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Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work 
focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the 
DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study 
of Ku’s role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA 
damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a 
multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku’s structure, 
including the original Ku crystal structure and the more recent Ku–DNA-PKcs crystallography, cryogenic electron microscopy 
(cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made 
in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We 
explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, 
discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent 
work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.

Keywords Ku heterodimer · Ku-binding motifs · Telomere maintenance · Genome stability · Non-homologous end-
joining · Cancer

Introduction

Ku has been implicated in a diverse range of functions 
including transcription, DNA replication, innate immunity, 
the DNA damage response, and telomere maintenance, many 
of which are mediated through Ku-protein and Ku–RNA 
interactions [1]. Ku has also been researched in less spot-
lighted functions such as nucleolar transcript regulation [2], 
Bax-mediated apoptosis [3], and viral double-stranded DNA 
detection [4]. Our understanding of Ku is constantly expand-
ing, with new research advances suggesting the heterodimer 
is doing more than what we currently understand. Inciden-
tally, Ku is highly abundant in human cells, having multiple 
processed pseudogenes and a Ku80 isoform, all of which 

imply that Ku functions in processes or regulatory capacities 
we have yet to identify.

While most proteins are first identified in model organ-
isms prior to the identification of human homologs, Ku was 
first identified as an autoantigen in the serum of a Japanese 
patient [5]. Many of the advances made in Ku understanding 
followed the characterization of Ku70/80 knockout mice, 
which were radiosensitive, immunocompromised, and pro-
portional dwarves [6]. Curiously, while Ku70/80 knockouts 
are viable in some species, the genes appear to be indispen-
sable in humans and human cell lines [7, 8]. The essentiality 
of Ku in some species over others is still unclear.

Acquisition of the Ku crystal structure represented a sig-
nificant milestone in our mechanistic understanding of Ku 
[9], including our knowledge on Ku–protein interactions. 
Structural studies also led to the recent identification of the 
Ku-binding motif (KBM), which allows proteins to inter-
act directly with Ku [10, 11]. Related to the identification 
of Ku protein interactors, our lab recently used the new, 
high-throughput proximity-dependent biotin identification 
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(BioID) technique [12] to comprehensively identify in vivo 
Ku protein interactors in human cells [13].

In this review, we provide an interdisciplinary discourse 
on the Ku heterodimer outside of its traditional role as a 
DNA repair protein involved in non-homologous end-joining 
(NHEJ) and V(D)J recombination. We focus on unifying 
the different aspects of Ku research that will be critical to 
further understand the heterodimer including its structure, 
function, cellular localization, expression levels, conserva-
tion, and essentiality.

Ku composition: structure, domains, 
and function

Ku, originally named after a Japanese patient with an auto-
immune disease that recognized Ku as an autoantigen, 
is a protein heterodimer [5]. In humans, Ku is composed 
of two subunits, Ku70 (~ 70 kDa, 609 amino acids) and 
Ku80 (~ 80 kDa, 732 amino acids), which are encoded by 
the XRCC6 (X-ray repair cross-complementing protein 6, 
located on chromosome 22) and XRCC5 (chromosome 2) 
genes, respectively. Eukaryotic subunits Ku70 and Ku80 
undergo domain swapping to form the stable, Ku heterodi-
mer complex, resistant to separation unless subjected to 
high salt (i.e. 1.5 M NaCl, 1 M KCl) or strong, ionic deter-
gents (i.e. 0.5% SDS, 1% sodium deoxycholate) [14, 15]. 
Dimerization appears to be important for the stability of both 
Ku70 and Ku80. In mice, the deletion of one subunit leads 
to severely reduced expression of the other subunit, imply-
ing that most Ku exists as an obligate heterodimer [6, 16]. 
Heterodimerization also seems to be a necessary prerequisite 
for successful Ku80 purification in bacteria [17]. However, 
researchers have been able to isolate Ku70, independent of 
Ku80 [17, 18], supporting the notion that Ku70 can form a 

homodimer. Indeed, Tadi et al. (2016) were able to produce a 
stable Ku70 homodimer in vitro using purified protein from 
both insect and bacterial cells [18]. However, while a frac-
tion of cellular Ku70 may exist as a homodimer, to date, the 
Ku70 homodimer has yet to be identified or studied in an 
intracellular context.

The Ku heterodimer has been implicated in binding dou-
ble-stranded DNA (dsDNA) [19] and facilitating the repair 
of double-stranded breaks (DSBs) through the NHEJ repair 
pathway [reviewed in [20]]. In 2001, the X-ray crystallog-
raphy structures of Ku unbound and bound to DNA were 
obtained [9], representing a major milestone that enhanced 
our understanding of Ku70/80 dimerization and DNA asso-
ciation (Fig. 1). Ku70 and Ku80 share structural homology 
and dimerize to form a pseudo-symmetrical basket structure 
that encircles the DNA duplex [9]. Both subunits show a 
common topology consisting of three domains: a N-terminal 
α/β domain, a central β-barrel domain, and a subunit-specific 
helical C-terminal domain (CTD).

The N-terminal α/β domain of each Ku subunit is a diver-
gent member of the von Willebrand factor A (vWA) fam-
ily of domains [21], composed of a six-stranded β-sheet in 
a Rossman fold [9]. Disrupting the vWA domain in yeast 
Ku70/80 has been found to impair DNA repair and tel-
omere regulation [22]. Although the amino edge of the vWA 
domain lies proximal to the DNA-binding groove, the vWA 
domain is not required for DNA binding. Instead, consistent 
with vWA domains in other proteins, the Ku vWA domains 
may mediate protein–protein interactions. For example, the 
Ku80 vWA domain has been shown to interact with APLF, 
a NHEJ repair protein essential for the recruitment of other 
repair factors [23].

Meanwhile, the central DNA-binding domain, composed 
of a seven-stranded antiparallel β-barrel, is essential for DNA 
binding and heterodimerization [9]. Heterodimerization 

Fig. 1  Timeline of Ku research milestones. Notable developments over the last 40 years pertaining to various research aspects about the Ku70/80 
heterodimer
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results in a positively charged DNA-binding ring which 
fits sterically around the minor and major DNA grooves. 
Ku threads inwards on DNA similar to a nut threaded onto 
a bolt, with Ku70 positioned proximal and Ku80 distal to 
the DNA end [21, 24]. Ku slides onto DNA ends using an 
energy-free mechanism that is still poorly understood. No 
direct base contacts are made with DNA, implying that Ku 
associates with DNA in a sequence-independent manner [9]. 
Ku has a high affinity (Kd =  10–9 M) for dsDNA ends, 5′ and 
3′ overhangs or blunt ends, and a significantly lower affinity 
for circular DNA and single-stranded DNA ends [1].

Finally, the C-terminal Ku regions are unique to each 
subunit, however, both contain a flexible linker and a 
globular structural domain (Fig. 2). The Ku70 C-terminal 
region contains a putative DNA-binding domain called 
the SAP (SAF-A/B, Acinus, and PIAS) domain (5 kDa, 
residues 559–609) [9]. The C-terminal structure was deter-
mined both in isolation using NMR [25] and as part of the 
unbound Ku70/80 crystal structure [9], and these studies 
discovered a common helix-extended loop-helix structural 
motif. There is evidence that SAP domains can bind DNA 

from studies on other SAP domain proteins [26, 27]. In the 
context of Ku, some studies suggest there could be interac-
tions between Ku70-SAP and DNA [28, 29]. During DNA 
binding, the domain undergoes displacement that positions 
it in close proximity to the DNA-binding region of the Ku 
heterodimer [30, 31]. It is conceivable that Ku70-SAP may 
stabilize the interaction between Ku and DNA, though its 
exact function has yet to be conclusively elucidated.

Initial crystallography studies were conducted with 
truncated Ku80 that was missing the CTD [9]. The Ku80-
CTD structure (19 kDa, residues 542–732) was later deter-
mined using NMR by two different groups [32, 33]. The 
Ku80-CTD contains a globular domain composed of six 
α-helices (residues 592–709) that is flanked by disordered 
N- and C-termini. Single-particle electron microscopy and 
small angle X-ray scattering data show that in the presence 
of DNA, the Ku80-CTD undergoes displacement to form 
a flexible arm that extends from the DNA-binding core to 
interact with the DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) [30, 34].

Fig. 2  Ribbon diagram and corresponding schematic of Ku heter-
odimer domains. Figure adapted from Fell and Schild-Poulter (2015) 
review [1]. Ku ribbon diagram bound and unbound by DNA. Crystal 
structure data of human Ku (PDB: IJEY) is colored in a domain-spe-
cific manner. Ku80 C-terminus domain is portrayed in isolation using 
NMR structural data (PDB: IQ2Z). In the Ku schematic, human, 
yeast, and prokaryote Ku subunits are compared while the Ku von 

Willebrand A (vWA) domain, DNA-binding domain, and SAF-A/B, 
Acinus and PIAS (SAP) or C-terminal domain, are color-matched to 
the ribbon diagram. Nuclear Localization Signal (NLS) is indicated 
as a thick black line. DNA-PKcs and Ku-binding motif (KBM) inter-
action sites are indicated, as are key post-translational modification 
(PTM) sites for phosphorylation and acetylation
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Although the Ku crystal structure was obtained in 2001, 
important regions of each subunit were not mapped out due 
to experimental difficulties. These regions have since been 
resolved in the context of the crystal structure of DNA-PKcs 
bound to the Ku80-CTD [35], and in two cryogenic elec-
tron microscopy (cryoEM) studies of DNA-PK containing 
full length Ku70/80 [36, 37]. CryoEM studies show DNA-
PKcs and Ku both recognize and bind DNA separately and 
together result in a 30° kink in the DNA duplex in contrast 
to previous models that assumed the DNA is unbent [35, 
38]. The role of DNA distortion in NHEJ remains unclear. 
CryoEM data also indicates that DNA-PKcs is activated 
allosterically by conformational changes initiated by DNA-
PK holoenzyme (dsDNA, Ku70/80, and DNA-PKcs) forma-
tion [36, 37, 39]. CryoEM structures of Ku in isolation have 
not yet been reported but may be useful to further study Ku 
structure, protein interactions, and its role in NHEJ [39].

Ku conservation and essentiality

Conservation among organisms

Ku, an essential component of NHEJ, was first identified in 
humans [5], though functional homologs have since been 
identified in almost all eukaryotes including vertebrates, 
insects, fungi, and in some prokaryotic lineages [40–42]. 
Sequence homology analysis revealed that yeast and other 
lower eukaryotic Ku subunits may have arisen from a gene 
duplication event of a common ancestral gene [41, 43]. 
The eukaryotic Ku70 and Ku80 subunits have diverged in 
primary sequence but share similar secondary and tertiary 
structure [9]. Ku homologs in different organisms also have 
little sequence similarity but universally share similar struc-
ture and function [41].

In eukaryotes, Ku and DNA ligase IV form the core com-
ponents of the NHEJ repair complex [41]. Many eukaryotes 
also have additional NHEJ factors such as DNA-PKcs. It 
was previously thought that DNA-PKcs was only found in 
higher eukaryotes, however, recently DNA-PKcs has been 
identified in invertebrates, fungi, plants, and protists [44]. In 
organisms that have functional DNA-PKcs, the Ku80 CTD 
binds with DNA-PKcs, and the subsequently formed DNA-
PK holoenzyme recruits downstream NHEJ factors [45]. 
Notably, DNA-PKcs is absent in yeast and Caenorhabditis 
elegans [45, 46], organisms that rely primarily on homolo-
gous recombination (HR) as their main mechanism of DSB 
repair [47, 48]. Accordingly, yeast Ku80 contains a unique 
CTD, distinct from higher eukaryotes, capable of binding 
DNA ligase IV (Dnl4) instead of DNA-PKcs [48].

Prokaryotes were initially thought to rely solely on HR, 
however, Ku homologs have been found in multiple bacterial 
genera, including Mycobacterium, Pseudomonas, Bacillus, 

and Agrobacterium [40]. The core bacterial NHEJ complex 
is composed of homodimeric Ku and LigD, a multifunc-
tional ligase with multiple catalytic domains [49]. Bacte-
rial Ku subunits are smaller than eukaryotic Ku (approxi-
mately 30–40 kDa) yet share related structural homology. 
The β-barrel ring domain responsible for heterodimerization 
and binding dsDNA in eukaryotes is structurally and func-
tionally conserved in bacterial Ku, but the N-terminal vWA 
domain and the CTD are not [50].

Homodimeric Ku is also present in a limited number of 
Archaean species, implying that NHEJ repair is rare in these 
organisms [51]. Only one species has been found with NHEJ 
complex components, and these components are closely 
related to their bacterial homologs [52]. Ku homologs are 
widespread across the kingdom of life. The Gam protein, 
found in bacteriophage Mu, is a homodimer capable of bind-
ing dsDNA ends. Gam has considerable sequence homol-
ogy with prokaryotic and eukaryotic Ku and appears to be 
an ortholog [53]. However, there are notable examples of 
organisms missing Ku and NHEJ capability. For example, 
NHEJ machinery (Ku and LigD) is absent in E. coli [40]. 
Interestingly, Gam, in conjunction with native E. coli LigA, 
has been shown to activate NHEJ in E. coli [54]. Multiple 
other NHEJ factors have also been independently lost in sev-
eral species of parasitic protists [55].

Essentiality among organisms

To date, there is no published viable Ku homozygous knock-
out human cell line, although notable knockdown and knock-
out attempts have been made in various mammalian cell 
lines (Table 1). In human HCT116 cells, homozygous Ku80 
knockouts were reportedly not viable after a limited number 
of cell doublings [7]. Similarly, for Ku70, a genome-wide 
knockout study found that deletion was lethal in near-haploid 
human cell lines, HAP1 and KBM7 [8]. Ku has been pro-
posed to be essential in humans due to its role in telomere 
maintenance [7, 56]. Ku knockout was also lethal in Ustilago 
maydis, a fungal species, due to unprotected telomeres trig-
gering cell cycle arrest [57].

Despite the inability to produce a viable total knockout 
of Ku in human cells, non-lethal Ku knockdowns through 
heterozygous gene knockout or RNA-based silencing have 
been achieved in different human cell lines [72–74]. Het-
erozygous Ku70 and Ku80 knockouts in HCT116 displayed 
slower cell proliferation, shortened telomeres, and hypersen-
sitivity to ionizing radiation (IR), which indicates decreased 
NHEJ repair function [7, 73, 74]. Several human disorders 
are linked to NHEJ factor mutations, though no genetic dis-
ease has thus far been associated with a mutation in Ku. This 
combined data suggest that Ku is likely essential in humans. 
Contrarily, in most species, Ku appears to be dispensable 
(Table 2).
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Unlike their human cell line counterparts, Ku knockout 
mice are viable and have been extensively studied [6, 75]. 
Despite Ku knockout mice being viable and capable of repro-
duction, Ku deficiency in mice is linked to a host of symptoms 
[71, 75–81] (Table 3). Ku70 or Ku80 knockout mice share 
many characteristic phenotypes, but there are a few notable 
differences including early aging for Ku80 deficient mice and 
early incidence of cancer in Ku70 knockouts.

Ku localization and expression

Cellular localization

Ku is predominantly observed in the nucleus [90]. Follow-
ing transcription and translation, Ku subunits can trans-
locate into the nucleus together, as a heterodimer [90], or 
independently, as each subunit contains its own nuclear 
localization signal [91]. In the nucleus, Ku has been shown 

Table 1  Mammalian cell lines with Ku70 or Ku80 deficiencies

a xrs hamster cell lines can be reverted to wild-type levels of Ku80 with azacytidine treatment suggesting they may not be true knockouts, but 
instead contain one silenced, but functional allele [66]

Subunit Species Cell line/tissue Type of cell line Type of deficiency Viability Reference(s)

Ku70 Human RERF-LC-A1 Immortal Knockdown Viable [58]
Nalm-6 Immortal Heterozygous Viable [59]
HCT116 Immortal Heterozygous Viable [60]

Knockout Inviable
HAP1 Immortal Knockout Inviable [8]
KBM7

Mouse Mouse Embryonic Fibroblasts (MEFs) Immortal Knockout Viable [61]
Embryonic Stem (ES) cells Primary Heterozygous Viable [16]

Knockout
Fibroblasts Primary Heterozygous Viable [62]

Knockout
B and T lymphocytes, thymocytes, MEFs, spleen, 

bone marrow
Primary Knockout Viable [63]

Ku80 Hamster sxi-2, sxi-3 Immortal Knockout Viable [64]
CHO-xrs-6 or  xrs6a Immortal Knockout Viable [65, 66]
CHO-xrs-4 or  xrs4a

CHO-xrs-5 or  xrs5a Immortal Knockdown Viable [66]
XR-V15B Immortal Knockout Viable [67]
XR-V9B Immortal Knockout Viable [68]

Human MRC5V1 Immortal Knockdown Viable [69]
HCT116 Immortal Heterozygous Viable [7]

Knockout Inviable
HeLa Immortal Knockdown Reduced viability [70]
U2OS
SAOS
Nalm-6 Immortal Heterozygous Viable [59]

Mouse MEFs Immortal Knockout Viable [6]
Bone marrow, B and T lymphocytes, MEFs, spleen Primary Knockout Viable [6, 71]
ES cells, fibroblasts, thymus Primary Knockout Viable [6]
Thymocytes Primary Knockout Viable [71]
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to bind DNA DSBs with a high affinity [41, 92]. Ku’s key 
roles associated with DNA repair [reviewed in [1]], tel-
omere function [93], DNA replication [94, 95], and tran-
scription [96, 97] validate its purpose as a nuclear protein.

Further investigations of the nuclear distribution pattern 
of Ku revealed its localization in both the nucleoplasm 
and nucleolus [98–100]. Ku is a dynamic, highly mobile 
protein complex and its nuclear mobility was shown to 
be regulated by inositol hexakisphosphate  (InsP6), an 
enzyme cofactor for DNA-PK and a direct Ku interactor 
[101–103]. In the absence of DNA damage, both Ku subu-
nits are localized to the nucleolus [98, 104, 105], where 
Ku has been shown to associate with ribosomal RNA and 
RNA-binding proteins [98, 100]. In response to cellular 

stress signals, certain nucleolar proteins are found to be 
relocated to initiate countermeasures. Ku is one defini-
tive example of this phenomenon as nucleolar Ku shuttles 
back to the nucleoplasm to initiate DNA break repair upon 
UV- or IR-induced DNA damage [98, 99]. These findings 
speculate that a portion of the Ku population exists in the 
nucleolus in the absence of DNA damage.

Although Ku has been well established as a nuclear 
protein, there are several studies which have observed its 
presence in the cytoplasm [reviewed in [90]]. Bax, a cyto-
plasmic protein, has been found to interact with Ku70, 
and this interaction was suggested to inhibit Bax-mediated 
apoptosis [3]. In addition, cytosolic Ku has been shown to 
act as a pattern recognition receptor that recognizes viral 
DNA in human cells [4]. Many of the studies that claimed 
to detect Ku in the cytoplasm relied on subcellular frac-
tionation techniques where Ku may have “leaked out” of 
the nucleus to contaminate the cytoplasmic fractions, so 
the presence of Ku in the cytoplasm remains controversial.

Mitochondria contain their own genetic information in 
the form of a circular plasmid of DNA, which warrants 
mitochondria as a possible destination for Ku as a NHEJ 
repair factor. An earlier study reported that mitochondrial 
extracts of Ku-deficient hamster cells showed DNA end-
binding activity, implying that some other factor associates 
with broken DNA ends and that Ku is not needed in the 
mitochondria to repair DSBs [106]. This speculation was 
recently confirmed as another group found that NHEJ was 
undetectable from the mitochondrial extracts of rat tissue 
and human cells [107]. Instead, the study identified fac-
tors involved in microhomology-mediated end-joining, an 
alternative DSB repair pathway to NHEJ, and suggest this 
pathway may be predominantly responsible for maintain-
ing genomic integrity in the mitochondria [107].

Table 2  Viable species in which Ku was knocked out

Species or cell lines, grouped by Kingdom, that were viable after 
XRCC5 (Ku80) and/or XRCC6 (Ku70) genes were successfully 
knocked out

Kingdom Species Reference(s)

Animalia Bombyx mori [82]
Caenorhabditis elegans [83]
Chicken cell line DT40 [84]
Chinese hamster ovary (CHO) 

mutant cell lines
[85]

Mus musculus [16]
Fungi Claviceps purpurea [86]

Penicillium chrysogenum [86]
Penicillium decumbens [86]
Penicillium marneffei [86]
Trichoderma virens [86]
Saccharomyces cerevisiae [48]
Schizosaccharomyces pombe [87]

Plantae Arabidopsis thaliana [88]
Protozoa Toxoplasma gondii [89]

Table 3  Ku70 and Ku80 
knockout phenotypes in mice

Ku70 Knockout Mice Ku80 Knockout Mice

Viable Viable
Can reproduce Can reproduce
Ku70 knockout mother unable to sustain pups Ku80 knockout mother unable to sustain pups
K/O mice smaller than control mice K/O mice smaller than control mice
Fewer proliferating cells Early loss of proliferating cells for fibroblasts
Premature senescence of cells Fibroblasts show prolonged doubling time
Cells sensitive to ionizing radiation Cells are radiation sensitive
Lack mature B cells or serum immunoglobulin Arrest in T and B lymphocyte development
V(D)J rearrangement deficiency V(D)J rearrangement deficiency
Increased incidence of thymic tumors Smaller spleen and lymph nodes
Chromosomal instability Chromosomal instability

Early aging/shorter lifespan
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Protein expression

Ku70 and Ku80 are abundant proteins with approximately 
400,000 units of Ku per cell in established human cell lines 
[108], and Ku levels appear to be ubiquitous and abundant 
regardless of the cell type or cell cycle phase. Some in vivo 
human tissues (i.e. skin, muscle, nerve, lung, ovary, kidney, 
etc.) were found to show heterogeneity in Ku70 expression 
[109]. Furthermore, tissue‐specific overexpression of Ku70 
and Ku80 homologs has been demonstrated in the ovary and 
testes of Xenopus laevis [110]. In Drosophila melanogaster, 
expression levels are constant through all developmental stages 
except oogenesis and early embryogenesis when they increase 
25-fold [111]. These findings suggest a role for Ku in develop-
ment. In Arabidopsis thaliana, expression was constant, albeit 
low, across all plant tissues examined [112]. Although Ku is 
conserved in almost all eukaryotic and a number of prokaryotic 
lineages, Ku expression patterns appear to be highly variable.

Highly expressed genes, like XRCC6 (Ku70), are prone to 
producing processed pseudogenes (PP). PPs are created in ger-
mline cells through reverse transcription and random integra-
tion of mRNA into the genome. PPs are often non-functional 
and have lost the ability to produce proteins [113]. Ku70 has 
five PPs (XRCC6P1-5) in the human genome. While XRCC6 
is located on chromosome 22, three PPs are found on chromo-
somes 1 (XRCC6P3), 8 (XRCC6P4), and 10 (XRCC6P1) and 
two are found on chromosome X (XRCC6P2 and XRCC6P5). 
It is unclear, at present, whether any of these pseudogenes can 
or have been reactivated in human cells. Notably, no Ku80 
pseudogenes have been reported.

The human Ku80 locus produces two protein isoforms: 
Ku80 and an alternative splice variant named Ku86 autoan-
tigen related protein-1 (KARP-1), that is transcribed from 
a different upstream promoter [114]. KARP-1 shares cer-
tain biochemical properties with Ku80. KARP-1 is able to 
bind, colocalize, and stabilize Ku70 in vivo, strongly indi-
cating that KARP-1 can heterodimerize with Ku70 [115]. 
KARP-1 has been shown to positively regulate DNA-PK 
activity [114] and partially complement the radiosensitivity 
of Ku80-deficient cells [115]. Notably KARP-1, not Ku80, 
expression is strongly induced by DNA damage in a p53- 
and ATM-dependent manner [116]. Whether KARP-1 has 
a distinct role or functions in mammalian DNA repair is still 
unclear, though KARP-1 was reported to have a protective 
role against cell damage caused by oxidative stress in rats 
[117].

Identifying Ku protein interactors

Ku70, Ku80, and DNA‑PKcs

Ku is often referred to as the DNA-binding subunit of the 
DNA-PK complex, which assembles in response to DSBs 
[1]. The extreme Ku80 C-terminus (residues 439–592) 
interacts with DNA-PKcs [43, 118, 119] and promotes 
DNA-PKcs autophosphorylation at DNA breaks. It is well 
recognized that Ku is important for recruiting and acti-
vating DNA-PKcs at DSBs, although one study observed 
DNA-PKcs could still be activated in Ku-deficient hamster 
cells [120], though this remains to be verified. Recently, 
another study found that the DNA sequence and end 
structure of the break may also play a role in DNA-PK 
assembly, specifically impacting the interaction between 
DNA-PKcs and the Ku80 C-terminus [121]. Aside from 
the broken DNA end composition, it is also possible that 
DNA-PKcs may interact differently with Ku depending 
on the NHEJ processing factors recruited to the break. 
DNA-PK acts as a hub for the rest of the DNA repair fac-
tors during NHEJ [reviewed in [122]]. Independent of Ku, 
DNA-PKcs function in other cellular processes has been 
reported [123].

Ku interactome studies

As highly abundant proteins in human cells, Ku70 and 
Ku80 are frequently identified in affinity purification and 
mass spectrometry datasets. In this sense, Ku is sometimes 
seen as a “contaminating” protein, as it is often observed 
outside of a logical biological context. However, at the 
same time, many diverse factors have been shown to 
interact with Ku [1, 13, 124], indicative of the fact that 
Ku has been implicated in multiple cellular processes: 
NHEJ [11, 18, 119, 125–127], telomere maintenance 
[128–131], DNA damage response [132–134], RNA biol-
ogy [135–137], transcription [15, 138, 139], DNA repli-
cation [140, 141], V(D)J recombination [142, 143], and 
apoptosis [3, 144–146] (Fig. 3).

Originally, many studies identified candidate Ku inter-
actors using high-throughput yeast-two-hybrid (Y2H) 
screens before validating interactions with low-through-
put co-immunoprecipitation experiments and/or in vitro 
binding assays [10, 128, 148, 149]. Colocalization [150] 
and proximity ligation assays [151] are additional low-
throughput techniques that can detect in vivo associations 
and have also been used previously to verify Ku interactors 
[132, 148].

We recently used proximity-dependent biotin identifi-
cation (BioID) [12] to identify in vivo protein interaction 
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candidates for Ku in human cells [13]. Using this technique 
with a second high-throughput proteomic technique known 
as affinity purification coupled to mass spectrometry (AP-
MS), we were able to identify both known and novel Ku 
interactor candidates and create a comprehensive map of 
the Ku protein interactome [13]. Prior to our study, another 

group used tandem affinity purification tagging in human 
cells to identify Ku interactors and found 22 candidate 
proteins, many of which were shared with our study [124]. 
As technology continues to advance, more candidates can 
be identified using additional high-throughput techniques, 

Fig. 3  The Ku heterodimer functions in various cellular processes 
and interacts with multiple proteins. Figure adapted from Downs and 
Jackson (2004) [147] review. A selection of well-characterized cel-

lular functions that have been shown to involve Ku, including key 
human Ku protein/RNA interactors 

Fig. 4  The human Ku-Binding Motifs (KBMs). Figure adapted from 
Frit et  al. (2019) [152]. Different classes of KBM with known pro-
teins containing verified KBMs, amino acid sequences, and approxi-
mate sequence location. Note that there is no clear consensus on the 

exact lengths and boundaries of the KBMs. Bolded amino acids are 
conserved. Each KBM was initially discovered in and named after the 
respective underlined protein
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allowing us to visualize the greater landscape and context 
of Ku functions throughout the cell.

The Ku‑binding motif

Within the last decade, many studies identified a specific, 
9-15 amino acid sequence referred to as a Ku-binding motif 
(KBM). The KBM is a conserved motif that mediates protein 
interactions with Ku [reviewed in [152]]. Thus far, only a 
handful of proteins have been found to contain a verified 
KBM, including Aprataxin PNKP-like factor (APLF) [125], 
Werner syndrome protein (WRN) [10], Modulator of retro-
virus infection homologue (MRI, also known as CYREN) 
[10], XRCC4-like factor (XLF; also known as Cernunnos) 
[11], and Paralog of XRCC4 and XLF (PAXX) [11] (Fig. 4).

APLF, an intrinsically disordered protein that acts as 
an accessory factor for NHEJ, has been found to interact 
directly with Ku80, by binding to a hydrophobic pocket in 
the Ku80 vWA domain [11, 23]. Despite being predomi-
nantly nuclear, APLF does not contain its own nuclear 
localization signal [125]. Disrupting the interaction between 
Ku and APLF by mutating the APLF KBM (referred to as 
A-KBM in future studies) resulted in APLF becoming more 
cytoplasmic, suggesting that the A-KBM, and the interaction 
it mediates with Ku, is essential for retaining APLF in the 
nucleus [125].

Meanwhile, WRN was found to contain two KBMs: one 
at its N-terminus and another at its C-terminus [10]. While 
not a core NHEJ factor, WRN enhanced DSB repair using 
both KBMs [10]. The C-terminal KBM in WRN is adjacent 
to a novel, structurally similar but functionally distinct motif 
called the XLF-like motif [10]. This new motif was found at 
the extreme C-terminus of WRN, XLF (after which it was 
named), MRI/CYREN [11, 153], and PAXX [10].

Nemoz et al. (2018) proposed that this related XLF-like 
motif is also a true KBM and referred to it as X-KBM. Using 
crystallography, they showed that X-KBM also interacts 
with Ku80, albeit in a different region from the A-KBM. 
X-KBM seems to bind specific sites within the Ku80 vWA 
domain; specifically, X-KBM occupied an internal pocket 
formed when the Ku80 α/β domain underwent an outward 
rotation [11]. This unique interaction with the Ku80 vWA 
was also supported by a study conducted in X. laevis, where 
researchers suggested that the availability of this Ku80 vWA 
binding site may be conditional [154].

Nemoz et al. (2018) also identified a third sub-category 
of KBM, which they called P-KBM for the motif found in 
the C-terminus of PAXX. While PAXX was initially sus-
pected to contain an X-KBM [10], implying an interaction 
with Ku80 in the same manner as XLF, the C-terminus of 
PAXX did not compete with XLF for Ku80 binding and 
instead bound Ku70 [11]. Another group had also previ-
ously deduced a PAXX-Ku70 interaction; they found that the 

C-terminus of PAXX was essential for Ku interaction, while 
the C-termini of both Ku70 and Ku80 were not essential for 
PAXX interaction [18]. Although the exact Ku70 binding 
site for P-KBM is unknown, the researchers noted that Ku 
binding to DNA results in a protrusion of the W148 residue 
in the Ku70 vWA, which they proposed could be an impor-
tant contact for PAXX interaction [18].

Thus far, all the verified proteins containing KBMs are 
known or suspected to be involved in NHEJ [10]. At a dou-
ble-stranded DNA break, Ku is threaded onto the ends of 
broken DNA and interaction with KBM-containing factors 
XLF or PAXX is only detectable in this specific context, 
with the inclusion of DNA [18]. In the future, it will be of 
interest to see if KBMs are identified in proteins outside 
of the NHEJ context. To this end, using the minimal KBM 
sequence (R-X-X-P-X-W), Grundy et al. (2016) identified 
over 600 putative KBM proteins [10]. Overall, KBMs rep-
resent a key motif that allows proteins to interact with either 
Ku80 or Ku70. Based on our current understanding, KBMs 
can be divided further into three sub-categories: A-KBMs, 
which dictate interaction with the Ku80 vWA hydrophobic 
pocket; X-KBMs, which also interact with the Ku80 vWA 
albeit distinct from A-KBMs; and finally P-KBMs, a third 
class that mediates interaction with Ku70 (Fig. 4).

Post‑translational modifications

Ku functionality is modulated by several post-translational 
modifications (PTMs) including phosphorylation, acetyla-
tion, ubiquitination, and sumoylation. Some PTMs are asso-
ciated with Ku function in NHEJ [155], DNA repair pathway 
selection [156], DNA damage response (DDR) [132], DNA 
replication [94], and Ku degradation [157], though many 
PTMs remain functionally uncharacterized.

Phosphorylation

Due to the close association of Ku with DNA-PKcs dur-
ing NHEJ, initial studies focused on identifying potential 
phosphorylation sites of Ku by DNA-PKcs [158, 159]. Early 
in vitro studies identified several Ku80 residues (S577, 
S580, T715) that were phosphorylated by DNA-PK [158, 
160, 161]. Similarly, Ku70 phosphorylation sites (S51, S53, 
S319) were also identified, and most were found as part of 
a DNA-PK consensus motif (S/T-Q) [159], with the excep-
tion of Ku70 S6 [158]. Phosphoablative mutation analysis 
of Ku80 S577, S580, T715 and Ku70 S6 demonstrated that 
phosphorylation of these sites was not needed for NHEJ 
repair function [160], raising the question of what functional 
role these phosphorylation events may play. A later study 
demonstrated that Ku70 phosphorylation by DNA-PKcs at 
other sites (T305, S306, T307, S314 and T316) displaced Ku 
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from DNA ends, thereby preventing NHEJ and promoting 
HR repair during the S phase of the cell cycle [156]. Taken 
together, these results suggest some Ku phosphorylation may 
be involved in DNA repair pathway selection while the func-
tion of other sites is still unclear.

Aside from DNA-PKcs, cyclin-dependent kinases (CDKs) 
also phosphorylate Ku and other Ku70 phosphorylation sites 
have been identified using proteomic studies [162]. Cyclin 
A1-bound CDK2 was found to phosphorylate both Ku70 
and Ku80 [163] and showed phosphorylation-mediated regu-
lation of Ku70’s heterodimer DNA-binding ability in vitro 
[164]. One group demonstrated that DNA replication was 
regulated through Ku70 phosphorylation by cyclin/CDKs. 
Various cyclin/CDK proteins were suggested to phosphoryl-
ate Ku70 and inhibit its interaction with replication origins 
during S, G2, and M phases, while dephosphorylation of 
Ku70 during the G1 phase facilitated the assembly of the 
origin recognition complex [94]. These early results imply 
that the balance between phosphorylated and dephospho-
rylated Ku70 may function to prevent untimely replication 
initiation.

Previous research in our lab identified Ku70 S155 as 
a novel phosphorylation site that is phosphorylated in 
response to severe DNA damage, although the kinase protein 
responsible is unknown [132, 165]. The proposed functions 
of Ku70 S155 phosphorylation in cell cycle arrest and the 
DDR are discussed later in this review (see “DNA damage 
response”). Finally, proteomic screens have identified other 
potential Ku70 phosphorylation sites phosphorylated by 
checkpoint kinase 1 (Chk1) and polo-like kinase, though the 
functions mediated by these phosphorylation events remain 
elusive [166, 167]. In some human cancer cell lines, Ku 
phosphorylation has been shown to confer mechanisms for 
radiation-resistance and survival [155, 168]. For example, 
in certain chemoresistant leukemia cell lines, a novel form 
of Ku70 was identified in which residues S27 and S33 were 
phosphorylated, and this phosphorylation seemed to lead 
to a faster, but more unfaithful NHEJ repair process [155].

Acetylation

Both Ku70 and Ku80 have multiple lysine residues that have 
been identified as acetylation sites. Ku80 sites include K265, 
K338, K565, and K660 [169] while numerous Ku70 sites 
have also been identified (Fig. 2) [3, 170, 171]. Ku70 acety-
lation has been shown to impair NHEJ by modifying the 
Ku70 lysine residues needed for binding dsDNA ends: K539 
and K542 [171, 172] and K317, K331, K338 [170]. Two 
histone acetyltransferase enzymes, CBP and PCAF, have 
been shown to be responsible for Ku acetylation [3]. CBP 
was capable of acetylating both Ku70 [171] and Ku80 [173] 

at various lysine residues. Meanwhile, histone deacetylases, 
such as SIRT1 [174] and SIRT6 [175], deacetylate Ku.

Current research suggests that Ku70 acetylation nega-
tively affects NHEJ-mediated DNA repair. Knocking down 
CBP in neuroblastoma cells decreased the levels of acety-
lated Ku70 while showing increased DNA repair activity and 
cell survival [171]. Acetylated Ku70 (K539, K542) has also 
been implicated in the initiation of Bax-mediated apoptosis 
[3, 172], providing a possible explanation for why increased 
cell survival is observed in CBP knockdown neuroblastoma 
cells. Interestingly, there are cellular mechanisms preventing 
Ku70 acetylation. Certain Ku70 interactors (i.e. SET and 
SMAR1) have been shown to safeguard Ku70 from acetyla-
tion [144, 176]. Inhibition of Ku70 acetylation by INHAT 
subunit SET/TAF-1β regulates Ku70-mediated DNA dam-
age response [144], while SMAR1 was shown to coordinate 
HDAC6-induced deacetylation of Ku70 and dictate cell fate 
upon irradiation [176].

Ubiquitination and sumoylation

Ubiquitination and addition of ubiquitin-like proteins 
(UBLs) (i.e. NEDD8, SUMO) play a vital role in regulat-
ing cellular responses to DNA repair pathways [reviewed in 
[177]]. Ubiquitination by E3 ligases RNF138 and RNF8 has 
been associated with freeing Ku80 from repaired dsDNA 
by targeting the subunit for degradation [177, 178]. How-
ever, little is known about the impact of these modifications 
on Ku70. Neddylation-dependent Ku70 ubiquitination has 
been shown to promote Ku70 removal from DNA damage 
sites after repair [157]. In yeast Ku70, sumoylation at the 
C-terminal lysine residues were found to be favorable for 
Ku70 and broken DNA end association [179]. Ubiquitina-
tion is one of the more understudied Ku PTMs and an area 
in need of further investigation.

Diversity of Ku function

Ku is best characterized for its indispensable role in NHEJ, 
one of the available pathways for repairing DNA DSBs. Ku 
is the first protein of the NHEJ repair complex to recog-
nize and bind broken DNA ends, binding within 10 s of a 
DSB forming [180]. Ku threads onto both broken ends in a 
sequence-independent manner, with most models depicting 
a single heterodimer binding each end [1, 20]. Once bound, 
Ku recruits DNA-PKcs, which protects the DNA ends from 
degradation [181]. After autophosphorylation, DNA-PKcs 
undergoes a conformational change allowing other repair 
factors access to the ends [182]. Proteins involved in bridg-
ing and processing DSBs are also recruited, although the 
exact order of recruitment is still uncertain [183]. XRCC4 
and XLF are recruited to DSBs and have been shown to form 
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an alternating filament that resembles a mobile, “molecu-
lar sleeve” to bridge the broken ends [184]. Other factors 
recruited include DNA polymerases and endonucleases that 
may be needed to process the DNA ends to be compatible 
for rejoining. DNA end processing without a homologous 
template can introduce errors, hence NHEJ is known for 
being an error-prone process [185]. The extent of the DNA 
damage may dictate which processivity factors are recruited 
and their abundance. Finally, DNA ligase IV is responsible 
for ligating the DNA backbone and completing repair [186]. 
Ku in NHEJ has been studied and reviewed extensively by 
others in various contexts: DSB repair pathway choice [20, 
156, 187], function and kinetics of NHEJ [1, 188], and Ku 
removal from repaired dsDNA [189].

Related to its function in repairing DSBs, Ku is also 
essential for the repair of intentional, programmed DNA 
breaks formed during V(D)J recombination and class switch 
recombination, the cellular lymphocyte-specific processes 
that generate antigen diversity and immunoglobulin types, 
respectively, in human immune cells [190, 191]. V(D)J 
recombination relies on many of the same factors needed in 
NHEJ, discussed in the previous paragraph (for more infor-
mation, see review by [192]). Ku’s role in V(D)J recombina-
tion is further detailed later on in the review (see “Immune 
dysfunction”). Class switch recombination changes the type 
of immunoglobulin produced by a B cell through recombina-
tion of only the immunoglobulin constant region, modify-
ing the function of the immunoglobin while leaving antigen 
specificity unchanged. In class switch recombination, inten-
tional DSBs are introduced within the antibody gene locus 
and are typically repaired by Ku through the NHEJ pathway. 
However, unlike V(D)J recombination, if NHEJ factors are 
knocked out, class switch recombination breaks can also be 
repaired by the backup or alternative NHEJ repair process, 
microhomology-mediated end-joining [193].

Aside from NHEJ and immune system-related processes, 
Ku has been implicated in other cellular processes (Fig. 3). 
Here, we review research conducted about Ku function in 
the DNA damage response, DNA replication, transcription, 
telomere maintenance, and RNA biology.

DNA damage response

The DNA damage response (DDR) is a complex network of 
signaling pathways initiated upon detection of DNA dam-
age [194]. DNA damage can arise internally from endog-
enous insults (DNA replication errors, reactive oxygen spe-
cies, etc.) or externally from exogenous sources (ionizing 
radiation, chemicals, etc.) [195]. Numerous processes have 
been implicated in the DDR including cell cycle regulation, 
senescence, apoptosis, and DNA repair pathways includ-
ing NHEJ [195, 196]. The DDR can be divided into three 
processes: scanning and detection, signal transduction and 

amplification, and repair and final appraisal. Here, we review 
the role of Ku in these processes in response to a DSB.

Various factors are responsible for scanning DNA for 
damage including the MRN (Mre11, Rad50, Nibrin/NBS1) 
[195, 197] and BASC (BRCA1-associated genome surveil-
lance complex) [198] complexes. Some initially hypoth-
esized that there was a specific “sensor” for each type of 
DNA lesion [199]. Conceivably, many suspected that Ku, 
an early responder to DSBs, played such a role in the DDR 
[197, 199]. However, Ku is not the only known sensor of 
DSBs, as MRN [200] and PARP1 [201] are also capable of 
recognizing and binding DSBs. By nature, not all DSBs are 
identical so there could be subtle differences governing the 
recognition of each DSB.

Once the damage has been detected, a “transducer” is 
needed to amplify the signal of damage and activate down-
stream proteins. Kinases such as ATM, ATR, and DNA-PKcs 
are the most commonly known transducer proteins respon-
sible for signal amplification during the DDR [194, 202]. In 
response to DSBs, the ATM kinase phosphorylates multiple 
proteins including p53, 53BP1, BRCA1, CHK2, and histone 
H2AX at serine 139 [202, 203]. Aside from kinase proteins, 
our lab found that the S155 residue of Ku70, upon phospho-
rylation, appears to inhibit the Aurora B kinase and may be 
involved in promoting cell cycle arrest and the DDR [132]. 
Whether and how Ku interaction with Aurora B leads to 
cell cycle arrest is still unknown. Using irradiated murine 
Ku- and Ku70/ATM-knockout cell lines, another group dem-
onstrated that Ku is needed for ATM-dependent ATR activa-
tion [204], providing further evidence that Ku may function 
in this aspect of the DDR.

In response to DSBs, phosphorylation of p53 leads to 
cell cycle checkpoint arrest, allowing the cell time to assess 
and repair the damage or trigger senescence/apoptosis if the 
damage is too great [202]. Ku is well established as being 
involved in the NHEJ repair aspect of the DDR. As Ku has 
been implicated in both DNA repair and apoptosis [3], it is 
tempting to speculate that Ku could also be appraising the 
repair attempt, ready to signal apoptosis if necessary [165]. 
The mechanism for deeming DNA damage beyond repair is 
still unclear though there are several possibilities (PTMs, 
cellular localization changes, retention time or occupancy 
levels at DSBs, etc.).

DNA replication

One of the less defined roles played by Ku is its function 
in DNA replication. In yeast, Ku was initially identified as 
being involved in the timing of the DNA replication cycle 
[205], and this was further supported by studies that estab-
lished Ku as a modulator of activation time of replication 
origins in regions proximal to telomeric or sub-telomeric 
sequences [206]. Yeast Ku has also been shown to function 
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at DNA replication forks. Upon replication fork arrest, Ku 
has been implicated in the cell recovery process, leading to 
the restart of replication [207]. The function of Ku at fork 
arrests may be a stabilizing action in yeast [208]. Ku may 
also function to limit DSB resection during DNA replica-
tion-associated damage, which could inhibit the initial steps 
leading to the HR repair pathway [209]. In support of Ku’s 
action as a regulator of DNA replication, one study charac-
terized the removal of yeast Ku at arrested replication forks 
as integral to fork resection and replication restart [210].

Ku has also been implicated in regulating DNA replica-
tion in human cells. Early data suggested that there was a 
changing relationship between DNA-PKcs forming a com-
plex with replication protein A during replication, to a 
complex of DNA-PKcs and Ku in response to DNA damage 
[140]. Through quantification of Ku binding in vivo at dif-
ferent cell cycle stages, Ku was identified as a protein that 
binds to mammalian sequences containing replication ori-
gins [211, 212]. Specifically, independent of DNA-PKcs, Ku 
has been found to directly bind to the A3/4 sequence found 
in mammalian replication origins [95]. Ku’s association with 
proteins involved in DNA repair may indicate a mechanism 
through which Ku is recruited to replication origins [141]. In 
the event of replication-induced DNA damage, Ku has been 
found to act as a protector of DNA replication by binding 
breaks and preventing the unloading of replication machin-
ery from chromatin [213]. In advanced human metastatic 
breast cancer, higher levels of Ku were associated with 
chromatin, and Ku was found in the replication complexes 
formed at certain, more active origins of replication, impli-
cating Ku’s role in DNA replication in breast tumorigenesis 
[211]. Phosphorylation of human Ku70 has also been linked 
to replication-related functions and was described earlier in 
this review (see “Post-translational modifications”). Finally, 
Ku80 knockdown in HeLa cells was directly associated with 
a decrease in the total rate of DNA replication [214].

Transcription

Ku is well-known for its sequence-independent association 
with broken DNA ends [9, 41, 108]. However, in the late 
1990s, many groups reported Ku-DNA site-specific interac-
tion [215–218], implying that Ku acts as a transcription fac-
tor to regulate gene expression. In support of this, the Ku70 
SAP domain has been shown to have some DNA-binding 
capability independent of Ku80 [25, 28, 29], although it is 
currently unclear if this DNA-binding activity is sequence-
specific. Ku was also found to associate with other DNA 
structures like hairpins or bubbles [reviewed in [41]], imply-
ing that rather than recognizing DNA by sequence, Ku may 
instead recognize and bind in vivo DNA structures that form 
at certain sites [147].

Several studies have suggested that Ku binds directly to 
specific DNA elements, such as the heat-shock element in 
the promoter of the hsp70 gene [219] and negative regula-
tory element 1 in vitro [216, 217], implicating Ku in the 
regulation of transcription. Using an in vitro transcription 
system with linear DNA, the displacement of transcription 
factors by Ku was observed [220]. However, Ku is not uni-
versally recognized as a bona fide transcription factor as its 
mode of DNA sequence-specific binding is not understood 
and the mechanisms through which it may regulate tran-
scription remain unclear.

Ku has also been proposed to function more globally in 
transcription by modulating RNA polymerase II (RNAPII) 
expression or through protein–protein interactions with 
transcription-related proteins and factors. For instance, it 
has been reported that DSBs and DDR proteins may be a 
necessary component in regulating the release of paused 
RNAPII into active transcriptional elongation within human 
cells [221]. DNA-PK has been shown to phosphorylate the 
C-terminal domain of RNAPII [222] and Ku has been shown 
to interact with RNAPII [97, 138]. One group reported that 
Ku associates indirectly with RNAPII elongation sites via 
direct interaction between Ku80 and elongation proteins 
[97]. Recently, Ku was shown to bind the RNA hairpin struc-
ture of 7SK short nuclear RNA (snRNA), implicating Ku as 
a potential member of the 7SK short nuclear ribonucleopro-
tein (snRNP) complex that regulates transcriptional elon-
gation [2]. Meanwhile, DNA-PK was shown to phospho-
rylate numerous transcription factors in vitro [reviewed in 
[223]]. Ku has also been found to work in tandem with other 
transcriptional proteins to initiate glucocorticoid receptor-
dependent transcription [224].

While the connection between Ku and transcription is 
viable, Ku appears to regulate transcription under multiple 
contexts, making it a challenging and controversial area of 
study. Ku has also been implicated in the transcriptional 
regulation of gene expression in various diseases including 
breast cancer [225], Wilson disease [226], and HIV [227]. 
It is clear that a lot remains to be elucidated regarding Ku’s 
precise role in transcriptional processes relating to gene 
expression and implications of Ku in disease states, as well 
as identifying specific mechanisms of action.

Telomere maintenance

Telomeres are repetitive DNA sequences found at the ends 
of chromosomes that maintain genomic integrity. In mam-
mals, telomeres protect chromosomal ends through the for-
mation of a t-loop. In a t-loop, single-stranded DNA over-
hangs invade double-stranded telomeric TTA GGG  repeats 
and associate with a six-member complex of proteins that 
are collectively known as the shelterin complex [228]. Both 
the shelterin complex and the t-loop form a cap that prevents 
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DNA repair factors from recognizing the chromosome ends 
as potential DNA damage [228]. Telomeric DNA and asso-
ciated protein complexes are involved in regulating gene 
expression through telomere position effects [229] and the 
three-dimensional genomic landscape [230], in which the 
proximity of genes to telomeric sequences and the confor-
mation of chromatin can directly influence gene expression. 
Telomere biology, as well as telomeric dysregulation, have 
been extensively reviewed recently [229, 231], but despite 
this, some aspects of telomere regulation are still poorly 
understood.

One understudied area of research involves elucidating 
the network of proteins involved in telomere regulation. In 
the late 1990′s, researchers began to identify that Ku, which 
was classically recognized for its key role in DSB repair, was 
implicated in telomere regulation [129, 232–236]. Studies 
of mutant strains of yeast ku70 (yku70) and ku80 (yku80) 
revealed an essential role of Ku in telomere regulation, 
where a reduction or complete ablation of Ku function in 
yeast resulted in decreased telomere length [235, 236]. In 
contrast, in Drosophila, Ku deficiency results in abnormally 
long telomeres [237]. Ku-deficient mice displayed abnormal 
telomere lengths with telomeric fusions, indicating that Ku 
likely plays a role in preventing the occurrence of telomeric 
fusions [238, 239]. Depletion of a fungal form of Ku was 
found to cause cell cycle arrest, likely due to DNA damage 
signals from unprotected telomeres, although this needs fur-
ther validation [57]. In mammalian cell lines, Ku depletion 
resulted in shortened telomeres and increased apoptosis [7, 
74, 240]. These studies suggest Ku is required for proper 
telomere maintenance across different species, though the 
exact regulation mechanism is unclear. Ku has been shown 
to interact indirectly with telomeres through telomere-asso-
ciated proteins in mice [238]. In mammals, Ku interacts with 
multiple members of the shelterin complex to protect chro-
mosome ends [228]. In lower eukaryotes like yeast, Ku also 
functions in concert with other proteins to produce telomere 
position effects [241], but Ku’s function in telomere position 
effects of mammals still needs to be elucidated.

While Ku function in telomere biology has been reviewed 
[56, 242, 243], the precise mechanism of Ku at telomeres 
has yet to be fully elucidated. Human cells with a knock-
down of Ku80 were reported to have shortened telomeres 
and increased cell lethality, though the timeline of telomere 
shortening upon Ku depletion was not characterized [74]. In 
human cells, it was further demonstrated that loss of Ku80 
resulted in telomere loss through the formation of t-circles 
and subsequent cell death [244]. These findings suggest that 
Ku is essential in humans due to its role in telomere mainte-
nance, but future studies will be needed to fully characterize 
Ku’s mechanism of action at telomeres that results in cell 
death.

RNA biology

Traditionally, RNA was understood for its central role as 
the template for protein synthesis, however, contemporary 
research has demonstrated that the majority of the human 
genome produces non-protein coding RNA species that can 
regulate gene expression or even impact disease progres-
sion [245]. Collectively, the interplay between RNA, pro-
teins, and small molecules can also play an important role 
in the regulation of gene expression and protein function 
[246]. Recently, multiple DDR proteins have been found to 
bind RNA to regulate gene expression and modulate DDR 
signaling and repair [247]. Specifically, Ku has been found 
to associate with RNA structures to participate in multiple 
cellular functions.

Ku association with nuclear RNAs was identified in the 
1990s as a means to modulate enzyme activity and poten-
tially gene expression [248, 249]. In yeast, Ku associates 
with TLC1, the RNA component of telomerase, and acts 
to modulate telomerase activity [250, 251]. Yeast Ku rec-
ognizes and binds to a specific stem-loop hairpin structure 
of TLC1 [250, 252], and Ku binding to RNA and DNA was 
found to be mutually exclusive [253]. In human cells, a simi-
lar stem-loop structure within the RNA component of human 
telomerase was recognized and bound by Ku, suggesting that 
Ku interaction with telomerase RNA is conserved amongst 
species [254].

Ku’s association with RNA may also function to regulate 
transcription. Ku has been found to bind TAR RNA at the 5′ 
end of mRNA transcripts of the HIV-1-gene [248, 249]. Ku 
may directly affect HIV-1 expression at the transcriptional 
level and its latency in infected cells through RNA interac-
tions [227]. As reviewed earlier, Ku has been implicated 
in the regulation of transcriptional elongation through its 
interaction with the RNA hairpin structure of 7SK snRNA, 
which acts as a scaffold for the formation of the 7SK snRNP 
complex [2].

Ku has been shown to interact with a long noncoding 
RNA known as LINP1, which acts as a scaffold for the Ku 
heterodimer and DNA-PKcs to function in response to dam-
aged DNA [135, 255]. The inherent dsDNA repair func-
tion of Ku may play a role in resistance to cancer radiation 
therapies. The Ku-LINP1 interaction was shown to increase 
NHEJ repair efficiency. As this particular long noncoding 
RNA is overexpressed in triple-negative breast cancer, it 
was suggested that this Ku-RNA interaction may promote 
a radiation-resistance mechanism in tumor cells by enhanc-
ing NHEJ repair of DSBs [255]. Thapar et al. (2020) delve 
further into how LINP1 structurally functions in NHEJ and 
how it can effectively replace the NHEJ factor PAXX [135].

RNA:DNA hybrids, created during the formation of 
R-loops, appear to have varied and contrasting physiological 
effects that have been reviewed recently [256, 257]. While 
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RNA:DNA hybrids are known to be a source of genomic 
instability, more recent research suggests that R-loops may 
play beneficial roles such as regulating gene expression and 
facilitating DNA double-stranded break repair [257, 258]. 
Evidence for this restorative action in DNA repair has been 
demonstrated in yeast [259], as well as in mammalian cells 
[260]. The removal of R-loops in human cells has been 
shown to reduce the efficiency of both HR and NHEJ, lend-
ing support that the RNA:DNA hybrids are critical for DNA 
repair, though mechanistic details have yet to be fully eluci-
dated [260]. Recent data indicate that R-loops are generated 
at break sites and play a role in the establishment of DNA 
repair and the DDR [260, 261]. A number of DNA repair 
factors have been found to interact with R-loops, notably 
PARP1, DHX9, DDX5, and DNA-PK [258, 262, 263]. Spe-
cifically, DHX9 has been implicated in suppressing R-loops 
and maintaining genomic integrity in vivo [263]. Recently, 
PARP1, DHX9, and DDX5 were also identified as potential 
Ku interactors using both BioID and affinity purification 
coupled to mass spectrometry [13]. Ku70 and Ku80 were 
also found to have an affinity for RNA:DNA hybrid struc-
tures using pull-down assays followed by mass spectrometry 
[262]. Given Ku’s association with DNA repair factors that 
interact with RNA:DNA hybrids, as well as emerging evi-
dence that Ku itself may interact with RNA:DNA hybrids, 
it will be interesting to explore and identify Ku’s role in 
maintaining genomic stability through R-loop interactions.

One study identified a Ku-mediated link between DNA 
repair and mRNA translation through Ku’s association with 
p53 mRNA [264]. The stem-loop structure in the untrans-
lated region of the p53 transcript when bound by Ku was 
found to repress translation, and this repression was released 
as Ku relocated from the p53 mRNA to broken DNA ends in 
response to genotoxic stress [264]. In another study, Ku was 
found to move out of the nucleolus in response to sheared 
DNA that was added to live cells, suggesting that its associa-
tion with RNA switches to DNA in the event of DSBs [98]. 
It was reported that in the nucleolus of mouse cells, Ku may 
affect rRNA processing, as the assembly of a catalytically 
defective or inactive DNA-PK by Ku resulted in an accumu-
lation of unprocessed pre-rRNA precursors [100]. Overall, 
the context of Ku interaction with mammalian RNA within 
the nucleolus is still unclear. As a relatively new field, there 
is much to be learned regarding Ku and RNA biology.

Study of Ku in human diseases

Aging and telomere defects

Aging is the time-sensitive deterioration of physiological 
properties occurring at the cellular and organismal level. 

Accumulation of genetic defects over time and less efficient 
repair are contributing factors to aging [265].

Knocking out any of the DNA-PK subunits in mice caused 
premature aging [265, 266]. Yet the early understanding was 
that only deletions of Ku80 and/or DNA  PKcs were responsi-
ble for aging phenotypes in mice whereas deletions of Ku70 
correlated with a high incidence of cancer [265]. Later, these 
findings were found to be inaccurate as deletions of Ku70 
and Ku80 subunits lead to identical aging phenotypes, high-
lighting the essentiality of both subunits [266]. Other than 
its substantial role in DSB repair, DNA-PK is found to be 
involved in metabolic dysregulation during aging. In aging 
smooth muscle cells, increasing DSBs caused constitutive 
DNA-PK activation leading to down regulation of 5′-AMP-
activated protein kinase (AMPK) activity [267]. DNA-PK 
phosphorylation of HSP90 impaired chaperone functionality 
on AMPK leading to misfolding. The depleted AMPK levels 
caused reduced fitness and declined mitochondrial function 
in aging mice. These findings accentuate a novel role for 
DNA-PK in mediating DNA damage-induced metabolic 
imbalance during aging [267].

Ku function in telomere maintenance can also contribute 
to the aging phenotype. Telomere shortening leads to rep-
licative senescence of somatic cells [265]. Loss of t-loop 
structure and/or the protein cap protection (shelterin com-
plex proteins) due to telomere shortening triggers the DDR 
[265] leading to permanent cell cycle arrest and/or apopto-
sis, depending on the cell type [268]. Ku plays a protective 
role at telomeres by binding the shelterin complex [231]. 
As discussed earlier, yeast [232, 235], human cancer cells 
[74, 240] and certain mouse models deficient in Ku [238] 
have shown reduced telomere length which emphasizes Ku’s 
protective role against replicative senescence. Increased tel-
omere associations and fusions were observed in aging Ku 
knockout mice [239, 266], and could be the result of defects 
in telomere cap protection.

A direct relationship between Ku and human aging disor-
ders is uncertain, however, mutations to some potential Ku 
protein interactors may lead to premature aging. Hutchin-
son–Gilford progeria (HGPS) is a premature aging syndrome 
in humans caused by a single point mutation in the LMNA 
gene that codes for progerin, a truncated splice variant of 
lamin A [126, 269]. Ectopically-expressed DNA-PKcs was 
shown to co-immunoprecipitate with progerin in HGPS 
fibroblasts, implying the two may interact [269]. Compared 
to normal fibroblasts, HGPS fibroblasts showed reduced 
expression of Ku70, Ku80, and DNA-PKcs upon the accu-
mulation of progerin and the loss of DNA-PK was found to 
contribute to the phenotypes observed in HGPS fibroblasts 
[269]. Another Ku protein interactor, WRN, enhances NHEJ 
repair [10, 270, 271], and loss of function mutations in WRN 
can result in Werner syndrome, an autosomal recessive dis-
order characterized by premature aging [271, 272]. Loss of 
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function mutations in WRN impair its localization to the 
nucleus [272], and may negatively affect WRN and Ku inter-
action and NHEJ repair during aging.

Immune dysfunction: the Ku autoantigen

Ku was initially discovered as an autoantigen after the detec-
tion of anti-Ku antibodies in the sera of scleroderma–poly-
myositis overlap syndrome patients [5]. Since then, anti-Ku 
antibodies have been identified with varying prevalence 
(< 1–27%) in a wide spectrum of connective tissue diseases 
including systemic lupus erythematosus, Sjögren’s syn-
drome, rheumatoid arthritis, and systemic sclerosis (SSc) 
[273–276]. The prevalence of anti-Ku autoantibodies in con-
nective tissue diseases varies due to the detection immunoas-
say, type of autoimmune disorder, and the genetic and geo-
graphical background of the subjects studied [5, 273, 274, 
277–280]. Anti-Ku antibody profiles have been associated 
with some clinical manifestations. A significant associa-
tion was reported between anti-Ku antibodies and muscu-
loskeletal manifestations of disease (myositis, arthritis, and 
joint contractures) in SSc patients [276]. Anti-Ku positive 
patients who also display elevated serum creatine kinase 
levels appear to be at significantly higher risk of developing 
interstitial lung disease [281, 282]. Antibodies against other 
NHEJ factors have also been found in the serum of connec-
tive tissue disease patients suggesting a concerted autoim-
mune response to DDR proteins and that DNA damage may 
be a factor in the development of connective tissue diseases 
[273, 283, 284].

Ku in innate immunity

The innate immune response relies on the detection of 
bacterial and viral pathogens by pattern-recognition recep-
tors (PRR) that induce the production of cytokines and 
chemokines. Membrane-bound and cytoplasmic PRR detect 
foreign DNA using conserved, essential molecules of patho-
gens [285]. DNA-PK has been identified as a cytosolic PRR 
for DNA viruses in murine fibroblasts and mice. After infec-
tion from the vaccinia virus (VV), which has a linear dsDNA 
genome, DNA-PK was shown to co-localize with sites of 
viral DNA replication in the cytoplasm and was involved in 
the activation of the innate immune system. Accordingly, the 
innate immune response is impaired in mice lacking DNA-
PK components [286]. Ku alone has also been shown to 
detect viruses in human cells. Ku70 specifically functions as 
a cytosolic PRR that recognizes dsDNA and induced inter-
feron activation in HEK293 cells [4]. In several human cell 
lines, Ku70 overexpression inhibited expression of human 
T lymphotropic virus type 1 (HTLV-1), a retrovirus that 
can cause leukemia, whereas Ku70 knockdown promoted 
HTLV-1 expression [287]. Cytoplasmic Ku was able to 

promote hepatitis-associated chemokine secretion after the 
detection of cytosolic hepatitis B viral DNA in human liver-
derived cells [288]. Ku70 also mediated the innate immune 
response in human macrophages to a viral infection by her-
pes simplex virus-2 [289]. Interestingly, and speaking to the 
importance of DNA-PK in restraining viral infection, viruses 
appear to have developed subversion mechanisms to coun-
ter DNA-PK-mediated host detection. Two VV proteins, C4 
and C16, are able to bind Ku and block its DNA-binding 
capabilities, attenuating the host innate immune response 
[290, 291].

Impairment in V(D)J recombination

The immune system relies on T- and B-lymphocytes pro-
ducing an adaptive immune response using antigen-specific 
T-cell receptors (TCRs) and immunoglobulin (Ig) antibod-
ies, respectively. V(D)J recombination generates diversity in 
the variable regions of TCRs and Ig antibodies by the con-
trolled creation and NHEJ-driven repair of DSBs [292, 293]. 
Animals lacking NHEJ are severely immunodeficient as evi-
denced by Ku70/80 knockout mice. Immunological defects 
include smaller immune system organs and arrested T- and 
B-lymphocyte development associated with impaired V(D)
J recombination [6, 75]. Although mutations in Ku have not 
been identified in humans, mutations in other NHEJ factors 
have been associated with severe combined immunodefi-
ciency (SCID), a group of genetic disorders that results in 
persistent and recurrent infections [294, 295].

Cancer

In healthy cells, cell division is carefully regulated and 
adheres to a strict process; cells that bypass these regulations 
and divide unchecked are considered cancerous. DNA repli-
cation stress or repair errors can lead to chromosomal aber-
rations and genomic instability, a hallmark of cancer [296]. 
In many cancers, the expression of DNA repair proteins is 
dysregulated [296]. Aside from expression, the localization, 
function, protein interactions, and PTMs of these proteins 
can also be dysregulated in cancer cells.

In the early 2000s, a prevailing hypothesis was that Ku 
expression could correlate with cancer treatment outcomes 
[297, 298]. Many treatments target cancerous cells by creat-
ing intentional DSBs using radiation or chemotherapy. Since 
Ku is essential for NHEJ, it was reasonable to hypothesize 
that lower Ku levels indicated increased sensitivity to DNA 
breaks. In support of this, Ku knockout mice demonstrate 
increased sensitivity to IR [63]. Similarly, siRNA down-
regulation of Ku70 in two cancerous cell lines also led to 
increased sensitivity to radiation and etoposide, a chemo-
therapy drug [299].
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Ku levels were assessed in tumor biopsies using immuno-
histochemistry and were correlated to tumor radiosensitivity 
and the disease-free survival of patients. In two separate 
studies, Ku levels in colon cancer tumors were signifi-
cantly reduced [298, 300]. Another group observed that in 
advanced rectal carcinoma tumors, tumors with a greater 
percentage of increased Ku-level cells were more likely to 
be radioresistant, while patients with a lower percentage 
tended to have better disease-free survival [297]. Another 
study assessed Ku levels in cervical cancer patients, though 
somewhat mixed results were observed as only some of the 
tumors showed correlation with Ku expression [301]. Con-
trary to the original hypothesis, some radiosensitive tumors 
actually had a higher percentage of cells showing increased 
Ku levels [301]. A second hypothesis proposed that Ku lev-
els could be elevated in cancers, thus leading to an increased 
incidence of error-prone NHEJ and greater genomic instabil-
ity. There was some evidence in support of this hypothesis 
too as some studies observed elevated Ku levels in various 
cancers [302, 303]. Elevated Ku expression has been cor-
related with increased resistance to both radiation [297] and 
cisplatin chemotherapy [304].

To a lesser degree, other studies have investigated pos-
sible Ku dysregulations at the functional level. For exam-
ple, one study observed altered Ku DNA-binding activity in 
both breast and bladder tumors [305]. Another study found 
that EAF2, an androgen-responsive tumor suppressor, regu-
lates NHEJ by recruiting and retaining Ku at sites of DNA 
damage in prostate cancer cells [306]. Finally, using chem-
otherapy-resistant lymphocytic leukemia cells, one group 
identified a novel phosphorylated form of Ku70 (residues 
S27 and S33) that conferred faster, more error-prone NHEJ 
[155]. Intriguingly, this study implies that some cancer cells 
adopt a Ku70-dependent chemotherapy resistance mecha-
nism where NHEJ is enhanced.

Ku expression and NHEJ activity must be carefully regu-
lated and balanced in human cells to preserve genomic sta-
bility, acting as an essential defense against oncogenesis. 
Directly connecting Ku to cancer in terms of diagnosis and 
prognosis has been challenging. In spite of some studies 
providing support for Ku levels as a prognostic tool, Ku 
expression does not appear to be a consistent parameter, 
possibly due to intra-tumor diversity, cancer progression, 
or variability among cancer types. However, Ku does merit 
further investigation as a direct therapeutic target. Recently, 
a small molecule Ku inhibitor capable of sensitizing human 
cells to radiation was published (Fig. 1). While some itera-
tion of this molecule could be used in cancer treatments, 
problems such as tumor-specificity and toxicity still require 
resolution [307].

Conclusions

Recent research advances suggest Ku’s cellular role is far 
more wide-reaching than its long-established DNA repair 
function. The study of Ku is expanding to encompass numer-
ous fields of research, many of them involving regulatory 
processes. Significant structural knowledge has been gained 
from the recently acquired cryoEM structures of DNA-PK 
[36, 37], while the function of other protein domains such as 
Ku70′s SAP domain remains under investigation. Another 
active field of Ku research is the identification of Ku protein 
interactors, particularly those containing the recently identi-
fied KBMs. Identifying and validating Ku protein interac-
tors, including KBM proteins, will be a useful tool in the 
future to infer new cellular processes that implicate Ku func-
tion. Recent promising research investigating Ku’s role in 
innate immunity [289, 291] and the development of a small 
molecule Ku inhibitor [307] indicate that Ku’s clinical rele-
vance should not be overlooked. Studies have shown that Ku 
appears to function as a sensor for viral dsDNA, a trait that 
could be exploited to enhance human immunity to dsDNA 
viruses. Already, there is evidence that viruses can develop 
strategies to overcome DNA-PK’s sensory capabilities as 
viral proteins capable of blocking DNA-PK’s recognition 
of viral dsDNA have been identified. Additionally, while 
Ku’s outlook as a tool for predicting cancer diagnosis and 
prognosis has yielded mixed results, increased cellular Ku 
levels seem to correlate with enhanced resistance to radia-
tion, making Ku a worthy chemotherapy target to improve 
cancer treatment. The creation of viable Ku knockout cell 
lines in humans and a variety of other species would greatly 
assist in disease studies and elucidation of protein function. 
The multifunctional Ku protein has become a point of inter-
disciplinary research for many fields and further investiga-
tion could lead to more discoveries, at both the molecular 
and clinical level.
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