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Abstract
The contribution of astrocytes to Alzheimer’s disease (AD) is still ill defined. AD involves an abnormal accumulation of 
amyloid-β peptides (Aβ) and increased production of danger signals such as ATP. ATP can direct or indirectly, through its 
metabolism into adenosine, trigger adaptive astrocytic responses resulting from intracellular  Ca2+ oscillations. AD also trig-
gers an upregulation of astrocytic adenosine  A2A receptors  (A2AR), which blockade prevents memory dysfunction in AD. We 
now investigated how Aβ peptides affect ATP-mediated  Ca2+ responses in astrocytes measured by fluorescence live-cell imag-
ing and whether  A2AR control astrocytic  Ca2+ responses mediated by ATP receptors, mainly  P2X7R and  P2Y1R. In primary 
cultures of rat astrocytes exposed to Aβ1-42, ATP-evoked  Ca2+ responses had a lower amplitude but a longer duration than 
in control astrocytes and involved  P2X7R and  P2Y1R, the former potentiating the later. Moreover, Aβ1-42 exposure increased 
protein levels of  P2Y1R in astrocytes.  A2AR antagonism with SCH58261 controlled in a protein kinase A-dependent manner 
both  P2X7R- and  P2Y1R-mediated  Ca2+ responses in astrocytes. The interplay between these purinoceptors in astrocytes 
was blunted upon exposure to Aβ1-42. These findings uncover the ability of  A2AR to regulate the inter-twinned  P2X7R- and 
 P2Y1R-mediated  Ca2+ dynamics in astrocytes, which is disrupted in conditions of early AD.
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Abbreviations
Aβ  Amyloid-beta peptides
AD  Alzheimer’s disease
A2AR  Adenosine  A2A receptors
[Ca2+]i  Intracellular  Ca2+ concentration
Δ[Ca2+]i  Changes in intracellular  Ca2+ concentration 

induced by a stimulus
ER  Endoplasmic reticulum
IP3R  Inositol 1,3,5-trisphosphate receptors
P2X7R  P2X7 receptors

P2Y1R  P2Y1 receptors
PBS  Phosphate-buffered saline

Introduction

Astrocytes are characteristic glial cells with several pro-
cesses that tile the entire CNS [1, 2]. Besides their essen-
tial supportive role, astroglia cells have a large spectrum of 
functions in brain, including regulation of blood flow, met-
abolic support to neurons, ionic homeostasis, clearance of 
neurotransmitters, regulation of extracellular space volume 
and the modulation of synaptic activity [3–6]. Although 
astrocytes are considered electrically non-excitable cells 
because they do not fire action potentials, their responsive-
ness entails ionic signaling typified by the generation of 
spatio-temporal  Ca2+ oscillations [7–9]. These astrocytic 
 Ca2+ oscillations consist mainly in a transient increase 
in intracellular  Ca2+ concentration, which can propagate 
across and between astrocytes, to drive their adaption to 
information flowing in neuronal circuits [10–13]. In fact, 
astrocytic  Ca2+ signaling mediates different astrocytic 
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adaptive functions, namely  Ca2+-dependent exocytotic 
gliotransmitters release, excitability and activation of 
transduction signaling pathways, which in turn impact on 
neuronal function [3, 8, 14, 15].

Astrocytes have several ionotropic and metabotropic 
receptors able to trigger  Ca2+ entry or  Ca2+ release from 
inositol 1,4,5-trisphosphate  (IP3)-sensitive intracellular 
 Ca2+ stores, mainly from the endoplasmic reticulum (ER) 
[10, 16–19]. One such group of receptors are purinergic 
receptors, encompassing  P1 receptors, a family of protein 
G-coupled metabotropic adenosine  (A1,  A2A,  A2B,  A3) 
receptors, and  P2 receptors for ATP that are sub-divided 
into  P2X(1–7) channels and G protein-coupled metabo-
tropic  P2Y(1–12) receptors. These receptors are part of 
signaling pathways involved in astrocyte–astrocyte and 
neuron–astrocyte communication; they sense activity and 
danger signals conveyed by purines, and regulate a wide 
range of physiological and pathological processes [20, 21]. 
Accordingly, purine receptors may contribute to the patho-
genesis of Alzheimer’s disease (AD) [22, 23], a neurode-
generative disorder considered to be caused by amyloid-β 
peptides (Aβ) accumulation.

Our group demonstrated that purinergic receptors, in 
particular adenosine  A2A receptors  (A2AR) overfunction is 
sufficient to disrupt memory performance [24, 25];  A2AR 
are also strictly necessary to trigger synaptic and memory 
deficits in the early AD phases, which are abrogated by 
 A2AR blockade [26, 27].  A2AR are also present in astro-
cytes, being upregulated in both AD patients and mouse 
models [28, 29], as well as in cultured astrocytes exposed 
to synthetic Aβ1-42 [28, 30], which is widely used to mimic 
AD pathology. Moreover, astrocytic  A2AR control the lev-
els of GLT-1 glutamate transporters and regulate the  Na+/
K+ activity and their blockade alleviates the impairment of 
glutamate uptake triggered by Aβ1-42 in cultured astrocytes 
[28, 31, 32]. This complements the increasing evidences 
indicating that astrocytes respond to Aβ peptides trigger-
ing altered signaling pathways, such as abnormal increases 
in intracellular  Ca2+ levels [13, 33]. Astrocytic  Ca2+ hyper-
activity contributes to altered brain cortical function such 
as memory, and progressively declines in AD [34, 35]. The 
appearance of this hyperactive  Ca2+ dynamics is claimed 
to be associated with abnormal purinergic signaling in 
reactive astrocytes, which have an altered morphology and 
function in the initial the phases of AD [21, 23, 35]. How-
ever, the ability of Aβ1-42 to modify the purinergic control 
of astrocytic  Ca2+ dynamics remains untested. The present 
study aims to fill this gap of knowledge by studying how 
 A2AR control astrocytic  Ca2+ dynamics evoked by ATP, a 
ubiquitous signaling molecule that is rapidly metabolized 
into adenosine, and how the exposure to Aβ1-42 influences 
the purinergic control of astrocytic  Ca2+ dynamics.

Materials and methods

Primary astrocyte cultures from Wistar rats

The experiments were performed using primary cultures of 
astrocytes from the cerebral cortex of post-natal Wistar rat 
pups with 1–3 days of age. Rats were born at our animal 
facilities, and their use was approved by the Institution’s 
Ethical Committee (ORBEA128_2015/04122015) and 
certified by Direção Geral de Alimentação e Veterinaria 
(DGAV; 0421/000/000/2016 Ref. 014420), and conducted 
in agreement with standard procedures to reduce animal 
suffering and number, in accordance with European legis-
lation on animal welfare.

Astrocytic cultures were prepared according with a pro-
tocol previously described by us [30], with some modifica-
tions. In brief, after Wistar pups killing (6–8 animals per 
preparation), the brain cortices were dissected in a cold plate 
(4 ºC) and mechanically dissociated using a scalpel. This 
tissue was placed in 5 mL of pre-warmed TrypLE reagent 
(Gibco), an enzyme solution used for cell dissociation, sup-
plemented with DNAse I (10 mg/mL in 10 mM NaCl, Sigma 
Aldrich). This enzymatic digestion was stopped by adding a 
high glucose (4.5 g/L) Dulbecco’s Modified Eagle Medium 
(DMEM), supplemented with 10% fetal bovine serum (FBS) 
and 10 mL/L penicillin–streptomycin, pH 7.4. Cell suspen-
sion was centrifuged at 115 × g for 2 min and the pellet 
was resuspended in culture medium. After determining the 
cell number per mL of solution, the dissociated cells were 
placed in T75 flasks pre-coated with poly-d-lysine (0.1 mg/
mL in borate buffer, pH 8.2), at a density of 1 ×  105 cells/
cm3. The cells were maintained at 37 ºC in a humidified 5% 
 CO2 incubator for 14–15 days until reach confluency. Dur-
ing this period, the cultures were shaken (speed 200 rpm) 
every 2–3 days for 4 h at 37 ºC, to detach microglia from 
the astrocyte monolayer, followed by replacement of the cul-
ture medium to remove microglia in suspension. Afterwards, 
astrocytes were detached from bottom flasks using a mild 
trypsinization protocol [30], in which cells were washed 
with PBS (135 mM NaCl, 2.7 mM KCl, 4.3 mM  Na2HPO4, 
1.47 mM  KH2PO4) with 1 mM EDTA and further detached 
using 0.05% trypsin (Sigma Aldrich) in PBS solution. 
Cell suspension was centrifuged at 180 × g for 5 min and 
astrocytes were plated in 35 mm high glass bottom imag-
ing dishes (Ibidi, #81156) or 48-well multiplate at a density 
of 1.14 ×  104 or 26 ×  104 cells/cm2, respectively, for  Ca2+ 
experiments; or at a density of 26 ×  104 cells/cm2 in 12-well 
multiplate for Western-blot assays. Astrocytes remained in 
culture for 2 days, before performing the experiments.

The percentage of astrocytes and microglia in our cul-
tures were assessed by immunolabelling the cell cultures 
with antibodies that recognize the skeleton astrocytic 
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protein, glial fibrillary acidic protein (GFAP) and the 
microglia marker protein CD11b. As can be seen in Fig. 
S1, our cultures were enriched in astrocytes, correspond-
ing to about 95% of the cells, and had only a residual 
amount of microglia cells (< 5%).

Astrocytes exposure to Aβ1‑42 peptides

To mimic AD-like conditions, cultured astrocytes were 
incubated with the synthetic peptide Aβ1-42 (Bachem, 
#4014447), at a final concentration of 1 µM. This peptide 
was dissolved in 0.1%  NH4OH solution at a stock concen-
tration of 221.5 µM and stored at − 20 °C until used. Aβ1-42 
solution contained mainly soluble monomers and oligomers, 
as previously reported by us [26, 28] and others [25]. For 
 Ca2+ measurement assays, the peptide was added to culture 
medium for 1 h prior to  Ca2+ probe incubation, whereas in 
studies assessing protein levels, the incubation time of Aβ1-42 
with astrocytes was 24 h.

Intracellular  [Ca2+] measurements

Cultured astrocytes were incubated for 45 min with Fluo-
4-AM (4 μM; Life Technologies) dissolved in recording 
buffer (132 mM NaCl, 4 mM KCl, 1.4 mM  MgCl2, 6 mM 
glucose, 10 mM HEPES, 1.8 mM  CaCl2; pH 7.4) with 0.05% 
bovine serum albumin to facilitate probe entry into cells. 
Then, the cells were washed and left in recording buffer 
for 15 min to allow complete Fluo-4 AM de-esterification. 
In some experimental conditions, the following modifiers 
of  Ca2+ dynamics were added to recording buffer during 
the de-esterification period and kept until the end of experi-
ment: the selective  P2X7 receptor antagonist 2-(phenylthio)-
N-[[tetrahydro-4-(4-phenyl-1-piperazinyl)-2H-pyran-4-yl]
methyl-3-pyridinecarboxamide (JNJ47965567, 1  μM, 
Tocris), the selective  P2Y1 receptor antagonist 2′-deoxy-
N6-methyladenosine 3′,5′-bisphosphate tetrasodium salt 
(MRS2179, 30 µM, Tocris), the selective  A2A receptor 
antagonist 2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-
e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, 
50 nM, Tocris) or the selective protein kinase A (PKA) 
inhibitor N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]
ethyl]-5-isoquinolinesulfonamide (H-89, 10 µM, Tocris).

After de-esterification,  Ca2+ fluorescence was recorded 
using a  VICTOR3 multiplate reader (Perkin Helmer, RRID: 
SCR_019232) with Wallac 1420 software. The baseline 
fluorescence of the  Ca2+ probe was recorded during 5 min 
with a delay of 5 s between acquisitions.  Ca2+ transients 
were evoked by different stimuli, either the purinergic 
agonist adenosine 5′-triphosphate (ATP, 100 μM, Sigma 
Aldrich), the selective  P2X7 receptor agonist 2′(3′)-O-(4-ben-
zoylbenzoyl)adenosine 5′-triphosphate (BzATP, 100 μM, 
Sigma Aldrich) or the selective  P2Y1 receptor agonist 

[[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-purin-
9-yl]-2,3-dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphos-
phoric acid (MRS2365, 10 nM, Tocris) and fluorescence 
was recorded for 5 min. After recording the stimulus-evoked 
 Ca2+ response, cells were exposed to ionomycin (10 μM, 
Santa Cruz) allowing extracellular  Ca2+ entry thus triggering 
the maximum fluorescence response.

The fluorescence data were background-corrected by 
subtracting the mean fluorescence value of astrocytes that 
were not incubated with Fluo-4-AM. Intracellular calcium 
concentration was estimated for each time point using the 
formula:  [Ca2+] = Kd × (F – Fmin)/(Fmax – F), in which Kd is 
the dissociation constant of Fluo-4 (345 nM), F corresponds 
to the fluorescence recorded at each time point, Fmax is the 
maximum fluorescence obtained by ionomycin application 
and Fmin is the minimum fluorescence. The amplitude of 
 [Ca2+] transients triggered by each stimulus was obtained 
subtracting the mean of basal levels from the maximum 
value after stimulus application. Data are presented as vari-
ation in  [Ca2+] (Δ[Ca2+]), expressed in nM.

Live‑cell  Ca2+ imaging experiments

Astrocytes were incubated for 45 min with the fluores-
cent  Ca2+-binding probe Fluo-4-AM (4 µL in DMSO, Life 
Technologies) in Krebs buffer (132 mM NaCl, 4 mM KCl, 
1.4 mM MgCl, 6 mM glucose, 10 mM HEPES, 1.8 mM 
 CaCl2; pH 7.4) with 0.05% bovine serum albumin. After 
incubation, cells were washed and kept in recording buffer 
for 15 min to ensure complete probe de-esterification.

After de-esterification, Ibidi dishes (cat#81156) were 
mounted in the stage of a Spinning Disk inverted micro-
scope (Axio Observer Z1, Zeiss), equipped with a chamber 
for temperature control (37 ºC). Fluo-4 loaded cells were 
excited with a solid-state laser at 488 nm and the emission 
fluorescence was passed through a band-pass (BP) filter and 
measured at 525/50 nm. All experiments were recorded with 
an EM-CCD digital camera (Electron Multiplying-Charged 
Coupled Device, Photometrics Evolve™ 512 Delta) and data 
acquisition was controlled by Zen software. To minimize 
fluorescence bleaching, the excitation light and sampling 
frequency were kept as low as possible.

Astrocytic  Ca2+ responses were triggered with ATP 
(100 µM, Sigma Aldrich) in the absence or presence of the 
different purinergic receptor ligands listed above and fluo-
rescence was measured in intervals of 500 ms.

Data analysis of live‑cell  Ca2+ imaging experiments

Data from live-cell  Ca2+ fluorescent measurements were 
imported to Image J to manually define regions of inter-
est (ROIs), drawn around each cell body.  Ca2+ signals were 
estimated in these ROIs as F/FB, where F is the fluorescence 
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intensity for each time point and FB is the baseline fluo-
rescence, before stimulus application, both background 
corrected. To define background contribution, ROIs were 
drawn in regions lacking dye-filled structures and this mean 
background fluorescence was subtracted at each time point. 
Graphical representations of  Ca2+ variations over time 
allowed to calculate: (i) amplitude and (ii) duration of ATP-
evoked response. Amplitude of the response was calculated 
by subtracting the mean intensities before ATP applica-
tion to the maximum value of the fluorescence response of 
the  Ca2+ indicator; duration corresponds to the difference 
between the end of the response and the time of ATP appli-
cation; magnitude was calculated by determining the area 
under the curve of the evoked  Ca2+ response. On average, 
40 cells were analyzed per experiment and non-responsive 
astrocytes were excluded from analysis.

Western blot experiments

Astrocytes were treated with SCH58261 (50 nM, Tocris) 
30 min prior to challenge with Aβ1-42 peptides (1 µM) for 
24 h. Similarly P2 receptors antagonists MRS2179 (30 µM, 
Tocris), JNJ47965567 (1 µM, Tocris), pyridoxalphosphate-
6-azophenyl-2′,4′-disulfonic acid tetrasodium salt (PPADS, 
10 µM, Abcam) and reactive blue 2 (RB-2, 2 µM, Sigma) 
were incubated for 24 h before analysis. After these incu-
bations, the cells were washed twice with PBS and gen-
tly scraped with ice-cold lysis buffer RIPA [50 mM Tris, 
150 mM NaCl, 1.0% IGEPAL (NP-40), 0.5% sodium deoxy-
cholate, 1 mM EDTA and 0.1% SDS, pH 8.0 supplemented 
with 1 mM DTT, 1 mM PMSF and 0.001% CLAP]. Then, 
the protein concentration of samples was quantified using 
the bicinchoninic acid method (BCA, Thermo Scientific). 
The samples were denaturated by heating at 70  ºC for 
20 min, following the addition of 6 × concentrated sample 
buffer (500 mM Tris, 600 mM dithiothreitol, 10.3% sodium 
dodecyl sulfate, 30% glycerol and 0.012% bromophenol). 
Samples containing 10 μg or 20 μg of protein were used to 
assess  P2X7R and  P2Y1R levels, respectively. The subsequent 
Western blot assay was performed as previously described 
[see 26, 28, 30]. Briefly, electrophoresis was performed by 
loading the 5–10 µL of samples into 10% polyacrylamide 
SDS-PAGE gels for protein separation. Proteins were then 
electro-transferred to nitrocellulose membranes (GE Health-
care). Nonspecific binding was blocked with 5% non-fat dry 
milk in Tris-buffered saline (TBS, 20 mM Tris, 137 mM 
NaCl, pH 7.6) containing 0.1% Tween 20 for 1 h at room 
temperature, under agitation [30]. The membranes were fur-
ther incubated overnight at 4 ºC with the primary antibodies: 
rabbit anti-P2X7R (1:200, Santa Cruz Biotechnology, RRID: 
AB_2158373) or rabbit anti-P2Y1R (1:1000, Cell Signaling 
Technology). After rinsing with TBS-T, the membranes 
were incubated with the appropriate peroxidase-conjugated 

goat anti-rabbit IgG secondary antibody (1:5000, Thermo 
Fisher Scientific, RRID: AB_228338) for 2 h at room tem-
perature. Membranes were revealed with enhanced chemilu-
minescence substrate (GE Healthcare) and visualized using 
an imaging system (Chemidoc, RRID: SCR_021693). The 
membranes were reprobed for β-actin (1:20,000, Sigma 
Aldrich, RRID: AB_47674) and peroxidase-conjugated 
goat anti-mouse IgG secondary antibody (1:5000, Thermo 
Fisher Scientific, RRID: AB_228302) to control for protein 
loading. The densitometric analysis of protein bands was 
performed using Image Lab Software with the version 5.2.1 
(Bio-Rad, RRID: SCR_014210).

Immunocytochemistry

Astrocytes seeded in poly-d-lysine-coated coverslips were 
fixed in 4% paraformaldehyde in PBS for 15 min. Then, 
the cells were permeabilized with 0.2% Triton X-100 solu-
tion in PBS for 10 min and non-specific binding of anti-
bodies was blocked with 3% bovine serum albumin and 5% 
horse serum in PBS for 1 h. Subsequently, astrocytes were 
incubated with the primary antibodies, namely rabbit anti-
GFAP (1:100, Millipore, RRID:AB_2109645) and mouse 
anti-CD11b (1:200; Serotec, RRID:AB_321302) for 2 h at 
room temperature. After three washes with 3% bovine serum 
albumin in PBS, cells were incubated with the secondary 
antibodies donkey anti-mouse 488 (1:500; Thermo Fisher 
Scientific, RRID:AB_141607) and donkey anti-rabbit 594 
(1:500; Thermo Fisher Scientific, RRID: AB_141637) for 
1 h at room temperature, protected from light. The immu-
nolabeled cells were then stained with nuclei dye DAPI in 
PBS (0.1%, Invitrogen) for 3 min. Finally, the coverslips 
were mounted in fluorescent mounting medium (Dako) and 
visualized in an epifluorescence microscope (Zeiss, Axio 
Imager Z2 microscope, RRID:SCR_018856 with AxioVi-
sion Imaging System, RRID:SCR_002677 version 4.8). 
Images obtained from random fields were analyzed using 
the ImageJ software (RRID: SCR_003070).

Statistical data analysis

Data from live-cell  Ca2+ imaging were expressed as increase 
of fluorescence in arbitrary units (a.u.) for amplitude and 
expressed in seconds (s) for ATP-evoked response duration. 
Results obtained from multiplate  Ca2+ measurements were 
presented as intracellular  Ca2+ concentration expressed 
in nM, whereas protein levels determined in Western blot 
assays were expressed as percentage relatively to con-
trol (non-treated astrocytes). All data were presented as 
mean ± SEM of n independent experiments, i.e., experiments 
performed using astrocytes cultures prepared in different 
days. Statistical analysis was carried out using Mann–Whit-
ney non-parametric tests in live-cells experiments, whereas 
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the multiplate  Ca2+ measurements were evaluated using one-
way ANOVA followed by Dunnett multiple comparison post 
hoc test or two-way ANOVA followed by Tukey multiple 
comparison post hoc test, depending on the presence of one 
or more variables, respectively. The confidence interval was 
set as 95% so that the difference between means was consid-
ered significant at p values of less than 5% (0.05), 1% (0.01) 
and 0.1% (0.001) of significance level (α). In the analysis of 
protein levels, the experimental group was compared with a 
hypothetical value of 100 (control) using one sample t test or 
evaluated using two-way ANOVA followed by Tukey mul-
tiple comparison post hoc test in the presence of two vari-
ables. Data were analyzed using GraphPad Prism software, 
version 6.0 (RRID: SCR_00279).

Results

Effect of Aβ1‑42 exposure on astrocytic  Ca2+ 
dynamics

We used primary cultures of astrocytes to evaluate intra-
cellular  Ca2+ oscillations triggered by ATP (100 µM) [36] 
in control astrocytes and in astrocytes previously exposed 
to Aβ1-42 (1 µM, for 1 h), to mimic AD-like conditions. 
Exposure to Aβ1-42 induced a slight non-statistically sig-
nificant increase (p > 0.05, n = 9–11) in basal  [Ca2+]i 
from 175.3 ± 13.14  nM in non-treated cells (CTRL) to 
198.4 ± 18.68 nM in astrocytes treated with Aβ1-42 (Fig. 1A). 
Notably, ATP stimulation induced a significant lower  [Ca2+]i 
response in Aβ1-42-treated compared with control astrocytes 
(CTRL: 218.90 ± 29.52  nM vs. Aβ1-42: 130.30 ± 17.88; 
p < 0.05, n = 7–11, Fig. 1B). These data lead us to further 
investigate some parameters of  Ca2+ dynamic response, 
such as their amplitude and duration [36, 37]. ATP evoked 

Fig. 1  Aβ1-42 induced alterations of ATP-induced astrocytic  Ca2+ 
responses but not of basal  Ca2+ levels. Basal intracellular  Ca2+ con-
centration ([Ca2+]i, (A) and increases in intracellular  Ca2+ concentra-
tion (Δ[Ca2+]i) evoked by 100 µM ATP (B) in cultured astrocytes not 
exposed (CTRL) or exposed to Aβ1-42 (1 µM, for 1 h). Aβ1-42 expo-
sure did not affect basal  Ca2+ levels, but decrease the Δ[Ca2+]i evoked 
by ATP. Data are mean ± SEM of 7–11 independent experiments. C 
Representative time course of single-cell fluorescence  Ca2+ imaging 
in cultured astrocytes exposed to Aβ1-42 or not exposed to it (CTRL), 
which were stimulated with ATP (100 µM). The fluorescence values 

were measured in a spinning-disk microscope and are expressed as 
the ratio of change in fluorescence, to quantify the amplitude (D), i.e., 
peak or increase over basal fluorescence (expressed in arbitrary units, 
a.u.), and the duration (E, expressed in seconds, s) of  Ca2+ response 
evoked by ATP. Exposure to Aβ1-42 decreased the amplitude of  Ca2+ 
response but increased the duration of the  Ca2+ response as compared 
to control astrocytes. Data are mean ± SEM of 10–12 independent 
experiments. *p < 0.05, **p < 0.01 as compared to control, Mann–
Whitney test; n = 10–13. Each experiment represents the mean values 
of approximately 40 co-cultured astrocytes
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a rapid transient  [Ca2+]i rise that decayed towards basal 
level in more than 95% of the astrocytes, although some 
cells also exhibited a response with multiple consecutive 
peaks. However, in astrocytes exposed to Aβ1-42 (1 µM, 
for 1 h), ATP stimulation evoked a  Ca2+ response with a 
reduced peak or amplitude that took longer to decay, i.e., 
with a longer duration, as compared with control astrocytes 
(Fig. 1C). Thus, the amplitude of ATP-evoked  Ca2+ response 
was significantly (p < 0.05) reduced in Aβ1-42-exposed 
astrocytes (1.22 ± 0.23 a.u., n = 12, 309 cells) compared 
with control astrocytes (2.40 ± 0.35 a.u., n = 9, 324 cells); 
this corresponds to a 49% decrease of the response ampli-
tude by Aβ1-42 (Fig. 1D). In contrast, the duration of  Ca2+ 
responses was significantly longer (p < 0.01) in astrocytes 
exposed to Aβ1-42 (188.30 ± 22.73 s, n = 13, 342 cells) last-
ing in average nearly twice longer than in control astrocytes 
(97.26 ± 16.09 s, n = 12, 343 cells) (Fig. 1E). Overall, these 
data suggest that Aβ1-42 affected astrocytic ATP-induced 
 Ca2+ dynamics, causing a decrease in the amplitude and a 
prolonged duration response of the evoked response.

To explore possible sources responsible for the ATP-
evoked  Ca2+ increase in cultured astrocytes and how they 
are affected by AD-like conditions, we evaluated ATP-
evoked  Ca2+ responses in Krebs buffer without  Ca2+ and 
with EGTA (50 µM) [38] and in Krebs buffer with Xesto-
spongin-C (Xe–C, 1 µM, 20 min) [39]; this allowed evalu-
ating the contribution of extracellular  Ca2+ influx and of 
 Ca2+ release from endoplasmic reticulum (ER) through ino-
sitol 1,3,5-trisphosphate receptors  (IP3R), respectively. In 
the absence of extracellular  Ca2+ (media with EGTA), the 
amplitude of the ATP-evoked  Ca2+ response was reduced 
(p < 0.05) in both Aβ1-42 (reduction of 54%, 0.34 ± 0.03 
a.u., n = 5, 100 cells) and control astrocytes (reduction of 
36%, 0.56 ± 0.14 a.u., n = 5, 147 cells) (Fig. S2). The pres-
ence of Xe–C also decreased significantly (p < 0.05) the 
amplitude of ATP-evoked  Ca2+ response in control con-
ditions (reduction of 73%, Xe–C: 0.78 ± 0.37 a.u., n = 4, 
110 cells) and also in Aβ1-42-treated astrocytes (reduction 
of 68%, Aβ1-42 + Xe–C: 0.34 ± 0.03 a.u., n = 3, 140 cells). 
These data indicate that ATP-evoked increase of intracel-
lular  Ca2+ levels in the absence or presence of Aβ1-42 was 
mediated from extracellular  Ca2+ influx and to a highest 
extent by  Ca2+ release from ER through  IP3R. The duration 
of  Ca2+ response evoked by ATP with these pharmacologi-
cal approaches (EGTA and Xe–C) was also evaluated. In 
astrocytes pre-treated with Aβ1-42, the duration of response 
in the presence of EGTA was significantly reduced by 88% 
(p < 0.01, Aβ1-42 + EGTA: 21.84 ± 5.82 s, n = 4, 70 cells vs. 
Aβ1-42 188.30 ± 22.73 s, n = 13, 342 cells); this effect was 
lower in control cells, where the presence of EGTA reduced 
the duration of ATP-evoked  Ca2+ response by 55% in con-
trol astrocytes (p < 0.05, EGTA: 43.70 ± 5.44 s, n = 6, 143 
cells). By contrast, the blockade of  IP3R with Xe–C did not 

affect the duration of ATP-evoked  Ca2+ responses in control 
conditions, although it significantly (p < 0.05) reduced by 
53% the duration of  Ca2+ responses in astrocytes pre-treated 
with Aβ1-42 (88.59 ± 19.87 s, n = 5, 154 cells). Interestingly, 
in the presence of Xe–C, the duration of ATP-induced  Ca2+ 
responses was similar in astrocytes exposed to Aβ1-42 and 
control astrocytes (Fig. S2); this suggests that  Ca2+ efflux 
from ER contributed to the deregulation of  Ca2+ response 
duration in AD-like condition.

Effect of Aβ1‑42 exposure on the contribution 
of different ATP (P2) receptors to astrocytic  Ca2+ 
dynamics

Both ionotropic  P2X7 receptors  (P2X7R) and metabotropic 
 P2Y1 receptors  (P2Y1R) are known to contribute to intra-
cellular  Ca2+ dynamics in response to ATP stimulation in 
non-pathologic conditions [38, 40–43]. We now investigated 
how the contribution of each of these receptors for astrocytic 
 Ca2+ responses was altered in astrocytes exposed to Aβ1-42, 
using the selective  P2X7R antagonist JNJ47965567 and the 
selective  P2Y1R antagonist MRS2179.

The blockade of ionotropic  P2X7R, with JNJ47965567 
(1 µM) [44], slightly decreased the amplitude (40% reduc-
tion, p = 0.19) and duration (28% reduction) of ATP-induced 
 Ca2+ response in control astrocytes (p > 0.05, Fig.  2). 
However, in Aβ1-42-exposed astrocytes the antagonism of 
 P2X7R did not affect the amplitude of ATP-induced  Ca2+ 
response but reduced its duration by 25% (Aβ1-42 + JNJ: 
141.20 ± 18.37 s, n = 7, 144 cells vs. JNJ: 70.35 ± 7.79 s, 
n = 5, 101 cells, p < 0.05). Notably, in the presence of the 
 P2X7R antagonist, the amplitude of ATP-induced  Ca2+ 
response was similar in control and Aβ1-42-exposed astro-
cytes; however, the duration of ATP-induced  Ca2+ response 
remained higher in Aβ1-42-treated astrocytes as compared 
with control cells (Fig. 2A). These data suggest that  P2X7R 
were likely involved in the deregulation of the amplitude of 
astrocytic  Ca2+ response evoked by ATP in conditions of 
Aβ1-42 exposure.

The participation of metabotropic  P2Y1R on ATP-evoked 
 Ca2+ response was evaluated using an effective concentra-
tion of the selective antagonist MRS2179 (30 µM) [45]. 
 P2Y1R blockade significantly decreased by 69% the ampli-
tude (0.75 ± 0.26 a.u., n = 4, 81 cells, p < 0.05), but increase 
by 95% the duration of ATP-evoked  Ca2+ response (p < 0.05) 
in control astrocytes. By contrast, in Aβ1-42-exposed astro-
cytes,  P2Y1R blockade significantly decreased the ampli-
tude (p < 0.01) and slightly reduced (p > 0.05) the duration 
of ATP-evoked  Ca2+ response, as shown in Fig. 2B. Overall, 
the results show that both  P2X7R and  P2Y1R contributed to 
the amplitude of ATP-evoked  Ca2+ response. In addition, 
 P2Y1R seemed to have a particular role in regulating the 
response duration, as its antagonist MRS2179 significantly 
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increased the decay of ATP-evoked [Ca2 +]i, i.e., the 
response duration, in non-pathological conditions (control 
astrocytes). In astrocytes exposed to Aβ1-42, the blockade of 
 P2X7R and of  P2Y1R restored the duration of ATP-evoked 
 Ca2+ response to values similar to control levels, indicat-
ing an altered contribution of these receptors under AD-like 
conditions.

Impact of adenosine  A2A receptors on ATP‑induced 
 Ca2+ dynamics in astrocytes

We have previously shown that  A2AR are present in astro-
cytes and that their blockade has beneficial effects in several 
brain pathologies, including AD [28, 46–48]. We now inves-
tigated the possible involvement of  A2AR in ATP-induced 
 Ca2+ dynamics in control and Aβ1-42-exposed astrocytes 
using a selective  A2AR antagonist, SCH58261 (Fig. 3A). 
In the presence of SCH58261 (50 nM) [28], added 15 min 
before ATP stimulation, the amplitude of  Ca2+ response 

was significantly reduced in control conditions (CTRL: 
2.40 ± 0.35 a.u. vs.  SCH: 1.08 ± 0.23 a.u., n = 4, 107 
cells, p < 0.05, 55% reduction); whereas in astrocytes pre-
treated with Aβ1-42 a slight reduction was also observed 
(Aβ1-42: 1.22 ± 0.23 a.u. vs. Aβ1-42 + SCH: 0.72 ± 0.15 a.u., 
p = 0.151, n = 11, 221 cells, 41% reduction) (Fig. 3B). Curi-
ously, SCH58261 per se increased (p < 0.05) the duration 
of ATP-evoked  Ca2+ response in control cells (CTRL: 
97.26 ± 16.06 s vs. SCH: 199.4 ± 36.47 s, n = 3, 113 cells), 
while in astrocytes exposed to Aβ1-42 SCH58261 decreased 
the duration of ATP-evoked  Ca2+ response by 45% (p < 0.01, 
Aβ1-42: 188.30 ± 2.73  s vs. Aβ + SCH 104.30 ± 17.42  s, 
n = 11, 211 cells). The duration of ATP-evoked  Ca2+ 
response in the presence of SCH58261 in Aβ-treated cells 
was similar to that observed in control cells; this suggests 
that  A2AR regulate the duration of the ATP-induced  Ca2+ 
response and that the  A2AR blockade rescued the altera-
tions induced by Aβ1-42 in the duration of ATP-evoked  Ca2+ 
response (Fig. 3C).

Fig. 2  Involvement of  P2 receptors,  P2X7R and  P2Y1R, in the dys-
regulation of  Ca2+ dynamics in astrocytes exposed to Aβ1-42. The 
impact of  P2X7R and of  P2Y1R on ATP-evoked  Ca2+ responses was 
evaluated using the selective antagonists JNJ7965567 (1  µM) and 
MRS2179 (30  µM), respectively. Representative time courses of 
single-cell fluorescence  Ca2+ imaging in control and Aβ1-42 (1  µM, 
for 1  h)-exposed astrocytes, stimulated with ATP (100  µM) in the 
presence JNJ7965567 (A) or of MRS2179 (B). The bar graphs rep-
resent the ATP-evoked  Ca2+ response amplitude (C) and duration 
(D) in astrocytes in the different experimental conditions. The  P2X7R 
antagonist did not significantly affect neither the amplitude nor the 
duration of  Ca2+ response evoked by ATP in both control and Aβ1-42-

exposed astrocytes.  P2Y1R antagonism significantly decreased the 
amplitude of  Ca2+ response evoked by ATP in control and Aβ1-42-
exposed astrocytes, whereas it significantly increased the duration 
of  Ca2+ response in control cells and slightly reduced the duration of 
 Ca2+ response in astrocytes exposed to Aβ1-42.  Ca2+ oscillations were 
monitored by single-cell  Ca2+ fluorescence imaging, being the ATP-
evoked  Ca2+ response amplitude and duration expressed in arbitrary 
units (a.u.) and in seconds (s), respectively. Data are mean ± SEM of 
4–13 independent experiments. *p < 0.05, **p < 0.01 as compared 
to control; ##p < 0.01 as compared Aβ1-42-treated astrocytes, Mann–
Whitney test
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Interaction between adenosine  A2A receptors 
and ATP  P2X7 and  P2Y1 receptors in astrocytic  Ca2+ 
dynamics

In light of the impact of  P2X7R,  P2Y1R and  A2AR in 
ATP-evoked  Ca2+ responses, we investigated a possible 
functional interaction between these purinergic receptors 
in the regulation of  [Ca2+]i, using cell population  Ca2+ 
measurements. The  P2X7R agonist BzATP (100 µM) [49] 
increased Δ[Ca2+]i by 450.71 ± 45.85 nM in non-treated 

cells and by 378.40 ± 55.16 nM in Aβ1-42-treated astro-
cytes (p > 0.05, n = 7, Fig. 4A). The selective  P2X7R antag-
onist JNJ47965567 (1 µM) reduced the effects BzATP by 
92% (p < 0.001, Fig. 4A). Notably, the selective  A2AR 
antagonist SCH58261 (50 nM) decreased BzATP-induced 
Δ[Ca2+]i to 221.25 ± 44.70  nM in non-treated astro-
cytes (p < 0.05, n = 4–7), whereas in astrocytes treated 
with Aβ1-42, SCH58261 did not affected BzATP-evoked 
Δ[Ca2+]i (p > 0.05, Fig. 4A). This indicates an involvement 
of  A2AR in the regulation of  [Ca2+]i increases mediated by 

Fig. 3  Adenosine  A2A receptors  (A2AR) regulated astrocytic  Ca2+ 
dynamics in control and Aβ1-42-exposed astrocytes.  A2AR involve-
ment in ATP-evoked  Ca2+ response was evaluated using the selec-
tive antagonist SCH58261 (50 nM). A Representative time course of 
single-cell fluorescence recording of  Ca2+ dynamics evoked by ATP 
(100  µM) in the presence or absence SCH58261 in astrocytes pre-
exposed to Aβ1-42 (1  µM, for 1  h). In control conditions (no Aβ1-42 
exposure), SCH58261 decreased the amplitude (B) of ATP-evoked 
 Ca2+ response, but increased the duration of  Ca2+ response (C). 
Astrocytes exposed to Aβ1-42 and further incubated with SCH58261 

did not show differences in the amplitude of ATP-evoked  Ca2+ 
response but displayed a significant decrease in the duration of ATP-
evoked astrocytic  Ca2+ response, indicating that  A2AR are involved 
in alterations of astrocytic  Ca2+ dynamics triggered by Aβ1-42 expo-
sure. The amplitude and duration of  Ca2+ response evoked by ATP 
were expressed in arbitrary units (a.u.) and seconds (s), respectively. 
Data are mean ± SEM of 3–12 independent experiments. *p < 0.05, 
**p < 0.01 as compared to control; ##p < 0.01 as compared Aβ1-42-
treated astrocytes, Mann–Whitney test

Fig. 4  Interaction between  A2AR and  P2 receptors  (P2X7R and 
 P2Y1R) in the regulation of  Ca2+ responses in control and Aβ1-42-
exposed astrocytes. Intracellular  Ca2+ increases (Δ[Ca2+]i) evoked by 
the agonists of  P2X7R, BzATP (100 µM, A) and of  P2Y1R, MRS2365 
(10 nM, B) in control and Aβ1-42 (1 µM, for 1 h)-treated astrocytes. 
Both agonists increased the Δ[Ca2+]i in control and in Aβ1-42-treated 
astrocytes, and these effects were attenuated by their respective 
antagonists JNJ7965567 (1  µM) and MRS2179 (30  µM). Although 
Δ[Ca2+]i evoked by BzATP was similar in control and Aβ1-42-exposed 

astrocytes, the Δ[Ca2+]i evoked by MRS2365 in Aβ1-42-treated astro-
cytes was significant lower than these observed in control astrocytes. 
The  A2AR antagonist SCH58261 (50  nM) decreased the Δ[Ca2+]i 
evoked by either BzATP or MRS2365 in control astrocytes, but not 
in Aβ1-42-exposed astrocytes. Data are mean ± SEM of 4–10 inde-
pendent experiments. *p < 0.05, ***p < 0.001, ****p < 0.0001 as 
compared to control, one-way ANOVA followed by Dunnett’s post 
hoc test; ##p < 0.01 as compared Aβ1-42-treated astrocytes, two-way 
ANOVA, post hoc Tukey’s test
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 P2X7R in control astrocytes, which disappears in Aβ1-42-
treated astrocytes.

The  P2Y1R agonist MRS2365 (10 nM) [50] increased 
Δ[Ca2+]i by 161.10 ± 21.80 nM in non-treated cells and 
this effect was significantly lower in Aβ1-42-treated astro-
cytes (Δ[Ca2+]i = 87.75 ± 12.86 nM, p < 0.05, n = 8–10, 
Fig.  4B). The selective  P2Y1R antagonist MRS2179 
(10  µM) significantly reduced by 56% and 61% the 
MRS2365-induced Δ[Ca2+]i in non-treated and in Aβ1-42-
treated astrocytes, respectively (p < 0.001, n = 9–10). The 
 P2Y1R-mediated  Ca2+ response was also significantly 
reduced in cells treated with the  A2AR selective antago-
nist SCH58261 in control conditions (p < 0.001, n = 6–10), 
but SCH58261 was devoid of effects in astrocytes treated 
with Aβ1-42 (Fig. 4B). These data suggest a different role 
of  A2AR in the regulation of astrocytic  Ca2+ dynamics in 
non-pathologic and in early AD-like conditions.

Considering the functional observations indicating a 
different effect of  P2X7R and  P2Y1R in  [Ca2+]i regulation 
in control and AD-conditions, we next probed for altera-
tions of the density of these receptors by Western Blot 
between control and AD-like astrocytes. Astrocytes treated 
with Aβ1-42 exhibited  P2X7R levels similar to these of non-
treated cells (p > 0.05, n = 14, Fig. 5A). By contrast, the 
density of  P2Y1R was higher in Aβ1-42-treated astrocytes 
as compared to control (p < 0.05, n = 10), and this effect 
was not prevented by the  A2AR antagonist SCH58261 
(p > 0.05, n = 10, Fig. 5B). Altogether, these data suggest 
that  A2AR modify the impact of  P2X7R and of  P2Y1R in 

 [Ca2+]i through a mechanism independent of the control 
of their density.

P2X7 receptors modulate astrocytic  Ca2+ dynamics 
mediated by  P2Y1 receptor activation

The results described above showing a similar involvement 
of  A2AR in the modulation of  [Ca2+]i evoked by  P2X7R and 
 P2Y1R activation and a differential involvement of these 
receptors in ATP-induced  [Ca2+]i responses, lead us to 
hypothesize a functional interaction between  P2X7R and 
 P2Y1R. The  P2Y1R selective antagonist MRS2179 (30 µM) 
did not modify  [Ca2+]i responses triggered by the  P2X7R 
agonist BzATP (100 µM) neither in control nor in Aβ1-42-
treated astrocytes (p > 0.05, Fig. 6A). In contrast, the  P2X7R 
antagonist JNJ7965567 (1 µM) significantly decreased by 
67% (p < 0.01, n = 6–10) Δ[Ca2+]i responses triggered by 
the  P2Y1R agonist MRS2365 (10 nM) in control astrocytes 
but not in Aβ1-42-treated astrocytes (Fig. 6B). Furthermore, 
 P2X7R blockade significantly increased (p < 0.05)  P2Y1R 
density in control conditions, but not in Aβ1-42-treated 
astrocytes (Fig. S3). In contrast, the selective antagonist of 
 P2Y1R, MRS2179 (30 µM) did not affect either their own 
density (Fig. S4A) nor  P2X7R density (Fig. S4B) and the 
non-selective antagonists of  P2X, PPADS (10 µM) [40] or 
of  P2Y, Reactive Blue-2 (2 µM) [51] were also devoid of 
effects on the densities of  P2Y1R (Fig. S4A) or  P2X7R (Fig. 
S4B). These results indicate that the selective manipulation 
of  P2X7R modulates  P2Y1R-mediated  [Ca2+]i response in 

Fig. 5  Impact of Aβ1-42 on the densities of  P2X7R and  P2Y1R in astro-
cytes: regulation by  A2AR. The densities of  P2X7R (A) and  P2Y1R 
(B) were evaluated in astrocytes control (CTRL) and in astrocytes 
exposed to Aβ1-42. (1 µM, for 24 h). Aβ1-42 did not affect  P2X7R lev-
els, but significantly increased  P2Y1R levels and this increase was 
prevented by the selective  A2AR antagonist SCH58261 (50  nM, co-
incubated with Aβ1-42 for 24  h). Graph bars represent the ratio of 

immunoreactivities between A  P2X7R and β-actin (used as a loading 
protein control) or between B  P2Y1R and β-actin and were expressed 
as a percentage of values of control cells. Representative immunob-
lotting of  P2X7R (75 kDa),  P2Y1R (45 kDa) and β-actin (42 kDa) are 
also shown. Data are mean ± S.E.M. of 10–12 independent experi-
ments. *p < 0.05 as compared to control (100%), one sample t test
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non-pathologic conditions but not in the presence of Aβ1-42, 
whereas  P2Y1R did not affect  P2X7R-mediated  [Ca2+]i 
responses in astrocytes.

PKA is involved in  P2X7R‑ and  P2Y1R‑mediated 
astrocytic  [Ca2+]i increases in non‑pathologic 
conditions

Since  A2AR are canonically coupled with activation 
of cAMP-dependent transducing pathways, we next 
investigated if PKA activity affected the  P2X7R- or 
 P2Y1R-induced  Ca2+ responses. As shown in Fig. 7A, 

the PKA inhibitor H-89 (10 µM) [52] decreased by 61% 
the Δ[Ca2+]i response induced by  P2X7R in non-patho-
logical conditions (CTRL: 444.83 ± 53.80  nM, H-89: 
173.29 ± 33.29 nM, n = 6–7, p < 0.01); in contrast, this 
effect was absent in the presence of Aβ1-42 (p > 0.05, 
n = 7–8). Similarly, PKA inhibition also decreased by 43% 
the  P2Y1R-induced  [Ca2+]i response in non-pathological 
conditions (p < 0.05, n = 8–10); in contrast, the treatment 
with H-89 was devoid of effects in Aβ1-42-treated astro-
cytes, as shown in Fig. 7B. These data further re-inforce 
that  A2AR coupled to PKA activation control both  P2X7R- 
and  P2Y1R-induced  [Ca2+]i responses in control conditions 
and this effect is lost after exposure to Aβ1-42.

Fig. 6  Interaction between  P2X7R- and  P2Y1R-induced  Ca2+ 
responses in control and Aβ1-42-exposed astrocytes. Intracellular  Ca2+ 
increases (Δ[Ca2+]i) were evoked by the agonists of  P2X7R,  BZATP 
(100 µM, A) and of  P2Y1R, MRS2365 (10 nM, B) in control and in 
Aβ1-42 (1 µM, for 1 h)-treated astrocytes. The putative interaction of 
 P2X7R and of  P2Y1R on Δ[Ca2+]i was evaluated by stimulating with 
A  P2X7R agonist in the presence of  P2Y1R antagonist, MRS2179 
30  µM, or B with  P2Y1R agonist in the presence of  P2X7R antago-

nist, JNJ7965567 1  µM, in astrocytes without or in the presence of 
Aβ1-42.  P2Y1R did not modulate Δ[Ca2+]i evoked by  P2X7R activa-
tion, whereas  P2X7R modulate Δ[Ca2+]i evoked by  P2Y1R activa-
tion in control cells but not in Aβ1-42-exposed astrocytes. Data are 
mean ± SEM of 6–10 independent experiments. *p < 0.05, **p < 0.01 
as compared to control, one-way ANOVA followed by Dunnett’s post 
hoc test

Fig. 7  Impact of a protein kinase A (PKA) inhibitor on  P2X7R- and 
 P2Y1R-induced  Ca2+ responses in control and Aβ1-42-exposed astro-
cytes. In astrocytes exposed to Aβ1-42 (1  µM for 1  h) or not, the 
intracellular  Ca2+ increases (Δ[Ca2+]i) was evaluated by stimulating 
astrocytes with 100 µM BzATP (A) or 10 nM MRS2365 (B) in the 
absence or presence of the PKA inhibitor H-89 (10 µM). H-89 sig-

nificantly decreased the Δ[Ca2+]i evoked by the agonists of  P2X7R and 
 P2Y1R in control astrocytes, but had no significant effect on Δ[Ca2+]i 
evoked by these agonists in astrocytes exposed to Aβ1-42. Data are 
mean ± SEM of 6–11 independent experiments. *p < 0.05, **p < 0.01 
as compared to control, one-way ANOVA followed by Dunnett’s post 
hoc test
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Discussion

The present results identify a hitherto unrecognized func-
tional interaction between adenosine  A2A receptors  (A2AR) 
and  P2X7  (P2x7R) and  P2Y1 receptors  (P2Y1R) in the con-
trol of intracellular  Ca2+ responses in cultured astrocytes. 
Thus, ATP triggered an astrocytic  Ca2+ response through 
a parallel activation of  P2X7R and  P2Y1R, with  P2X7R 
potentiating  P2Y1R-mediated effects, and these ATP 
responses were fine-tuned by  A2AR. Notably, amyloid-β 
peptides (Aβ) exposure, to mimic the early phase of Alz-
heimer’s disease (AD), altered the purinergic modulation 
of astrocytes: (i) astrocytes became less responsive to a 
danger signal, such as ATP; (ii) astrocytes lost the fine 
tuning of  Ca2+-driven adaptive responses afforded by the 
tight interplay between different signaling components of 
these purinergic receptors.

The first major conclusion of the present study is the 
basic pharmacological characterization of the  P2R involved 
in ATP-induced  Ca2+-responses in astrocytes, as involving 
 P2X7R and  P2Y1R. This is in accordance with the previ-
ously identified presence and major role of  P2Y1R as well 
as of  P2X7R in the control of astrocytic  Ca2+ responses 
[e.g., 40, 43, 49, 53–55], with  P2X7R mediating  Ca2+ entry 
from extracellular space, whereas  P2Y1R allow the  Ca2+ 
efflux from intracellular stores [56–58]. We now confirmed 
that metabotropic  P2Y1R mainly controlled the amplitude 
of  Ca2+ response [37, 43], whereas the plateau compo-
nent, related with response duration, is intrinsically asso-
ciated with the ionotropic  P2X7R [40–42, 59]. However, 
it had not yet been previously explored if ionotropic and 
metabotropic  P2R interacted in the control of astrocytic 
 Ca2+ responses. We now observed that  P2X7R blockade 
attenuated  P2Y1R-induced  Ca2+ responses, whereas  P2Y1R 
blockade did not affect  P2X7R-induced  Ca2+ responses. 
This suggests a primordial role of  P2X7R in the adaption 
of the astrocytic purinergic system, as previously hinted 
based on the analysis of adaptive  P2R gene expression 
[60]. This novel aspect of the interplay between differ-
ent purinoceptors in defining astrocytic  Ca2+ responses 
is further heralded by the observed ability of adenosine 
 A2AR to control  P2R-induced  Ca2+ responses in astro-
cytes. Thus,  A2AR blockade decreased both  P2X7R- and 
 P2Y1R-mediated responses, as also observed in other bio-
logical systems [42, 61]. This  A2AR potentiation of  P2R 
responses involved the recruitment of protein kinase A, 
the canonical transducing system of  A2AR [62], namely 
in astrocytes [32, 52, 63]. Overall, this characterization of 
the crosstalk between different purinoceptors emphasizes 
the need to evaluate the impact of the integrated purinome 
rather than the effect of individual receptors to understand 
the role of the purinergic system [reviewed in 21]. More 

importantly, the observed interaction between  P2R indi-
cates that the overall purinergic system is involved in the 
definition of  Ca2+ responses in astrocytes: ATP directly 
triggers  Ca2+ responses with a main engagement of  P2Y1R 
[64], bolstered by  P2X7R co-activation; furthermore, this 
 P2R-mediated response is further enhanced likely due to 
the extracellular conversion of ATP into adenosine and 
subsequent  A2AR activation.

Ca2+ responses in astrocytes are currently understood as 
a major mechanism of astrocytic integrative properties to 
coordinate neuronal networks [34, 65, 66]. Thus, astrocytes 
form a second network of integrative communication over 
neuronal networks: each astrocyte covers numerous synapses 
[67], with astrocytes sensing synaptic activity and respond-
ing with localized  Ca2+ responses in their processes [e.g., 
68, 69]; this can result in overall  Ca2+ responses that can 
propagate in the form of  Ca2+ waves across different astro-
cytes to influence synaptic activity throughout the network 
[65, 70]. Thus, the amplitude and duration of these  Ca2+ 
responses need to be tightly fine-tuned to ensure a proper 
integrative information capacity by the astrocytic network. 
In fact, either depressed or exacerbated  Ca2+ responses have 
been reported to be associated with abnormal information 
processing by neuronal networks [reviewed in 34, 71]. This 
emphasizes the need of a proper integrative ability rather 
than only increases or decreases of  Ca2+ responses for nor-
mal brain function. In this context, more than the recogni-
tion of the involvement of ATP in mounting these astrocytic 
 Ca2+ responses, it is this intricate crosstalk between  A2AR 
and  P2R that emerges as particularly relevant to fine-tune 
astrocytic  Ca2+ responses.

The main question explored in this study was to evaluate 
the modification of this purinergic crosstalk in the control of 
astrocytic calcium transients in early AD, using an experi-
mental model based on the exposure to soluble (monomers 
and oligomers) Aβ that we have previously shown to mim-
ics early features of AD in rodents [e.g., 26]. We focused 
on studying the impact of Aβ on astrocytic calcium tran-
sients induced by ATP, a major danger signal in the brain 
[72], namely released from astrocytes exposed to Aβ [30], 
with particular attention to alterations of the integrative 
purinergic signaling. The focus was on alterations of astro-
cytic  Ca2+ responses in early AD, since most of the previ-
ous descriptions of altered astrocytic  Ca2+ responses in AD 
models were made in more advanced phases of AD, with a 
particular focus on modifications near Aβ plaques [73, 74], 
which are not yet present at the onset of memory deficits 
caused by exposure to soluble Aβ [26]. Indeed, several pre-
vious studies have already documented a spatio-temporal 
remodeling of  Ca2+ signaling in astrocytes with the evolu-
tion of pathology in different AD models [reviewed in 34, 
35]. Compatible with the direct effects of Aβ on astrocytes 
[75–77], we observed that Aβ triggered a slightly increase of 
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basal  Ca2+ levels in astrocytes. However, the impact of Aβ 
was far more evident on the pattern of ATP-induced  Ca2+ 
responses in astrocytes, as previously observed by others 
[78]. We now detailed the profile of this Aβ-induced effect 
and concluded that the peak (amplitude) of  Ca2+ response 
of ATP was lower, but the duration, i.e., the time of decay 
towards basal  [Ca2+]i levels, was significantly increased in 
Aβ-treated astrocytes compared to control astrocytes. This 
increased duration of ATP-induced  Ca2+ responses can 
be explained by a longer  Ca2+ efflux from internal stores 
or extracellular  Ca2+ influx or by alterations in extruding/
buffering  Ca2+ levels [reviewed in 79], which we reported 
here to be the pathways involved in astrocytic  Ca2+ response 
evoked by ATP (see supplementary data). This prompts the 
conclusion that Aβ affect the ability of astrocytes to handle 
 Ca2+ oscillations, namely due to an abnormal ER-mediated 
 Ca2+ efflux, compatible with the ability of Aβ oligomers to 
cause ER stress and disrupt  Ca2+ homeostasis [39, 80]. In 
spite of this concluded impact of Aβ on ER-related  Ca2+ 
management, we now observed that the ability of  P2Y1R to 
control astrocytic  Ca2+ responses was essentially preserved: 
thus, the effect of the  P2Y1R agonist was preserved and a 
 P2Y1R antagonist attenuated ATP-induced  Ca2+ responses 
in astrocytes exposed to Aβ1-42, as also reported to occur in 
astrocytes surrounding Aβ plaques [66, 73]. Likewise, the 
impact of  P2X7R agonists and the contribution of  P2X7R 
for ATP-mediated astrocytic  Ca2+ responses was not altered 
upon Aβ exposure. Notably, the most striking alteration 
caused by Aβ exposure was the disappearance of the cross-
talk between purinergic receptors. Thus, Aβ exposure elimi-
nated the  P2X7R-mediated potentiation of  P2Y1R and the 
 A2AR modulation of  P2R-induced  Ca2+ responses. Therefore, 
although each  P2R maintained its ability to control  Ca2+ 
responses in early AD, purinoceptors can no longer orches-
trate a coordinated response to fine-tune  Ca2+-responses. 
This prompts the hypothesis that the Aβ-induced purinergic 
incoordination may contribute for the abnormal neuron-glia 
communication in early AD.

It is important to note that the present study focused on 
the characterization of the interplay between  P2X7R and 
 P2Y1R and the control of ATP-induced astrocytic  Ca2+ 
responses and how this is affected in early AD-like condi-
tions. It remains to be investigated how Aβ might affect the 
ability of the different purinergic receptors to control the 
multiple functions exerted by astrocytes to influence neu-
ronal function. This is most evident for astrocytic  A2AR, 
which density increases upon exposure to Aβ [28] and 
controls multiple astrocytic responses ranging from the 
astrocytic membrane potential [31] to connexins [30] to the 
release of inflammatory mediators [63] and of gliotransmit-
ters [30, 81], through a complex signaling involving bio-
chemical and transcriptional alterations in astrocytes [82]. 
Thus, the Aβ-induced increase of  A2AR levels may engage 

other astrocytic mediated responses to interfere with the 
impact of Aβ on astrocytic  Ca2+ responses as well as on 
brain dysfunction [29, 83], which ought to be explored in 
future studies.

The present findings show that the integrative purinergic 
modulation of astrocytic  Ca2+ responses is lost upon expo-
sure to Aβ. This indicates that purinergic dysfunction may 
contribute to abnormal information processing in early AD, 
not only due to abnormal modulation of synaptic transmis-
sion [e.g., 27, 84, 85; reviewed in 86]), but also due to a dis-
rupted integrative modulation of astrocytic  Ca2+ responses, 
as now documented.
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