported to be involved in many diseases, including 
cancer proliferation, inflammation, and neurodegenerative 
disorders [28, 29]. DUBs are divided into nine families. 
The subfamilies are divided into two protease groups 
according to the type of enzyme cleavage. Particularly, 
the cysteine protease class includes monocyte chemotac-
tic protein-induced proteins (MCPIP), MIU-containing 
novel DUB family (MINDY), Machado-Joseph disease 
protein domain protease (MJD), ovarian cancer protease 
(OTU), after permuted papain fold peptidases of dsRNA 

viruses and eukaryotes (PPPDE) ubiquitin-specific pro-
tease (USP), ubiquitin C-terminal hydrolase (UCH), and 
ZUFSP families (Fig. 3). The metalloprotease type con-
tains the Jab1/Pab1/MPN metal enzyme motif protease 
(JAMM) family [30].

DUBs for apoptotic regulation

Pro-apoptotic proteins mediate apoptosis to destroy 
the damaged cells that cannot be recovered. DUBs that 
increase apoptosis by inhibiting proteasomal degradation 
of pro-apoptotic proteins through deubiquitination have 
been introduced. This process can be used to control the 
proliferation of cancer cells [31]. Conversely, E3 ligase, 
which increases the ubiquitination of pro-apoptotic pro-
teins, promotes the degradation of apoptotic proteins. 
Understanding this process is important in cancer therapy 
[32].

CYLD

CYLD was identified as a mutable gene from familial cylin-
dromatosis to develop cutaneous appendage tumors [33]. 
The N-terminal domain of CYLD comprises three cytoskel-
eton-related protein-glycine-rich (CAP-Gly) domains; the 
first two domains of CYLD mediate microtubule binding and 
the last is the CAP-Gly domain. This last domain couples to 
inhibitors of κB (IκB) kinase (IKK) adapter protein NF-κB 
essential modulator (NEMO) [34, 35]. CYLD has been 
widely studied in relation to NF-κB signaling [34]. It has 
been reported that the C-terminal portion of CYLD mediates 
M1 and K63 polyubiquitination, and the USP domain medi-
ates cleavage of K11 and K48 polyubiquitin bonds in vitro. 
CYLD also has two stored proline-rich (PR) motifs and a 
TRAF2-binding motif (PVQES) that can interact with the 
SH3 domain of other proteins [36]. Additional studies have 
shown how the specificity of the K63 and M1 polyubiquitin 
chains are achieved [37–39]. IKKβ induces ubiquitination 
and degradation through IκBα phosphorylation, translocat-
ing NF-κB to the nucleus. CYLD is a DUB that ablates K63 
and M1 polyubiquitin chains from various NF-κB signaling 
proteins [40]. The K48-K63 branch is shown to inhibit the 
K63-linked deubiquitination from CYLD [41]. Consistent 
with its role in deubiquitination of several key NF-κB signal-
ing proteins, CYLD deficiency leads to constitutive NF-κB 
activation and subsequent inflammatory gene expression 
[42–44]. CYLD is known as a tumor suppressor protein in 
DUB [45], and this function of CYLD has also been studied 
using mouse models. CYLD knockout mice are not natu-
rally tumor-causing but are more susceptible to chemically 
induced skin tumors than wild type mice [46].
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Fig. 3   Types of DUB families. A total of nine families of DUBs have 
been identified including ubiquitin-specific protease (USP), ubiq-
uitin C-terminal hydrolases protease (UCH), Machado–Joseph dis-
ease protein domain protease (MJD), ovarian tumor protease (OTU), 
Jab1/Pab1/MPN metallo-enzyme motif protease (JAMM), monocyte 
chemotactic protein-induced protease (MCPIP), permuted papain fold 
peptidase of dsDNA viruses and eukaryotes (PPPDE), motif interact-
ing with Ub-containing novel DUB family (MINDY), and zinc finger 
with UFM1-specific peptidase domain protein (ZUFSP)
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OTUB1

OTU deubiquitinase, ubiquitin aldehyde binding 1 
(OTUB1) known as otubain 1, belongs to the ovarian 
tumor domain (OTU) family of DUB. p53 is a well-
known tumor suppressor [47]. OTUB1 is known as a 
regulator of p53, and regulates the mouse double minute 
2 homolog (MDM2) modulating ubiquitination on p53 
[48]. OTUB1 binds to the p53-MDM2-UbcH5 complex. 
It was confirmed that OTUB1 mediates the stabilization 
and activation of p53 by regulating the ubiquitination of 
p53 by MDM2 [48]. In addition, a previous study has 
shown that OTUB1 induces stabilization of murine mouse 
double minute 4 (MDM4) protein (MDMX) by inhibiting 
the MDM2-mediated MDMX ubiquitination, as well as 
MDMX accumulation in the mitochondria and cytoplasm, 
p53 (S46) phosphorylation, and mitochondrial-mediated 
apoptosis [49]. OTUB1 is known to negatively regulate 
the innate antiviral immune response and MHC-II antigen 
presentation and participates in the maturation and apop-
tosis of lymphocytes. OTUB1 plays an important role in 
apoptosis through autophagy related 5 (ATG5), which is 
necessary for the formation of autophagy vesicles, and 
abnormal expression of ATG5 thereby affects the initia-
tion of autophagy [50]. A study has shown that ATG5 
regulation by OTUB1 indirectly modulates autophagy and 
the immune processes [50].

UCHL1

Ubiquitin C-terminal hydrolase L1 (UCHL1) is an impor-
tant member of the UCH family. UCHL1 protects against 
proteasomal degradation by removing the K48 polyubiq-
uitin chain of phorbol-12-myristate-13-acetate-induced 
protein 1 (NOXA/PMAIP1), which is a known important 
mediator of DNA damage-induced cell death [51]. NOXA 
expression was enhanced in chemotherapy-resistant tumor 
samples, and UCHL1 deficiency reduced the DNA-dam-
age-related apoptosis [51]. According to bioinformatics 
data of a previous study, the expression level of UCHL1 
was suppressed in nasopharyngeal carcinoma cell lines 
[52]. It has been demonstrated that UCHL1 has dual func-
tions due to its property to deubiquitinate p53 and p14ARF, 
and ubiquitinate MDM2 [52]. This means that UCHL1 
can be applied as a factor that induces apoptosis and is 
involved in the pathogenesis of nasopharyngeal carci-
noma [52]. In addition, the expression level of UCHL1 is 
decreased in hepatocellular carcinoma (HCC) and other 
digestive tumors [53]. Restoration of UCHL1 expression 
inhibits cell proliferation and induces apoptosis through 
the caspase pathway [53].

UCHL5/UCH37

Ubiquitin C-terminal hydrolase L5 (UCHL5/UCH37) is a 
DUB belonging to the cysteine protease family. UCHL5 is 
related to the 26S proteasome through Rpn132 and appears 
to play a role in interfering with the proteasome-associated 
degradation of substrates by detaching the polyubiquitin 
chain from substrates [54]. UCHL5 promotes the breakdown 
of inducible nitric oxide synthase and IκBα in the protea-
some [54]. UCHL5 and the ubiquitin-specific protease 14 
(USP14) inhibitor (b-AP15) induces cancer cell death by 
regulating UCHL5 levels in ovarian cancer [55]. b-AP15 
inhibits phosphorylation of Smad2 and inhibits its invasive 
ability during TGF-β signaling [55].

USP2

MDM4 tumor protein inhibits tumor formation by regulating 
the apoptotic mediator p53. Ubiquitin-specific protease 2a 
(USP2a) is a DUB that protects MDM4 from degradation. 
Therefore, the USP2a-MDM4 interaction can be positioned 
as one of the key factors determining the malignant potential 
of human cancers [56]. It has been reported that isoforms 
of USP2, USP2a and USP2c mediate cell death by targeting 
the RIP1 protein [57]. In the same study, TRAF2 was deter-
mined to be the second target for USP2a and USP2c [57]. 
In addition, it was confirmed that knockdown of USP2c, 
but not USP2a, induces apoptosis through siRNA. The dif-
ference between the results of USP2a and USP2c is that 
the two proteins are homologous, but differ in the range of 
target substrates depending on the N terminal domain [57]. 
Because it has been demonstrated that USP2a mediates the 
TNF signaling pathway, a deubiquitination assay with fac-
tors in the intrinsic apoptosis pathway was performed [58]. 
It was found that PIP1 protein was accumulated by USP2a 
and USP2c [57]. An increase in the level of RIP1 can induce 
apoptosis in MCF7 cells [57]. The ubiquitin ligase TRAF2 
plays a role in attaching K63 polyubiquitin chain to RIP1 
through the activation of the transcription factor NF-κB, 
which is inducible by TNF. On the other hand, TRAF2 itself 
is also ubiquitinated at K48 and K63, and conjugation with 
the K63 ubiquitin chain is required for RIP1 activity. The 
K48 polyubiquitin chain of TRAF2 is removed by USP2a 
and USP2c, but the K63 chain was not [57]. Downregulation 
of USP2a through siRNA was confirmed to inhibit TNF-
induced apoptosis [57].

USP4

Ubiquitin-specific protease 4 (USP4) contains domains 
including USP (DUSP), ubiquitin-like (UBL), UCHD1, and 
UCDH2. The DUSP and UBL domains of USP4 and USP15 
share high homology [59]. It was found that the catalytic 
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efficiency of the enzyme activity of USP4 is related to the 
DUSP-UBL domain [60]. Tumor suppressor protein retino-
blastoma protein (pRb) is the well-known substrate of USP4 
[61]. In head and neck squamous cell carcinoma (HNSCC), 
USP4 is upregulated and causes TNF-α-induced apoptosis 
through RIP1 targeting deubiquitination [62]. This finding 
indicates that the USP4 has a tumor suppressor role [62].

USP7

Ubiquitin-specific protease 7 (USP7) appears to regulate 
the kinetics of p53 and MDM2 pathway by p53 and its E3 
ligase MDM2. Other tumor-related factors such as FOXO, 
phosphatase and tensin homolog (PTEN), and cis pin are 
consequently involved in cell cycle control, DNA damage 
response, and apoptosis. Consistently, abnormal expression 
and activity of USP7 have both been linked to numerous 
cancer types and it is considered as powerful cancer treat-
ment targets [63, 64]. In a previous study, the decreased 
expressions of USP7 or p53 mutation was confirmed in 71% 
of the 131 patients identified with non-small-cell lung car-
cinoma (NSCLC); in particular, regulation of the p53 path-
way by HAUSP expression in adenocarcinoma of NSCLC 
cancer plays an important role in cancer prognosis [65]. It 
was confirmed that the mRNA levels of apoptotic proteins 
(such as p21 and Bax) were lower in patients with reduced 
USP7 expression or p53 mutation, than levels obtained in 
the control group [65]. Regulation of p53 expression through 
USP7 has been identified as a treatment method for NSCLC 
[65]. In the absence of DNA damage, both upregulation and 
downregulation of USP7 in the human colon cancer cell 
xenograft model stabilizes the level of p53, induces apopto-
sis, and inhibits tumor growth [66].

USP9X

Ubiquitin-specific protease 9X (USP9X) plays a role in 
both cancer cell proliferation and death, depending on 
the tumor type. It has been shown that in colon cancer, 
USP9X acts as an indirect regulator that directly regulates 
the protein stability of FBW7, leading to cancer cell death 
[67]. In addition, USP9X showed high mutation levels in 
pancreatic ductal adenocarcinoma (PDA), thereby con-
firming that conditional deletion of USP9X interacts with 
KrasG12D to accelerate PDA tumorigenesis [68]. USP9X is 
a tumor suppressor gene with prognostic and therapeutic 
relevance in PDA [68]. Myeloid cell leukemia-1 (MCL1) 
is a pro-survival Bcl-2 family member that promotes cell 
survival [69]. High levels of MCL1 expression are con-
firmed in B- and mantle-cell lymphomas [70]. It acts as 
a factor in chemical resistance and disease recurrence. 
USP9X cleaves the K48 polyubiquitin chain of MCL1 
and regulates the protein stability of MCL1 by regulating 

proteasomal degradation [70]. Patients with multiple mye-
loma presenting with high expression of USP9X have a 
poor prognosis, and knockdown of USP9X enhances ubiq-
uitination of MCL1 to enhance apoptosis [70].

USP10

Ubiquitin-specific protease 10 (USP10) was found to regu-
late PTEN in lung and breast cancer cell lines [71, 72]. It 
was confirmed that the expression of USP10 in lung cancer 
tissue was lower than in normal cells, and knockdown of 
USP10 increased the tumor growth or invasion in mice [71]. 
PTEN and USP10 interact directly, and the metastatic effect 
of USP10 knockdown was negated by PTEN transfection 
[71]. p53 is known to be an important tumor suppressor [73]. 
A mutation or downregulation of p53 occurs in about 50% 
human cancers [74]. In a previous study, it has been demon-
strated that miRNA can negatively regulate protein expres-
sion through direct labeling, or positively regulate cellular 
functions through inhibition of negative protein regulators 
[75]. USP10 has DUB activity against p53 [76]. A recent 
paper reported that miRNA-138 inhibits USP10 expression 
by directly binding to 3'-UTR of USP10 mRNA, a positive 
regulator of p53 [73]. This in turn downregulates the protein 
level of p53, resulting in decreased apoptosis and defects in 
cell cycle arrest [73].

USP14

IU1, a small molecule inhibitor of USP14, is known to 
increase apoptosis [77]. Treatment with a DUB inhibitor 
of USP14 and UCHL5 b-AP15 inhibits the DUB activities, 
mediates cell apoptosis, and decreases migration in GCB- 
and ABC-DLBCL, by activating the caspase and mitochon-
drial mediated apoptosis [78].

USP24

In U2OS cells, overexpression of ubiquitin-specific protease 
24 (USP24) causes cell death and increases caspase-3 cleav-
age [79]. USP24 stabilizes the protein level of Bax by bind-
ing, followed by deubiquitination. In addition, yeast two-
hybrid screening identified a protein that can interact with 
USP24, and a nonhomologous end joining factor, Ku70, was 
selected as a protein binding partner for USP24. USP24 is 
known to be involved in DNA repair, telomere maintenance, 
and V(D)J recombination [79]. In a previous study, it was 
also demonstrated that USP24 stabilizes the p300 protein, 
induces the acetylation of ku70, and reduces the interaction 
between ku70 and Bax [79].
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USP28

Ubiquitin-specific protease 28 (USP28) is required for 
c-Myc stability in human tumor cells. USP28 binds to c-Myc 
through interaction with the F-box protein FBW7α, which is 
a part of the SCF type ubiquitin ligase. Therefore, the stabi-
lizing c-Myc exists in the nucleus, and not in the nucleolus, 
which is decomposed by FBW7γ. High expression levels 
of USP28 are essential for colon and breast cancers, and 
stabilization of c-Myc by USP28 is essential for tumor cell 
proliferation [80]. [1–3]triazolo[4,5-d]pyrimidine, one of 
inhibitors for USP28, downregulates cancer cell prolifera-
tion in gastric cancer cell line GES-1 [81], and USP28 is also 
highly expressed in diverse cancers; bladder cancer [82], 
colorectal cancer [83], and non-small cell lung cancer [84].

USP30

Parkin levels are limited in most cells, and when high 
levels of heterozygous parkin are overexpressed, a repre-
sentative mass clearance of mitochondria is observed. The 
researchers demonstrated that high levels of Parkin resulted 
in sensitization of hTERT-RPE1 cells to CCCP-induced, 
PINK1-dependent cell death. They showed that a unique 
MOM DUB, the ubiquitin-specific protease 30 (USP30), 
directly interferes with this expression of parkin activity. 
Importantly, data suggest that USP30 is associated with the 
apoptosis pathway, and its depletion also sensitizes cancer 
cells to cell death induced by the BH3 mimic [85]. USP30 
inhibitors MF-094, MF-095, and FT385 can therefore be 
used in the treatment of Parkinson’s disease by inducing 
apoptosis [86, 87].

USP33

In a previous study, the clinical significance of ubiquitin-
specific protease 33 (USP33) expression in tumor tissues 
of papillary thyroid carcinoma (PTC) patients was inves-
tigated. It was confirmed that the knockdown of USP33 in 
the PTC cell lines (TPC-1 and BCPAP) increases the cell 
viability and invasion ability [88]. USP33 interacts with 
Robo1 (Roundabout homolog 1), a major receptor for Slit 
that normally acts as a tumor suppressor in PTC cells [88]. 
The apoptotic effect on the PTC cells is confirmed by the 
interaction between Robo1 and USP33 [88].

DUBs for anti‑apoptotic regulation

DUB has been reported to reduce apoptosis by inhibiting 
proteasomal degradation of anti-apoptotic proteins through 
deubiquitination. This process can be used to control exces-
sive killing of normal cells. Conversely, E3 ligase, which 

increases the ubiquitination of anti-apoptotic proteins, may 
promote the degradation of anti-apoptotic proteins [89].

A20

A20 (also known as TNFAIP3) is a member of the OTU 
family, and contains an N-terminal OTU domain and zinc-
finger motifs on the C-terminal region [90]. A20 is known 
to deconjugate K11, K48, and K63 polyubiquitin chains 
in vitro, but it was confirmed that only the K63 polyubiqui-
tin chain is attached to the NF-κB protein [91]. In vitro and 
in vivo experimental data show that loss of A20 induces 
PIPK1 kinase-dependent and independent cell death upon 
single TNF stimulation [92]. In the absence of linear ubiqui-
tination, A20 is recruited to a complex via the ZF4 and ZF7 
domains, but in this scenario, it protects against cell death 
via the DUB activity [92].

FAM188B

Anoikis is a type of cell death induced by cell detachment. 
Family with sequence similarity 188 member B (FAM188B) 
is expected to be a member of the new DUB, but its function 
remains to be studied. It has been shown that knockdown of 
FAM188B increases anoikis in A549 and H1299 cell lines 
expressing WT-EGFR, and in H1975 cell line expressing 
TKI-resistant EGFR mutations [93]. FAM188B induces 
tumor proliferation by maintaining EGFR and carcinogenic 
protein activity levels [93].

JOSD1

Myeloid cell leukemia 1 (MCL1) is an important anti-apop-
totic member of the Bcl-2 family. S63845, is a known inhib-
itor of MCL1, effective in hematologic cancer but not in 
solid cancer [94–97]. According to a recent study, Josephin 
domain containing 1 (JOSD1) was found to be one of highly 
expressed DUBs in cervical cancer [97]. Moreover, deple-
tion of JOSD1 is reported to result in the death of gyneco-
logical cancer cell lines [97]. MCL1 has a short half-life and 
is sensitive to changes in protein synthesis or degradation. 
Therefore, the regulation of MCL1 is an important factor 
in determining apoptosis. USP9X, USP13, USP24, DUB3, 
JOSD1 and Ku70 reverses MCL1 K48-linked ubiquitination 
and prevents the proteasomal degradation. This leads to an 
increase in the half-life of MCL1 resulting in anti-apoptosis 
[98].

OTUB1

In a previous study, the expression of apoptosis-related 
proteins after OTUB1 silencing was investigated to explore 
the mechanism of OTUB1-mediated growth of HCC cells. 
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Results revealed that compared to the control, decrease in 
the expression of OTUB1 by shOTUB1 in HepG2 and LM3 
cell lines resulted in increased expressions of the apoptotic 
proteins caspase-3, caspase-9, and Bax, and decreased 
expression of the anti-apoptotic protein Bcl-2. These results 
indicate that OTUB1-silencing enhances apoptosis in HCC 
cells [99].

PPPDE1

The PPPDE family members are a newly discovered type 
of DUB, but their functions are not yet to be elucidated. It 
has been demonstrated that PPPDE1 is a DUB of ribosomal 
protein S7 and that it regulates the activity of ubiquitin via 
K48 and K63 binding [100]. PPPDE1 is a critical regulator 
of p53 protein and its downstream apoptosis pathway [101]. 
The knockdown of PPPDE1 results in reduced tumorigenesis 
in hepatocellular carcinoma cells [101].

UCHL5/UCH37

In the ABC- and GCB-subtypes of diffuse large B-cell lym-
phoma (DLBCL), the b-AP15 downregulates migration and 
induces apoptosis by regulating UCHL5 and USP14 [78]. 
In multiple myeloma (MM), UCHL5 and USP14 are highly 
expressed, compared to normal cells. b-AP15 also medi-
ates the cell viability in MM cells by regulating UCHL5 
and USP14, without inhibition of proteasome activity [102]. 
In the enterochromaffin (EC) cell line, the expression of 
UCHL5 is high, and one study reported that the expression 
of UCHL5 decreases the survival rate [103]. On the other 
hand, overexpression of UCHL5 promotes the cell cycle and 
proliferation, and reduces apoptosis in EC cells [103].

USP1

Ubiquitin-specific protease 1 (USP1) deubiquitinates the 
K48-linked polyubiquitin chain of histone demethylase 
lysine-specific demethylase 4 a (KDM4A), which is upreg-
ulated in prostate cancer (PC) [104]. The protein expres-
sion of KDM4A is stabilized by USP1 in vitro and in vivo 
[104]. Inhibition of USP1 by ML323 mediates reduction of 
cell proliferation in PC. ML323 is potentially a new treat-
ment method for patients who are resistant to existing PC 
anticancer drugs [104]. USP1 promotes stem cell mainte-
nance and radiation resistance in glioblastoma multiforme 
(GBM) tumors via stabilization of inhibitor of DNA binding 
1 (ID1) and checkpoint kinase 1 (CHEK1) [105]. Targeting 
and lowering the level of USP1 may therefore reduce the 
survival of GBM, making it an effective treatment for GBM 
[105]. In addition, inhibitors of USP1 (including pimozide) 
suppress the DUB activity of USP1 and promote the deg-
radation of ID1 [106]. These small molecules are known 

to induce apoptosis in acute myeloid leukemia (AML) and 
K562 [106].

USP2

Ubiquitin-specific protease 2 (USP2) is a multifunctional 
DUB. USP2 regulates cell cycle progression, and thus 
carcinogenesis through deubiquitination of cyclins and 
Aurora-A. Other tumorigenic molecules, including epi-
dermal growth factor and fatty acid synthase, are also tar-
gets for USP2. USP2 further prevents the p53 signal [107]. 
Downregulation of USP2 in the triple negative breast can-
cer (TNBC) cell line causes apoptosis by regulating FAS 
and Cyclin D1. Treatment with the USP2 inhibitor ML364 
results in apoptosis in the TNBC cell line [108], and down-
regulation of cyclin D1 by ML364 blocks the G0/G1 phase 
and disrupts the cell cycle progression in HCT116 cell and 
mino cell lines [109].

USP4

Ubiquitin-specific protease 4 (USP4) deubiquitinates and 
stabilizes TβRI (which plays a tumor-promoting role in liver 
cancer), and subsequently activates the TβRI/pSmad2 sign-
aling pathway (which potentiates cell migration and inva-
sion capacity) in vivo and in vitro [110]. Using quantitative 
proteomics analysis, cyclophilin A (CypA) was selected as 
a second potential target of USP4 in liver cancer, which was 
further confirmed by Co-IP analysis. CypA has been dem-
onstrated to mediate malignant biological behaviors such 
as cell proliferation and metastasis by USP4 expression 
[111]. Similar to breast cancer, USP4 negatively regulates 
miR-148a in liver cancer, suggesting a potential therapeutic 
role for miR-148a in liver cancer [112]. High expression 
of USP4 is associated with poor clinical outcomes in lung 
cancer patients. USP4 is a novel deubiquitinating enzyme for 
Twist Family BHLH Transcription Factor 1 (Twist 1) that 
stabilizes Twist 1 and mediates the growth of lung cancer 
stem cells [113].

USP5

Activity of ubiquitin-specific protease 5 (USP5) is sup-
pressed by the BRAF inhibitor (vemurafenib) in sensitive, 
but not in acquired or intrinsically resistant cells. USP5 
knockdown overcomes acquired vemurafenib resistance 
and sensitizes BRAF and NRAS mutant melanoma cells to 
apoptosis initiated by MEK inhibitors, cytokines, or DNA-
damaging agents. Knockdown and overexpression studies 
have demonstrated that USP5 regulates p53 levels and alters 
cell growth and cell cycle distribution associated with p21 
induction. USP5 also regulates the intrinsic apoptotic path-
way by modulating the p53-dependent FAS expression [114, 
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115]. USP5 is overexpressed in colorectal cancer tissue and 
promotes colorectal cancer cell proliferation and resistance 
to chemotherapy [116]. USP5 is known to promote tumo-
rigenesis and drug resistance by inhibiting p14ARF-p53 
signaling in hepatocellular carcinoma [117], and it induces 
epithelial–mesenchymal transition (EMT) in hepatocellular 
carcinoma cells by targeting SLUG, a known transcription 
factor [118]. A previous study confirmed that β-catenin sign-
aling activation, which plays an important role in EMT, is 
inhibited in USP5 knockdown NSCLC cells [119]. It has 
been shown that the mRNA and protein levels of USP5 
increased in clinical samples of liver cancer and HCC cells 
compared to the control [120]. Interestingly, MDM2 is 
downregulated by siUSP5, and p14ARF-p53 signaling was 
activated to inhibit cell proliferation and lead to apoptosis 
[120]. On the other hand, USP5 overexpression suppressed 
the expression of p14ARF and p53, promoted MDM2 expres-
sion, and enhanced cell proliferation [120].

USP7

USP7 is a known DUB of the tumor suppressor protein 
PTEN [121]. However, the tumor suppressor function of 
PTEN is achieved by the nuclear location of PTEN [121]. 
Deubiquitination of specific lysine of PTEN regulates the 
intracellular localization of PTEN protein, and deubiquitina-
tion of PTEN through USP7 controls the localization in the 
cytoplasm rather than the nucleus, which may inhibit the 
tumor suppression of PTEN [121]. In cervical cancer, USP7 
mediates the binding and interaction of MRE11-RAD50-
NBS1 (MRN) complex with DNA damage checkpoint 
protein 1 (MDC1) through deubiquitination of MDC1, and 
this process mediates DNA damage response (DDR) [122]. 
siUSP7 consequently inhibits the binding of MRN complex 
with MDC1, and it impairs the recruitment of p53 binding 
protein 1 (53BP1) and breast cancer protein 1 (BRCA1) in 
HeLa and MCF7 cells [122]. It is of interest that the high 
level of USP7 has been found in cervical cancer patients 
[122].

USP8

Ubiquitin-specific protease 8 (USP8) knockdown inhibits 
lung cancer cell proliferation and promotes apoptosis [123]. 
It may reduce the expression of RTK, thereby reducing the 
viability of gefitinib-resistant and sensitive NSCLC cells 
[123]. Knockdown of USP8 downregulated the expression 
of p-AKT, indicating that USP8 knockdown inhibits cell 
proliferation by inhibiting the PI3K/AKT pathway [123]. 
USP8 directly deubiquitinates FLIP, improves protein stabil-
ity, and inhibits DR-induced apoptosis [124].

USP9X

Ubiquitin-specific protease 9X (USP9X) preserves the 
MCL1 expression by removing the polyubiquitin chain 
[125]. Inhibition of USP9X through WP1130 causes apop-
tosis in non-small lung cancer cells [126]. WP1130 enhances 
TRAIL-induced apoptosis through USP9X-dependent miR-
708-mediated downregulation of c-FLIP [127]. Inhibition of 
the DUB USP9X induces pre-B cell homeobox 1 (PBX1) 
degradation, thereby stimulating prostate cancer cell apop-
tosis [128]. In breast cancer cells such as MCF7 and T47D, 
USP9X is shown to be a DUB for BRCA1, that plays an 
important role in DNA double-strand break repair [129]. 
Depletion of USP9X levels decreases the protein levels and 
half-life, along with increased ubiquitination of BRCA1 
[129]. Knockdown of USP9X significantly reduces the 
homologous recombination (HR) efficiency. Taken together, 
these results indicate that USP9X plays a role in HR repair, 
and modulates the sensitivity of cancer cells to DNA damag-
ing factors [129].

USP10

Analysis of USP10 expression revealed significantly higher 
levels in breast cancer patients, which is correlated with 
tumor progression and lower overall survival rates [72]. 
Interestingly, upregulation of USP10 protein level and addi-
tional depletion of USP10 in PI3K inhibitor-resistant breast 
cancer cells, when compared to the parental control group, 
resensitized these cells to PI3K inhibitors [72]. In addition, 
a patient-derived xenograft (PDX) model of breast cancer 
patients performed after administration of PI3K inhibitors 
showed an amount correlation between USP10 and PTEN 
protein levels [72]. The mRNA expression of USP10 is 
upregulated in endometriosis patients, and USP10 increases 
the protein stability of Raf-1 through deubiquitination to 
Raf-1 [130]. It induces the migration and proliferation of 
ectopic endometrial stromal cells and reduces apoptosis by 
mediating the activation of Raf-1/MEK/ERK signaling path-
way [130]. The reversed result was confirmed by downregu-
lation of USP10 through siUSP10 [130].

USP11

Ubiquitin-specific protease 11 (USP11) regulates the ubiq-
uitination of cellular IAP2 (cIAP2), and increased levels of 
cIAP2 cause apoptosis in UACC-62 cells [131]. In a previ-
ous study, cIAP2, which protects cancer cells from apop-
tosis, is stabilized by USP11 and inhibits apoptosis [132]. 
It was confirmed that cIAP1 is expressed at high levels in 
almost all carcinomas; SMAC-mimicking treatment results 
in rapid reduction in the expression and function of cIAP1. 
Conversely, low expression levels of cIAP2 show lesser 
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alterations in the expression after SMAC-mimicking treat-
ment [132]. Knockdown of cIAP2 further allows cancer cells 
to reach apoptosis, and depletion of USP11 could decrease 
the expression levels of cIAP2 without affecting the expres-
sion levels of other IAPs such as cIAP1, XIAP, and ML-IAP 
[132].

USP13

MCL1 is an anti-apoptotic Bcl-family protein. Ubiquitin-
specific protease 13 (USP13) regulates MCL1 stability in 
lung and ovarian cancer cells. Using the CRISPR/Cas9 sys-
tem, it was confirmed that tumor growth was suppressed in 
USP13 KO nude mice [125]. Spautin-1 acts as an inhibitor 
of USP13 in MDCK and HeLa cells [133, 134].

USP14

The expression of USP14 is known to be associated with 
p53 deficiency diseases [135], colorectal cancer [136], 
intrahepatic bile duct cancer [137], lung cancer [138, 139], 
and ovarian cancer [140]. According to a previous study, 
the dysregulation of USP14 expression leads to cancer cell 
death by altering the expression level of anti-apoptotic pro-
tein Bcl-xl in epithelial ovarian cancer (EOC) cells. When 
the level of USP14 was reduced by shUSP14, the level of 
Bcl-xl protein also decreased, whereas high expression of 
USP14 was pathologically associated with poor prognosis 
in ovarian cancer patients [140]. In addition, knockdown of 
USP14 in SKOV3 cells contributed to the inhibition of cell 
proliferation [140]. Aurora-B is ubiquitinated and degraded 
during cell apoptosis induced by chemotherapeutic drugs 
for leukemia [141]. FBXW7 mediates Aurora-B ubiquitina-
tion breakdown during apoptosis induced by chemotherapy 
drugs [141]. Meanwhile, USP14 prevents protein degrada-
tion by deubiquitination of Aurora-B and inhibits chemo-
therapeutic drug apoptosis in leukemic cells [141]. Con-
versely, administration of b-AP15, an inhibitor of USP14, 
significantly increases the death rate of leukemic cells, in 
a dose-dependent manner [141]. Knockdown of USP14 in 
metastatic melanoma patients reduces the viability of mela-
noma cells [142]. It has been confirmed that inhibition of 
USP14 rapidly triggers ROS generation leading to apoptosis, 
including accumulation of polyubiquitinated proteins and 
chaperones, and mitochondrial dysfunction [142]. Moreover, 
in the lung carcinoma cell line A549, treatment with siRNA 
or DUB inhibitor IU1-47 of USP14 significantly reduces the 
proliferation rate and induces cell cycle arrest [143].

USP15

Ubiquitin-specific protease 15 (USP15) is an up-regulator 
of apoptosis in degenerative nucleus pulposus (NP) cells. 

Expression of USP15 decreases the phosphorylation of 
AKT, and upregulation of USP15 promotes cell apoptosis 
[144]. A previous study demonstrated that USP15 is a com-
ponent of FKBP5/AKT signaling in NP cells [144]. It is well 
known that the mRNA levels of USP15 are upregulated in 
patients with MM [145]. Silencing of USP15 induces MM 
cell antiproliferative cell death as well as inhibits the expres-
sion of NF-κBp65 in the nucleus and cytoplasm, whereas 
overexpression of USP15 exerts an adverse effect [145]. 
Moreover, in vivo experiments have shown that silencing of 
USP15 inhibits MM tumor growth and NF-κBp65 expres-
sion [145]. Overexpression of USP15 promotes NF-κBp65 
expression through inhibition of ubiquitination [145]. 
USP15 mediates enhancement of the TGF-β pathway by 
deubiquitination of the TGF-β receptor (TβR-I) in carcino-
mas such as glioblastoma, breast cancer, and ovarian cancer 
[146]. Higher expression of USP15 is obtained in these car-
cinomas [146]. In addition, in the mouse model derived from 
glioblastoma patients, downregulation of USP15 reduces the 
expression level of TGF-β and this depletion reduces the 
carcinogenic potential of cells [146].

USP18

Cervical cancer is a disease that causes cancer at the 
entrance of the uterus and is the second largest female can-
cer in the world after breast cancer [147]. In cervical cancer 
cell progression, the activation level of PI3K/AKT signal-
ing is an important factor. A previous study reported that 
overexpression of ubiquitin-specific protease 18 (USP18) 
inhibits apoptosis and promotes cell proliferation in cervi-
cal cancer cell lines (Caski and SiHa) by regulating AKT 
phosphorylation [148], while USP18 silencing by siUSP18 
mediates apoptosis in cervical cancer cell lines (Caski and 
SiHa) [148]. The expression of USP18 is upregulated in 
HCC [149]. Knockdown of USP18 inhibits HCC cell growth 
and induces cell cycle arrest and premature apoptosis [149]. 
And this regulation is through a component of the p53 apop-
totic pathway and member of anti-apoptotic Bcl-2 family, 
BCL2L1 [149]. It was confirmed that BCL2L1 decreased 
with the decrease of USP18 [149].

USP21

Ubiquitin-specific protease 21 (USP21) is reported to deu-
biquitinate the H2A protein and nonhistone proteins such as 
the GLI family zinc finger 1 (GLI1) [150] and retinoic-acid-
inducible-gene I (RIG-I) [151]. In previous studies, USP21 
was determined to mediate cancer proliferation. USP21 is 
highly expressed in bladder cancer (BC) [152], and it has 
been confirmed that the high expression of USP21 is closely 
related to tumor size, epithelial-middle lobe metastasis 
(EMT), and poor prognosis [152]. USP21 directly regulates 
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the protein level of enhancer of zeste 2 polycomb repressive 
complex 2 subunit (EZH2), which is known to be one of the 
cancer-inducing factors, and is highly expressed in numerous 
cancers [152]. The down-regulation of USP21 by siRNA 
inhibits the invasion and proliferation in renal cell carcino-
mas (RCC) [153]. USP21 has the potential to be an RCC 
therapeutic target associated with inhibition of interleukin 
8 (IL-8) [153]. It has been reported that USP21 deubiquit-
inates Fos-related antigen 1 (FRA1), increasing the FRA-1 
stability and improving the expression of FRA-1 target genes 
in colon cancer cells [154]. USP21 improves FRA-1 stability 
and AP-1 target gene expression by deubiquitinating Fra-1. 
Considering all the above, USP21 can be an attractive treat-
ment target in metastatic colorectal carcinomas (mCRCs) 
with high Fra-1 expression [154].

USP22

Ubiquitin-specific protease 22 (USP22) is a protein that 
functions to induce apoptosis and plays an oncogenic role. 
In gastric cancer, the mRNA and protein expression lev-
els of USP22 are high, and knockdown of USP22 increases 
cell viability and proliferation in vitro [155]. In addition, 
it has been determined that the USP22 activating c-Myc/
NAMPT/SIRT adjusts the FOXO1 and YAP signaling path-
ways. [155]. In pancreatic ductal adenocarcinoma cells, 
USP22 reduces cell apoptosis by regulation of DYRK1A, 
and knock-down of USP22 shows opposing outcomes 
[156]. USP22 overexpression induces enhanced resistance 
to apoptosis and treatment resistance in multiple cancer cell 
lines [157, 158]. It has been demonstrated that knockdown 
of USP22 using miRNA inhibits the growth of colorectal 
cancer [159].

USP51

Zinc‑finger E‑box binding homeobox 1 (ZEB1) contains 
two zinc finger clusters in the N-terminal and C-terminal 
regions, which bind to the E-Box sequence (CACCT) or 
similar sequence (CACCG) to regulate downstream target 
gene expressions. ZEB1 promotes tumor cell metastasis, 
invasion, and resistance to treatment. ZEB1 expression is 
associated with treatment resistance in several cancers, and 
inhibition of ZEB1 has been shown to reverse chemical 
resistance in docetaxel-resistant human lung cancer cells 
[160]. Overexpression of USP51 causes ubiquitination of 
ZEB1 in MM cells and lowers the protein stability of ZEB1 
through proteasomal degradation. Downstream ZEB1 in 
MM cells results in apoptosis and decreased cell prolifera-
tion [160]. It has also been demonstrated that knockdown 
of ZEB1 reduces cell proliferation and causes apoptosis in 
metanephric MM cells and mK3 cells [161]. Overexpres-
sion of ZEB1 mediates the proliferation and migration and 

reduces the cell apoptosis in MM cells. ZEB1 regulates cell 
proliferation and apoptosis with Six2 in MM cell lines [161].

Small molecular inhibitors for DUBs

As mentioned in previous sections, regulation of DUBs is 
important in the death of cancer cells. In fact, numerous 
studies have demonstrated the effectiveness of DUB inhibi-
tors in regulating apoptosis (Table 1) [77, 78, 81, 86, 108, 
109, 126, 127, 143, 162–173]. These inhibitors are newly 
made through continuous research, and further studies are 
required to prove their effects in vivo and in vitro, for further 
application in clinical trials. The well-known DUB inhibitor 
b-AP15 blocks the DUB activity by regulating 19S regu-
latory particles (19S RP) [163, 174]. b-AP15 is known as 
an inhibitor of UCHL5 and USP14 [78, 163]. Proteolysis-
targeting chimera (PROTAC), which was first designed in 
2001, is a new drug development technology with a concept 
of inducing proteasomal degradation by inducing protein 
ubiquitination with a compound that connects E3 ligase 

Table 1   Small molecules for DUBs that regulate pro-apoptotic and 
anti-apoptotic pathways

Small molecules Proteins References

[1,2,3]triazolo[4,5-d]
pyrimidine

USP28 [81]

AZ1 USP25 [162]
USP28

b-AP15 UCHL5/UCHL5 [78, 163]
USP14

DUBs-IN-2 USP8 [164]
FT385 USP30 [86]
IU1 USP14 [77]
IU1-47 USP14 [143]
LDN57444 UCHL1 [165]
ML324 USP1/UAF1 [173]
ML364 USP2 [108, 109]
MF-094 USP30 [86]
MF-095 USP30 [86]
NCI677397 USP24 [166]
NSC632839 USP2 [168]

USP7
P22077 USP7 [167]

USP47
Spautin-1 USP13 [169]
Subquinocin CYLD [170]
Vialinin A USP4 [171, 172]

USP5
WP1130 USP9X [126, 127, 166]

USP24
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and target protein using a linker connecting the E3 ligase 
ligand module and the target protein ligand-module [175]. 
In 2020, Arvinas, the first PROTAC company established 
across the globe, announced the result of a phase 1 clinical 
trial showing that PROTAC had an actual therapeutic effect. 
PROTACs that are used in clinical trials are ARV-471 and 
ARV-110 from Arvinas. A number of multinational phar-
maceutical companies are preparing for clinical trials and 
focusing on diverse researches, hence making this a trendy 
and powerful new drug development platform. Recently, var-
ious developments (including folate-caged PROTAC [176], 
p-PROTAC [177], and antibody-PROTAC) [178] have been 
developed. DUBTAC, which includes ligands that can link 
DUB and target proteins, has also been reported [179]. In 
future DUB research, methods to control the degradation of 
target proteins by grafting DUB to new technologies, includ-
ing DUBTAC, need to be studied.

Conclusion

Apoptosis is an indispensable process from the viewpoint 
of cell growth, development, and life maintenance, and 
when a problem occurs in this system, diseases inevitably 
occur in the human body. These diseases include repre-
sentative diseases among human death factors. The UPS 
is known to be a very important process that regulates the 
breakdown of proteins (Table 2). Controlling the degree 
of ubiquitination of apoptotic proteins may be effective 
in the treatment of diseases related to apoptosis control 
due to failure to quantitatively control apoptosis proteins. 
Regulation of the expression of apoptotic proteins has 
been attempted in many papers and studies. More care 
should be taken to control cell apoptosis by proteins that 
are involved in both pro-apoptosis and anti-apoptosis 
processes, such as OTUB1, UCHL1, UCHL5/UCH37, 
USP2, USP4, USP7, USP9X, USP10, and USP14. This 
is because regulation of these protein levels can trigger 
or inhibit cell death, and hence results may vary from cell 
lines. However, since application of these proteins can 
affect both pro-apoptosis and anti-apoptosis, and different 
results can be obtained depending on whether the protein 
is overexpressed or knocked down, it can be difficult and 
highly useful at the same time. Since the action of these 
proteins for each type of cells and tissues is continuously 
required, it is necessary to pay attention to setting them as 
therapeutic targets. It has been suggested that the action 
of DUBs with ‘double roles’ can be classified by cancer 
types. Therefore, the direction of local cancer treatment 
can be attempted either in perturbing or activating the 
normal cellular functions. In addition, modulating anti-
apoptotic proteins by regulating protein expression using 
E3 ligases and DUBs can be used in disease treatment as a 

way to induce or inhibit apoptosis. In addition, the recently 
developed PROTAC technology can be applied to degrade 
or increase the expression of a target protein using the 
ubiquitin–proteasome system, proposing great potential as 
a therapeutic tool for diverse cancers and diseases.
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