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Abstract
The blood–brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high 
expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, 
and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role 
and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promot-
ing long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing 
BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that 
modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, 
and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase 
brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and 
function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), nega-
tively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable 
population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, 
alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise 
pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or 
access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and 
antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the 
fetal and neonatal brain.
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Introduction

The blood–brain barrier (BBB) provides essential neuro-
protection from environmental toxins and xenobiotics that 
may be circulating in the peripheral blood, through high 
expression of drug efflux transporters in endothelial cells 
of the cerebral capillaries. The BBB plays a key role in 
maintaining an optimal microenvironment for neuronal 
cells through hormone, nutrient and ion transport, as well 
as removal of waste products [1]. However, changes in its 
surrounding microenvironment, such as xenobiotic exposure, 
stress and inflammatory stimuli, have the potential to disrupt 
BBB permeability and induce brain injury, neurodegenera-
tion and disease [2].

The developing fetal brain is highly susceptible to the 
influences of environmental factors; thus understanding the 
role and ability of the BBB in protecting the developing 
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brain, particularly with respect to drug/toxin transport, is 
key to long-term brain health. In this regard, a number of 
drugs prescribed during pregnancy are actively transported 
at the level of the placenta and the fetal BBB. This review 
focuses on the ontogeny and regulation of key ATP-binding 
cassette (ABC) drug efflux transporter systems at the BBB, 
P-glycoprotein (P-gp; encoded by ABCB1) and breast cancer 
resistance protein (BCRP/ABCG2); which among other sol-
ute carrier (SLC) transporters, such as organic anion trans-
porter 2 (OAT2/SLC22A7) and monocarboxylate transporter 
1 (MCT1/SLC16A1), are present at high levels at the human 
BBB [3].

The role of the placenta in fetal brain protection, and how 
the fetal BBB and the placenta coordinate to protect the 
developing fetal brain will also be considered. Finally, we 
outline potential modulators of BBB-efflux transporter func-
tion during development, including exposure to infection, 

corticosteroids, and other modulators, which will directly 
impact fetal brain permeability and protection. Knowledge 
as to how brain protection is acquired and disrupted during 
development may offer new opportunities to reduce obstetric 
complications and improve pediatric outcomes.

BBB structure and function

The BBB is a highly organized biological system provid-
ing a physical barrier between the brain and the systemic 
circulation. Histologically, the BBB is comprised of brain 
microvessel endothelial cells (BEC)s, connected by intricate 
tight junctions, ensheathed at the abluminal surface by astro-
cyte foot processes and resident pericytes, which aid in the 
regulation of endothelial cell permeability (Fig. 1A). At the 
level of cerebral capillaries, this barrier is essential, as in the 
adult human, it covers a large surface area (12–18 m2) with 
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Fig. 1   Cellular structure of the blood–brain barrier (BBB). A Cer-
ebral capillaries are ensheathed by astrocyte foot processes, and 
share a continuous basement membrane where pericytes are located. 
Nearby neurons make contact with astrocytes. Together these cells 
form the BBB or “neurovascular unit”. B Mechanism of substrate 
efflux. P-glycoprotein (P-gp) is a transmembrane transporter that 
effluxes its substrates against their concentration gradients by utiliz-
ing ATP. Studies have shown that P-gp acts as a flippase, grabbing 
lipophilic substrates as they cross the plasma membrane, and exclud-
ing them. C Categories of P-gp substrates. Listed are some of the 

major categories of P-gp substrates. Most P-gp substrates are lipo-
philic and there is large substrate overlap with other drug transport-
ers. D Localization of drug transporters in brain endothelial cells. 
P-gp and breast cancer resistance (BCRP) protein are primarily local-
ized at the luminal side of BECs where they prevent entry of their 
substrates into the brain parenchyma. Multidrug-related proteins 
(Mrp) 1,3, 4, 5 have been detected in brain endothelial cells, and 
some studies have suggested their localization to the luminal or baso-
lateral side of endothelial cells



ATP‑binding cassette (ABC) drug transporters in the developing blood–brain barrier: role in…

1 3

Page 3 of 18  415

a diffusion distance of 25 µm between the lumen and nearby 
neurons (to maximize cerebral–blood exchange rates) [4]. 
Here, we summarize important features of the BBB compo-
nents related to brain protection.

Endothelial cells

At the BBB, endothelial cells have several unique char-
acteristics compared to those in the systemic circulation. 
These include low vesicular transport, and high expression 
of nutrient and drug transporters, with the latter controlling 
transcellular passage of molecules into and from the brain. 
One study found BECs also have a higher mitochondrial 
volume compared to systemic endothelial cells [5], which 
many postulate supports diverse specialized active transport 
systems [1, 6]; however, more research is required to confirm 
this relationship.

Cerebral capillaries lack fenestrations and possess 
unique tight junction structures to efficiently restrict par-
acellular transport [7]. The high complexity and number 
of tight junctions are unique adaptive features of BECs 
compared to other endothelial cells [8, 9]. The primary 
proteins that make up tight junctions in BECs are occlu-
dins, claudins, and zonula occludens. Occludin, a 65kDA 
protein, with 4 transmembrane domains was the first inte-
gral membrane protein discovered at the tight junction. 
However, knockout of occludin did not affect tight junc-
tion strand formation, suggesting the necessity of other 
membrane proteins at the tight junction [10]. The claudin 
family of proteins has a similar structure to occludin but 
shares little sequence homology. In the brain, claudins-5 is 
specifically expressed in endothelial cells and not at tight 
junctions of other cell types [11]. Knock-out of Cldn5 in 
mice leads to size-selective leakiness at the BBB, and was 
therefore deemed the integral protein of the tight junction 
system [12]. Zonula Occludens (ZO) proteins connect the 
intercellular domains of the tight junction to the cytoskel-
eton and add structural support [4]. Together, tight junc-
tion proteins confer an important barrier by restricting the 
intercellular space and therefore limiting the entrance of 
molecules as small as 4.7 ˜A (sucrose) [13]. Additionally, 
the combination of a small intercellular space and charged 
extracellular loops of claudin proteins, results in limited 
paracellular ion transport. The restricted movement of 
charged molecules across the paracellular space creates 
high resistance across the cerebral endothelium and helps 
to establish concentration gradients [7, 8, 14]. However, 
many potentially toxic endogenous and exogenous com-
pounds are lipophilic, and able to freely cross transcel-
lularly via passive diffusion across the plasma membrane. 
In this case, protection is provided by active transporter 
systems in the BBB (discussed in detail in “ATP-Binding 

Cassette (ABC) Transporters”), which limit the entry of 
a myriad of lipophilic and non-lipophilic drugs and envi-
ronmental toxins into brain [15].

Pericytes

Pericytes play a key role in maintaining BBB homeosta-
sis and integrity through secreted factors and regulation 
of tight junction integrity and vesicular trafficking. Peri-
cyte coverage is higher in brain vessels than in any other 
tissue vasculature. Pericytes together with astrocyte foot 
processes are present in the basement membrane of capil-
lary endothelial cells (Fig. 1A), and make direct contact 
with endothelial cells via adheren (N-cadherin) and gap 
junctions (connexin 43) [16]. During BBB development in 
mice, pericytes are closely associated with BECs, and are 
present from initial migration of the vascular plexus into 
the neural tissue [17]. Pericytes are key cellular compo-
nents modulating specificity of transport across the neu-
rovascular unit since they reduce vesicular trafficking in 
endothelial cells [18]. In mice, decreased pericyte number 
is associated with increased BBB permeability resulting 
from structural abnormalities in endothelial cell contacts, 
despite normal tight junction formation [17, 19]. Regula-
tion of BECs by pericytes appears region-specific since a 
uniform reduction in pericyte number throughout the brain 
only affects BBB permeability in some specific regions 
(e.g., cortex, hippocampus) [20]. Less is known about the 
role of pericytes in specifically regulating drug transporter 
expression at the BBB. One study identified increased P-gp 
function in mouse immortalized brain capillary endothelial 
cells after co-culture with rat brain pericytes; this effect 
was in part mediated by transforming growth factor beta 
(TGF-β) secreted by pericytes [21]. The specific intra-
cellular signaling pathways involved in TGF-β mediated 
upregulation of P-gp and BCRP at the BBB are unknown. 
Recently, studies in hepatocellular carcinoma cells have 
implicated miRNAs and lnRNAs in mediating the effects 
of TGF-β induction of P-gp and BCRP expression. Spe-
cifically, a SMAD4/HOTAIR/miR-145 axis was identified 
that responds to TGF-β by up regulating P-gp and BCRP 
[22]. While, this signaling pathway has not been investi-
gated in physiological/non-cancerous tissues, it could be 
hypothesized as one possible mechanism mediating peri-
cyte regulation of P-gp and BCRP expression/function in 
BECs. Of note, TGF-β is also secreted by astrocytes, and 
plays a key role in maintaining BBB integrity via regula-
tion of P-gp. However, another study found no change in 
Abcb1 mRNA expression after co-culture with pericytes 
[23]. The mechanisms through which pericytes regulate 
drug transporters in BECs warrants further investigation.
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Astrocytes

Astrocyte foot processes surround the abluminal face of 
endothelial cells, and share a continuous basement mem-
brane (Fig. 1A) [24]. Astrocytes regulate tight junction 
function between endothelial cells, decreasing the size of 
the intercellular cleft [25]. This has been demonstrated in 
in vitro co-cultures of astrocytes and BECs, where trans-
endothelial electrical resistance (TEER), is increased [26, 
27]. By inducing tight junction function, astrocytes also 
contribute to the polarization of transporters to the luminal 
membrane, including the GLUT1 glucose transporter and 
P-gp. Astrocyte-endothelial cell interactions lead to differ-
entiation in both cell types. Agrin in the basal lamina, which 
is a heparin sulfate proteoglycan, secreted by endothelial 
cells at the time of BBB tightening, stimulates polarization 
of astrocytes, including sequestering of the water channel 
aquaporin 4 (AQP4) to astrocytic end feet [28]. In this con-
nection, in a rat model of temporal lobe epilepsy, disruption 
of aquaporins expression by the drug acetazolamide, leads 
to disruption of P-gp expression in hippocampal tissue [29]. 
Furthermore, astrocyte secreted factors also increase expres-
sion and function of the efflux drug transporter P-gp in BECs 
from neonatal guinea pigs [27], further demonstrating an 
interplay between these two cell types regulating transport 
function at the developing BBB.

ATP‑binding cassette (ABC) transporters

The ABC transporters are critical for maintaining brain 
homeostasis and provide a route for xenobiotic clearance 
from the cerebral parenchyma into the circulation. The 
human ABC superfamily of efflux transporters consists of 
48 proteins, divided into seven subfamilies from ABCA to 
ABCG [30]. In humans and mammals, the ABC superfam-
ily is largely comprised of drug and lipid transporters, and 
generally possess a basic structure with four domains. Two 
transmembrane domains (TMD) hold the transporters in the 
lipid bilayers and are responsible for substrates’ permeation, 
and two nucleotide-binding domains (NBD), responsible for 
ATP-driven energy supply [31].

The ABC drug transporters P-gp (encoded by ABCB1 
in humans and by Abcb1a and Abcb1b in mice and rats), 
BCRP (encoded by ABCG2), and the Multidrug Resist-
ance Proteins, isoforms 4 and 5 (Mrp 4 and 5, encoded by 
ABCC4 and 5, respectively) are the most abundant ABC 
drug transporters at the BBB. Prior to determining their 
role in physiological barrier sites (i.e., placenta, kidney, 
intestine, BBB) P-gp and BCRP were first identified and 
studied as sources of multidrug resistance (MDR) in can-
cer cells [32, 33]. P-gp and BCRP are highly expressed 
in the luminal surface of the BECs (facing the systemic 

circulation) [3, 34, 35], although some studies have shown 
that they may also be weakly localized on the abluminal 
membrane (facing neuronal tissue) [36] (Fig. 1). Drug 
transporters have a wide spectrum of substrate specifici-
ties, with some overlapping substrates. Pharmaceutical 
agents that are substrates for ABC transporters include 
anti-cancer drugs, HIV inhibitors, opioids, antibiotics, 
antidepressants, antiepileptics, immunosuppressants and 
synthetic glucocorticoids (sGC) among others [37, 38]. 
Table 1 presents a summary of important ABC transporter 
substrates. Drug transporters exert an essential function 
in reducing the transfer of pesticides, toxins, and poten-
tially harmful substances from the systemic circulation 
into the brain. However, they also represent a challenge to 
therapeutic treatment of brain tumors as they limit drug 
bioavailability, a major obstacle, for example, in the use of 
peripherally administered anti-cancer drugs. Additionally, 
drug transporters regulate the uptake of several endog-
enous substrates (e.g., steroids, lipids) that may be impor-
tant for normal function and development.

P-gp is one of the major BBB drug transporters and is 
the most well-studied ABC transporter, based on its crucial 
role in neuroprotection and drug resistance. P-gp, is pre-
dominantly located on the luminal surface of BECs [50–52] 
(Fig. 1), where it functions as a drug transporter at the 
plasma membrane excluding a large spectrum of substrates 
(please see Table 1). P-gp is also localized intracellularly in 
the Golgi complex, endosomes/lysosomes/proteasome and 
in the endoplasmic reticulum (ER) which are important sites 
for P-gp post-translational modification, traffic/recycling/
degradation and synthesis, respectively [53–56]. P-gp has 
a predicted molecular weight of 140 kDa, and the mature 
N-glycosylated protein migrates through SDS-PAGE at an 
apparent molecular weight of 170 kDa [57, 58]. P-gp protein 
and Abcb1 mRNA have also been identified in the primate 
brain parenchyma, neuronal and glial cells, though at lower 
levels than in the BEC [59–61]. In this context, while the 
expression of P-gp and BCRP is likely of importance, less is 
known about their functional role in neuronal and glial cells.

Functional P-gp deficiency dramatically increases trans-
fer of many drugs and xenobiotics into the brain. In vivo 
studies in Abcb1 knockout mice revealed up to 100-fold 
increased brain accumulation of P-gp substrates [50, 62, 63]. 
Further, exposure to ivermectin during pregnancy in mice, 
lead to congenital head anomalies in 100% of homozygous 
Abcb1−/− offspring [64]. Recently, an epidemiological study 
supported the effect of P-gp in protecting the fetal human 
brain, by showing an increased risk for specific CNS con-
genital anomalies after exposure to clinical P-gp substrates 
(including cimetidine, ranitidine, risperidone, citalopram) 
along with the use of P-gp inhibitors (including omeprazole, 
pantoprazole, haloperidol) in women in the first-trimester of 
pregnancy [65].
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Although P-gp was the first drug transporter described at 
the BBB [66, 67], BCRP is the most abundant ABC trans-
porter in the human BBB at the level of protein [68] and 
mRNA [69]. BCRP is a “half-transporter”, with 70 kDa 
and only one TMD and one NBD, that requires homodi-
merization to become functionally active [70]. Similar to 
P-gp, BCRP is highly expressed in the luminal membrane of 
brain microvascular endothelium (Fig. 1) [71]. The absence 
of BCRP in Abcg2−/− mice results in increased accumula-
tion of BCRP substrates in the brain [72, 73]. Intracellular 
localization of BCRP has also been demonstrated in many 
cell lines [74–76]; however, specific localization and func-
tion in organelles/vesicles in developing BBB require further 
investigation.

P-gp and BCRP have overlapping substrates, and a num-
ber of studies have suggested a synergistic/complimentary 
relationship between the two transporters [77–88]. There is 

evidence for a compensatory mechanism by which downreg-
ulation of one transporter results in increased expression and 
function of the other [89–91]. In coordinating the response 
to infection, this appears to be the case. In hCMEC/D3 cells, 
LPS and poly:ic exposure results in increased P-gp function 
but decreased BCRP activity. ssRNA-40 had the opposite 
effect where P-gp function was decreased, but BCRP activity 
increased [92]. This complementary relationship may be due 
to differences in the signaling pathways induced by different 
infective insults. Cross-talk between the regulatory pathways 
of P-gp and BCRP likely has important implications for drug 
delivery into the brain. While there is a considerable knowl-
edge of P-gp regulation at the BBB relatively little is known 
concerning the mechanisms regulating BCRP expression 
and function. Further studies are required to better under-
stand the potential cross-talk between these two transporter 
systems in the developing brain.

Table 1   Blood–brain barrier ABC transporters and their major substrates relevant in pregnancy and neonatal life

Class Substrate ABC transporter(s) Relevance in pregnancy and neonatal life References

Anti-epileptic Phenobarbital P-gp First-line treatment for most neonatal seizures [39, 40]
Lamotrigine P-gp Safe for use during pregnancy (26,416,395) [39, 41]
Phenytoin P-gp

Mrp1
Second line treatment for neonatal seizures [39, 40, 42]

Topiramate P-gp Second-generation AED, sometimes used to treat refractory neona-
tal seizures (Sandoval 2019)

[39, 40]

Anti-HIV Zidovudine P-gp
BCRP
Mrp4

Indicated for treatment of neonates with HIV [43, 44]

Ritonavir P-gp
Mrp1, Mrp2

Infants and children, combined with Lopinavir [42, 45]

AZT BCRP
Mrp4

Safe for use in pregnant women and their infants in combination 
w/Zidovudine

[42, 46]

Analgesics Morphine P-gp Management for post-operative pain [39, 47]
Methadone P-gp Neonatal abstinence syndrome; therapeutic treatment for opiate 

abuse during pregnancy
[47, 48]

Anti-cancer Doxorubicine P-gp
BCRP
Mrp1, Mrp2, Mrp6

[42]

Mitoxantrone P-gp
BCRP

[42]

Daunorubicin P-gp
BCRP
Mrp1, Mrp6

[42]

Methotrexate P-gp
Mrp1, Mrp2, Mrp3, Mrp4

[42]

Anti-depresssants Amitryptiline P-gp Increased rate of cardiac abnormalities when taken during preg-
nancy

[42, 49]

Doxepin P-gp No increased incidence of neonatal cardiac abnormalities when 
used during pregnancy

[42, 49]

Other substrates Verapamil P-gp
Mrp1

Calcium channel blocker; a competitive inhibitor of P-gp [42]

Cyclosporin A P-gp
Mrp1

Immunosuppressants; also a competitive inhibitor of P-gp [42]
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MRPs are a subfamily of ABC transporters with 13 mem-
bers, that are generally larger than other ABC transporters; 
approximately 200 kDa [93]. MRP-1 to 6, 9 and 10 have 
been detected in human BECs, with MRP4 and 5 expressed 
at highest levels [34, 35, 94, 95]. MRPs are present either 
at the luminal or abluminal membranes or both in BECs, 
and contribute to efflux of substrates in both directions at 
the BBB [36, 96–99]. MRP substrates include antibiotics, 
antiretrovirals, immunosuppressive drugs, antiepileptic and 
anti-cancer agents [100–102] (Table 1). However, relatively 
little is known concerning the regulation of MRPs or the 
expression and regulation of other ABC transporters in the 
adult or developing BBB; many of which may have impor-
tant transport functions.

Other ABC transporters have been detected at the rodent 
and human BBB, through mass spectrometry-based prot-
eomics. These include the ABCA superfamily, which are 
involved in lipid transport (e.g., cholesterol) [3]. ABCA2 and 
ABCA8 are the two most abundant ABC transporters at the 
BBB after BCRP and P-gp. However, their functional role 
remains unclear. ABCA2 is expressed in several brain cell 
types including oligodendrocytes, some neurons, and brain 
endothelial cells. Studies in oligodendrocytes have deter-
mined that ABCA2 is localized to the lysosomal compart-
ment, rather than the plasma membrane, and could therefore 
be involved in intracellular lipid transport [103, 104]. Impor-
tantly, there is increasing recognition for the role of specific 
ABC transporters proteins, such as ABCA1, ABCA2, BCRP, 
MRP-1 and P-gp clearing β-amyloid protein (the major amy-
loid plaque component) out of the brain. As such, dysregula-
tion of ABC transporters has therefore been implicated in 
the pathogenesis of Alzheimer’s Disease [105, 106]. Since 
ABCA1 has been demonstrated to neutralize β-amyloid 
aggregation capacity via Apolipoprotein E (ApoE) [107], 
the expression of ABCA1 and ABCA2 at the BBB as a site 
of waste removal from the brain, may suggest a potential role 
in Alzheimer’s disease, which warrants further investigation. 
Little is known about the ontogeny of ABCA transporters 
or a potential role at the BBB during development. As Kim 
et al. postulated in their 2008 review, ABC transporters 
involved in lipid transport, that are expressed in the brain, 
likely play an important role in brain–lipid homeostasis.

In addition to the BBB, which is the focus of this review, 
ABC and other drug transporters are expressed elsewhere in 
the central nervous system (CNS), including the blood–cer-
ebral spinal fluid barrier (choroid plexus), blood–retinal 
barrier and spinal chord. In this context, P-gp has been 
described in the epithelial cells of the (choroid plexus) of 
mouse, rat and human, where it may act in the regulation of 
the efflux transport function in the cerebrospinal fluid (CSF) 
[99]. In the porcine blood–retinal barrier, BCRP, P-gp and 
MCT1 transporters were detected, demonstrating a potential 
role of these transporters in regulating xenobiotic clearance 

in different types of CNS-related barriers. A detailed review 
of other brain barriers during development can be found 
here [108].

BBB development

The onset of the brain vasculogenesis is well documented in 
mice. It begins at gestational day (GD) 7.5 with the migra-
tion of mesenchyme-derived angioblasts into the outer part 
of the neural tube head region to form a perineural vascular 
plexus (PNVP) that sprouts and invades the surrounding 
inner neural tube, at around GD9.5 [109]. The newly formed 
vessels then lose their fenestrations, form tight junctions, 
and adopt a BBB phenotype [9, 110]. BEC tight junction 
complexes are observable as early as GD13.5 in mice, and 
8 weeks gestation in humans [111]. While the process of 
brain vascularization, tight junction formation, and the fac-
tors that guide these events have been described [112], little 
is known about how and when drug transporter expression 
is induced and then regulated during development. This 
knowledge is key to our understanding of how maternal and 
external factors, isolated or combined, may affect BBB drug 
transporters during neurodevelopment, and in turn, uptake 
of substrates (i.e., toxins, xenobiotics, hormones) into the 
fetal brain.

During fetal brain development, the specialized pheno-
type of BECs is driven by factors secreted by pericytes and 
neural progenitor cells. Canonical Wnt-signaling is involved 
in driving vascularization of the developing BBB, by guid-
ing angiogenesis in concert with vascular endothelial growth 
factor (VEGF) [112, 113]. Wnt is also involved in the induc-
tion of P-gp gene expression in the BBB. Differentiation of 
stem cells into BECs in vitro has also helped elucidate key 
factors in driving the maturation of the BBB. Sequential 
Wnt and retinoic acid (RA) pathway activation in human 
pluripotent stem cells (hPSCs) lead to their differentia-
tion [114]. Direct and indirect effects of Wnt/β-catenin on 
P-gp expression have been demonstrated in models of adult 
and fetal BBB, where activation with Wnt ligands leads to 
increased P-gp expression and activity [115, 116]. Wnt/β-
catenin signaling interacts with other pathways (e.g., TGF-β, 
Notch) that are activated by pericytes and neural progenitors 
during early vascularization [113]. TGF-β is secreted from 
pericytes and binds to the TGF-βII and I receptors on the 
abluminal face of endothelial cells to increase P-gp expres-
sion and activity. This has been demonstrated in vitro, in 
developing guinea pig BECs and in adult rat and murine 
endothelial cells [21, 117, 118]. TGF-β can also induce 
developing BBB tight junction function and be secreted by 
astrocytes [118]. In this context, we have shown that astro-
cytes in co-culture with BECs derived from the fetal and 
neonatal brain increase TEER, and reduce dextran move-
ment across the monolayer [27]. Pericytes and not astrocytes 
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are present at the neurovascular unit from early BBB forma-
tion, and as such, secreted factors from pericytes are likely 
most important in initial BBB phenotype acquisition. The 
fact that P-gp and BCRP are regulated by key signaling path-
ways in embryonic and fetal development highlights their 
functional importance in the establishment and maturation 
of the developing BBB.

The ontogeny of drug transporters at the developing BBB 
is summarized in Table 2. Appearance of drug transporters 
is sequential, and different ABC transporters exhibit differ-
ent developmental patterns of expression across gestation. 
P-gp is considered one the earliest markers of brain micro-
vasculature, detectable at GD10.5 in mice, and has been 
detected as early as 6–8 weeks post conception in humans 
[111, 119, 120]. In humans, guinea pigs, mice and rats, lev-
els of ABCB1 (Abcb1) mRNA and P-gp protein increase with 
development [96, 116, 121] (Fig. 2). Studies in mice and rats 
have also shown these increases in gene and protein expres-
sion correspond with increased P-gp function [122–124]. 
While limited studies have been undertaken, P-gp levels have 
been shown to be low in microvessels in early human BBB 
development, and primarily cytosolic. Toward 18 weeks of 
gestation, P-gp expression becomes diffuse along the length 
of capillaries, and by 22 weeks, P-gp is expressed evenly 
along cerebral capillaries [125]. See Table 2 and Fig. 2 for 
a summary of timing and pattern of P-gp expression at the 
developing BBB.

BCRP has been identified as one of the first ABC trans-
porters expressed in the neurovasculature. Studies in humans 
and guinea pigs have identified expression of BCRP in cer-
ebral capillaries from mid-gestation (22 weeks in human; 
GD 40 in guinea pigs), with little change in expression levels 
through fetal development [96, 129, 130]. However, stud-
ies in rats have reported increasing expression of Abcg2/
BCRP during fetal BBB maturation, corresponding with 
an increase in BCRP activity [116, 123, 131], suggesting 
potential species differences in BCRP expression during 

BBB development. Recently, BCRP has been detected as 
early as 5 weeks post conception in humans, in the early 
stages of brain vascularization, before even P-gp is detect-
able by immunostaining [119]. BCRP is present in microves-
sels throughout gestation [96]; and of note, we have shown 
microvessels in 2nd trimester (~ 17 weeks) fetal brains to 
express both P-gp and BCRP (Fig. 2).

The role for P-gp and BCRP may not be limited to BBB 
protection during fetal brain development but may comprise 
other functions including modulation of migration of BBB 
cell precursors and angiogenesis, whereas in neural progeni-
tor cells (NPCs) they may function as markers of immatu-
rity/stemness. In this regard, our group has recently demon-
strated that silencing of ABCB1 (encoding P-gp) in human 
extravillous trophoblast cells (EVT; HTR8/SVneo) impaired 
invasion and migration and induced tube formation [132]. 
Similarly, silencing of ABCG2 (encoding BCRP) inhibited 
EVT cell migration while it did not affect cell proliferation 
[133]. EVTs are endovascular invading cells with relatively 
high expression of P-gp and BCRP in capillaries early on in 
development. It is possible that P-gp and BCRP being pre-
sent in BECs during phases of intense angiogenesis and lat-
eral branching formation, may play a role in these processes; 
a hypothesis currently being investigated. With respect to 
NPCs, expression of ABCB1 is high in early development 
when these cells are immature (Nestin positive) [134]. Upon 
differentiation, ABCB1 expression is reduced, suggesting 
that beyond protecting an important stem cell pool, P-gp 
may have a role in stemness itself in this cell type. Taken 
together, the high expression of P-gp and BCRP in prolif-
erative and invasive cell types, including side population 
cells and cancer cells, should be considered in discussing 
alternate roles for these transporters in the BBB.

MRPs are detectable in the fetal brain, however at lower 
levels compared to P-gp and BCRP. MRPs are present at 
higher levels in ependymal cells of the choroid plexus in 
humans and rats, compared to BECs [96, 98]. In humans, 
MRP-1 is present at high levels in the choroid plexus and 
cerebellum by 22 weeks gestation, but was undetectable 
in cerebral capillaries, suggesting a less important role for 
MRPs at the developing BBB [96]. However, another study 
detected Mrp1 in the human cerebrovasculature at 5 weeks 
post conception [119]. Further studies are required to eluci-
date the presence and role of MRPs at the developing BBB. 
Figure 2C provides a summary of developmental changes 
in drug transporter expression for the different species that 
have been studied, to date.

Drugs, environmental factors, and the developing 
BBB

Drugs are frequently used during pregnancy, particularly in 
cases of chronic diseases (depression, diabetes, epilepsy), 

Table 2   Expression of ABC transporters at the developing BBB of 
human, guinea pig, mouse and rat

GW gestation week, GD gestation day, N/A not available
*Earliest studied

ABC transporter Earliest expression at BBB during development

Human Guinea pig Mouse Rat

ABCB1 (P-gp) GW 7–8
[119, 120]

GD 40*
[126]

GD10.5
[127]

GD13*
[122]

ABCG2 (BCRP) GW 5 GW
[119]

GD 40*
[126]

GD12.5*
[128]

GD13*
[122]

ABCC1 (MRP-1) GW 5 GW
[119]

N/A N/A GD13*
[122]

ABCC4 (MRP4) N/A N/A N/A GD13*
[122]
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as well as to treat pregnancy-associated symptoms or infec-
tions [135]. Approximately 70% of women take at least 
one medication (excluding vitamins & supplements) dur-
ing pregnancy [136, 137]. Many drugs prescribed during 
pregnancy are P-gp, BCRP and MRP substrates or modu-
late their activity. Given that increased drug exposure can 
negatively impact fetal brain development, it is critical to 
understand the levels and regulation of drug transporters in 
the developing BBB. Table 1 summarizes major classes of 
P-gp and BCRP substrates, with a focus on those relevant in 
pregnancy and neonatal life.

During pregnancy, the fetus and the developing brain 
may be exposed to factors present in the maternal environ-
ment. These include agrochemicals, toxins or their residues, 
that may enter the mother through water [138, 139], dietary 
[140, 141] or airborne routes [142, 143]. Exposure of the 
fetus to a number of these factors have been associated with 
altered pregnancy outcomes including preterm birth [144, 
145] and reduced birthweight. Longer-term effects associ-
ated with prenatal and post-natal pesticide exposure have 
also been identified, such as increased blood pressure [146], 
altered glucose metabolism [147], poor respiratory outcomes 
[148, 149], and neurobehavioural deficits in children [150, 
151]. For example, one study in this systematic review [150] 
found cord blood levels of chlorpyrifos were associated with 

attention deficits in toddlers; chlorpyrifos is known to inter-
act with BCRP [152] and P-gp. Chlorpyrifos has been shown 
to regulate human BCRP expression in placental trophoblast 
cell lines [152] and placental explants [153, 154]. In addi-
tion to chlorpyrifos, several organochlorine and pyrethroid 
pesticides have been shown to regulate the expression and 
function of human P-gp and BCRP in vitro [155, 156]. Most 
studies investigating the effects of organochlorine and pyre-
throid pesticides on human drug transporters must make use 
of in vitro cell culture or membrane vesicle preparations; 
studies identifying pesticides as P-gp or BCRP substrates 
face similar challenges. While knowledge of the in vivo role 
for drug transporter efflux of pesticides is limited, studies 
utilizing mosquitos have identified permethrin and temefos 
as potential drug transporter substrates [157, 158]. Epide-
miological data on the effects of pesticides on human drug 
transporters in vivo, in particular at the BBB, are limited. 
Therefore, the possibility that drug transporters may play a 
crucial role in protecting the developing fetus from mater-
nal pesticide exposure and subsequent short-term and long-
term effects is an assumption that requires investigation. In 
this case, alterations in drug transporter function due to the 
presence of pharmacological or physiological (e.g., inflam-
mation, infection) inhibitors, could increase accumulation 
of their substrates into the CNS. The impacts of infection 

Fig. 2   Developmental expres-
sion of drug transporters 
at the blood–brain barrier. 
P-glycoprotein (P-gp) (A) and 
breast cancer resistance protein 
(BCRP) (B) are expressed in 
second trimester human cerebral 
microvessels. Pattern of drug 
transporter expression through-
out development in different 
species (C). P-gp expression 
increases with advancing gesta-
tion in all species, while BCRP 
expression stays fairly constant. 
Little is known concerning the 
developmental regulation of 
multidrug resistance proteins 
(MRPs)
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and pro-inflammatory cytokines on BBB drug transporter 
function are discussed in detail below. Increasing access of 
such pesticides and toxins to the fetus is likely to have con-
sequences for development. A retrospective study found that 
when pregnant women were exposed in their first-trimester 
to both clinical P-gp substrates (including cimetidine, raniti-
dine, risperidone, citalopram) concurrently with P-gp inhibi-
tors (including omeprazole, pantoprazole, haloperidol), this 
was associated with increased risk for specific congenital 
anomalies of the CNS [65]. Ultimately, more research is 
required to fully understand the role of fetal and placental 
drug transporters in preventing teratogenesis.

Cross‑talk between the placenta and fetal BBB 
in protection of the developing brain

The human fetal brain is protected from xenobiotics by two 
key barriers: the placenta and the fetal BBB. The placenta 
represents the primary protective barrier separating maternal 
and fetal circulations, and it is important to note that the 
a greater proportion of the placenta is of fetal origin. The 
placenta delivers nutrients and oxygen to the fetus, while 
simultaneously functioning as a route for fetal metabolic 
waste elimination. In parallel, it limits the entrance of sev-
eral factors present in the maternal circulation that could 
be harmful to the developing fetus. The placental barrier 
in humans is formed by syncytiotriophoblasts, which are in 
close contact with the maternal blood bathing the intervil-
lous space [159]. A number of members of the ABC trans-
porter family have been identified in the placenta, including 
P-gp, BCRP, MDR3 (encoded by Abcb4), MRPs 1,2,3,5 and 
the lipid transporters ABCA1, ABCA6 and ABCG1 [37, 
160, 161]. Transport proteins may be present in the apical 
and/or the basolateral surfaces of the syncytiotrophoblast 
layer, facing both the maternal blood and the placental core 
in a transporter specific manner. This allows them to control 
the entrance and accumulation of substrates, depending on 
their placental location. A number of transporters are also 
be expressed in the luminal membrane of the fetal capillar-
ies, controlling the efflux of substrates into/or out from the 
fetal circulation.

There is a critical interplay of the placenta and fetal BBB 
in protecting the developing fetal brain. Placental protec-
tion through the expression of efflux drug transporters is 
critical in early stages of pregnancy when fetal brain capil-
laries and the BBB are still being formed. The primary drug 
transporters, P-gp and BCRP are expressed at high levels in 
the placental syncitiotrophoblast in the first trimester human 
placenta [162–164]. P-gp and BCRP are expressed at the 
apical membrane, and efflux their substrates from the pla-
centa to the maternal circulation [165]. Levels of placental 
P-gp decline in late gestation, while BCRP levels remain 
relatively constant [162–164]. Similar patterns have been 

identified in animal models [166]. In the mouse, the reduc-
tion in placental P-gp results in increased accumulation of 
P-gp substrates in the fetus and amniotic fluid [167]. In par-
allel to the decrease in protection provided by the placenta, 
there are increases in P-gp and BCRP in the fetal BBB [121, 
124]. As such, it appears that the fetal BBB becomes criti-
cally important for brain protection in late gestation. This 
increase in protection also represents an important transition 
from fetal to post-natal life. In this context, in most mamma-
lian species there is a major surge of endogenous glucocor-
ticoid that occurs in late gestation, and emerging evidence 
would suggest this may drive the transition (discussed in 
detail below). The rising glucocorticoid levels correspond 
with up-regulation of P-gp, which also suggests develop-
mental regulation of P-gp and BCRP is coordinated at least 
in part through separate signaling pathways (as BCRP does 
not increase). Additionally, emphasis has been placed on 
understanding the role of P-gp and BCRP in drug resistance/
barrier function, when these transporters may have other 
physiological functions. The BBB also plays an important 
role in sequestering neurotransmitters such as serotonin, 
which cannot cross the BBB and thus must be synthesized 
locally in the CNS [25, 168]. This is important for neuro-
transmitter balance and signal specificity. It is likely that 
drug transporters play a role in controlling movement of key 
hormones/signals during development, an important area of 
research that requires further focus.”

Glucocorticoids and the developing BBB

Glucocorticoids are key in the transition from fetal to neo-
natal life. The late gestation surge in fetal glucocorticoid is 
essential for maturing several organs, including the lungs, 
liver, kidney and brain. Glucocorticoids exert their actions 
via glucocorticoid receptor (GR) and mineralocorticoid 
receptor (MR) signaling. As discussed above (see cross-
talk), P-gp expression and activity at the BBB increases 
with advancing gestation. This maturation could be medi-
ated by glucocorticoids, as both endogenous (cortisol), and 
sGC (betamethasone, dexamethasone) are potent modula-
tors of drug transporter expression and activity, as well as 
tight junction function in the BBB [126, 129, 130, 169–171]. 
In the context of preterm birth (~ 12% of all pregnancies), 
antenatal sGC are administered to mature the fetal lung and 
reduce the risk of respiratory distress syndrome [172, 173] 
Unlike endogenous cortisol which binds both MR and GR, 
sGC are not inactivated by placental 11 beta HSD-2 and acti-
vate only GR [174]. We have shown in the guinea pig that 
maternal treatment of cortisol and sGC increase expression 
and function of BBB P-gp/Abcb1 in late gestation/early post-
natal life, but not in mid-gestation [126]. The role for gluco-
corticoids in inducing BCRP at the developing BBB is less 
clear. Administration of sGCs to pregnant mice led to altered 
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mRNA levels of Abcg2 at the fetal BBB but not BCRP pro-
tein expression and function [124, 129], demonstrating a 
disconnect between mRNA and protein levels for this trans-
porter. sGC increase trans-endothelial electrical resistance 
(TEER) in brain endothelial cells in vitro, and this is asso-
ciated with increased tight junction function [175, 176]. In 
development, maternal antenatal dexamethasone exposure 
increases expression of tight junction proteins in the BBB 
of fetal sheep, and this was associated with decreased BBB 
permeability (increased function) [170, 171], thus showing 
strong evidence for modulation of fetal BBB transporter 
activity and permeability by sGC.

In addition to GR signaling, sGC also activate drug-
sensing pathways via pregnane-x-receptor (PXR) and con-
stitutive androstane receptor (CAR) [177–179]. PXR and 
CAR are nuclear receptors, which upon binding xenobiotics, 
translocate to the nucleus and activate transcription through 
binding “xenobiotic response elements” in genes, namely 
cytochrome p450 enzymes, and drug transporters in liver 
[180]. PXR and CAR are also expressed in brain endothe-
lial cells [181]; it is likely that PXR and CAR play a role in 
drug-sensing and metabolism at the BBB. In porcine BECs, 
PXR activators, rifampicin and hyperforin. lead to increased 
expression of Abcb1 and Abcg2 mRNA, BCRP and P-gp 
protein, and P-gp function [182, 183]. These studies pro-
vide evidence that activation of PXR and CAR by drugs 
leads to increased expression and/or function of P-gp at the 
BBB. With respect to sGC mediated up-regulation of drug 
transporters, this is likely a coordinated action of GR and 
PXR/CAR. The sGC dexamethasone is a PXR ligand, and 
dexamethasone exposure in adult rat brain capillaries leads 
to increased P-gp protein expression and function [181]. 
A study conducted in retinal pigment epithelium, which is 
another protective brain barrier, found that dexamethasone 
interacts only with GR to up-regulate P-gp, and PXR played 
a supporting role, potentially through a GR-mediated PXR 
expression mechanism [178]. Other studies examining the 
dynamics of GR-PXR activation of P-gp at the BBB and 
liver do report direct interaction between dexamethasone and 
PXR, suggesting tissue-specific glucocorticoid responses 
[177, 184].

Infection/inflammation and the developing BBB

Prenatal exposure to infection and inflammation can dis-
rupt brain development and lead to life-long neurologi-
cal and behavioral changes [185–191]. Studies in rodents 
demonstrated that offspring from dams prenatally exposed 
to infection mimics, including polyinosinic:polycytidylic 
acid (PolyI:C, a TLR-3 ligand), lipopolysaccharide (LPS, 
a TLR-4 agonist) and Imiquimod (a TLR-7 ligand) exhib-
ited higher risk of brain injury and adverse neurologic out-
comes, including autism, cerebral palsy and schizophrenia 

[192–199]. Further, viral infection, such as Zika virus and 
cytomegalovirus [200, 201], also induce adverse neuro-
logical outcomes including congenital viral syndrome and 
microcephaly [202–204]. Recently, it was shown that prena-
tal maternal exposure to the viral-mimic (PolyI:C) in mice 
leads to increased accumulation of the P-gp selective sub-
strate [3H]digoxin in the fetal brain at GD15.5, indicating a 
reduction of P-gp functional activity at the fetal BBB [205]. 
In this connection, maternal PolyI:C exposure in mid-preg-
nancy led to long-term offspring motor and cognitive dys-
function [206]. At the placenta, LPS-mediated inflammation 
impaired P-gp activity and led to greater fetal accumulation 
of [3H]digoxin at GD15.5 but not at GD17.5 [207], without 
eliciting changes in placental Abcb1a/Abcb1b mRNA [208] 
and P-gp labyrinthine expression (the exchange site in the 
mouse placenta). Moreover, maternal infection with Plas-
modium berghei ANKA (a mouse model of malaria in preg-
nancy) and Zika virus (ZIKV) in mice, decreased the pla-
cental expression of P-gp [209, 210]. Whereas, in the mouse 
yolk sac, Plasmodium berghei ANKA increased Abcb1a and 
P-gp expression[211]. Interestingly, LPS challenge had no 
effect[212]. Together, these studies indicate that tissue bar-
rier P-gp expression and activity respond differently to spe-
cific infective-stimuli and that this response also depends 
on gestational age, suggesting specific gestational windows 
of fetal vulnerability to infection and resultant exposure to 
xenobiotics and environmental toxins.

Previous in  vitro studies using porcine and human 
(hCMEC/D3) BECs derived from adult brains have shown 
infection and inflammation to inhibit P-gp function [92, 100, 
213, 214]. However, little is known as to how infection and 
inflammation impact P-gp in the developing BBB, and how 
BCRP and MRPs are affected. In primary cultures of BECs 
derived from fetal and neonatal guinea pigs at various stages 
of development, pro-inflammatory cytokines including inter-
leukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α 
induced a dose-dependent inhibition of P-gp function and 
decreased Abcb1 gene expression [130]. The magnitude of 
the effects was highly dependent on the developmental stage 
at which the BECs were derived. Effects were greatest in 
cells derived from neonatal animals, were less pronounced in 
BECs derived from fetuses near term (gestational day (GD) 
65; Term ~ GD67), while BECS derived at GD50 (75% ges-
tation) did not respond to pro-inflammatory cytokines [130]. 
However, a key interaction exists between glucocorticoids 
and pro-inflammatory cytokines at the level of the develop-
ing BBB. In guinea pigs, maternal antenatal treatment with 
glucocorticoids (single-course dexamethasone at GD50) 
in vivo, increased P-gp expression and function in the fetal 
BBB. BECs derived from glucocorticoid exposed fetuses 
at GD50 demonstrated robust inhibition of P-gp function 
following cytokine exposure, an effect that was mediated, 
at least in part by increased cytokine receptor levels [130]. 
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These are important observations because infection is pre-
sent in 40% of all cases of preterm birth[90], and many of 
these women will have received prenatal sGC treatment. 
Given the findings in animal studies, it might be anticipated 
that sGC treatment of pregnant women might sensitize the 
fetal brain to the effects of infection, potentially decreasing 
P-gp-mediated protection of the fetal brain. Clearly, further 
research is required to investigate this possibility further.

Implications of altered BBB function for neonates

It has been established that fetal BBB function can be modu-
lated by maternal exposure to factors, such as stress, sGC, 
infection and inflammation. Infants and neonates, particu-
larly those in the neonatal intensive care unit (NICU), rep-
resent a vulnerable population who are exposed to a num-
ber of drugs, many of which are P-gp and BCRP substrates 
[215]. Evidently, there are limitations in optimizing drugs 
for the neonatal population, and its estimated only 35% are 
FDA approved in neonates. In fact, a large portion of neo-
natal adverse drug reactions are attributed to agents that tar-
get or access the nervous system, such as stimulants (e.g., 
caffeine), anesthetics (e.g., midazolam), analgesics (e.g., 
morphine) and antiretrovirals (e.g., Zidovudine). These are 
some of many agents that are regulated by drug transport-
ers at the BBB, or impact their function [216–218]. In this 
context, prenatal exposures that lead to long-term changes 
in BBB function may have consequences for drug efficacy 
in the post-natal period. There is growing evidence that 
early life activation of drug-sensing pathways lead to long-
term changes in drug metabolism in the liver, effects which 
are mediated by altered activity and expression of nuclear 
receptors, such as GR, CAR, and PXR [219]; these same 
xenobiotic receptors and systems are present at the BBB. If 
expression and function of drug transporters at the fetal BBB 
is altered by a prenatal exposure (to glucocorticoids or infec-
tion, for example), and these effects persist into post-natal 
life, this could alter drug uptake in neonates potentially lead-
ing to adverse longer-term health outcomes. Understanding 
how prenatal/post-natal environmental exposures may lead 
to subsequent post-natal drug interactions is essential to 
informing the use of these drugs in perinatal care.

Conclusion

Drug transporters, particularly P-gp and BCRP at the devel-
oping BBB are crucial for developmental homeostasis and 
fetal brain protection. Despite their importance, relatively 
little is known regarding drug transporter regulation in the 
developing brain, particularly when exposed to environmen-
tal factors (e.g., stress, toxins, xenobiotics). There is a key 
interplay of P-gp and BCRP in fetal brain protection as well 

as interplay between the placenta and the fetal BBB. In this 
review, we have highlighted several factors that modulate 
drug transporters at the developing BBB, including sGC, pro-
inflammatory cytokines, maternal infection, and growth fac-
tors (TGF-β, Wnt). While some have the potential to increase 
brain protection (e.g., sGC, TGF-β), others may have pro-
found consequences in increasing xenobiotic exposure (e.g., 
maternal infection). It is also unknown whether changes at 
the developing BBB induced by environmental factors will 
persist into post-natal life. This could have implications for 
post-natal brain protection, as well as with respect to drug 
exposure/interactions. The mechanisms underlying these reg-
ulatory networks demand further investigation, as well as the 
potential role of other transporters, including MRPs. Knowl-
edge of the underlying mechanisms of drug transporter regu-
lation at the developing BBB will help to identify potential 
therapeutic approaches for increasing fetal brain protection.
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