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Abstract
Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood cir-
culation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon 
(IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis 
emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC 
chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinat-
ing directional trafficking of  CD4+  TH1 cells,  CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among 
other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been 
implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant 
presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selec-
tive depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We 
further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more 
than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 
ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is 
based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and 
infiltrated and resident cells present in the inflamed joints.

Keywords Adult-onset Still’s disease · Chemokine · CXCR3 · Juvenile idiopathic arthritis · Rheumatoid arthritis · 
Spondyloarthritis
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DPP  Dipeptidyl peptidase
ERK  Extracellular signal-regulated 

kinase

 * Paul Proost 
 paul.proost@kuleuven.be

1 Laboratory of Molecular Immunology, Department 
of Microbiology, Immunology and Transplantation, Rega 
Institute, KU Leuven, Leuven, Belgium

2 Laboratory of Immunobiology, Department of Microbiology, 
Immunology and Transplantation, Rega Institute, KU 
Leuven, Leuven, Belgium

3 Skeletal Biology and Engineering Research Center, 
Department of Development and Regeneration, KU Leuven, 
Leuven, Belgium

4 Present Address: Department of Rheumatology, University 
Hospitals Leuven, Leuven, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-023-04715-w&domain=pdf
http://orcid.org/0000-0001-5375-8403
http://orcid.org/0000-0002-8488-5090
http://orcid.org/0000-0001-9220-9466
http://orcid.org/0000-0002-0133-5545


 L. Dillemans et al.

1 3

78 Page 2 of 53

ESR  Erythrocyte sedimentation rate
FLS  Fibroblast-like synoviocytes
GAG   Glycosaminoglycan
GATA3  GATA-binding protein 3
GPCR  G protein-coupled receptor
HC  Healthy control
HEK  Human embryonal kidney
HLH  Hemophagocytic 

lymphohistiocytosis
IFN  Interferon
IL-  Interleukin
IP-10/CXCL10  Interferon-� inducible protein of 

10 kDa
IRSE  Interferon response element
I-TAC/CXCL11  Interferon-inducible T-cell α 

chemoattractant
JIA  Juvenile idiopathic arthritis
MAS  Macrophage activation syndrome
Mig/CXCL9  Monokine induced by interferon-�
MMPs  Matrix metalloproteinases
NK  Natural killer
NSAIDs  Non-steroidal anti-inflammatory 

drugs
PBMC  Peripheral blood mononuclear cells
pDC  Plasmacytoid dendritic cells
PF-4/CXCL4  Platelet factor-4
PF-4var1/CXCL4L1  Platelet factor-4 gene variant
PLC  Phospholipase C
RA  Rheumatoid arthritis
RANKL  Receptor activator of nuclear factor 

kappa-Β ligand
RF  Rheumatoid factor
SF  Synovial fluid
sJIA  Systemic JIA
SJC  Swollen joint counts
STAT   Signal transducer and activator
TJC  Tender joint counts
TJI  Traumatic joint injury
TJR  Total joint replacement
TLR  Toll-like receptor
TNF-α  Tumor necrosis factor α
TRAP  Tartrate-resistant acid phosphatase

Introduction

The chemokine superfamily constitutes a group of low 
molecular mass (± 8–12 kDa) chemotactic cytokines that 
orchestrate directional leukocyte trafficking in a spatially 
and temporally specific manner [1–3]. As such, chemokines 
are protagonists in homeostatic and pathophysiological set-
tings, thereby fulfilling frontline actions in embryogen-
esis, leukocyte homing, (neo)angiogenesis, inflammation, 

autoimmunity and cancer [4–13]. From a biological per-
spective, chemokines may be classified into functional 
subgroups, which are referred to as inflammatory, homeo-
static and dual-function chemokines [14]. Inflammatory 
chemokines entail prior stimuli-mediated induction and 
navigate effector leukocytes to inflammatory niches, whereas 
homeostatic chemokines exhibit constitutive expression and 
govern basal migration and homing of leukocytes [13, 14]. In 
addition, certain chemokines display both inflammatory and 
homeostatic actions and are, therefore, termed ‘dual-func-
tion’ chemokines, e.g., CXCL12 [12, 14, 15]. Furthermore, 
the relative position and number of conserved cysteine (Cys) 
residues in the amino  (NH2)-terminal region of the sequence 
of a chemokine define its structural classification in one of 
the four subfamilies, i.e., C, CC, CXC or CX3C chemokines 
[1, 16–18]. Conventional chemokine signaling occurs 
through seven transmembrane spanning G protein-coupled 
receptors (GPCRs), which are complementary categorized 
according to the subfamily of chemokines predominantly 
recognized by the respective receptor [17]. In addition, mul-
tiple regulatory mechanisms fine-tune chemokine activity 
and receptor specificity. These mechanisms include tran-
scriptional and translational events (e.g., alternative splic-
ing), mRNA stability (e.g., miRNA dependent), chemokine 
interaction with glycosaminoglycans (GAGs), binding to 
atypical chemokine receptors (ACKRs), interindividual 
antagonism and synergism between chemokines, and post-
translational modifications (PTMs) [19–21].

A chemokine is allocated to the aforementioned CXC 
chemokine subfamily based on the occurrence of one 
random amino acid (“X”) positioned in between the two 
most  NH2-terminal cysteines [17]. Based on the presence 
or absence of a Glu–Leu–Arg (“ELR”) amino acid motif 
preceding the “CXC” sequence, CXC chemokines may be 
further categorized as  ELR+ and  ELR− CXC chemokines, 
respectively [1, 17].  ELR+ CXC chemokines are neutrophil 
chemo-attractants with angiogenic actions and encompass 
CXCL1–3 and CXCL5–8 in humans [1, 18]. The majority 
of CXC chemokines that lack the ELR motif interact with 
CXC chemokine receptor 3 (CXCR3) [1], thereby exerting 
angiostatic activities and mediating chemotaxis of natural 
killer (NK) cells and activated T cells [1, 22]. The CXCR3 
ligands include three interferon-γ (IFN-γ)-induced proteins 
[23], i.e., monokine induced by interferon-� (Mig/CXCL9), 
interferon-� inducible protein of 10 kDa (IP-10/CXCL10), 
and interferon-inducible T-cell α chemoattractant (I-TAC/
CXCL11) [24–28]. In addition, platelet factor-4 (PF-4/
CXCL4) and the product of the non-allelic platelet factor-4 
gene variant (PF-4var1/CXCL4L1) also bind to CXCR3 [29, 
30]. CXCL9, CXCL10 and CXCL11 are generally acknowl-
edged to orchestrate chemotaxis of activated  CD4+  TH1 
cells,  CD8+ T cells, NK cells and NKT cells towards inflam-
matory and immunoprivileged sites [31–40]. Additionally, 
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IFN-inducible CXCR3 ligands exhibit angiostatic properties 
[9, 41–43] and coordinate homing of mature thymocytes 
during T lymphopoiesis in the human postnatal thymus 
[44]. As such, CXCL9, CXCL10 and CXCL11 are consid-
ered dual-function chemokines [14]. IFN-inducible CXCR3 
ligands are produced by a variety of cells including fibro-
blasts, keratinocytes and human microvascular endothelial 
cells [27, 45–50] and exhibit pronounced homology in their 
amino acid sequence [46], i.e., mature secreted CXCL10 
shares 37.7% and 34.2% amino acid identity with mature 
CXCL9 and CXCL11, respectively. Moreover, their genes 
are located in close vicinity on the chromosomal chemokine 
cluster in the q21.1 region of chromosome 4 [25, 26, 51]. 
Despite these similarities conferring apparent analogous 
properties in vitro, non-redundant biological roles of the 
IFN-inducible CXCR3 ligands have been evidenced in vivo 
[22, 46]. The non-redundancy of the IFN-dependent CXCR3 
chemokine network plausibly relies on the complex outcome 
of ligand-specific features including distinct GAG and recep-
tor specificity, differential stimuli and cell types responsible 
for chemokine production, intracellular signaling cascades, 
and differential susceptibility to enzymatic processing result-
ing in PTMs [46].

Regarding chemotactic actions of the IFN-inducible 
CXCR3 ligands, the originally discovered canonical 
human CXCR3 [32]—later renamed CXCR3A upon dis-
covery of alternative splicing of the CXCR3 gene [52]—is 
the receptor responsible for mediating cellular migratory 
responses and cell proliferation [25, 32, 34, 53]. CXCR3A 
couples to the inhibitory type of Gα proteins (Gαi) and 
to phospholipase C (PLC)-coupling Gα proteins (Gαq) 
[54, 55], thereby eliciting a downstream pathway that 
includes mobilization of intracellular calcium  (Ca2+

i), 
phosphorylation of extracellular signal-regulated kinase 
(ERK), and intracellular reduction of cyclic adenosine 
monophosphate (cAMP) [25, 32, 34, 53, 55–60]. The 
other identified CXCR3 variants that emerge from alter-
native splicing of the CXCR3 gene were named CXCR3B 
and CXCR3-alt, respectively [52, 61]. Distinctive down-
stream signaling and functions were designated to the 
three CXCR3 isoforms [57, 62]. CXCR3B differs from 
CXCR3A in its amino  (NH2)-terminal tail of 51 amino 
acids. CXCR3 ligand-mediated CXCR3B stimulation was 
reported to evoke opposite cellular responses compared 
to CXCR3A [52]. In particular, CXCR3B-induced sign-
aling was reported to engender apoptosis, inhibition of 
proliferation and chemotaxis of endothelial cells, and is 
considered to exert anti-angiogenic actions [52]. Further-
more, CXCR3-alt is a receptor with four-or-five trans-
membrane regions that lacks 101 amino acid compared 
to CXCR3A and arises as a result of posttranscriptional 
exon skipping [61]. The CXCL11-CXCR3-alt axis elicits 

 Ca2+
i mobilization and chemotaxis of CXCR3-alt-trans-

fected human embryonal kidney 293 (HEK) cells [61]. 
Moreover, CXCL9, CXCL10- and CXCL11-induced 
ERK1/2 phosphorylation and receptor internalization on 
CXCR3-alt-transfected HEK cells [57]. In addition to 
the alternatively spliced forms of CXCR3, other recep-
tors and interaction partners have been identified (Fig. 1). 
Given the inflammatory nature of the IFN-inducible 
CXCR3 ligands, immobilization on GAGs is crucial for 
their in vivo functioning. Sequestration of CXCL10 on 
endothelial GAGs was shown to be critical for CXCL10-
mediated transendothelial migration of T cells and recruit-
ment of T cells and plasmacytoid dendritic cells (pDC) 
[63, 64]. Furthermore, the anti-proliferative, anti-viral and 
anti-fibrotic properties of CXCL10 were also attributed to 
the interaction between CXCL10 and GAG [65–69]. In 
addition, binding to heparin, heparan sulfate and chondroi-
tin sulfate was found to systemically shield these CXCR3 
ligands from proteolytic inactivation by dipeptidyl pepti-
dase IV (DPPIV/CD26) [70]. In terms of ACKRs, CXCL9 
and CXCL10 displayed weak affinity for the Duffy anti-
gen receptor for chemokines (DARC/ACKR1) whereas 
CXCL11 exhibited potent binding to this receptor [71]. 
Since ACKR1 was reported to transport pro-inflammatory 
chemokines CXCL8 and CCL2 across cell monolayers 
[72], this receptor may also mediate chemokine transcy-
tosis of the pro-inflammatory CXCR3 ligands [72, 73]. 
Furthermore, CXCL10 and CXCL11 also interact with 
ACKR2/D6 or ACKR3/CXCR7, respectively [74, 75]. 
ACKR2 was shown to efficiently internalize CXCL10 and 
thereby exerts a prominent CXCL10 scavenging function 
[75]. ACKR3 conferred a growth and survival advantage 
to cells [74], but whether the CXCL11–ACKR3 axis could 
also instigate this response was not investigated. Concern-
ing CC chemokine receptors, at high chemokine concen-
trations (1 µM), all three CXCR3 ligands exhibit natural 
antagonism for CCR3 [76, 77], whereas solely CXCL11 
also antagonizes CCL4- and CCL5-mediated CCR5 sign-
aling [78]. Hence, these various interaction partners of 
the IFN-inducible CXCR3 ligands provide an additional 
dimension to the versatility of the actions of the CXCR3 
chemokine network (Table 1). Detailed overviews on the 
interaction features and downstream processes of recep-
tor- and GAG-CXCR3 ligand interaction were recently 
published [46, 79]. Noteworthy, the intercommunion 
of these chemokines and the respective responder cells 
becomes even more complicated in the framework of the 
synovial microenvironment as multiple joint-resident cells 
are altered by the CXCL9/10/11–CXCR3 axis (vide infra).
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The IFN‑dependent CXCR3 chemokine 
network in diseases characterized by chronic 
inflammatory arthritis

A myriad of chemokines has been implicated in diseases 
characterized by chronic joint inflammation. Numerous 

manuscripts have been published in the last three decades 
on CXCR3 and its ligands in the context of inflamma-
tory arthropathies in humans and mice models. This pro-
gressively generated knowledge coincided with research 
enabling our understanding on the general biology of 
CXCR3 to mature, thereby sparking interest and generating 

Fig. 1  Receptors and interaction partners of the IFN-induci-
ble CXCR3 ligands in blood and lymph vessels. For ACKRs, 
chemokine–receptor interaction as displayed has not been confirmed 
for the particularly displayed cell type (rather on transfected cells). 
Key mechanisms of the IFN-inducible CXCR3 ligands are depicted 
and include A immobilization on GAGs of proteoglycans located on 
endothelial cells and in tissues, B chemotaxis of activated T cells 
and NK cells through CXCR3A, C binding to ACKR1, D antagonis-
tic activity on CCR5, E pro-inflammatory cytokine release through 

interaction of CXCL10 with TLR4 on  CD4+ T cells, (F)  CD4+ T cell 
polarization into  TH1 or  TH17 cells (by CXCL9 and CXCL10) or  Treg 
or  TH2 cells (by CXCL11), G binding to CXCR3-alt on activated T 
cells, H antagonistic actions on CCR3, I posttranslational modifica-
tions, and J CXCL10 scavenging through ACKR2. ACKR atypical 
chemokine receptor, CCL CC chemokine receptor ligand, CCR  CC 
chemokine receptor, CXCR CXC chemokine receptor, CXCL CXC 
chemokine receptor ligand, GAG  glycosaminoglycan, RBC red blood 
cell, TLR4 Toll-like receptor 4
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opportunities for drug development. In the present review, 
we provide an overview of IFN-inducible CXCR3 ligands 
in inflammatory diseases characterized by chronic inflam-
matory arthritis and focus on their pro-inflammatory actions 
in the articular environment, whereby rheumatoid arthritis 
(RA) and juvenile idiopathic arthritis (JIA) serve as paradig-
matic pathologies (Fig. 2; Suppl. tables 1–2).

Rheumatoid arthritis

RA is a systemic, inflammatory, and disabling disease char-
acterized by progressive polyarticular arthritis, which can 
elicit substantial cartilage and bone damage [92, 93]. The 
etiopathology of RA has not been completely elucidated 
but a wide spectrum of pro-inflammatory chemokines and 
cytokines have been implicated in directional trafficking 
of leukocyte subsets towards the inflamed joints [94–96]. 
Despite the fact that the etiology of RA has remained 
partially elusive, a pivotal role of T cells, in particular 

Fig. 2  Chronic inflammatory arthropathies in which IFN-inducible 
CXCR3 ligands have been implicated. Prevalence, symptomatol-
ogy, role and disease marker potential of the IFN-inducible CXCR3 
ligands in A RA, JIA, AOSD and B in spondyloarthritis, septic arthri-
tis and osteoarthritis. Prevalence numbers were based on [114–119]. 
Global prevalence of septic arthritis has not been described recently, 
whereas incidence of septic arthritis was recently reported to be 
21/100,000 person-years in New Zealand with pronounced interethnic 
variation [120]. AOSD adult-onset Still’s disease, CA crystal-induced 

arthritis, CXCL CXCL chemokine receptor ligand, DMARDs disease-
modifying anti-rheumatic drugs, HC healthy control, JIA juvenile 
idiopathic arthritis, MAS macrophage activation syndrome, N.A. not 
available in literature, OA osteoarthritis, PsA psoriatic arthritis, RA 
rheumatoid arthritis, RF rheumatoid factor, S. aureus Staphylococcus 
aureus, SF synovial fluid, sJIA systemic juvenile idiopathic arthritis, 
ST synovial tissue, TNF-α tumor necrosis factor α, TJI traumatic joint 
injury
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type-1 T-helper  (TH1), type-17 T-helper  (TH17) cells and 
regulatory T  (Treg) cells, has been evidenced in RA patho-
genesis [97]. Evidently, when addressing T cell (patho)phys-
iology, one cannot overlook CXCR3 since this chemokine 
receptor enables T cell trafficking towards and entry into 
inflammatory niches in vivo [98–101]. Studies from 1997 
onwards already reported that approximately 90% of syn-
ovial  CD4+ T cells in established RA expressed CXCR3 
[102–104]. This abundant presence of  CXCR3+ T cells in 
the rheumatoid synovium was corroborated by others [105, 
106]. CXCR3 expression is conventionally allocated to the 
 TH1 phenotype [107]. However, extensive immunophenotyp-
ing of synovial T cells in RA recently showed that other T 
cell subsets also express CXCR3 including type-2 T-helper 

 (TH2) cells,  TH17 cells, peripheral T helper cells and folli-
cular T helper cells expressing high levels of programmed 
cell death protein 1 (PD-1) [107]. Intriguingly, successful 
treatment of RA patients with TNF-α inhibitors resulted in 
a marked increase of  CXCR3+  CD4+ T cells in the periph-
eral blood of patients, indicating peripheral pooling of these 
inflammatory cells upon disease amelioration [108]. In addi-
tion, CXCR3 expression was shown on various heterogenous 
leukocyte subsets in the synovial fluid including NK cells, 
plasma cells, memory B cells, neutrophils, pDC, monocytes 
and mast cells [80, 81, 83, 106, 109–113].

Fig. 2  (continued)
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IFN‑inducible CXCR3 ligands in bodily fluids of patients 
with rheumatoid arthritis

The anatomy of the synovial joints enables reciprocal 
exchange of inflammatory mediators between the articu-
lation and blood circulation. In synovial joints, the joint 
capsule consists of an external articular capsule and an 
internal envelope of highly vascularized connective tissue 
that seals the joint cavity, referred to as the synovium. The 
internal surface layer of the synovium is outlined by a syno-
vial membrane [121]. Under physiological circumstances, 
fibroblast-like synoviocytes (FLS) embedded in the synovial 
membrane/lining secrete nutrients, regulatory cytokines and 
extracellular matrix (ECM) components (e.g., hyaluronic 
acid) into the synovial cavity, thereby fueling and regulat-
ing the herein-present synovial fluid (SF) [121, 122]. The 
hallmark function of SF is biological lubrication of synovial 
joints [121]. As such, SF equips the articular cartilage sur-
face with low-friction and load-bearing properties, which 
facilitates joint movement. In addition, SF is an ultrafiltrate 
of blood plasma filtered through the synovial membrane and 
thereby also functions as biochemical reservoir [121]. This 
signature architecture of synovial joints—in which syno-
vial tissue, SF and the blood circulation are in continuous 
intercommunion—underscores the relevance to investigate 
these anatomical locations to clarify the role of inflamma-
tory molecules in arthropathies at the inflammatory site. All 
three IFN-inducible CXCR3 ligands have been detected in 
plasma sera and SF of patients suffering from RA [45, 48, 
80, 102, 107, 123–135] (Fig. 2A, Suppl. table 1). 

Circulatory IFN‑inducible CXCR3 ligands Circulatory 
CXCL9 and CXCL10 levels were significantly higher in 
early and long-standing RA compared to healthy con-
trols (HC) [125, 127, 129, 130, 132–134, 136] and gradu-
ally attenuated upon clinical improvement after treatment 
[126, 132, 135]. Furthermore, serum CXCL10 levels were 
increased in patients with early RA in comparison with 
patients with long-standing RA [125] or patients suffer-
ing from other arthropathies including osteoarthritis [137], 
psoriatic arthritis [128] or ankylosing spondylitis [128]. In 
addition, CXCL9 and CXCL10 concentrations were sig-
nificantly augmented in plasma of patients with early RA 
compared to those of matched pre-patients, whereby plasma 
levels of these chemokines increased in pre-patients when 
they were closer to onset of symptoms [123]. These findings 
underscore the potential relevance of CXCL9 and CXCL10 
as diagnostic markers for the detection of early RA. Indeed, 
ROC analysis confirmed that serum CXCL10 had an ade-
quate diagnostic sensitivity and specificity to predict early 
RA [125, 134]. Intriguingly, serum CXCL10 levels were 
significantly higher in RA patients with anti-cyclic citrul-
linated peptide (anti-CCP) antibodies—a marker routinely 

used to diagnose RA—compared to anti-CPP negative 
patients [126, 138]. In addition, the observation that base-
line serum CXCL10 levels were elevated in RA patients 
who responded adequately to tumor necrosis factor α (TNF-
α) inhibitor treatment as opposed to non-responders [126] 
suggests that increased serum CXCL10 at baseline may 
also be a valuable tool to predict a favorable response to 
anti-TNF-α therapy. Hence, the T cell chemoattractant 
CXCL10—among other chemokines such as the major 
human neutrophil attractant CXCL8 and the B cell chemot-
actic protein CXCL13—is believed to be a promising candi-
date biomarker in RA [94–96, 125, 126, 132, 139–142]. Pan-
dya et al. recently proposed that solely CXCL10—and not 
other chemokines—may serve as a suitable disease activity 
marker in untreated, early RA [133]. A blood chemokine 
signature comprising of CXCL9, CXCL10, CXCL13, CCL4 
and CCL22 was defined through multivariate discriminant 
analysis that enabled to discriminate patients with untreated, 
early RA from HC [133]. Among these chemokines, only 
plasma CXCL10 levels correlated with all clinical disease 
activity parameters including C-reactive protein (CRP), 
erythrocyte sedimentation rate (ESR), swollen joint counts 
(SJC) in 66 joints, Clinical Disease Activity Index (CDAI), 
and disease activity score in 28 joints (DAS-28) based on 
ESR and CRP. Accordingly, another study revealed that 
serum CXCL10 has a higher diagnostic sensitivity and 
specificity for prediction of RA compared to serum CXCL8 
[134]. As such, these relatively novel studies point towards 
a potential key positioning of blood CXCL10 in the frame-
work of monitoring tools for RA disease activity.

Noteworthy, conflicting data exist in literature on the 
correlation of serum CXCL10 levels with disease activity 
parameters in RA. On the one hand, serum CXCL10 levels 
did not correlate with systemic disease parameters includ-
ing C-reactive protein (CRP) and ESR [124–126, 135]. For 
example, Ueno et al. reported that serum levels of all three 
CXCR3 ligands failed to correlate with disease parameters 
including ESR, CRP, presence of the rheumatoid factor (RF) 
or treatment modality [124]. On the other hand, multiple 
studies—including the one of Pandya et al.—showed that 
blood CXCL10 levels in RA correlated with joint pathol-
ogy-related disease indexes including SJC, tender joint count 
(TJC), and DAS-28 based on CRP or ESR [125, 133, 135]. 
However, contrasting findings were reported in other studies, 
whereby serum CXCL10 did not correlate with either SJC 
and TJC or DAS-28, respectively [126, 135]. Thus, these 
seemingly inconsistent findings may be caused by general 
diversity in patient cohorts, but also heterogeneity in indi-
vidual characteristics of recruited patients (e.g., systemic 
and joint-related disease status and therapy at sampling). 
In addition, CXCL10 protein detection may be biased as 
CXCL10 is highly susceptible to proteolytic processing, 
which is especially relevant given the massive protease 



A review of the pleiotropic actions of the IFN‑inducible CXC chemokine receptor 3 ligands in…

1 3

Page 11 of 53 78

release during clothing processes at the moment of serum 
collection.

In summary, further research is warranted to uniformly 
conclude whether blood CXCL10 adequately reflects disease 
activity in RA. Circulatory levels of CXCL10 may serve as a 
predictive marker for diagnosis of early RA [123, 125, 134], 
for predicting the response to treatment in established RA 
[126] and for monitoring disease activity/remission in RA 
[125, 132, 133]. Nevertheless, it is important to realize that 
chemokines are in essence local inflammatory actors and 
their presence in the bloodstream merely reflects chemokine 
egress from inflammatory sites. Therefore, correlation of 
serum CXCL10 levels with systemic disease measures 
may be less relevant from a clinico-biological perspective, 
whereas the evidenced correlation of serum or synovial 
CXCL10 levels to joint-specific pathology parameters (e.g., 
DAS-28, SJC and TJC) could be more informative.

Synovial IFN‑inducible CXCR3 ligands Immunoreactivity for 
CXCR3 in synovial tissues of RA patients was detected on 
 CD3+ (T) lymphocytes [104, 105], peri-vascularly located 
lymphocytes [102, 103] and in particular perivascular  CD2+ 
T cells [102], synovial fibroblasts [106], mast cells in the 
perivascular, interstitial and sublining region [106] and 
 CD183+ plasma cells in the sublining layer of the synovial 
membrane [110]. In addition, CXCR3 was also described 
on vascular endothelial cells and on infiltrating mononu-
clear cells in lymphoid aggregates in the rheumatoid syn-
ovium, for which staining became more pronounced in 
severely inflamed areas [143]. Immunohistochemistry fur-
ther demonstrated substantial interindividual variability of 
RA patients in the proportion of CXCR3-expressing syno-
vial cells (ranging from 20 to 60%) [106]. Moreover, sig-
nificantly increased RNA levels of CXCR3 were detected in 
synovia of RA patients compared to those of patients with 
osteoarthritis [106]. Accordingly, upregulated CXCR3 pro-
tein expression in rheumatoid synovia relative to synovia of 
patients with osteoarthritis was observed [106].

In terms of the CXCR3 ligands, CXCL9 and CXCL10 
protein levels were significantly increased in SF of RA 
patients, compared to patients suffering from traumatic 
joint injury, osteoarthritis, and crystal-induced arthritis 
(Fig. 2A, Suppl. table 1) [45, 48, 80, 102, 124, 131, 137, 
144]. Synovial CXCL11 levels were enhanced in RA relative 
to osteoarthritis [80, 124] and ankylosing spondylitis [48], 
but not in comparison with crystal-induced arthritis [48]. 
In rheumatoid synovial tissue biopsies, pronounced protein 
and mRNA expression of CXCR3, CXCL9 and CXCL10 
was recurrently reported [102, 104–106, 110, 124, 131, 
143, 145, 146]. Enhanced mRNA levels of CXCL9 and 
CXCL10 were detected in synovial tissue biopsies of RA 
patients compared to those of osteoarthritis patients [106, 
124, 146] and of patients who underwent synovial tissue 

biopsy due to suspected articular damage [145]. Remark-
ably, synovial mRNA levels of CXCL9 and CXCL10 were 
upregulated in RA compared to osteoarthritis by 135- and 
340-fold, respectively [106]. Recently, CXCL9 and CXCL10 
genes were identified as differentially expressed genes that 
encoded biomarkers in a meta-analysis of two gene expres-
sion microarray datasets of synovial tissues from patients 
with RA [147]. Taken together, CXCL9 and CXCL10 levels 
were uniformly found to be upregulated in the circulation 
and even to a greater extend in the SF and tissue [102, 107, 
124, 136, 137], thereby establishing a chemotactic gradient 
from blood towards the synovium along which leukocyte can 
migrate. Indeed,  CD8+ T cells isolated from the peripheral 
blood of RA patients migrated to recombinant CXCL10 in 
an in vitro transwell assay [148]. The chemotactic response 
of RA patient-derived  CD8+ T cells could be abolished by 
the addition of an anti-human CXCL10 monoclonal antibody 
[148]. Likewise, CXCR3-transfected HEK cells—expressing 
solely CXCR3 and no other chemokine receptor—migrated 
towards SF of RA patients in a Transwell filter assay, which 
was abrogated by administration of a CXCR3-neutralizing 
antibody [149]. Thus, CXCL10 appears to be an important 
synovial T cells chemoattractant. Furthermore, RT-PCR 
and immunohistochemistry performed on synovial tissue 
revealed coinciding expression of CXCL9 and CXCL10 in 
the synovial lining and sublining [110, 146]. In situ hybridi-
zation revealed marked CXCL9 mRNA expression in the 
synovial lining and in cellular infiltrates in synovial tis-
sues of patients with RA [150]. Moreover, CXCL9 immu-
noreactivity was found on synovial fibroblasts in synovial 
sublining regions, perivascular fibroblast-like cells and 
endothelial cells in vascular regions [110]. In addition, cyto-
logical analysis of rheumatoid synovial tissue showed that 
CXCL9 expression was primarily present in macrophages 
(i.e., monocytic cells expressing macrophage antigen 
Ki-M6 [151]) and in some vessel-associated lymphocytes 
[150]. Similar to CXCL9, immunohistochemistry revealed 
CXCL10 expression in rheumatoid synovium on fibroblast-
like cells and macrophage-like cells [131]. Synovial B cells 
were also proposed to be a source of CXCL9 and CXCL10, 
since B cells isolated from SF of RA patients prominently 
expressed CXCL9 and CXCL10 mRNA, to an even higher 
extent as synovial  CD4+ T cells and  CD8+ T cells [152]. 
Hence, FLS, synovial macrophages, and (perivascular) lym-
phocytes probably constitute important cellular sources for 
CXCL9 and CXCL10 in the joints of RA patients.

In contrast to the consistent findings corroborating 
CXCL9 and CXCL10 upregulation in joints and circulation 
of RA patients, data on the expression profile of CXCL11 in 
clinical samples of RA patients is less congruent. In terms 
of CXCL11 expression in the rheumatoid synovia, one 
study unveiled increased mRNA levels of CXCL11 in RA 
compared to osteoarthritis [124] whereas other researchers 
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reported that CXCL11 could not be detected in rheumatoid 
synovia via RT-PCR [110]. In addition, the established 
blood-to-SF gradient of CXCL9 and CXCL10, could not be 
confirmed for CXCL11. Ueno et al. showed that serum and 
synovial levels of CXCL11 did not significantly differ from 
each other [124], whereas others found that plasma  CXCL11 
was significantly increased relative to synovial CXCL11 in 
paired samples of RA patients [107]. Notable, these findings 
regarding blood levels, SF concentrations, mRNA expression 
in the synovial tissue and immunolocalization of CXCL11 
in RA are rather ambiguous and often only partially accord 
with the data on CXCL9 and CXCL10. Indeed, a definitive 
conclusion concerning the involvement of CXCL11 in RA 
remains challenging as multiple confounders may hamper a 
straightforward interpretation. Firstly, concentrations of nat-
urally secreted CXCL11 are often low compared to CXCL9 
and CXCL10, both in human cell culture supernatant [47, 
124, 153, 154] and in bodily fluids of RA patients [80, 107, 
124]. Secondly, CXCL11 concentrations have been explored 
to a lesser degree in vivo relative to the other IFN-inducible 
CXCR3 ligands [46], especially in the context of RA. Nev-
ertheless, CXCL11 is the most potent ligand for CXCR3A, 
characterized by the highest affinity for the receptor [25, 
32] and the most pronounced ability to induce  Ca2+

i mobi-
lization, chemotaxis and receptor internalization [25, 154]. 
In addition, CXCL11, in contrast to CXCL9 and CXCL10, 
is also a strong ligand for ACKR3, a chemokine receptor 
that fails to signal through G proteins [74]. Intriguingly, 
CXCL11 also affects  CD4+ T cell polarization in an antithet-
ical manner compared to CXCL9 and CXCL11 [84, 155]. 
CXCL9 and CXCL10 polarizes  CD4+ T cells towards a  TH1 
and  TH17 effector phenotype, whereas CXCL11 skews  CD4+ 
T cells towards  TH2 or IL-10high T regulatory 1 subset  (Tr1) 
cells [46, 84, 155]. This type of biased signaling is estab-
lished via CXCL10-induced CXCR3 activation, resulting in 
phosphorylation of signal transducer and activator (STAT) 
1, STAT4 and STAT5, thereby activating T-box transcrip-
tion factor (T-bet) [46, 84, 155]. CXCL11-CXCR3 interac-
tions activate STAT3- and STAT6-dependent pathways and 
thereby GATA-binding protein 3 (GATA3). Conceivably, 
these CXCL11-induced  Tr1 cells may restrain inflammation. 
Despite its restricted concentrations in vivo, CXCL11 may 
be highly relevant in RA and other inflammatory arthropa-
thies. Given the prioritized binding of CXCL11 to CXCR3, 
CXCL11 may supersede the actions of CXCL9/10 through 
receptor internalization making it unavailable for CXCL9/10 
[155] and through polarization towards  TH2 or  Tr1 cells, 
thereby resulting in an anti-inflammatory outcome.

In vitro production of IFN‑inducible CXCR3 ligands by rheu‑
matoid synovial cells The major chemokine-secreting cell 
lineages of the rheumatoid synovia include synovial fibro-

blasts [110, 124, 156] or FLS [157, 158], macrophage-like 
synoviocytes [158], synovial follicular dendritic cells in 
ectopic lymphoid like structures (ELS) [159] and synovial 
endothelial cells [160]. FLS are mesenchymal cells that 
represent the most abundant tissue-resident cell type in the 
human synovial membrane [161]. On the one hand, these 
cells exhibit hallmark characteristics of fibroblasts includ-
ing expression of vimentin, and type IV and V collagens. 
On the other hand, FLS display distinctive joint-specific fea-
tures that distinguishes them from other fibroblast lineages 
including the secretion of nutrients and ECM components 
[162]. In contrast to these nurturing physiological functions, 
the aggressive phenotype of FLS in RA perpetuates synovial 
inflammation [161]. In addition to their loss of contact inhi-
bition, increased invasiveness and proliferation, FLS secrete 
various pro-inflammatory and osteoclastogenic cytokines, 
matrix metalloproteinases (MMPs) and chemokines [157, 
163, 164] including the IFN-inducible CXCR3 chemokines 
(Table 2) [110, 124, 135, 165].

In 1993, mRNA expression of CXCL10 by synovial tissue 
cells of RA patients was described for the first time [156]. 
Intriguingly, all three IFN-inducible CXCR3 ligands were 
secreted by freshly isolated synovial tissue cells upon incu-
bation in medium containing 10% fetal calf serum (FCS) 
[124, 166] and their concentrations were significantly higher 
in supernatant of synovial cells of RA patients compared to 
those of osteoarthritis patients [124]. Also,  CD1c+ myeloid 
DC (mDC)—isolated via magnetic-activated cell sorting 
(MACS) from SF of RA patients and cultured for 20 h in 
medium supplemented with 10% human serum—secreted 
substantial amounts of CXCL9 and CXCL10 [167]. Fur-
thermore, cultured synovial fibroblasts after several passages 
did not spontaneously express CXCR3 ligands but these 
chemokines were profusely secreted after stimulation with 
both IFN-γ and TNF-α [124], which are cytokines known to 
be present in SF of RA patients [168]. Upon IFN-γ stimula-
tion, CXCL9 and CXCL10 were secreted, whereas stimula-
tion with TNF-α or interleukin 1β (IL-1β) resulted in the 
presence of CXCL10 in the cell culture supernatant [124]. 
Moreover, mRNA expression of all three IFN-inducible 
CXCR3 ligands was detected via RT-PCR after stimula-
tion with either IFN-γ or TNF-α or IL-1β [110, 124]. Thus, 
IFN-induced CXCR3 chemokines seemed to be constitu-
tively expressed to some extent, but these chemokines are 
also robustly induced upon cytokine stimulation in rheu-
matoid synovial cells. More specifically, IFN-γ and TNF-α 
may orchestrate a cooperative, synergistic induction of 
IFN-inducible CXCR3 ligands in synovial cells of patients 
with RA. Synergism between IFN-γ and TNF-α enabling 
increased production of all three CXCR3 ligands has been 
previously described for human skin/muscle-derived fibro-
blasts [45, 48] and human microvascular endothelial cells 
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[45, 48]. In addition, CXCL10 production was also syn-
ergically induced by IFN-γ and TNF-α in synovial fibro-
blast of patients with temporomandibular joint disorders 
(TMD) [169] and in THP-1 monocytes [170]. Etanercept 
treatment was shown to neutralize the synergic IFN-γ and 
TNF-α-mediated CXCL9 production in human microvas-
cular endothelial cells [48]. Hence, this obliteration of syn-
ergic induction of IFN-inducible CXCR3 ligands could, at 
least in part, explain the reduced serum protein CXCL10 
levels in RA patients after receiving anti-TNF-α therapy 
[126]. Consequently,  CXCR3+ inflammatory cells may be 
less “trapped” in the synovium, which would explain the 
enhanced peripheral pooling of  CXCR3+ cells after anti-
TNF therapy [108]. Mechanistically, CXCL10 production 
by leukocytes appeared to be dependent, at least in part, 
on physical interaction between leukocytes and FLS [131]. 
Co-culturing of FLS with monocytes or polymorphonuclear 
neutrophils (PMNs) isolated from SF induced substantial 
mRNA expression and protein secretion of CXCL10 by 
synovial monocytes and PMNs, which could be abrogated 
by blocking ICAM-1/integrin interaction or by physical 
separation in a transwell system [131]. Hence, in addition 
to constitutive expression and cytokine-mediated chemokine 
induction, the intercommunion between tissue-resident cells 
(e.g., FLS) and infiltrating leukocytes in the synovium may 

further contribute to CXCR3 ligand production and conse-
quently joint inflammation.

Interference with cytokine-mediated chemokine pro-
duction by synovial cells may be interesting in the frame-
work of developing novel therapies for RA. For example, 
Kuranobu et al. proposed that the anti-inflammatory and 
joint-protective actions of activin A—which is a homodi-
meric glycoprotein that is abundantly present in the inflamed 
synovium—are rooted partially in its regulation of CXCL10 
production [165]. Activin A significantly attenuated TNF-α-
induced mRNA expression and protein secretion of CXCL10 
by rheumatoid synovial cells [165]. Similarly, others evalu-
ated the in vitro anti-inflammatory potential of blockage 
of human tumor necrosis factor (TNF)-like weak inducer 
of apoptosis (hTWEAK) [166]. hTWEAK is a widely tis-
sue-distributed member of the TNF superfamily that has 
pro-inflammatory activity and is pronouncedly expressed 
in rheumatoid synovia [166, 171]. In rheumatoid syno-
vial cells, hTWEAK potently stimulated secretion of vari-
ous chemokines including CXCL10 [166]. This CXCL10 
secretion was abrogated by an anti-hTWEAK antibody. As 
such, these strategies targeting cytokine-induced chemokine 
expression may be interesting tools to reduce the localized 
inflammatory response in the synovium.

Table 2  Expression and secretion of IFN-inducible CXCR3 ligands by human synovial cells isolated from SF and synovial tissues of RA 
patients

DMEM Dulbecco's Modified Eagle Medium, FCS fetal calf serum, hTWEAK human tumor necrosis factor (TNF)-like weak inducer of apop-
tosis, IFN interferon, IL interleukin, mDC myeloid dendritic cells, N.D. not determined, PMNs polymorphonuclear neutrophils, RPMI Roswell 
Park Memorial Institute, SF synovial fluid, TNF-α tumor necrosis factor α

Cell type (status of cells) Stimuli Secreted IFN-inducible 
CXCR3 ligand in cell culture 
supernatant

mRNA expression CXCR3 
ligand by the cells

References

Synovial tissue cells (freshly 
isolated cells)

DMEM + 10% FCS CXCL9, CXCL10, CXCL11 N.D [124]
TNF-α CXCL10 CXCL9, CXCL10 [137, 165]
IL-1β N.D CXCL10 [156]

Synovial tissue cells (cultured 
for 2 weeks[135] or third to 
ninth passage[166])

DMEM + 10% FCS CXCL10 N.D [166]
IFN-γ CXCL10 N.D [135]
TNF-α CXCL10 N.D [135, 166]
hTWEAK CXCL10 CXCL10 [166]
hTWEAK + TNF-α CXCL10 N.D

Synovial fibroblasts (fourth or 
fifth passage[124] or third to 
sixth passage[110])

IFN-γ CXCL9, CXCL10 CXCL9, CXCL10, CXCL11 [110, 124]
TNF-α CXCL10 CXCL9, CXCL10, CXCL11 [110, 124]
IL-1β CXCL10 CXCL9, CXCL10, CXCL11 [124]
IFN-γ + TNF-α CXCL9, CXCL10, CXCL11 N.D [124]
IFN-γ + IL-1β CXCL9, CXCL10, CXCL11 N.D [124]

SF monocytes (freshly isolated) Fibroblast-like synoviocytes 
(cultured after isolation)

CXCL10 CXCL10 in synovial mono-
cytes

[131]

SF PMNs (freshly isolated) CXCL10 CXCL10 in synovial PMNs
SF  CD1c+ mDC RPMI medium + 10% human 

AB serum
CXCL9, CXCL10 N.D [167]
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Disease models of rheumatoid arthritis

CXCR3 in  experimentally induced arthritis In general, dis-
ease-contributing roles of CXCL10 and CXCR3 in the con-
text of experimentally induced arthritis have been widely 
explored (Fig.  3, Suppl. tables  3–5). Targeting CXCR3 
alleviated arthritis disease symptoms in animal models of 
arthritis including type II collagen-induced arthritis (CIA) 
[172], type II collagen antibody-induced arthritis (CAIA) 
and rat adjuvant arthritis (AA) [100] (Fig.  3A, Suppl. 
tables 3–4). First, genetic ablation of CXCR3  (CXCR3−/−) 
in collagen type II antibodies-challenged C57BL/6 mice 
resulted in a mitigated CAIA phenotype, marked by attenu-
ated clinical arthritis and histopathological scores, less 
proteoglycan loss and reduced osteoclast activation in the 
articular cartilage compared to WT mice [86]. Relative to 
WT mice,  CXCR3−/− mice with CAIA also had reduced 
infiltration of  CD4+ T cells and F4/80+ macrophages in the 
joints and diminished serum levels of receptor activator of 
nuclear factor kappa-Β ligand (RANKL), TNF-α and IL-6 
[86]. Second, the severity of adoptively transferred rat AA 
was ameliorated by blockage of CXCR3 via treatment with a 
neutralizing anti-CXCR3 monoclonal antibody, i.e., XR3.2 

[100]. In particular, naïve Lewis rats treated with XR3.2—
receiving adoptively transferred T cells of Lewis rats with 
AA—had delayed onset of arthritis, decreased clinical joint 
scores, less cartilage proteoglycan loss and more than 50% 
reduction in synovial neutrophil accumulation compared to 
untreated animals [100]. In addition, CXCR3 expression 
on T cells turned out to be crucial for T cell ingress in the 
inflamed joints in rat AA [100]. Intravenous (IV) injection 
of  Cr51-labeled  CXCR3+ and  CXCR3− T cells—isolated 
from the spleen of healthy animals—in Lewis rats with AA 
demonstrated that nearly 2.5-fold more  CXCR3+ T cells 
than  CXCR3− T cells accumulated in the inflamed joints 
[100]. Another finding that prompted the CXCR3 depend-
ence of synovial T cell infiltration was the XR3.2-mediated 
diminished synovial recruitment of IV injected radiola-
beled nodal T cells, that were exogenously activated [100]. 
Hence, these data point towards a pivotal role of CXCR3 in 
T cell trafficking from the circulation towards the inflamed 
articulation in rat AA. Third, a decreased incidence of CIA 
development and reduced clinical score was described in 
 CXCR3−/− C57BL/6 mice [172]. In contrast to rat AA and 
CAIA, Al-Banna et al. reported that intravenously injected 
 Cr51-labeled  TH1 cells from  CXCR3−/− C57BL/6 mice and 

Fig. 3  Schematic representation of the effects of targeting the IFN-
inducible CXCR3 chemokine network on arthritis symptoms in 
rodent models. Symptomatology, cellular and molecular outcomes 
are depicted for rodent models undergoing therapies or depletions tar-
geting A CXCR3 and B CXCL10. Selective targeting of CXCR3 was 
established through genetic ablation, CXCR3 antagonists (AMG 487, 
TAK-779, SCH 546,738, or JN-2) or CXCR3-targeting monoclo-

nal antibodies. Selective targeting of CXCL10 was realized through 
genetic ablation, a CXCL10-encoding DNA vaccine, CXCL10-
targeting monoclonal antibodies, a CXCL10-encoding retrovirus or 
a bispecific antibody targeting CXCL10 and TNF-α. CXCL, CXC 
chemokine receptor ligand, CXCR CXC chemokine receptor, IFN 
interferon, IL interleukin, NK natural killer, RANKL Receptor activa-
tor of nuclear factor kappa-Β ligand, TNF-α tumor necrosis factor α
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WT mice migrated to a similar extend into inflamed paws of 
WT C57BL/6 mice with CIA [172]. As such, these authors 
speculated that CXCR3-dependent T cell migration towards 
the synovial compartment plays a more limited role in CIA, 
in which joint inflammation may be rather antibody depend-
ent. Noteworthy, these intravenously injected  TH1 cells 
of WT mice were not specifically pre-selected for being 
 CXCR3+. Hence, CXCR3-mediated T cell homing in the 
inflamed joints and its relative contribution to synovitis in 
CIA may follow the same trend as observed in other animal 
models.

In disagreement with the aforementioned data supporting 
a disease-contributing role of CXCR3, similar ankle swell-
ing was observed in WT mice as in  CXCR3−/− C57BL/6 
mice during the development of serum-transferred arthritis 
upon serum transfer of K/BxN mice [173]. This prompted 
the assumption that CXCR3 is not critical for this type of 
K/BxN serum-transferred arthritis [173]. The discrepancy 

between the findings in other rodent arthritis models was 
explained by the fact that solely the transferred antibodies 
are sufficient to induce disease in the K/BxN serum-trans-
ferred arthritis model [173], whereas T cell trafficking to the 
joints is required for other forms of experimentally induced 
arthritis. However, beside ankle swelling, other clinical 
disease parameters or histopathological features were not 
examined in these mice, rendering conclusions in terms of 
the involvement of CXCR3 in serum-transferred arthritis 
rather premature. In general, depletion of CXCR3 offered 
arthritis-restraining outcomes in multiple rodent models.

In line with our conclusions concerning the role of 
CXCR3 in CIA (vide supra), recent studies that examined 
small-molecule CXCR3 antagonists in CIA further cor-
roborated the involvement of CXCR3 in CIA-associated 
synovitis and CIA disease development (Fig. 4, Suppl. 
table 4). CIA-developing mice treated with CXCR3 antago-
nists displayed reduced synovial inflammation [174–179] 

Fig. 4  Chemical structures of the small-molecule CXCR3 antago-
nists and CXCR3 agonist that were evaluated in rodent models of 
arthritis. Chemical structures of A small-molecule CXCR3 antago-
nist AMG 487, B small-molecule CCR5/CXCR3/CCR2 antago-
nist TAK-779, C small-molecule CXCR3 antagonist SCH 546,738, 
D small-molecule CXCR3 antagonist JN-2, E small-molecule 
CXCR3 agonist PS372424, and F small-molecule CXCR3 antago-
nist NBI-74330. AMG 487, N-1-[(3-4(-Ethoxyphenyl)-3,4-dihydro-
4-oxopyrido[2,3-d]pyrimidin-2-yl]ethyl]-N-(3-pyridinylmethyl)-4-
(trifluoromethoxy)benzeneacetamide; JN-2, N-(4-(5-chlorobenzo[d]
oxazol-2-ylamino)phenyl)-4-aminobutanamide; NBI-74330, N-1-

[(3–4(-Ethoxyphenyl)-3,4-dihydro-4-oxopyrido[2,3-d]pyrimidin-
2-yl]ethyl]-4-fluoro-N-(3-pyridinylmethyl)-3-(trif luoromethyl)
benzene-acetamide; PS372424, (S)-N-((S)-1-((cyclohexylmethyl)
amino)-5-guanidino-1-oxopentan-2-yl)-2-(4-oxo-4-phenylbu-
tanoyl)-1,2,3,4-tetrahydro-isoquinoline-3-carboxamide; SCH 
546738, 3-Amino-6-chloro-5-[(3S)-4-[1-[(4-chlorophenyl)methyl]-
4-piperidinyl]-3-ethyl-1-piperazinyl]-2-pyrazinecarboxamide; 
TAK-779; N, N-dimethyl-N-(4-[[[2-(4-methylphenyl)-6, 7-dihydro-
5H-benzocyclohepten-8-yl]carbon-yl]amino]benzyl)-tetrahydro-
2H-pyran-4-aminium chloride
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and showed mitigated clinical disease development [175, 
176, 178, 179]. First, the small-molecule CXCR3 antagonist 
AMG 487 (Fig. 4A) improved the clinical arthritis score and 
synovial histopathological manifestations, and re-directed T 
cell polarization towards a  Foxp3+ IL-10-producing  Treg cell 
phenotype in CIA-developing DBA/1 J mice [178]. Moreo-
ver, AMG 487 suppressed production of inflammatory medi-
ators (e.g., IFN-γ, TNF-α, NFκB p65, IL-6) in knee tissue 
[174, 177] and shifted the inflammatory B cell phenotype 
towards IL-4 and IL-27-producing B cells in the spleen in 
CIA [174]. In addition, AMG 487 upregulated the produc-
tion of  TH2 cytokine IL-4, anti-inflammatory cytokine IL-10 
and ‘anti-arthritic’ cytokine IL-27 in the inflamed joints in 
CIA [174, 178, 180]. Second, the small-molecule CCR5/
CXCR3/CCR2 antagonist TAK-779 (Fig. 4B) was found 
to partially inhibit CIA development and reduced severity 
of CIA [179]. TAK-779 treatment decreased the incidence 
of CIA development and significantly reduced the arthritic 
index [179]. Since TAK-779 did not affect anti-collagen T 
cell responses, nor CCR5 induction on T cells in CIA, this 
effect is likely mediated by suppression of T cell ingress in 
the inflamed paws. Indeed, TAK-779 strongly inhibited leu-
kocyte infiltration into joint lesions in CIA [179]. Whether 
the anti-inflammatory action of TAK-779 was based on its 
CCR5 or CXCR3 antagonism was not investigated in detail. 
Third, B10.RIII mice with CIA were treated with a selective, 
high affinity and non-competitive CXCR3 antagonist SCH 
546738 (Fig. 4C) [175]. This compound ameliorated disease 
development at a dosing regimen of 40 mg/kg bodyweight, 
as evidenced by the attenuated disease score, reduced syno-
vial leukocyte infiltration and less structural damage to 
bone and cartilage [175]. Recently, another small-molecule 
CXCR3 antagonist JN-2, which structurally resembles 
AMG 487, was developed (Fig. 4D) [181]. Similar to SCH 
546738, JN-2 significantly reduced clinical disease scores, 
paw swelling, bone erosion and histopathological scores in 
CIA-developing DBA/1 mice [176]. JN-2 also attenuated 
serum protein and splenic mRNA levels of inflammatory 
cytokines including IL-6 and TNF-α [176]. Altogether, 
CXCR3 antagonism was overall substantially successful in 
restraining CIA [174–179].

In addition to the abundant evidence supporting CXCR3 
antagonism as a strategy to restrain experimental arthritis, 
promising results were obtained with the small-molecule 
CXCR3 agonist PS372424 in a humanized mouse air-pouch 
arthritis model (Fig. 4E, Suppl. table 4) [149]. As a result of 
an E196Q amino acid difference in human and mice CXCR3 
 (Glu196 →  Gln196), PS372424 is solely a CXCR3 antago-
nist in humans [182], thereby hampering the research on 
this compound in conventional rodent arthritis models. In 
the humanized mouse air-pouch arthritis model, severely 
immunodeficient NOD scid gamma (NSG) mice receive 
human peripheral blood mononuclear cells (PBMCs) by 

intraperitoneal injection and subsequently an air pouch is 
created through subcutaneous injection of sterile air into 
the back of the animal [149]. After 28 days, these immu-
nodeficient mice have a peripheral T cell population that 
is nearly completely human. Intriguingly, intravenous 
administration of CXCR3 agonist PS372424 significantly 
reduced  CD45+ leukocyte trafficking towards the air pouch, 
either filled with PBS containing CXCL11, CCL5, CXCL12 
or SF of RA patients [149]. The small-molecule CXCR3 
antagonist NBI-74330 (Fig. 4F) and CXCR3-neutralizing 
antibodies did not affect leukocyte infiltration in the pouch. 
Hence, chemotaxis antagonism of PS372424 was attributed 
to PS372424-mediated receptor cross-phosphorylation of 
CCR5 in CXCR3–CCR5 heterodimer complexes (vide infra) 
[149].

CXCL10 in  experimentally induced arthritis In general, 
 CXCL10−/− mice have impaired T cell responses in 
response to allogeneic or antigenic stimulation in  vivo, 
characterized by severely reduced T cell trafficking 
towards inflammatory sites and compromised T cell prim-
ing marked by decreased proliferation and IFN-γ secre-
tion [183]. Intriguingly, selective depletion of CXCL10 
provided consistent protective effects in various arthri-
tis models including AA [184], CIA [185], CAIA [86], 
human TNF-α transgenic Tg197 mice [148], LPS-induced 
bone erosion [148] and K/BxN serum transfer-induced 
arthritis [148] (Fig. 3B, Suppl. table 5). First, IV admin-
istration of CXCL10 neutralizing antibodies ameliorated 
severity of CIA, as evidenced by reduced serum levels 
of RANKL and TNF-α, decreased infiltration of  CD4+ 
T cells and F4/80+ macrophages, and less bone erosion 
[185]. In addition, serum levels and synovial expression of 
CXCL10 in untreated CIA-developing mice were signifi-
cantly increased compared to control mice without CIA 
[185]. These data suggest that the induction of CXCL10 
occurs mainly in inflamed joints and is important for leu-
kocyte ingress into and bone erosion in the inflammatory 
articulation in CIA [185]. Second,  CXCL10−/− C57BL/6 
mice developed an attenuated CAIA phenotype, charac-
terized by a reduced arthritis score, less synovial infiltra-
tion of  CD4+ T cells and F4/80+ macrophages, diminished 
serum levels of IL-6, RANKL and TNF-α, and decreased 
bone and cartilage damage compared to WT mice [86]. 
These observations in  CXCL10−/− mice with CAIA per-
fectly accord to the data of CIA-developing mice treated 
with anti-CXCL10 neutralizing antibodies [86, 185]. 
Third, Salomon et al. administered a naked DNA vaccine 
encoding for rat CXCL10 before and during the onset of 
AA in Lewis rats, thereby breaking immunological self-
tolerance marked by high titers of self-specific CXCL10-
targeting antibodies [184]. Lewis rats that received the 
vaccine before or during the onset of rat AA, exhibited 
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ameliorated arthritis characterized by a decreased clinical 
disease score and improved joint histological parameters 
compared to the untreated littermates [184]. In addition, 
adoptive transfer of self-specific anti-CXCL10 antibod-
ies purified from sera of these vaccinated rats into rats, in 
which clinical AA was initiated two days earlier, largely 
protected the AA-developing rats against development of 
full-blown clinical AA [184]. Rats receiving CXCL10-
targeting antibodies exhibited significantly reduced clini-
cal disease scores and polarization of lymph node  CD4+ T 
cells to cells producing high levels of IL-4 and low levels 
of IFN-γ and TNF-α [184]. As such, CXCL10 may not 
solely orchestrate chemo-attraction of  TH1 cells towards 
the inflamed joints but also skews the polarization of naïve 
infiltrating T cells into  TH1 cells. In addition, the collec-
tive production of IFN-γ by these accumulating  TH1 cells 
further propagates CXCL10 production by other cell types 
in the synovial niche. Fourth, the anti-arthritic efficacy of 
a bispecific antibody targeting both TNF-α and CXCL10 
(BsAb) was demonstrated in three distinct arthritis mod-
els [148]. To evaluate the additional beneficial value of 
neutralization of downstream actions of CXCL10 aside 
from TNF-α blockage, mice with experimental arthritis 
treated with BsAb were compared to adalimumab-treated 
mice [148]. Treatment with BsAb ameliorated K/BxN 
serum transfer-induced arthritis to a similar extent as 
adalimumab. In human TNF-α transgenic Tg197 mice, 
which spontaneously develop arthritis due to constitutive 
overexpression of human TNF-α, BsAb-mediated amelio-
rated arthritis was characterized by reduced serum levels 
of human TNF-α and mouse IL-1β compared to adali-
mumab-treated mice. In mice with LPS-induced bone 
erosion, treatment with BsAb—but not adalimumab—
instigated reduced bone resorption. Mechanistically, the 
reduced systemic inflammation and decreased bone dam-
age after treatment with BsAb in Tg197 mice and mice 
with LPS-induced bone erosion, respectively, probably 
emerge from inhibition of synergic effects of CXCL10 
and TNF-α on the production of inflammatory and osteo-
clastogenic cytokines. Noteworthy, CXCL10-mediated 
potentiation of bone destruction and cartilage damage was 
further confirmed in healthy ICR mice [185]. An intra-
articular injection of CXCL10-encoding retrovirus caused 
more extended bone erosion in ICR mice compared to 
injection of a control retrovirus [185]. In addition to the 
observation described in the aforementioned models of 
arthritis, CXCL10 was found to be upregulated in the syn-
ovium following trauma in rodents with post-traumatic 
arthritis [186, 187], a feature that was also observed in 
the articular cartilage of patients after articular fractions 
[186]. However, whether synovial CXCL10 has deleteri-
ous or protective actions following articular fractions was 
not investigated [186]. To conclude, the CXCL10-CXCR3 

axis plays a pivotal role in the progression of experimen-
tal arthritis. The downstream in vivo actions of CXCL10 
affected the physiology in rodent arthritis models on a 
systemic level (e.g., increased circulatory cytokines) and 
on localized levels in the joints (e.g., leukocyte homing, 
reduced bone integrity, articular cartilage damage and  TH1 
cell polarization), thereby propagating inflammation and 
progressive destruction of the joints.

Altogether, these findings may also potentially point 
towards a redundant functioning of the CXCR3 chemokine 
network in rodent models of arthritis [86]. First, genetic 
ablation of CXCR3 in CAIA-developing mice pronounc-
edly mitigated clinical arthritis symptoms, whereas targeted 
knock-out of CXCL10 alleviated clinical arthritis score to 
a lesser extent compared to  CXCR3−/− mice [86]. Second, 
adoptively transferred self-specific CXCL10-targeting anti-
bodies provided only partial protection against development 
of full-blown clinical rat AA [184]. These results indicate 
that the absence of CXCL10 may be partially overcome 
by other IFN-inducible CXCR3 ligands in experimentally 
induced arthritis. However, findings obtained in rodent mod-
els should be interpreted with considerable caution, espe-
cially those related to the murine IFN-inducible CXCR3 
ligands. This notion is anchored on multiple levels. First, 
the widely used C57BL/6 mouse strain were reported to not 
endogenously express CXCL11 [84, 155, 188], as a result 
of an insertion of two base pairs located closely to the start 
codon that cause a frame shift leading to an early stop codon 
[188]. Therefore, the potential anti-inflammatory and auto-
immune-restraining actions of CXCL11 related to  CD4+ T 
cell polarization towards  TH2 or IL-10high  Tr1 cells may be 
overlooked in CAIA-developing C57BL/6 mice. Second, the 
absence of a CXCR3B splice variant in mice marks another 
important discrepancy [69]. Accordingly, the high failure 
rate of effective translational application of CXCR3 antago-
nists further confirms that extrapolation of CXCR3 ligand-
related observations from rodents to humans is not straight-
forward [189, 190]. Third, targeted knock-out of CXCL9 
and CXCL11 has not been explored yet in the framework of 
experimentally induced arthritis, despite marked upregula-
tion of these chemokines in rheumatoid synovia [80, 102, 
106, 124, 145]. Fourth, rodent arthritis models were consid-
ered to mimic human RA to a rather limited extent, given 
the predominance of neutrophils in human RA for which the 
chemokine receptor functioning profoundly differs between 
these species [191]. Nevertheless, some similarities between 
RA and mice models of arthritis with regard to the IFN-
inducible CXCR3 ligands may be present, since comparison 
of single-cell RNA-sequencing (scRNA-seq) data of whole 
joints of 129/Sv mice with antigen-induced arthritis and 
gene microarray data of human joints revealed that the  TH1 
pathway was a mutual upregulated pathway with IFN-γ as 
the most significant shared upstream regulator [147]. Finally, 
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mounting evidence points towards in vivo non-redundancy 
of the three IFN-inducible CXCR3 ligands [46], in particu-
lar also in rodent models mimicking autoimmune disease 
[192, 193]. In summary, complementary data from clinical 
settings is warranted to validate potential protective actions 
of blockage of the CXCR3 chemokine network in human 
inflammatory arthritides.

Drugs targeting the CXCR3 chemokine network 
in experimentally induced arthritis and rheumatoid 
arthritis

Development and patent claiming of CXCR3 antagonists 
reached its prime between 2001 and 2009 [189, 194–202]. 
Initially, the pronounced degree of homology between 
rodent and human CXCR3 prompted researchers to evaluate 
CXCR3-targeting compounds in various models of inflam-
matory and autoimmune diseases. Detailed overviews on 
the discovery and exploration of small-molecule CXCR3 
antagonists have been published elsewhere [189, 190, 203, 
204]. Herein, we discuss compounds targeting CXCR3 and 
its IFN-inducible ligands that were evaluated in the context 
of experimentally induced arthritis and human arthropathies 
(Table 3).

CXCR3‑based therapies for arthritis In the early 2000s, opti-
mization of CXCR3 binding potency and pharmacokinetic 
characteristics of a quinazolinone-derived compound led to 
the identification of an 8-azaquinazolinone derivative AMG 
487 [202, 205, 206]. This non-competitive CXCR3 antag-
onist was properly absorbed after oral administration and 
showed low-to-moderate clearance after IV administration 
in rats and dogs [202]. In addition, AMG 487 significantly 
suppressed CXCR3-dependent in vivo leukocyte trafficking 
in bleomycin-mediated lung inflammation [202]. However, 
AMG 487-derived metabolites had cytochrome P450 3A4 
 (Cyp3A4)-inhibitory activity [207]. Despite this drawback, 
AMG 487 progressed to a Phase IIa clinical trial to treat 
patients with severe psoriasis in 2003, but was withdrawn 
since treated patients did not exhibit significant improve-
ment in physician global assessment scores or psoriasis 
severity index compared to placebo-treated patients [208]. 
The high variability in drug exposure was speculated to 
underlie the lack of clinical efficacy observed in this study 
[203, 208]. In addition, CXCR3 may not be an optimal 
drug target to combat psoriasis in hindsight [190], given 
the incompletely understood role of CXCR3 and its ligands 
in psoriasis and the potentially overlooked relevance of 
other upregulated chemokine receptors in this disease (e.g., 
CCR6 and CCR4) [209–211]. AMG 487 remains the only 
small-molecule CXCR3 antagonist to have entered clini-
cal trials so far [189]. Moreover, a Phase II clinical trial to 
evaluate AMG 487 in patients with moderate to severe RA 

was intended to commence in 2004 [212]. However, it is 
unknown whether this trial was eventually started or what 
its contemporary status is [203]. Hence, the nature of the 
failure of AMG 487 in clinical trials for psoriasis—prob-
ably due to drug-intrinsic pharmacokinetic properties—may 
have discouraged further implementation of this compound 
and other CXCR3 antagonists in clinical trials [190]. Never-
theless, preclinical research on AMG 487 progressively con-
tinued in the framework of experimentally induced arthritis 
and RA. AMG 487 was found to be successful in combat-
ting several arthritis-related aberrant processes in which 
the IFN-inducible CXCR3 ligands are involved. First, the 
CXCR3–CXCL10 axis plays an important role in mediat-
ing chemotaxis and invasion of FLS [213–215]. In this con-
text, AMG 487 was shown to significantly diminish in vitro 
matrigel invasion of FLS originating from Dark Agouti rats 
with pristane-induced arthritis or from RA patients [214]. 
Furthermore, AMG 487 reduced active MMP-1 produc-
tion by rat FLS in vitro, attenuated CXCL10-induced  Ca2+

i 
mobilization, and partially rehabilitated elongated into 
round morphology of Dark Agouti rat-derived and RA FLS 
[214]. Second, CXCR3 was found to majorly contribute to 
infiltration of memory B cells towards rheumatoid synovial 
tissue [83]. AMG 487 potently reduced in  vitro invasion 
of RA patient-derived B cells towards medium containing 
an ex vivo synovial biopsy suspension of RA patients [83]. 
Moreover, recently published manuscripts have reported on 
the in vivo potential of AMG 487 to suppress synovitis and 
improve clinical arthritis scores in CIA-developing DBA/1J 
mice [174, 177, 178] (vide supra). In addition, AMG 487 
showed disease-restraining effects in other murine disease 
models of steatohepatitis, metastatic breast cancer and trau-
matic optic neuropathy [216–218].

A second relevant small-molecule CXCR3 antagonist 
TAK-779 was found to exert potent antagonistic actions 
on multiple chemokine receptors including CCR5, CCR2, 
and CXCR3 [219, 220]. In 1999, TAK-779 was initially 
discovered as a CCR5 antagonist with powerful anti-HIV-1 
activity [221]. The  IC50-values representing TAK-779-me-
diated inhibition of chemotaxis induced by the respective 
ligand–receptor pairs CCL3–CCR5, CCL2–CCR2 and 
CXCL11–CXCR3 are 1.86 nM [219], 5.78 nM [219] and 
15.8 µM [220], respectively. In the context of CIA, TAK-779 
partially suppressed CIA development and assuaged severity 
of the CIA arthritis phenotype [179]. The protective effects 
of TAK-779 in experimentally induced arthritis were attrib-
uted to its chemotaxis antagonistic actions since leukocyte 
ingress in joint lesions was drastically reduced (vide supra) 
[179]. The drug did not affect in vitro IL-12 production, 
proliferation of T cells or antigen-presenting cells (APC) 
isolated from lymph nodes of TAK-779-treated CIA-devel-
oping mice, nor CCR5 induction or anti-collagen response 
of their T cells [179]. In addition, TAK-779 also displayed 
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Table 3  Drugs targeting the CXCR3 chemokine system evaluated in the context of experimentally induced arthritis and rheumatoid arthritis

Target Drug type Drug name Type of study Demonstrated 
(pre)clinical 
efficacy

Arthritis-related findings References

CXCR3 Small-molecule CXCR3 
antagonist

AMG 487 Preclinical N.D ↓ invasion of FLS of RA 
patients in Matrigel by 60%

↓ invasion of FLS of Dark 
Agouti rats with pristane-
induced arthritis in Matrigel 
by 77%

↓ production of active MMP-1 
by FLS of Dark Agouti rats 
with pristane-induced arthritis

↓ CXCL10-induced  Ca2+
i 

mobilization in FLS of Dark 
Agouti rats and RA patients

↓ number of thick actin fila-
ments, ↓ number of elongated 
cells, ↓ formation of polarized 
lamellipodia, ↓ co-localiza-
tion of phospho-FAK with 
lamellipodia in FLS of Dark 
Agouti rats and RA patients

[214]

Preclinical Yes Ameliorated severity of CIA [174, 177, 178]

Preclinical N.D. ↓ invasion of RA patient-
derived B cells towards 
synovial biopsy suspensions 
of RA patients in Matrigel-
filled microchamber

[83]

Phase IIa Unknown Status of the trial for use of 
AMG 487 in patients with 
moderate to severe RA is 
unknown

[212]

JN-2 Preclinical Yes Ameliorated systemic inflam-
mation and severity of CIA in 
CIA-developing mice

↓ CXCL10 mRNA expres-
sion, CXCL10 secretion and 
CXCL10-induced chemotaxis 
of mouse breast cancer 4T1 
cells

↓ CXCR3 ligand-induced cell 
migration and CXCL10-
mediated pro-inflammatory 
cytokine expression of 
CD4 + T cells and BMMs

[176, 181]

SCH 546738 Preclinical Yes Ameliorated severity of CIA [175]

TAK-779 Preclinical Yes ↓ incidence of CIA and amelio-
rated severity of CIA

= IL-12 production and 
proliferation rate in presence 
of collagen by co-cultures 
of LN T cells and LN APC 
(isolated from of CIA-mice 
treated with TAK-799 or with 
vehicle)

[179]
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substantial efficacy in other disease models, including pre-
clinical models of experimental autoimmune encephalo-
myelitis [222], colitis [223], ischemia reperfusion injury 
[224] and cardiac allograft vasculopathy [225]. Despite its 
promising potential, TAK-779 was poorly absorbed after 
oral intake and attempts to modify TAK-779 into a com-
pound with improved oral bioavailability resulted in loss of 
CXCR3 antagonistic activity [190, 220, 226]. Due to these 
pharmacokinetic inadequacies, exploration of TAK-779 was 
not pursued in the clinical setting.

Furthermore, the non-competitive small-molecule 
CXCR3 antagonist SCH 546738 is a oxadiazole-5-amino-
pyrazine derivate [227, 228] with remarkably high affinity 
for CXCR3 (0.4 nM) [175]. SCH 546738 potently inhibited 

CXCR3 binding of human CXCL10 and CXCL11  (IC50 
of SCH 546738 ~ 1–2 nM) with additional cross-species 
activity [175]. In addition, SCH 546738 effectively sup-
pressed CXCR3 ligand-mediated chemotaxis and had an 
adequate pharmacokinetic profile in rodents. Also, SCH 
546738 induced an ameliorated phenotype in CIA, marked 
by attenuated synovitis and decreased cartilage and bone 
destruction (vide supra) [175]. In other rodent autoimmune 
models including mouse and rat experimental autoimmune 
encephalomyelitis, SCH 546738 also exhibited clinical effi-
cacy [175]. Similar to AMG 487, SCH 546738 also reversed 
steatohepatitis in a preclinical study [218]. However, trans-
lation of SCH 546738 towards clinical trials has not been 
reported. A potential reason for this halt may be that SCH 

Table 3  (continued)

Target Drug type Drug name Type of study Demonstrated 
(pre)clinical 
efficacy

Arthritis-related findings References

Small-molecule CXCR3 agonist PS372424 Preclinical N.D. ↓ migration of activated 
 CXCR3+ human T cells 
towards CCL5, CXCL12, 
CXCL11 or RA SF in vitro

↓ migration of  CD45+ human 
leukocytes towards air pouch 
filled with RA SF, CCL5, 
CXCL11 or CXCL12 in 
humanized mice

[149]

CXCL10 Neutralizing mAb MDX-1100 Preclinical Unknown Prevented in vitro actions of 
CXCL10:

Inhibits CXCL10-induced cell 
migration

Blocks CXCL10-induced  Ca2+
i 

mobilization
Inhibits induction of CXCL10-

responsive genes

[230, 231]

Phase I Unknown Properly tolerated at differ-
ent dose levels (0.1–10 mg/
kg) and favorable half-life 
(10 days) in HC and patients 
with ulcerative colitis

Phase II Yes ACR20 response at day 85 in 
MDX-1100- and MTX-treated 
group (54%) > placebo and 
MTX-treated group (17%)

= ACR-50 response, ACR-70 
response, and DAS28 in 
MDX-1100- and MTX-treated 
group compared to placebo- 
and MTX-treated group

ACR  American College of Rheumatology improvement criteria, APC antigen-presenting cells, BMMs bone marrow-derived macrophages, CIA 
type II collagen-induced arthritis, CCL CC chemokine ligand, CXCL CXC chemokine ligand, CXCR CXC chemokine receptor, DAS28 Disease 
Activity Score in 28 joints, DMSO dimethyl sulfoxide, ERK extracellular-signal-regulated kinases, FLS fibroblast-like synoviocytes, HC healthy 
controls, IL interleukin, LN lymph nodes, mAb monoclonal antibody, MMP matrix metalloproteinase, MTX methotrexate, N.D. not determined, 
phospho-FAK phosphorylated Focal Adhesion Kinase (FAK), PKC Protein Kinase C, RA rheumatoid arthritis, SF synovial fluid
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546738 exhibited undesirable inhibitory activity on Human 
Ether-a-go-go Related Gene (hERG) kalium  (K+) channel 
[228]. Recently, another promising small-molecule CXCR3 
antagonist JN-2 was developed [181]. JN-2 emerged as a 
result of incorporation of an amide side chain into a benzo-
xazole-derived lead compound of Abbot Laboratories with 
CXCR3 antagonistic activity, in order to resemble AMG 
487 [181]. Intriguingly, JN-2 suppressed CXCL10 mRNA 
expression, CXCL10 secretion and CXCL10-induced chem-
otaxis of 4T1 cells, which is a mouse breast cancer cell line 
[181]. Moreover, JN-2 was speculated to indirectly inhibit 
osteoclast formation in co-cultures in vitro and prevented 
4T1 cell-induced bone destruction in BALB/c mice [181]. 
Accordingly, JN-2 induced less bone erosion and cartilage 
damage in CIA-developing DBA/1 mice, in addition to alle-
viation of clinical disease and reduction of CIA-induced 
pro-inflammatory cytokines (vide supra) [176]. Also, JN-2 
counteracted CXCR3 ligand-induced cell migration and 
CXCL10-mediated pro-inflammatory cytokine expression 
of  CD4+ T cells and bone marrow-derived macrophages 
(BMMs) in vitro [176]. No further information was pub-
lished on whether JN-2 was explored in terms of clinical 
efficacy.

Counterintuitively, another route that was explored is 
the implementation of CXCR3 agonists. During a high-
throughput screening for CXCR3 antagonists, a small-
molecule CXCR3 agonist PS372424 was identified [229]. 
PS372424 contains a tetrahydroisoquinoline–arginine motif, 
on which its CXCR3 agonistic activity relies on [229]. This 
motif closely resembles the Pro-Arg dipeptide in the 30s 
loop of CXCL10, which is a key interaction site enabling 
CXCL10-mediated CXCR3 activation [182]. Intriguingly, 
PS372424 significantly reduced in vitro chemotaxis of acti-
vated human  CXCR3+ T cells towards CCL5, CXCL11 or 
CXCL12, and also towards SF of RA patients. PS372424 
also attenuated in vivo human leukocyte ingress in an air 
pouch filled with multiple chemokines or SF of RA patients 
in a humanized mouse air-pouch arthritis model (vide supra) 
[149]. In search for the underlying mechanisms of its activ-
ity, PS372424 was found to elicit cross-phosphorylation 
in a dose-dependent manner of CCR5 on  CXCR3+—but 
not  CXCR3−—activated T cells in vitro. Hence, the broad 
antagonistic activity of PS372424 in chemotaxis experi-
ments was attributed to CXCR3-mediated cross-phospho-
rylation of CCR5 in CCR5–CXCR3 heterodimers [149]. In 
addition, the compound also decreased in vivo cell-surface 
expression of CXCR3 and CCR5 on splenic human T cells 
in immunodeficient mice with human PBMCs [149]. Thus, 
PS372424 plausibly desensitizes downstream CCR5 signal-
ing and induces internalization of CXCR3, thereby reducing 
directional trafficking of  CCR5+  CXCR3+ T cells.

CXCL10‑based therapies for  arthritis In 2010, a phase 
II randomized, placebo-controlled study was performed 
to asses safety and clinical efficacy of eldelumab/MDX-
1100—a fully human, neutralizing monoclonal antibody 
against CXCL10—in RA patients that responded insuffi-
ciently to methotrexate (Table 3; ClinicalTrials.gov, Identi-
fier: NCT01017367) [230]. MDX-1100 exhibited selective 
and high-affinity binding for CXCL10, but not for CXCL9 
or CXCL11 [230, 231]. Thereby, the drug blocked in vitro 
actions of CXCL10, including  Ca2+

i mobilization, induc-
tion of CXCL10-responsive genes and leukocyte chemot-
axis in preclinical studies [230, 231]. Moreover, phase I 
single-dose studies proved that MDX-1100 was properly 
tolerated by healthy volunteers and patients with ulcera-
tive colitis at various dose levels [230, 231]. In the phase 
II trial, MDX-1100-treated RA patients had significantly 
improved response according to the American College of 
Rheumatology 20% improvement criteria (ACR-20) on day 
85 compared to the placebo-treated cohort [230, 232]. Each 
of the ACR core components, except for ESR, was improved 
compared to baseline in MDX-1100-treated patients com-
pared to placebo-receiving patients [230]. However, ACR-
50, ACR-70 and change of DAS28 over a period of 85 days 
were not ameliorated in the MDX-1100-receiving group 
compared to placebo-treated patients [230]. As such, the 
well-tolerated MDX-1100 was speculated to have favorable 
effects in RA, irrespective of alleviating systemic inflam-
mation [6]. Despite moderate clinical benefit and adequate 
safety profile, final data on MDX-1100 or details on con-
tinuation towards phase III studies was not reported [233]. 
In addition, MDX-1100 also showed modest efficacy in 
patients with moderate to severe ulcerative colitis in Phase 
II clinical trials (NCT00656890) [234], but again no further 
data were released.

Targeting the  CXCR3 chemokine network in  arthritis: chal‑
lenges and  future perspectives Defining new curative 
therapeutic targets marks a critical unmet need in refractory 
RA with suboptimal response to disease-modifying anti-
rheumatic drugs (DMARDs) [235]. Despite the promis-
ing potential of many small-molecule CXCR3 antagonists 
developed over the last two decennia and their preclinical 
evaluation, only one compound progressed to the clinical 
setting [189]. This omnipresent reluctance towards clini-
cal translation of CXCR3 antagonists has multiple reasons. 
First, the highly expensive failure of AMG 487 deterred 
others to continue in the same direction, consequently 
grounding clinical trials on CXCR3 antagonist to a halt 
[190]. Second, pharmacokinetic inadequacies often caused 
discontinuation of propitious CXCR3-targeting molecules 
(e.g., TAK-799). Third, CXCR3 targeting in autoimmunity 
and inflammation is speculated to be controversial to some 
extent, given the plausibility of concomitant inactivation of 
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immunosuppressive effects mediated by CXCL11 [236]. 
These notions underscore the complicated pharmacology 
of the CXCR3 chemokine network and sparked the idea for 
another relevant strategy to tackle CXCR3, i.e., to disentan-
gle biased signaling downstream of CXCR3 [237–239]. For 
example, boronic-acid based compounds that selectively 
inhibit either activation of G proteins or β-arrestin 2 recruit-
ment may be relevant to combat autoimmune diseases [238, 
239]. Thus, novel studies investigating CXCR3-targeting 
compounds including AMG 487, JN-2 and boronic-acid 
derivatives corroborate that CXCR3 antagonism remains a 
potential avenue to therapeutically restrain and relieve joint 
inflammation.

Noteworthy, high failure rates of drugs targeting the 
chemokine system, especially in RA, have demonstrated the 
importance of complete comprehension of chemokine func-
tioning in a specific pathogenesis, thereby enabling precise 
selection of a valid target in that particular disease [191]. 
This concept is further illustrated by the lack of efficacy 
of CCR5 antagonist maraviroc in phase IIa clinical trials 
for patients with RA (NCT00427934), despite its successful 
application for HIV-1 treatment [240]. Especially, also in the 
context of MDX-1100, the absence of in-depth insight in the 
in vivo actions and reciprocal intercommunion of the three 
IFN-inducible CXCR3 ligands in arthritis marks an impor-
tant knowledge hiatus. In addition, processing of chemokine 
ligands leading to posttranslationally modified forms (pro-
teoforms) of IFN-inducible CXCR3 ligands and the implica-
tion of their structural heterogeneity on chemokine function-
ing—generating weak agonists or even antagonists—have 
remained incompletely understood in vitro and in vivo. 
Moreover, the unidentified predilection of MDX-1100 for 
distinct CXCL10 proteoforms further hampers a correct 
understanding of the mechanism of action of MDX-1100 in 
the pathogenesis of RA. Therefore, identification of CXCR3 
ligand and receptor forms in synovial tissue/fluid and cor-
relation to their biological activity is vital to fully grasp the 
functioning of the CXCR3 chemokine network in arthritis. 
Localized enzyme targeting may be a promising therapeu-
tic strategy to prevent or promote selective processing of 
CXCR3 ligands into disease-contributing or inflammation-
restraining proteoforms, respectively. For example, CD26 
inhibitors sitagliptin and linagliptin are tested in combina-
tion with immune checkpoint inhibitors in Phase Ib/II clini-
cal trials for gastric, esophageal and non-small cell lung 
cancer (NCT03281369; NCT03337698). These drugs would 
prevent CXCL10-mediated processing into the chemotaxis 
antagonist  CXCL10(3–77), thereby facilitating  CXCR3+ T 
cell tumoral ingress and potentiating the actions of immune 
checkpoint inhibitors [241].

Juvenile idiopathic arthritis

Juvenile idiopathic arthritis (JIA) encompasses a heterog-
enous group of chronic arthritides of unknown origin that 
commence before the age of 16 years [114, 242]. Seven dis-
tinct subsets of JIA were specified based on the number of 
affected joints and associated extra-articular manifestations 
(international classification criteria described elsewhere 
[243]). Far-reaching consequences that emerge as a result 
of this chronic disease—if not recognized timely—include 
reduced physical functioning, decreased societal participa-
tion and long-term psychological burdening [244–247]. As 
major players in the inflammatory response, a plethora of 
chemokines have been implicated in JIA [134, 248–253]. In 
particular, the IFN-inducible CXCR3 ligands-—especially 
CXCL10—were recurrently reported to contribute to the 
inflammatory synovial milieu in JIA by, inter alia, mediat-
ing inflammatory cell homing (Suppl. table 2) [248, 249, 
251–254].

Oligo‑ and polyarticular JIA

Oligoarticular JIA is overall the most common JIA sub-
type, representing 50–80% of JIA cases in the Caucasian 
population (Fig. 2A) [114, 255]. Oligoarthritis is defined 
as arthritis affecting one to four joints during the first six 
months of disease, whereby persistent and extended forms 
of oligoarticular JIA are distinguished based on either less 
or more than four joints affected after the first 6 months of 
disease, respectively [243]. Furthermore, polyarticular JIA is 
identified as arthritis affecting five or more joints during the 
first 6 months of disease, in which the presence of rheuma-
toid factor (RF) enables to discriminate between RF-positive 
and RF-negative polyarthritis [243]. Although oligo- and 
polyarticular JIA have thus limited systemic involvement, 
the interchange of inflammatory mediators between SF and 
blood makes the circulation a valuable anatomic depot to 
explore.

Circulatory IFN‑inducible CXCR3 ligands in  oligo‑ and  pol‑
yarticular JIA In general, plasma CXCL9 and CXCL10 lev-
els were found to be elevated during active disease in oligo- 
and polyarticular JIA in comparison to plasma of HC [134, 
248, 249] and children with non-active JIA (Suppl. table 2) 
[248]. Cluster analysis based on plasma cytokine levels dem-
onstrated a predominant pro-inflammatory cytokine cluster 
during active JIA, which included CXCL9 and CXCL10 
[248]. Moreover, discrimination analysis revealed a panel of 
plasma cytokines including CXCL9 and CXCL10 to stratify 
and distinguish three different JIA subtypes during active 
disease, i.e., systemic JIA (sJIA), oligoarticular JIA and 
polyarticular JIA [248]. Accordingly, serum CXCL10 also 
had an improved diagnostic sensitivity and specificity for 
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the prediction of JIA compared to serum CXCL8 in 79 Iraqi 
patients with oligo- or polyarticular JIA [134]. Noteworthy, 
protein fingerprinting revealed that CXCL9 and CXCL10 
plasma levels showed a relatively limited increase in oligo- 
and polyarticular compared to the most prominently upreg-
ulated circulatory chemokines CCL5 and CCL18 [248]. 
Taken together, plasma CXCL9 and CXCL10 among other 
chemokines were speculated to reflect clinical disease activ-
ity in JIA and were proposed to be useful surrogate param-
eters to monitor disease activation status and response to 
treatment [248].

Synovial IFN‑inducible CXCR3 ligands in oligo‑ and polyar‑
ticular jia In SF of patients with oligoarticular and polyar-
ticular JIA, CXCL9 and CXCL10 concentrations were found 
to be significantly augmented either compared to paired 
plasma of these patients [248, 249] or to SF of patients 
with traumatic joint injury or hip/skeletal dysplasia [252], 
respectively (Suppl. table  2). Protein fingerprinting illus-
trated that CXCL10 concentrations in SF of oligo- and pol-
yarticular JIA were profoundly elevated compared to other 
upregulated chemokines including CCL2, CCL3, CCL5, 
CXCL8 and CXCL9 [248]. Also, CXCL10 mRNA expres-
sion was increased in T cells from SF compared to periph-
eral blood T cells [249]. These data signify that CXCL9 and 
CXCL10 may also establish a chemotactic gradient from 
the blood towards the inflamed joints in JIA. Indeed, simi-
lar to RA, enhanced proportions of  CXCR3+ T cells were 
detected in SF compared to peripheral blood of patients with 
oligo- and polyarticular JIA [251, 253, 254, 256, 257]. In 
addition, CXCR3 expression levels were increased on syn-
ovial T cells compared to peripheral blood T cells [253]. 
These findings implicate selective trafficking of  CXCR3+ T 
cells into the inflamed articulation in oligo- and polyarticu-
lar JIA [251, 253, 256]. The latter process is suggested to 
be coordinated, at least in part, by synovial IFN-inducible 
CXCR3 ligands [251, 252] and in particular by CXCL10 
[249, 253]. This concept is supported by the notion that cell-
free SF isolated from four patients with oligoarticular JIA 
exhibited chemotactic activity on 300-19 pre-B cells trans-
fected with CXCR3, [253]. The SF-mediated chemotaxis 
of  CXCR3+ 300-19 lymphocytes was inhibited upon addi-
tion of a neutralizing antibody against CXCL10 [253]. In 
addition to corroborating the presence of biologically active 
CXCL10 in SF of JIA patients, this finding further under-
scores that CXCL10 is involved in  CXCR3+ cell chemo-
attraction towards the inflamed joints [253]. Moreover, 
purified synovial T cells of two oligoarticular JIA patients 
displayed significantly enhanced ex  vivo chemotaxis in 
response to CXCL10 in a Boyden Chamber [253]. Accord-
ingly, CXCL11 also engendered directional trafficking of 
synovial T cells of JIA patients [251, 254]. First,  CD4+ 
 CD45RO+ memory T cells—which were freshly purified 

from SF of eight oligoarticular JIA patients—exhibited sig-
nificant migration to CXCL11 in a transwell plate [251]. 
Second, synovial  CD4+ T cells of oligo- and polyarticular 
JIA patients transmigrated upon CXCL11 stimulation in a 
transwell filter assay ex  vivo [254]. In summary, CXCL9 
and CXCL10 are upregulated in the circulation and, to an 
even greater extent, in SF of patients with oligo- and pol-
yarticular JIA [248, 249, 252]. Thereby, CXCL9, CXCL10 
and potentially CXCL11 constitute a gradient from the 
blood towards the synovial compartment [249], along which 
 CXCR3+ inflammatory cells migrate from the circulation to 
the inflamed joints [251, 253, 256].

In terms of CXCR3-expressing cells, immunohisto-
chemistry revealed that  CXCR3+ cells were predominantly 
localized in the perivascular area and organized in a fol-
licular pattern close to the luminal surface in synovium of 
JIA patients [253]. Similarly, others have described CXCR3 
immunolocalization predominantly in lymphocyte-infiltrated 
area’s including lymphoid aggregates and perivascular infil-
trates of the sublining layer of the synovial membrane [251]. 
Also, CXCR3 mRNA expression in synovial tissues of oli-
goarticular JIA patients were significantly higher relative to 
those of pediatric patients with bone dysplasia, bone fracture 
or hexadactylism [253]. A potential mechanism underlying 
this prominent CXCR3 expression on synovial T cells is that 
persistent antigen stimulation in the synovial niche causes 
in vivo T cell hyperreactivity and consequently, this aber-
rantly high CXCR3 expression profile is instigated and main-
tained through triggering of specific TCRs [253, 256]. In 
addition, previous studies have demonstrated that activated 
T cells assemble around activated DC in the JIA synovium 
[258, 259], which may explain the organization of  CXCR3+ 
activated T cells in clustered lymphoid aggregates. An addi-
tional plausible reason for this characteristic synovial tis-
sue distribution of  CXCR3+ cells is ectopic germinal center 
formation [260]. Moreover, CXCR3 and CCR7 exhibited a 
similar pattern of synovial tissue distribution, in particular in 
these lymphocyte aggregates [251]. This finding combined 
with the established upregulation of their respective ligands 
(i.e., CXCL9, CXCL10 and CCL21[251]) in the inflamed 
joints suggests potential synergism of these chemokines in 
synovial recruitment of  CCR7+  CXCR3+ memory T cells 
[251]. Similarly, CXCR3 expression was also enhanced on 
synovial  CCR7+ memory B cells compared to those in the 
peripheral blood in oligo- and polyarticular JIA [261]. Con-
ceivably, CXCR3 may be involved in synovial homing of 
memory T and B lymphocytes.

Furthermore, synovial tissue specimens of oligoarticu-
lar JIA patients exhibited strong immunoreactive staining 
for CXCL10 [253], whereas limited to absent expression 
was observed in synovial tissue biopsies of children with 
noninflammatory arthropathies [253]. CXCL10 was mostly 
expressed on the surface of  CD68+ macrophages, but also on 
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endothelial cells and epithelial-like cells in synovial tissues 
[253]. Accordingly, RT-PCR revealed that CXCL10 was pri-
marily transcribed by myeloid cells, and not the lymphoid 
cells, within the peripheral blood and SF of patients with 
JIA [249]. Thus, the prevailing paradigm that macrophages 
are a major source of CXCL10 [262] seems to be also appli-
cable to the synovial microenvironment in JIA. In addition, 
neutrophils are the most abundant immune cell present in 
SF of oligoarticular JIA [263, 264]. Isolated neutrophils of 
HC are also described to produce CXCL9 and CXCL10 in 
response to pro-inflammatory cytokines TNF-α and IFN-γ 
[265, 266], which are cytokines known to be upregulated in 
JIA SF [267]. Also, CXCL10 and CXCL11 mRNA expres-
sion in synovial monocytes of patients with oligoarticular 
JIA was more than twofold increased relative to paired 
peripheral blood monocytes [268]. Hence, neutrophils and 
monocytes may also constitute important cellular sources 
for IFN-inducible CXCR3 ligand secretion in JIA synovium. 
Intriguingly, ex vivo cultures of FLS isolated from syno-
vial tissue of JIA patients secreted higher levels of various 
chemokines—including CXCL9 and CXCL11—compared 
to FLS obtained from patients with non-arthritic joint dis-
ease undergoing orthopedic procedures [252]. In conformity 
with RA, this finding indicates a role for FLS as perpetuators 
of joint inflammation in JIA via the release of large num-
bers of chemokines including CXCL9 and CXCL11 [252]. 
Moreover, in an attempt to discover biomarkers that enable 
to discriminate children with oligoarticular JIA that will pro-
ceed to develop the extended phenotype, CXCL9 was iden-
tified as a differentially expressed and highly upregulated 
gene in SF mononuclear cells (SFMCs) of children with 
oligoarticular JIA, which later on developed the extended 
phenotype [250]. Altogether, multiple cell types—includ-
ing macrophages, monocytes, SFMCs, FLS and potentially 
neutrophils—presumably act in concert to enable expression 
of IFN-inducible CXCR3 ligands in the inflamed articulation 
of JIA patients.

Systemic juvenile idiopathic arthritis

Systemic JIA (sJIA) is a rare, pediatric autoinflammatory 
disorder that is characterized by quotidian spiking fever, eva-
nescent erythematous skin rash, and chronic arthritis/arthral-
gia [243, 269], which is frequently symmetrical and pol-
yarticular (Fig. 2A) [114]. Being initially defined as Still’s 
disease [270], sJIA was found to be clinically distinct from 
other JIA subtypes due to the presence of systemic extra-
articular manifestations [243, 269, 271]. As a result of these 
prominent systemic clinical features combined with genetic 
associations of innate immune pathways and the absence 
of auto-antibodies, this intriguing childhood arthropathy is 
classified as an autoinflammatory disease [242, 269], which 
further underscores its distinctive character compared to 

other JIA subtypes. Despite accounting for approximately 
10% of the JIA cases in North America and Europe [272], 
sJIA contributes disproportionately high to JIA-associated 
mortality. This striking feature primarily relies on a life-
threating hyperinflammatory complication that emerges 
as a clinically overt disease in ~ 10% of sJIA cases and is 
termed macrophage activation syndrome (MAS) [273, 274]. 
However, subclinical or occult MAS is reported to occur 
in 30–40% of patients with sJIA [275, 276]. MAS arises 
as a result of uncontrolled and widespread activation and 
expansion of T cells and macrophages, provoking a pro-
found hypersecretion of pro-inflammatory cytokines [277]. 
Although MAS can occur secondary of multiple autoim-
mune conditions, most cases of MAS are associated with 
sJIA or its adult counterpart, adult-onset Still’s disease 
(AOSD) [278] (vide infra). In addition to the immunologic 
resemblance, the shared clinical and laboratory aberrations 
of MAS and hemophagocytic lymphohistiocytosis (HLH) 
provides the basis for classification of MAS among second-
ary or acquired HLH [278, 279]. HLH is defined as a clinical 
syndrome of uncontrolled and pathogenic immune activa-
tion characterized by hyperinflammation and accumulation 
of mononuclear cells with a macrophage phenotype (i.e., 
histiocytes) exerting hemophagocytosis [277, 279–281]. 
The primary involvement of IFN-� in the etiopathogen-
esis of HLH has been extensively substantiated [280–285]. 
However, despite similarities in terms of systemic inflam-
mation between HLH and sJIA [269], the role of IFN-� has 
remained incompletely understood in sJIA (Suppl. table 2) 
[286]. On the one hand, a limited role for IFN-� and the three 
IFN-induced chemokines has been speculated in active sJIA 
in the absence of clinical MAS [287–289]. On the other 
hand, mounting evidence points towards a key pathogenic 
role of IFN-� in MAS secondary to sJIA [280, 288, 290, 
291].

IFN‑inducible CXCR3 ligands in  active sJIA in  the  absence 
of  clinical MAS The prevailing hypothesis of a minimal 
involvement of IFN-� and the IFN-inducible CXCR3 
ligands in active sJIA without clinical MAS is supported by 
several findings [287–289], but is also questioned to some 
extent [292, 293]. First, mRNA levels of CXCL9, CXCL10 
and CXCL11 were drastically lower in synovial tissue of 
patients with active sJIA compared to extended oligoar-
ticular JIA by 15.8-, 4.5- and 3.6-fold, respectively [287]. 
In addition, synovial CXCL9 and CXCL10 concentrations 
were decreased in active sJIA compared to oligoarticular 
JIA, although significance was not reported [248]. Sec-
ond, the absence of an IFN-� gene signature in PBMCs of 
patients with active sJIA without clinical MAS was recur-
rently corroborated [287, 289, 290, 294]. Gene expres-
sion of CXCL9 and STAT1 were significantly reduced in 
isolated and unstimulated  CD14+ PBMCs of patients with 
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active sJIA without MAS compared those of HC [287]. 
Additionally, mRNA levels of CXCL10, CXCL11, and 
interferon regulatory factor 1 (IRF1) tended to decrease in 
 CD14+ peripheral blood monocytes of patients with active 
sJIA relative to HC, although not significantly [287]. Of 
note, IRF1 induces secondary IFN-γ-responsive genes and 
thereby normally perpetuates the IFN-γ signal [295]. In 
addition, gene expression profiling of PBMCs purified from 
patients with untreated new-onset active sJIA revealed that 
IFN-�-responsive genes were not upregulated compared to 
healthy pediatric controls [289]. Similarly, these genes were 
not upregulated in PBMCs of patients with active sJIA com-
pared to inactive sJIA [294]. Also, incubation of PBMCs 
of healthy adult and pediatric controls with serum of four 
patients with active sJIA did not increase gene expression 
of IFN-� or IFN-induced CXCR3 ligands as compared to 
incubation with autologous serum isolated from HC [296]. 
Noteworthy, some patients (29%) had subclinical MAS in 
one gene expression study [289], whereas in the other two 
gene expression studies the presence of clinical or subclini-
cal MAS was not reported [294, 296]. Hence, despite these 
ambiguities in terms of the presence of subclinical MAS, 
PBMCs of patients with active JIA in the absence of clini-
cal MAS probably display a lack of IFN-�-induced gene 
expression. Furthermore, downstream responses upon IFN 
stimulation in PBMCs of patients with active sJIA without 
MAS appeared to be unaffected [287, 290, 297]. For exam-
ple, when purified peripheral blood monocytes of active 
sJIA and HC were pre-stimulated with IFN-� , these cells 
displayed comparable mRNA levels of CXCL9, CXCL10, 
IRF1 and STAT1 in active sJIA compared to those of HC 
[287]. In addition, isolated populations of  CD14− PBMCs 
(i.e., lymphocytes, NK cells and low density granulocytes) 
of patients with active sJIA also had only a minimal IFN-
induced chemokine gene expression profile in the absence 
of stimuli and responded similarly to IFN-� stimulation 
compared to those cells of HC [287]. Accordingly, oth-
ers confirmed that incubation of PBMCs of patients with 
inactive and active sJIA with IFN-� significantly increased 
CXCL10 mRNA expression and augmented CXCL10 
and CXCL9 protein secretion compared to the respective 
unstimulated cells [290]. In addition, anakinra treatment 
of patients with active sJIA instigated upregulation of type 
I IFN-inducible genes in PBMCs, which was irrespective 
of the clinical response to anakinra [297]. More specially, 
CXCL10 gene expression in PBMCs and serum levels of 
CXCL10 were clearly elevated in patients with active sJIA 
after anakinra treatment compared to baseline [297]. Thus, 
PBMCs of active sJIA patients seem to be equally respon-
sive to ex vivo IFN-� stimulation compared to those of HC 
and are capable of upregulating downstream IFN-inducible 
genes in vivo. Hence, the lack of IFN-� signature detected in 
PBMCs of these patients was speculated to be rather due to 

limited exposure to IFN-� in vivo, lack of responsiveness to 
IL-18 due to altered phosphorylation of the IL-18 receptor, 
or the presence of IFN-� inhibiting factors [287, 289, 298, 
299].

Third, Bracaglia et al. reported similar serum levels of 
IFN-� and all three IFN-inducible CXCR3 ligands in patients 
with active sJIA without MAS and clinically inactive sJIA 
[288]. However, whether circulatory levels of IFN-� and 
IFN-�-upregulated chemokines are augmented in active 
sJIA in the absence of clinical MAS remains a disputable 
notion [248, 288, 290–293]. On the one hand, the absence 
of IFN-γ signature in PBMCs of patients with active sJIA 
without clinically overt MAS (vide supra) and the findings 
of Bracaglia and colleagues indicate a lack of significant 
upregulation of circulatory IFN-� and IFN-induced CXCR3 
ligands in active sJIA without clinical MAS. Also, de Jager 
et al. found reduced plasma IFN-� , CXCL9 and CXCL10 
concentrations in active sJIA compared to active oligo- and 
polyarticular JIA subtypes, whereas only plasma CXCL10 
levels were significantly lower in active sJIA compared to 
active oligoarticular JIA [248]. Noteworthy, whether patients 
with sJIA had MAS at the time of sampling was not spe-
cifically defined in this study [248]. On the other hand, 
increased circulatory levels of IFN-� and CXCL10 were 
observed in serum of patients with active sJIA without clini-
cal MAS compared to HC [248, 290, 293] and inactive sJIA 
[248, 290], although these differences were only significant 
in one study [293]. Noteworthy, in the study of Bracaglia 
et al., comparison of serum levels of these chemokines in 
active sJIA patients in the absence of MAS to those of HC 
was not performed [288]. Moreover, a recent study reported 
that plasma CXCL11 was significantly upregulated in active 
sJIA without MAS compared to inactive sJIA and HC [292]. 
Plasma levels of CXCL9 and CXCL10 were also moder-
ately—although not significantly—increased in active sJIA 
compared to HC [292]. Random forest analysis identified 
plasma levels of CXCL11, CXCL9 and CXCL10 as, respec-
tively the 15th, 27th and 66th most important proteins out 
of 69 pre-selected immune-related proteins, to differenti-
ate active sJIA in the absence of MAS, inactive sJIA and 
HC [292]. Moreover, paired analysis revealed that CXCL11 
was the 5th most important protein out of 11 significantly 
upregulated plasma proteins in active sJIA without MAS 
compared to inactive sJIA that enabled to distinguish active 
sJIA in the absence of MAS from inactive sJIA [292]. There-
fore, CXCL11, among these ten other inflammatory mol-
ecules, was proposed to be a novel biomarker to discriminate 
patients with active sJIA without MAS from inactive sJIA 
or HC [292]. In addition, dysregulation of IL-18-IFN-γ-
CXCL9 axis was observed in patients with active sJIA with-
out MAS [298, 300]. Serum levels of CXCL9 and CXCL10 
were significantly increased in active sJIA without MAS at 
baseline visit compared to HC [298]. High ratios of serum 
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IL-18: CXCL9 and IFN-γ: CXCL9 were found to correlate 
with persistent response to canakinumab therapy in active 
sJIA [298, 300].

Fourth, in an established mouse model of sJIA, targeted 
knock-out of IFN-� aggravated clinical and pathological 
symptoms reminiscent of sJIA in Complete Freund’s adju-
vant (CFA)-challenged BALB/c mice [301]. Moreover, IFN-
�

−/− BALB/c mice displayed arthritis, hemophagocytosis 
and increased serum levels of IL-6 upon injection of CFA, 
whereas WT mice did not exhibit these features [301]. These 
data suggests that IFN-� may have a protective role in this 
rodent model of sJIA [286]. Conversely, targeted knock-out 
of IFN-γ or treatment with IFN-γ neutralizing antibodies 
largely abolished symptoms of MAS-like syndrome in WT 
C57BL/6 mice repeatedly stimulated with Toll-like recep-
tor (TLR) 9 ligand CpG DNA [302]. Accordingly, a treat-
ment with an IFN-� neutralizing antibody increased survival 
of IL6-transgenic mice challenged with TLR4 ligand LPS 
[303], which is another murine model of infection-triggered 
MAS [304]. These findings signify that IFN-γ functions as a 
driver in these rodent models of MAS-like disease. Conse-
quently in animal models, IFN-� is considered the double-
edged sword mediating dichotomy dependent on the genetic 
background of the animal [286]. On the one hand, IFN-� 
may facilitate immunopathology in mice strains mount-
ing intrinsically potent  TH1 cell responses, i.e., mice with 
C57BL/6 background (e.g., IL6-transgenic mice). On the 
other hand, IFN-� may adequately inhibit IL-17-dominant 
inflammation in mice strains that are less genetically primed 
to develop potent  TH1 responses (e.g., BALB/c mice). This 
provides a plausible explanation why IFN-� has its respec-
tive sJIA-restraining actions and MAS-promoting effects in 
these distinct mice models.

Taken together, accumulating evidence implies a lim-
ited involvement of IFN-� and its downstream-induced 
chemokines in active sJIA in the absence of clinical MAS. 
However, a definite conclusion is still lacking, since contra-
vening data suggesting upregulated IFN-� and IFN-induced 
CXCR3 ligands in both sJIA without MAS and AOSD in the 
absence of MAS (vide infra) fuel this ambiguity. In addition, 
the fact that the occurrence of clinical MAS in sJIA is occa-
sionally not reported and that the presence of subclinical 
MAS is often not examined in patients with sJIA in these 
studies further complicates correct interpretation of these 
data and may hamper to draw accurate conclusions.

IFN‑inducible CXCR3 ligands in sJIA‑associated MAS Emerg-
ing evidence hints towards a pivotal role of IFN-� and IFN-
inducible CXCR3 chemokines in MAS secondary to sJIA 
[280, 288, 290, 291]. First, serum levels of IFN-� and the 
three IFN-inducible CXCR3 ligands were significantly aug-
mented in patients with sJIA with clinical MAS compared 
to patients with active sJIA without clinical MAS [288]. 

Remarkably, serum concentrations of CXCL9 were ele-
vated by approximately 15-fold in sJIA patients with clini-
cal MAS relative to those without clinical MAS. Elevated 
CXCL9 levels in the serum were found to predispose MAS 
in sJIA, whereby also trends towards increased CXCL10 
levels in serum of future MAS patients compared to patients 
with sJIA that did not proceed to develop MAS were present 
[298]. Furthermore, circulatory levels of IFN-� , CXCL9, 
CXCL10 and CXCL11 were relatively comparable in sJIA 
patients with MAS and patients with secondary HLH [288]. 
Accordingly, others reported significantly elevated plasma 
concentrations of IFN-� and CXCL10 in five patients 
with HLH—of which three patients had sJIA-associated 
MAS, one patient had primary HLH and one patient had 
Epstein-Barr virus (EBV)-associated HLH—compared 
to inactive sJIA and HC [290]. In addition, plasma levels 
of IFN-� and CXCL10 were higher in these five patients 
with HLH relative to active sJIA, although not significant 
[290]. Taken together, IFN-� and the IFN-inducible CXCR3 
ligands are markedly enhanced in patients with sJIA com-
plicated by clinical MAS. Individual cases of patients with 
overt MAS further corroborated this [288]. One patient 
was sampled at three clinical episodes of MAS and dur-
ing intervals of clinical remission [288]. Serum levels of 
IFN-γ and all three IFN-inducible CXCR3 ligands were 
prominently increased during clinical MAS episodes com-
pared to periods of remission, although significance was not 
evaluated. Similarly, a patient with severe MAS-associated 
central nervous system involvement was reported to have 
extremely elevated serum levels of CXCL9 and CXCL10 
of 549.4 ng/ml and 35.1 ng/ml, respectively [288]. Second, 
analysis of paired samples of patients with active sJIA—that 
were obtained during clinically overt MAS and after clini-
cal MAS had subsided—revealed that circulatory levels of 
IFN-� , CXCL9, CXCL10 and CXCL11 diminished upon 
resolution of MAS [288]. Third, serum concentrations of 
CXCL9, CXCL10 and IFN-� in sJIA patients suffering from 
MAS correlated with laboratory measures that are typically 
elevated in MAS, including serum levels of ferritin, lactate 
dehydrogenase (LDH), and alanine aminotransferase (ALT) 
[288, 305]. Circulatory CXCL11 levels also correlated with 
serum ferritin and LDH levels in sJIA patients with MAS 
[288, 305]. Accordingly, splenic and hepatic CXCL9 gene 
expression positively correlated with serum ferritin levels in 
MAS-like syndrome-developing IL6-transgenic mice stimu-
lated with TLR4 ligand LPS [288].

Furthermore, fibroblasts, endothelial cells and PBMCs 
were identified as potential sources of IFN-inducible 
chemokines in sJIA-associated MAS [290]. In situ CXCL10 
immunoreactivity in a lymph node was profoundly increased 
during an overt MAS episode compared active sJIA without 
MAS, whereby endothelial cells, fibroblasts and histiocytes 
stained for CXCL10 [290]. Moreover, IFN-� stimulation of 
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PBMCs of sJIA patients with MAS failed to substantially 
elevate mRNA levels of CXCL10 and protein secretion of 
CXCL9 and CXCL10 relative to unstimulated cells, suggest-
ing ex vivo cellular hyporesponsiveness due to functional 
exhaustion [290]. In addition, IFN-�-producing lymphocytes 
were detected in a liver biopsy of a patient with sJIA-asso-
ciated MAS [280].

In summary, markedly increased circulatory levels of 
IFN-γ and all three IFN-inducible chemokines is a hallmark 
feature of clinically overt MAS during disease course of 
active sJIA. Given the correlation of serum CXCL9 (and 
CXCL10) with various MAS-associated manifestations, cir-
culatory levels of CXCL9—and presumably CXCL10—may 
reflect localized IFN-γ upregulation in the inflamed tissues 
and downstream induction of IFN-inducible CXCR3 ligands 
that subsequently leak in the circulation [288]. Hence, this 
biomarker potential of serological CXCL9 in MAS has 
been reported to be explored in a large multicenter study 
[288]. Moreover, hyperproduction of CXCL9 and IFN-γ 
has been observed in patients with other forms of HLH 
[306], thereby suggesting that this profound upregulation 
of CXCL9 and IFN-γ is a uniform feature of HLH, irre-
spective of the underlying etiology [288]. Accordingly, an 
IFN-γ neutralizing antibody (NI-0501/emapalumab) exhib-
ited an acceptable safety profile and efficacy in a phase II/
III clinical trial for children and adults with primary HLH 
[307] (NCT01818492, NCT03985423 and NCT02069899) 
and was approved in 2018 in the US for pediatric and adult 
HLH refractory to conventional treatment [308]. In 2022, a 
phase II clinical trial evaluating emapalumab in sJIA-asso-
ciated MAS was completed (NCT03311854) and showed 
that emapalumab was effective in controlling MAS [309].

Mechanistically, augmented circulatory levels of IFN-γ 
may result from high levels of IL-18 [288], which is a 
cytokine that is primarily important for the induction of 
IFN-γ production in T cells and NK cells [310]. Indeed, 
patients with active sJIA that had increased levels of cir-
culating IL-18 at disease onset were reported to be signifi-
cantly more prone to develop MAS [311], suggesting that 
high levels of serum IL-18 predispose MAS development in 
active sJIA [311]. Furthermore, predominant upregulation of 
serum CXCL9 relative to the other IFN-inducible CXCR3 
ligands during MAS episodes most plausibly resides on the 
presence of the γ-interferon response element (γIRE) in the 
CXCL9 promotor [312–314], thereby rendering CXCL9 pro-
tein expression exclusively dependent on IFN-γ [46]. In con-
trast, CXCL10 and CXCL11 promotors contain an interferon 
response element (IRSE) [312, 315–317] and consequently, 
their expression is mediated by type I and type II interferons 
[318, 319]. Indeed, increased circulatory levels of IFN-γ in 
sJIA patients suffering from MAS strongly and positively 
correlated with serum concentrations of CXCL9, whereas 

weaker and no correlation were observed for serum CXCL10 
and CXCL11 with serum IFN-γ, respectively [288].

Adult‑onset Still’s disease

AOSD is a multisystemic inflammatory disease of unknown 
etiology, which is generally acknowledged to be an auto-
inflammatory disorder (Fig. 2A) [116, 320, 321]. In 1971, 
this rare disorder was initially described by Bywaters in 14 
adults, who exhibited symptoms reminiscent to pediatric 
sJIA—at the time defined as Still’s disease—and thus was 
consequently termed “adult-onset” Still’s disease [322]. To 
date, sJIA and AOSD are still considered to represent one 
disease continuum with distinct ages of onset [323, 324] 
due to their superimposable clinical picture [325, 326], 
gene expression studies and successful outcome upon treat-
ment with IL-1 antagonists [323, 324, 327]. Given the 
relative confined number of studies exploring the pathol-
ogy of AOSD [321], the involvement of chemokines—and 
more specifically IFN-inducible CXCR3 ligands—in the 
immunopathogenesis of this afflicting disorder has only 
recently been brought to the fore (Suppl. table 2) [129, 130, 
328–331].

First, circulatory CXCL9, CXCL10 and CXCL11 may be 
useful markers of disease activity in active AOSD [129, 130, 
331]. In patients with active, untreated AOSD, serum IFN-
� , CXCL9, CXCL10 and CXCL11 levels were significantly 
increased compared to those of HC [129, 130, 328] and RA 
patients treated with DMARDs [129, 130]. Serum levels of 
all IFN-inducible CXCR3 ligands, but not IFN-� , correlated 
with disease activity markers including ferritin [129, 130], 
CRP [130] and systemic disease scores [129, 130]. In addi-
tion, serum levels of these chemokines—but again not IFN-� 
levels—significantly attenuated upon clinical remission of 
AOSD during follow-up after treatment with corticoster-
oids and immunosuppressive agents [129, 130]. During this 
follow-up period, changes in serum levels of all three IFN-
inducible CXCR3 ligands also correlated with changes in 
systemic disease score, ferritin levels and LDH levels [129, 
130]. Additionally, serum CXCL9 concentrations also cor-
related with serum levels of CXCL10 and CXCL11 [130]. 
At disease onset of AOSD, serum levels of CXCL10 were 
also significantly increased compared to patients with AOSD 
experiencing an episode of disease flare [129]. Thus, cir-
culatory levels of CXCL9, CXCL10 and CXCL11 may be 
adequate serological indicators to monitor disease activity 
in patients with active AOSD [129, 130, 331]. At disease 
onset, serum levels of these chemokines probably reach their 
peak concentration, and subsequently decrease upon clinical 
remission to again augment during disease flares.

Second, immunohistochemistry revealed that inflamma-
tory cells in skin lesions and lymph node tissues of patients 
with active AOSD even more profoundly expressed CXCR3 
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and CXCL10 compared to other inflammatory diseases 
affecting these organs [129, 130, 329, 330]. Expression lev-
els of CXCL10 and CXCR3 were significantly increased 
in lymph node specimen of patients with AOSD compared 
to those of patients with lymphadenopathic pathologies 
including reactive hyperplasia, tuberculous lymphadenitis, 
histiocytic necrotizing lymphadenitis and T cell lymphoma 
[329]. Given their histopathological similarities, the afore-
mentioned diseases marked by lymphadenopathy are often 
considered in the differential diagnosis of AOSD [332, 
333]. Therefore, prominent immunoreactivity of CXCL10 
and CXCR3 in lymph node tissues of patients with AOSD 
may help to efficiently identify this disease [329]. Especially, 
since examination of nodal histology is routinely required 
for diagnosis of AOSD to exclude infection or hematologi-
cal malignancy [334]. Intriguingly, patients with arthralgia 
had higher nodal immunoreactivity of CXCR3 compared to 
those without arthralgia, thereby instigating the assumption 
that augmented nodal CXCR3 staining may be indicative for 
arthralgia/arthritis in AOSD [329]. Hence, after an initial 
priming and activation process in the lymph nodes, these 
 CXCR3+ inflammatory leukocytes may voyage towards 
peripheral inflammatory sites where CXCR3 ligands are 
upregulated, e.g., the dermis and synovium. Interestingly, 
immunoreactivity of CXCL10—but not CXCR3—was ele-
vated in lymph nodes of patients with AOSD, in which nodal 
cells exhibited necrosis and karyorrhexis [329]. Hence, 
nodal infiltration of these CXCL10-secreting inflammatory 
cells may worsen lymph node inflammation in AOSD-asso-
ciated lymphadenopathy.

Furthermore, in skin lesions of patients with active 
AOSD, inflammatory cells expressed CXCR3 and its 
three respective ligands [129, 130, 330]. The proportion 
of CXCL10-expressing inflammatory cells was signifi-
cantly greater in skin biopsies of patients with AOSD com-
pared to those of HC and those of patients with either pso-
riasis or eczematous dermatitis [130]. In addition, serum 
CXCL10 levels correlated with the percentage of inflam-
matory cells expressing CXCL10 in skin lesions [130]. 
Moreover, serum concentrations of CXCL9 and CXCL10 
in patients with AOSD suffering from skin rash were ele-
vated compared to those without cutaneous manifestations 
[130]. Taken together, these results implicate a role for the 
CXCR3 chemokine network in AOSD-associated cutane-
ous inflammation [129, 130]. Actually, ample evidence 
from distinct pathologies affecting the skin supports this 
concept of CXCR3-orchestrated ingress of inflammatory 
cells in the dermis (reviewed elsewhere [8]). Mechanisti-
cally, the locally and systemically elevated concentrations 
of IFN-inducible CXCR3 ligands observed in patients with 
active AOSD probably contribute to the maintenance of the 
marked  TH1 cell phenotype in skin lesions, lymph nodes and 
peripheral blood through chemotaxis of  TH1 cells and  TH1 

cytokine induction [335]. Noteworthy, macrophages may be 
a potential source of IFN-inducible CXCR3 chemokines in 
skin lesion in AOSD and sJIA. Immunoreactivity of CXCL9 
correlated with CD68 expression in cutaneous lesions of 
patients with active AOSD [130]. In addition, proportions 
of CXCL9-stained inflammatory cells were increased in 
skin specimen of patients with AOSD exhibiting dermal 
macrophage ingress compared to those who did not [130]. 
Moreover, injury-induced myeloid-related protein (MRP) 8 
(S100A8) and MRP14 (S100A9)—which are upregulated 
in serum of patients with active AOSD or active sJIA and 
correlate with disease activity parameters in both diseases 
[336, 337]—induced CXCL10 production in macrophages 
and monocytes in vitro [338]. As such, this alternative 
S100A8/A9-dependent regulation of CXCL10, and poten-
tially CXCL9 and CXCL11, may, at least in part, explain 
their upregulation in active AOSD and sJIA in the absence 
of MAS. Thus, the production of these chemokines may also 
potentially occur partially independent of IFN-γ, other IFNs 
or TNF-α. Indeed, circulatory levels of IFN-γ, IFN-β, IFN-α 
or TNF-α did not correlate with those of CXCL9, CXCL10 
or CXCL11 in patients with active AOSD [130].

Similar to sJIA, the role of IFN-γ also remains enigmatic 
in the pathogenesis of AOSD and AOSD-associated MAS 
(reviewed elsewhere [286, 339]). Although inconsistent, 
some findings pointed towards upregulation of the three 
IFN-induced CXCR3-binding chemokines in AOSD compli-
cated by MAS compared to active AOSD in the absence of 
clinical MAS. First, serum levels of all three IFN-inducible 
CXCR3 ligands—but not IFN-γ—were significantly higher 
in patients with AOSD complicated by MAS than in patients 
with active AOSD without MAS [130]. However, the same 
authors also reported comparable CXCL10 serum concentra-
tions in patients with AOSD-associated MAS and in patients 
with AOSD in the absence of MAS in a former publication 
[129]. Second, the percentage of  CXCR3+ inflammatory 
cells in cutaneous lesions were proportionally augmented 
in patients with AOSD with MAS compared to those without 
MAS [130]. Third, serum concentrations of other relevant 
chemokines with reported serological biomarker potential in 
active AOSD—i.e., CX3CL1 and CXCL13—were also sig-
nificantly increased in AOSD with MAS compared to AOSD 
without MAS [129, 328]. Importantly, treatment, differential 
procedure of serum collection and distinct systemic inflam-
matory status (reflected by, inter alia, serum levels of fer-
ritin, CRP, ESR and ALT) at the moment of sampling may 
drastically influence the chemokine blood profile and there-
fore also explain the differential outcomes of these studies 
involving patients with AOSD and sJIA. Further complicat-
ing this issue is the fact that patients with AOSD suffer-
ing from MAS were often included in the group of active 
AOSD when comparing serum levels of these three CXC 
chemokines to HC or RA patients [129, 130]. Therefore, we 
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cannot fully affirm that the significantly increased serum 
levels were exclusively related to the active AOSD disease 
course irrespective of MAS. To summarize, these data merit 
further investigation to fully evaluate the potential of IFN-
inducible CXCR3 ligands as indicators of systemic and cuta-
neous inflammation in AOSD and their potential exclusive 
association with AOSD-associated MAS.

Spondyloarthritis

Spondyloarthritis is a clinically heterogenous inflammatory 
disease that mainly affects the spine, sacroiliac and periph-
eral joints, and entheses (i.e., the insertions of tendons and 
ligaments to the bone) (Fig. 2B) [340, 341]. Based on the 
most predominant clinical involvement, two sub-entities 
were distinguished, i.e., axial and peripheral spondyloar-
thritis [341, 342]. Formally, axial spondyloarthritis solely 
encompassed ankylosing spondylitis [343], which is a his-
torically developed term for a disease diagnosed based on 
advanced erosions and damage of sacroiliac joints observed 
after radiological examination [344, 345]. Axial spondyloar-
thritis is nowadays considered as an overarching term that 
describes a broad disease spectrum comprising of ankylos-
ing spondylitis (or radiographic axial spondyloarthritis) and 
non-radiographic axial spondyloarthritis [343]. Peripheral 
spondyloarthritis, on the other hand, has enthesitis, dacty-
litis and/or arthritis as predominant symptomatology [346] 
and includes psoriatic arthritis [342, 346, 347]. In terms of 
the CXCR3 chemokine network, upregulation of CXCL9 
and CXCL10 was recurrently described in SF of spondy-
loarthritic joints (Suppl. table 1) [45, 48, 80, 144, 150, 348, 
349].

Psoriatic arthritis

Psoriatic arthritis is a common subtype of peripheral 
spondyloarthritis characterized by oligo/polyarthritis and/
or enthesitis, affecting both peripheral and axial skeleton 
(Fig. 2B) [350–352]. Within 10 years after disease onset, 
the preponderance of patients with psoriatic arthritis (~ 88%) 
develops joint erosions [353], leading to functional disability 
and reduced quality of life. Moreover, given the importance 
of early diagnosis to prohibit joint damage and the common 
issue of under- and misdiagnosis, a circulatory biomarker—
that enables to predict the susceptibility to develop psoriatic 
arthritis in patients with psoriasis and in the overall popula-
tion—would be an indispensable tool in the clinical setting 
[348, 349, 354]. As such, CXCL10 was speculated to be a 
potential candidate to fulfill this biomarker role given its 
evidenced involvement in pathogenesis of psoriatic arthritis 
[45, 80, 348, 349, 355–358]. First, serum CXCL10 levels of 
patients suffering from psoriatic arthritis were significantly 
higher compared to HC [349, 355, 357, 358] and psoriasis 

patients that do not have psoriatic arthritis [348]. In addition, 
whole-blood gene expression profiling clearly showed in 
two independent cohorts that CXCL10 gene expression was 
significantly upregulated in patients with psoriatic arthritis 
compared to patients with psoriasis in the absence of psori-
atic arthritis [356]. Moreover, serum levels of CXCL10 in 
patients with psoriasis were positively associated with the 
conversion state to develop psoriatic arthritis [348]. Thus, 
increased whole-blood gene expression and circulatory pro-
tein concentrations of CXCL10 in patients with psoriasis 
appear to precede the onset of psoriatic arthritis. However, 
this concept is not underpinned by all studies. First, other 
researchers have reported that serum levels of CXCL10 were 
unchanged [128]—or even lower [359]—in patients with 
psoriatic arthritis compared to controls [128, 359] and com-
pared to patients with psoriasis in the absence of arthritis 
[359]. Similarly, circulatory levels of CXCL9 were reported 
to be comparable in psoriatic arthritis, psoriasis without 
arthritis and controls [357, 359]. Second, serum CXCL10 
levels were not associated with any of the clinical indexes 
of psoriatic arthritis [357]. In addition, serum CXCL10 was 
reported to be inversely correlated with duration of psori-
atic arthritis [355, 358], but again this was contradicted by 
another study [357]. These conflicting results may be attrib-
uted to discrepancies in methodology for chemokine detec-
tion (e.g., multiplex and ELISA) and in patient characteris-
tics (e.g., treatment modalities and clinico-epidemiological 
features) [349, 355, 357]. For example, CXCL10 production 
is downregulated by distinct therapies, which are currently 
approved to treat psoriasis and psoriatic arthritis, including 
the phosphodiesterase-4 inhibitor apremilast and the TNF-α 
blocking agent etanercept [360, 361]. Although these treat-
ments may induce intracohort variability, their effectiveness 
coinciding with reduction of CXCL9 and CXCL10 levels 
also underscores the relevance of these chemokines in pso-
riatic arthritis [349, 360, 362].

Synovial IFN-γ, CXCL9, CXCL10 and CXCL11 lev-
els were comparably upregulated in patients with psoriatic 
arthritis relative to patients with RA [45, 48, 80, 349]. Con-
centrations of CXCL9 and CXCL10 reached similar levels 
in SF of patients with psoriatic arthritis as those with anky-
losing spondylitis [45, 48], and were augmented compared 
to crystal-induced arthritis [45, 48, 349]. Also, synovial 
CXCL10 and IFN-γ levels were significantly elevated in 
patients with psoriatic arthritis compared to those of patients 
with osteoarthritis [80, 349]. In addition, mRNA levels of 
CXCL10 in synovial cells of patients with psoriatic arthri-
tis were significantly increased relative to those of patients 
with gout and OA [348, 349]. Moreover, prominent in situ 
CXCL9 expression was detected in the synovial lining and 
cellular infiltrates of synovial tissue of patients with psori-
atic arthritis exhibiting active synovitis [150]. Thus, IFN-
inducible CXCR3 ligands are abundantly present in the 
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inflamed joints of patients with psoriatic arthritis. Addition-
ally, CXCL10 was augmented by more than 20-fold in SF 
compared to paired serum of patients with psoriatic arthritis 
[349]. Also, mRNA expression of CXCL10 was substan-
tially increased in synovial cells compared to whole-blood 
cells of patients with psoriatic arthritis [348, 349]. Thus, 
CXCL10 establishes a chemotactic gradient from the circu-
lation towards the synovium in psoriatic arthritis.

Intriguingly, parallels can be drawn between dermal and 
joint inflammation in patients with psoriatic arthritis, equi-
pollently to those of AOSD (vide supra). Within psoriatic 
skin lesions, CXCL9 and CXCL10 were found to be promi-
nently expressed [209, 363] and exactly colocalized with 
dermal  CXCR3+  CD3+ lymphocytes [209]. In addition, 
CXCL10 stimulated in vitro migration of T cells isolated 
from psoriatic skin lesions [364], signifying that CXCL9 and 
CXCL10 are involved in T cell trafficking towards the dermis 
in psoriasis [209]. Accordingly, CXCL9 and CXCL10 prob-
ably contribute to  CXCR3+  TH1 cell chemotaxis towards the 
joints, thereby inciting joint inflammation in patients with 
psoriasis. Indeed, mRNA levels of CXCL10 and CXCR3 
in synovial cells of patients suffering from psoriatic arthri-
tis positively correlated with each other [349]. Moreover, 
gene expression of CXCR3 was significantly increased in 
synovial cells of patients with psoriatic arthritis compared 
to osteoarthritis, gout and even compared to those of patients 
with RA [349]. Also, significantly decreased proportions 
of peripheral blood  CXCR3+  CD4+ T cells were observed 
in psoriatic arthritis compared to controls, suggesting their 
recruitment towards peripheral inflammatory sites [359]. 
Moreover, CXCL9 mRNA expression was clearly attenu-
ated in rheumatoid and psoriatic synovia exhibiting a thin-
ner synovial lining and less pronounced cellular infiltrates, 
thereby suggesting that expression level of CXCL9 may be 
indicative for synovial cellular infiltration [150]. These find-
ings imply a CXCR3 ligand-dependent polarization towards 
a  CXCR3+  TH1 cell profile in the synovial niche in psoriatic 
arthritis. Moreover, sustained production of IFN-inducible 
CXCR3 ligands in the inflamed joints probably also con-
tributes to synovial infiltration of pDC [80, 358]. Blood-
derived and synovial pDC of patients with RA and psoriatic 
arthritis express CXCR3 and CXCR4 [80, 358] and these 
blood-derived pDC also exhibited chemotaxis towards all 
three IFN-inducible CXCR3 ligands in vitro [358].

Altogether, psoriatic arthritis shares most of its synovial 
expression profile of the CXCR3 ligands with RA. CXCL9 
and CXCL10 seem to fulfill an equivalent role in joint 
inflammation in psoriatic arthritis as in RA, i.e., CXCR3-
dependent orchestration of ingress of  TH1 cells and pDCs 
into the synovium. In addition, cellular sources of CXCL9 
were found to be similar in psoriatic arthritis compared to 
RA, i.e., synovial macrophages and perivascular infiltrat-
ing lymphocytes [150]. Nevertheless, further research is 

required to elucidate how CXCL9 and CXCL10 contribute 
to psoriatic arthritis-associated synovitis and whether their 
circulatory levels have clinical validity as marker of psoriatic 
arthritis susceptibility.

Ankylosing spondylitis

Ankylosing spondylitis is the prototype of axial spondy-
loarthritis of unascertained etiology [341], in which spinal 
inflammation and sacroiliitis may result in inflammatory 
back pain and ankylosis with advancing spinal rigidity 
(Fig.  2B) [365]. From the perspective that ankylosing 
spondylitis has an autoimmune component [341, 366],  TH1 
cytokines have been investigated in serum [367, 368] and 
SF [45, 48] of patients with ankylosing spondylitis. Serum 
levels of CXCL9 and CXCL10 were found to be significantly 
elevated in patients with untreated ankylosing spondylitis 
compared to HC [367, 368]. Importantly, circulatory lev-
els of CXCL10 correlated with serum TNF-α levels, ESR, 
CRP and Ankylosing Spondylitis Disease activity score 
(ASDAS) in patients with untreated ankylosing spondylitis 
[367]. Upon anti-TNF-α treatment, serum CXCL10 levels 
were significantly diminished [367, 368] and retained their 
correlation with CRP and ASDAS [367]. These findings 
implicate that circulatory levels of CXCL10—probably 
synergically induced by TNF-α and IFN-γ—reflect dis-
ease activity in ankylosing spondylitis [367]. Conversely, 
other studies have reported that serum CXCL10 levels were 
comparable in patients with spondyloarthritis (ankylosing 
spondylitis and psoriatic arthritis) or untreated ankylosing 
spondylitis compared to HC [128, 368]. Noteworthy, only 
a very limited number of subjects with ankylosing spondy-
litis was included in these studies [128, 368]. Furthermore, 
synovial levels of CXCL9 and CXCL10 were comparable 
in patients with ankylosing spondylitis compared to those 
of patients with RA and psoriatic arthritis [45, 48]. Also, 
concentrations of these chemokines were significantly higher 
in SF of patients with ankylosing spondylitis compared to 
crystal-induced arthritis [45, 48]. Intriguingly, JIA patients 
with enthesitis-related arthritis—which is a common sub-
type of JIA in India that resembles adult spondyloarthritis—
also had increased serum CXCL10 levels compared to HC 
with a gradient from the blood towards the SF [369]. Hence, 
although the number of studies reporting on IFN-inducible 
CXCR3 ligands in ankylosing spondylitis is particularly 
sparse in comparison to RA and psoriatic arthritis, these 
data suggest that CXCL9 and CXCL10 may exert compa-
rable functions in the inflamed articulation of patients with 
ankylosing spondylitis.
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Septic arthritis

Acute septic arthritis emerges due to bacteremic seeding in 
the vascular synovium of the joint [370] and typically mani-
fests as monoarticular arthritis—marked by swelling, ery-
thema, warmth and pain on palpation of the joint—and low- 
or high-grade fever (Fig. 2B) [371, 372]. The absence of a 
basement membrane within the joint lining renders the syn-
ovium susceptible to bacterial invasion from the circulation 
[373]. Importantly, all three IFN-inducible CXCR3 ligands 
are implicated in leukocyte accumulation in the synovium 
of patients with septic arthritis [47, 153]. Elevated levels 
of synovial CXCL9, CXCL10 and CXCL11 were detected 
in patients with septic arthritis compared to osteoarthritis 
[47, 153]. Moreover, synovial concentrations of CXCL9 and 
CXCL11 were also significantly augmented in patients with 
septic arthritis relative to crystal-induced arthritis [47]. In 
addition, in SF of patients with septic arthritis, CXCL10 lev-
els were even twofold higher compared to those of CXCL8 
[153], a chemokine which is also known to be significantly 
enhanced in septic arthritis compared to osteoarthritis [374]. 
High synovial concentrations of the IFN-inducible CXCR3 
ligands may be explained by synergic induction in fibro-
blasts and human microvascular endothelial cells by IFN-γ 
combined with bacterial TLR ligands (e.g., LPS and pepti-
doglycans) [47, 48, 153]. Mechanistically, hypersecretion of 
the IFN-inducible CXCR3 ligands may contribute to bacte-
rial clearance, given the direct defensin-like antimicrobial 
actions of these chemokines at high concentrations (i.e., µM 
range) [375]. This antibacterial activity of CXCL9, CXCL10 
and CXCL11 presumably resides on their C-terminal seg-
ment, that is highly enriched with positively charged amino 
acids, thereby conferring interaction with anionic residues 
on the bacterial surface which leads to insertion and pore 
formation in the bacterial membrane [375]. Also, the posi-
tively charged α-helix of all three IFN-inducible CXCR3 
ligands can be selectively cleaved off by virulence factor 
glycoprotein-63 (GP63) of Leishmania Major [376]. This 
mechanism was speculated to be an immune evasion strategy 
to counteract the antimicrobial actions of CXCL9, CXCL10 
and CXCL11 [376].

Osteoarthritis

Osteoarthritis is the most prevalent degenerative joint 
disease and presents as low-grade arthritis of one or mul-
tiple diarthrodial joints characterized by arthralgia with a 
mechanical pain pattern, evanescent morning stiffness and 
crepitation (i.e., grinding that occurs when moving a joint) 
(Fig. 2B) [377, 378]. Of the various pro-inflammatory fac-
tors that have been identified in SF of patients with osteo-
arthritis, CXCL9 and CXCL10 were found to be present 
at relatively high levels [378]. However, patients with 

osteoarthritis are often included as disease controls in stud-
ies for autoimmune arthritides (vide supra), thereby serving 
comparative—rather than disease-uncovering—purposes. 
A confined number of studies addresses the involvement of 
IFN-inducible CXCR3 ligands in the specific framework of 
investigating osteoarthritis-associated synovitis [379–383].

In serum of patients with osteoarthritis, CXCL9 and 
CXCL10 levels were significantly increased compared to 
serum of HC [379] with a clear concentration gradient from 
the serum towards the osteoarthritic synovium [379]. Syno-
vial concentrations of CXCL9 and CXCL10 were even rela-
tively elevated compared to other inflammatory mediators 
(e.g., CXCL12a, CCL3, and CCL4) in patients with osteoar-
thritis [379], but evidently still decreased compared to those 
in SF of patients with RA [80, 102, 124, 131, 137, 144] and 
septic arthritis [47, 153]. Two studies reported that CXCL10 
levels were significantly augmented in SF of osteoarthritis 
patients compared those in SF obtained from cadavers of 
HC [380, 381]. Conversely, another study identified none 
of the IFN-inducible CXCR3 ligands as being significantly 
upregulated proteins in osteoarthritic SF, when comparing 
the SF proteome of patients with osteoarthritis relative to 
those of HC [384]. In the latter study, proteins from SF were 
separated by one-dimensional gel electrophoresis and in-
gel tryptic digest, followed by detection of via tandem mass 
spectrometry [384]. However, through this bottom-up meth-
odology, chemokines may be easily overlooked, given their 
low relative molecular mass and high percentages of posi-
tively charged amino acids that lead to short peptides upon 
tryptic digest, which are easily lost during chromatographic 
separation. In addition, their broad structural heterogene-
ity—as a result of undergoing PTMs that are likely to occur 
in the enzyme-enriched environment of the SF [385]—ren-
ders mass spectrometry-based identification challenging. 
Taken together, CXCL9 and CXCL10 are probably also 
highly abundant proteins in osteoarthritic SF, although to 
a more limited extent compared to auto-immune arthropa-
thies or septic arthritis. In addition, synovial CXCL10 con-
centrations were found to be elevated—although not sig-
nificantly—in osteoarthritis patients with advanced arthritis 
compared to those with mild arthritis [382]. Moreover, prin-
cipal component analysis identified six clusters of interre-
lated molecules in pooled data of SF of osteoarthritis and 
post-mortem HC donors [381]. Intriguingly, CXCL10 did 
not cluster together with other chemokines (e.g., CCL2 and 
CCL11), but was rather found in a cluster containing IFN-α 
and growth factors, implying that CXCL10 may be involved 
in homeostatic processes in the joint, aside from inflam-
mation [381]. Indeed, this potential alternate and unknown 
functioning of CXCL10 in homeostatic processes may also 
explain its expression—although to a very limited extent—in 
SF of healthy controls [380, 381, 386].
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In osteoarthritis-associated synovitis, macrophages, 
NK cells and neutrophils are prominent players [383, 387, 
388]. Antibody-mediated depletion experiments showed 
that both NK cells and neutrophils deleteriously affect 
joint integrity during experimental osteoarthritis [389]. 
Moreover, sequential immunophenotyping of synovial 
cells in experimental osteoarthritis revealed that neu-
trophils are recruited first towards the joint and locally 
produce CXCL10, which, in turn, attracts macrophages 
and subsequently NK cells [389]. Infiltrating NK cells 
in the synovial tissue of patients with osteoarthritis rep-
resent 30% of the lymphocytic population [383]. Given 
that synovial tissue NK cells of these patients uniformly 
express CXCR3 [383], synovial ingress of NK cells in 
patients with osteoarthritis is considered to be orches-
trated by CXCL9 and CXCL10 [383].

Pleiotropic actions of the IFN‑inducible CXCR3 
ligands that may contribute to an aberrant synovial 
niche

In addition to their widely acknowledged chemotac-
tic actions enabling leukocyte homing in the synovial 
microenvironment, CXCL9 and CXCL10 also act as 

potent pro-inflammatory and osteoclastogenic mediators, 
thereby (in)directly contributing to the altered architec-
ture of the arthritic joint (Fig. 5).

Upregulation of osteoclastogenic and pro‑inflammatory 
cytokines

CXCL10-stimulated production of osteoclastogenic 
cytokines was demonstrated in various cell lineages includ-
ing rheumatoid FLS [137, 148], human  CD4+ T cells and 
memory  CD27+ B cells isolated from HC blood [113, 137], 
Jurkat T cells [137], Hut 78 T cells [137], murine  CD4+ T 
cells isolated from the spleen [86, 185] (Fig. 5A,I). First, 
combined stimulation of rheumatoid FLS with TNF-α 
and CXCL10 induced IL-6 secretion and mRNA expres-
sion of tumor necrosis factor ligand superfamily member 
11 (TNFSF11) [148], which encodes for a crucial protein 
enabling osteoclast differentiation, i.e., receptor activator 
of nuclear factor kappa-Β ligand (RANKL) [390]. These 
actions could be prevented by pretreatment of FLS with 
a bispecific antibody targeting both TNF-α and CXCL10 
[148]. Furthermore, another study confirmed that CXCL10 
augmented RANKL expression in synoviocytes isolated 
from synovial specimen of RA patients [137]. CXCL10 
engendered RANKL expression in Hut 78T cells, Jurkat T 
cells,  CD4+ T cells and memory  CD27+ B cells of healthy 
donors, but not in  CD14+ monocytes [113, 137]. In addi-
tion, CXCL10 promoted mRNA expression and secretion of 
RANKL and TNF-α in  CD4+ T cells isolated from mouse 
spleens [86, 185] and, in turn, RANKL also dose-depend-
ently induced expression and secretion of CXCL10 in mouse 
osteoclast precursors [185]. Accordingly, co-culturing of 
murine  CD4+ T cells and osteoclast precursors revealed 
that CXCL10 dose-dependently stimulated expression of 
osteoclast-activity marker tartrate-resistant acid phosphatase 
(TRAP) in osteoclast precursors, which could be abolished 
by addition of the decoy receptor for RANKL, i.e., osteopro-
tegerin [185, 391]. Thus, these data implicate that CXCL10 
promotes osteoclast differentiation indirectly by mediating 
RANKL expression in  CD4+ T cells and FLS.

Furthermore, CXCR3 and TLR4 were found to be 
indispensable receptors for CXCL10-mediated cytokine 
production by  CD4+ T cells [86, 137]. RANKL expres-
sion in CXCL10-treated Jurkat T cells was suppressed 
by Gαi inhibition [137]. These results demonstrate that 
Gαi proteins are involved in CXCL10-dependent RANKL 
expression. Moreover, CXCL10 elicited mRNA expres-
sion and secretion of RANKL, TNF-α and IL-6 by  CD4+ 
T cells isolated from spleens of WT C57BL/6 mice, but 
not in splenic  CD4+ T cells purified from  CXCR3−/− and 
 TLR4−/− mice [86], showing the importance of both 
CXCR3 and TLR4 in CXCL10-stimulated cytokine pro-
duction by T cells. Mechanistically, CXCL10-dependent 

Fig. 5  Pleiotropic actions of the IFN-inducible CXCR3 ligands that 
may contribute to joint inflammation. Pathogenic processes related to 
CXCL9 and CXCL10 that were established in vitro and that may con-
tribute to an aberrant synovial microenvironment, include articular 
cartilage and bone damage through A induction of osteoclastogenesis 
(directly through their effect on osteoclast progenitor cells and indi-
rectly through induction of RANKL secretion by FLS and  CD4+ T 
cells), B stimulation of migration of  CXCR3+ subchondral progeni-
tor cells, C induction of enzyme secretion that affect bone remodeling 
by osteoblasts, and D augmenting the activity of MMPs secreted by 
FLS. In addition, IFN-inducible CXCR3 ligands may facilitate syno-
vial hyperplasia through E alteration of morphology of FLS, stimu-
lation of invasiveness, proliferation and chemotaxis and synovitis 
through F infiltration of  CXCR3+ leukocytes, G  TH1 cell polarization 
and infiltration via CCR3 antagonism, CCL11 scavenging, and desen-
sitization of CXCL12 signaling, H interaction of  CXCL10+  CCL19+ 
fibroblasts with T cells, I pro-inflammatory cytokine secretion and 
auto-amplification of CXCL10 production by  CD4+ T cells, J actions 
mediated by posttranslationally modified IFN-inducible CXCR3 
ligands generated after processing by synovial enzymes, K interaction 
with ACKR, and L angiostasis. How CXCL11 operates in the syno-
vial microenvironment is less comprehended, as it may also reduce 
inflammation by outcompeting CXCL9/10 for CXCR3 and polarizing 
 TH cells towards  Tr1 and  TH2 cells. ACKR atypical chemokine recep-
tor, CCL CC chemokine receptor ligand, CCR  CC chemokine recep-
tor, CD13/APN metalloprotease aminopeptidase N, CD26/DPPIV 
dipeptidyl peptidase IV, CXCL CXC chemokine receptor ligand, 
CXCR CXC chemokine receptor, FLS fibroblast-like synoviocytes, 
GAG  glycosaminoglycan, IL interleukin, MMP matrix metallopro-
teinase, pDC plasmacytoid DC, RANK Receptor activator of nuclear 
factor kappa-Β, RANKL RANKL Receptor activator of nuclear factor 
kappa-Β ligand, TLR4 Toll-like receptor 4, TNF-α tumor necrosis fac-
tor α, TRAP tartrate-resistant acid phosphatase

◂
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RANKL expression was found to be molecularly estab-
lished via the calcineurin/NFATc1 pathway [86]. To sum-
marize, CXCL10 stimulates expression of pro-inflamma-
tory cytokines (e.g., IL-6) and osteoclastogenic mediators 
(e.g., RANKL) in rheumatoid FLS and T cells in vitro. 
Consequently, CXCL10 may promote synovitis and may 
contribute to cartilage and bone degradation through 
osteoclast differentiation and activation in the synovial 
niche. Moreover, the reciprocal intercommunion between 
CXCL10, RANKL and TNF-α constitutes an amplifica-
tion feedback loop and thereby may further propagate 
progressive inflammation and osteoclastogenesis in the 
inflamed joints [86, 137, 185]. In addition, some indi-
rect evidence exits that CXCL10 gene expression may be 
associated with synovitis [146]. In this study, RA patients 
were clinically divided into two subgroups exhibiting 
‘high’ and ‘low’ inflammation, respectively. This clas-
sification was based on clinical data of CRP and Krenn’s 
synovitis score and clustering patterns of genes. Although 
significance was not tested, gene expression of CXCL9 
and CXCL10 was increased in RA patients with ‘high’ 
inflammation compared to those with ‘low’ inflamma-
tion [146]. This may indicate that elevated expression of 
CXCL9 and CXCL10 in the synovium is associated with a 
more pronounced inflammatory phenotype of RA marked 
by high-grade synovitis.

2.8.2. Osteoimmunology: intercommunion of CXCL10 
with osteoblasts, osteoclast progenitor cells, subchondral 
progenitor cells and chondrocytes

CXCL10 clearly influences bone metabolism through its 
actions on osteoblasts, osteoclast progenitor cells and sub-
chondral progenitor cells and its production by chondro-
cytes (Fig. 5A–C) [136, 386, 392, 393]. First, CXCL10 is 
an important regulator of human osteoblast activity through 
CXCR3-dependent selective upregulation of enzymes 
involved in bone remodeling (Fig.  5C) [392]. Human 
osteoblasts abundantly express functionally active CXCR3 
[392]. Indeed, CXCL10 significantly and dose-dependently 
induced exocytosis of β-N-acetyl-hexosaminidase by human 
osteoblast in vitro, an effect that was abrogated by Gαi inhib-
itor pertussis toxin [392]. β-N-acetyl-hexosaminidase is an 
exoglycosidase that degrades extracellular matrix proteins, 
more specially GAGs such as hyaluronic acid [392]. Moreo-
ver, CXCL10 augmented alkaline phosphatase activity of 
human osteoblasts in vitro [392]. Bone-specific alkaline 
phosphatase is a primary regulator of bone mineralization, 
as it hydrolyzes inorganic pyrophosphate, which is a natural 
inhibitor of bone mineralization [394]. Hence, these findings 
demonstrate that CXCL10 participates in fine-tuning the 
activity of bone remodeling enzymes produced by human 

osteoblasts, a feature that may contribute to bone erosion in 
the joints of patients with arthritis.

Second, CXCL10 exhibits osteoclastogenic and chemo-
tactic effects on osteoclast progenitor cells (Fig. 5A) [136]. 
Given the limited lifespan of individual osteoclasts [395] and 
the chronic osteoclast-driven periarticular bone resorption 
during RA, continuous replenishment of osteoclasts to the 
arthritic synovium is necessary [396, 397]. Osteoclast pro-
genitors have the ability to mature into functional osteoclasts 
upon in vitro stimulation with RANKL and macrophage 
colony-stimulating factor (M-CSF) [396, 398]. Indeed, pro-
portions of  RANK+ osteoclast progenitors were found to 
be enlarged in SF compared to peripheral blood and cor-
related positively with tender joint counts in patients with 
RA [136]. Importantly, proportions of  CXCR3+ osteoclast 
progenitors in the peripheral blood of patients with RA were 
significantly increased compared to those of HC [136]. Fur-
thermore, CXCL10 stimulated maturation of in vitro-gen-
erated osteoclast progenitors derived from PBMCs of RA 
patients into mature  TRAP+ multinuclear osteoclasts [136]. 
Also, CXCL10 promoted transwell migration of in vitro-
generated osteoclast progenitors derived from PBMCs of 
RA patients [136]. Thus, synovial homing of  CXCR3+ 
osteoclast progenitors and differentiation into multinucleated 
bone-resorbing osteoclasts are, at least partially, CXCL10-
mediated mechanisms that may contribute to periarticular 
bone loss in arthritis.

Third, human chondrocytes isolated from healthy and 
osteoarthritic joints spontaneously secreted high levels of 
CXCL10 ex vivo, whereby stimulation with IL-1β or TNF-α 
potently increased CXCL10 secretion (Fig. 5B) [393]. Thus, 
articular cartilage may also actively contribute to CXCL10 
hypersecretion in the synovial niche. Fourth CXCL10 effi-
ciently stimulated in vitro migration of human subchondral 
mesenchymal progenitors derived from subchondral cortico-
spongious bone isolated during osteotomy [386]. This sug-
gests that synovial CXCL10 is involved in trafficking of sub-
chondral progenitor cells from the subchondral bone marrow 
towards the cartilage (Fig. 5B) [386]. Accordingly, CXCR3 
was the most pronouncedly expressed chemokine receptor 
on subchondral progenitor cells [386]. In contrast to the bone 
degenerative actions ascribed to the CXCL10-CXCR3 axis, 
CXCL10-mediated chemotaxis of subchondral progenitor 
cells to cartilage defects may contribute to formation of car-
tilage repair tissue.

Migration, invasiveness, morphology, proliferation 
and immune interaction of FLS

The CXCL10-CXCR3 axis is implicated in the regulation of 
FLS invasiveness [213–215]. Microarray analysis of gene 
expression was performed on FLS derived from Dark Agouti 
rats with pristane-induced arthritis and pristane-induced 
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arthritis-resistant Dark Agouti.F344 (Cia5d) rats [213]. 
Cia5d rats have a Dark Agouti genetic background but carry 
alleles of the arthritis-resistant F344 strain at the arthritis 
severity locus Cia5d, in which consequently FLS exhibit 
attenuated invasiveness [399]. Among 66 significantly 
upregulated genes, the Cxcl10 gene was one of the most 
pronouncedly upregulated genes in highly invasive FLS 
of Dark Agouti rat-derived FLS compared to Cia5d rat-
derived FLS [213]. Accordingly, Dark Agouti rat-derived 
FLS secreted increased levels of CXCL10 compared to 
Cia5d rat-derived FLS upon culturing in serum-containing 
medium in matrigels [214]. The distinct CXCL10 produc-
tion by these FLS was speculated to partially underlie their 
difference in invasiveness. Indeed, exogenously adminis-
tered CXCL10 induced a twofold increase in the number of 
matrigel-invading FLS isolated from Cia5d rat, which was 
inhibited by administration of anti-CXCR3 monoclonal anti-
body [214]. Similarly, migration of Dark Agouti rat-derived 
FLS to medium supplemented with serum was reduced by 
incubation with CXCR3 antagonist AMG 487 or a CXCR3 
blocking antibody. Thus, CXCL10 stimulates invasion of rat 
FLS and this mechanism appears to be a CXCR3-dependent 
process.

Accordingly, similar findings were obtained in FLS iso-
lated from synovial biopsies of RA patients. Cultured and 
unstimulated RA FLS were shown to constitutively express 
and bear functionally active chemokine receptors, including 
CXCR3, CCR5 and CXCR4 [215]. In addition, CXCL10 
treatment induced  Ca2+i mobilization in Dark Agouti rat-
derived [214] and RA FLS [214, 215], which was attenu-
ated by AMG 487 [214] and by the Gαi inhibitor pertussis 
toxin [215]. Moreover, RA FLS also migrated in matrigels 
towards serum-containing medium, which was significantly 
diminished by the CXCR3 antagonist AMG 487 [214]. A 
tenfold higher dose of AMG 487 was required to inhibit cell 
invasion of RA FLS compared to Dark Agouti rat-derived 
FLS [214]. This notion probably relies on the higher CXCR3 
expression levels on RA FLS [214]. Also, CXCL10 triggered 
chemotaxis and transmigration of RA FLS in a transwell 
system and this chemotactic response was inhibited by per-
tussis toxin [215]. Hence, CXCL10 elicits chemo-attraction, 
transmigration and invasion of FLS derived from inflamed 
joints of RA patients. Consequently, in order to elucidate the 
underlying mechanism of CXCL10-stimulated FLS chemot-
axis, morphology of FLS was examined. Unstimulated Dark 
Agouti rat-derived and RA FLS exhibited an elongated mor-
phology, marked by parallel-organized, linearized and thick 
actin filaments and lamellipodia at the leading edge [214]. 
Interestingly, CXCR3 blockage with AMG 487 diminished 
formation of thick actin filaments and polarized lamellipodia 
of these FLS [214], indicating a role of CXCR3 signaling in 
actine cytoskeleton reorganization and consequently mor-
phologic alteration enabling FLS migration.

Another crucial property of the aberrant synovial niche 
in RA is the multi-layered thickening of the synovial inti-
mal lining, which is defined as synovial hyperplasia [400]. 
Importantly, synovial hyperplasia in RA is established by, 
inter alia, local proliferation of FLS in the synovial lining 
[401]. In this context, CXCL9 and CXCL10 induced signifi-
cant cell proliferation of RA FLS after 72 h, thereby reach-
ing similar proportions of proliferating cells as observed 
upon incubation with IL-1β [215]. A blocking monoclo-
nal antibody against CXCL10 inhibited the proliferative 
response mediated by its ligand [215]. Thus, in addition to 
chemo-attraction, transmigration and invasion, CXCL10 
also mediates proliferation of FLS derived from RA patients 
(Fig. 5E). A recent study characterized pro-inflammatory 
fibroblasts from distinct inflamed tissues—i.e., synovium 
of RA and osteoarthritis patients, salivary gland biopsy tis-
sue from patients with Sjögren’s syndrome, intestinal biop-
sies from patients with ulcerative colitis, and lung biopsies 
from patients with interstitial lung disease—using single-
cell RNA-sequencing [402]. A shared cluster identified as 
 CXCL10+  CCL19+ fibroblasts was expanded in all these 
inflamed specimens and also in the synovium of CIA-devel-
oping DBA/1 mice [402]. These  CXCL10+  CCL19+ fibro-
blasts had enriched marker genes for pathways implicated 
in direct interaction with immune cells, such as lymphocyte 
chemotaxis, T cell proliferation, and antigen presentation 
[402]. IFN-γ and IFN-α, the main inducers of the CXCR3 
ligands, were identified as key pro-inflammatory cytokines 
to which these immune-interacting fibroblasts responded. 
Another group also described CXCL9 upregulation in syno-
vial fibroblasts of RA patients [403]. Given the expression 
of HLA genes [402, 403],  CXCL10+  CCL19+ fibroblasts 
were speculated to interact with T cells (Fig. 5H), as these 
cells functionally resemble to  CCL19+  podoplanin+ immu-
nofibroblasts of the salivary glands [402]. Since CXCL10 is 
clearly implicated in the development of the altered pheno-
type of FLS, CXCL10 may contribute to the emergence of 
key pathogenic manifestations in the synovial niche includ-
ing synovial hyperplasia, synovitis, pannus formation and 
pannus invasion in cartilage.

Regulation and secretion of MMP by FLS

To further uncover the effector mechanisms of 
CXCL10–CXCR3-induced FLS invasion, secretion of active 
and pro-forms of MMPs by FLS was explored. MMPs are 
highly abundant proteolytic enzymes in rheumatoid syno-
via and are considered crucial orchestrators of cartilage 
degradation in RA [404]. The highly invasive and strongly 
CXCL10-producing Dark Agouti rat-derived FLS sponta-
neously secreted the active form of MMP-1 [214]. Further-
more, cultured and unstimulated RA FLS also spontaneously 
secreted collagenases MMP-1, proMMP-13 and MMP-13 
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[215, 405], and gelatinases proMMP-2, proMMP-9, MMP-2 
and MMP-9 [215, 406]. Therefore, the effects of CXCR3 
ligands on FLS-mediated MMP secretion and MMP activ-
ity were assessed. In the supernatant of RA FLS, CXCL9 
and CXCL10 dose-dependently augmented gelatinase and 
collagenase activity, an effect that was abolished by per-
tussis toxin [215]. Hence, CXCL9 and CXCL10 upregulate 
MMP activity by RA FLS. This process was found to be 
G protein-dependent [215], and therefore likely mediated 
through CXCR3. Indeed, AMG 487 or anti-CXCR3 antibod-
ies both substantially decreased spontaneous MMP-1 pro-
duction by CXCL10-producing Dark Agouti rat-derived FLS 
[214]. Interestingly, chemokine-stimulated MMP activity by 
RA FLS is highly dependent on the presence of endogenous 
IL-1β, since blocking monoclonal antibodies against IL-1β 
markedly reduced CXCL9-mediated collagenase and gelati-
nase activity in RA FLS supernatant [215]. This finding 
raised the possibility of an indirect effect of chemokines on 
MMP activity of FLS by affecting their cytokine production 
[215], since IL-1β is a powerful inducer of MMP expres-
sion by RA FLS [407]. As such, CXCL9 and CXCL10 may 
ultimately contribute to matrix degradation via CXCR3-
dependent cytokine- and MMP-release by FLS (Fig. 5D).

CCR3 antagonism

CXCR3 and its IFN-inducible ligands may subvert the 
development of  TH2 cell responses in the synovium, which 
is a concept that is supported by two distinct mechanisms 
reported in vitro (Fig. 5G) [76, 77]. First, all three IFN-
inducible CXCR3 ligands are natural antagonists for CCR3 
at high concentrations (1 µM) [77]. These chemokines sig-
nificantly inhibited CCR3-mediated chemotaxis induced 
by the three exotaxins (CCL11, CCL24, CCL26) on 
CCR3 transfectants and human eosinophils in vitro [76, 
77]. CXCL11 exhibited the most pronounced chemotaxis 
antagonistic properties [76]. Hence, the CXCR3 chemokine 
network mediates  CXCR3+  TH1 cell recruitment, while con-
comitantly reducing  TH2 cell migration in response to CCR3 
ligands [76, 77]. Second, CCL11 binds to CXCR3 with a 
high affinity  (IC50 = 3.12 nM)—which is comparable to the 
affinity of CXCL11 for CXCR3—but does neither act as an 
agonist or antagonist on CXCR3 [76]. Thus, CXCR3 may 
function as a decoy receptor sequestering locally secreted 
CCL11 and thereby preventing its actions in re-directing 
polarization of  TH1 cell to  TH2 cell phenotype [76]. Hence, 
these two mechanisms may enhance the perpetuation of  TH1 
inflammatory responses at the expense of  TH2 cell polariza-
tion in the inflamed synovium.

Heterologous desensitization of CXCR4 signaling by CXCR3 
ligands

Intriguingly, co-stimulation of memory  CXCR3+  CXCR4+ 
 TH1 cells with CXCL9 was reported to result in desensitiza-
tion of CXCL12 signaling (Fig. 5G) [408]. Pre-incubation 
of murine EL-4T cells, human IF12 memory  TH1 cells, and 
human Jurkat T cells with CXCL9 or CXCL11—but not 
CXCL10—followed by treatment with CXCL12 resulted in 
reduced CXCL12-mediated chemotaxis [408]. In addition, 
 TH1 memory clones, that were pre-treated with CXCL9, 
exhibited diminished CXCL12-driven crawling and transen-
dothelial migration in vitro [408]. Importantly, this heter-
ologous desensitization of CXCL12 signaling by CXCL9 
is a CXCR3-dependent process since treatment with the 
highly specific CXCR3 antagonist NIBR2130 abolished 
CXCL9-mediated inhibition of CXCL12-induced chemot-
axis [408]. Hence, a two-step mechanism of extravasation 
and chemotaxis of leukocytes in the synovium was proposed 
based on the distinct synovial localization of CXCL12 and 
IFN-inducible CXCR3 ligands at the synovial endothelial 
cells or more centrally in the synovial tissue, respectively 
[408]. First, CXCL12 instigates endothelial transmigration 
of memory  CXCR3+  CXCR4+  TH1 cells from the blood into 
the synovial tissue. Subsequently, CXCL9 would orchestrate 
deeper tissue ingress of  TH1 cells towards the epicenter of 
inflammation, irrespective of the opposing CXCL12 gra-
dient. This coordinated process enables the IFN-inducible 
CXCR3 ligands to propagate inflammation by augmenting 
infiltration of immune cells and maintaining their localized 
presence at the inflammatory site.

Auto‑amplification loop

Positive feedback through the CXCL10-CXCR3 axis 
was reported to amplify CXCL10 expression in vitro in 
an NFκB-dependent manner (Fig. 5I) [176, 181]. Exog-
enously added CXCL10 increased endogenous CXCL10 
mRNA expression in murine breast cancer cells 4T1 cells 
[181], isolated murine bone marrow-derived macrophages 
(BMMs) [176] and purified murine splenic  CD4+ T cells 
[176]. In addition, endogenous CXCL10 secretion was also 
stimulated by exogenous CXCL10 in BMMs and  CD4+ T 
cells [176]. Interestingly, exogenous CXCL10-mediated 
CXCL10 mRNA expression was inhibited by the CXCR3 
antagonist JN-2 in all these cell lineages [176, 181], sig-
nifying that the exogenous CXCL10 could contribute to 
endogenous CXCL10 expression in a CXCR3-dependent 
manner. To determine the downstream pathway of this auto-
amplification loop, CXCL10 was found to induce transcrip-
tional activity of NFκB and upregulate NFκB subunit P65 
in 4T1 cells [181]. Importantly, the anti-inflammatory and 
protective actions of JN-2 in CIA were speculated to be, 
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at least partially, dependent on the inhibition of CXCL10 
auto-amplification, in addition to CXCR3 antagonism [176]. 
Synovial T cell–B cell interactions may also create posi-
tive feedback loop [152]. Synovial B cells of RA patients 
exhibit high mRNA expression of CXCL9 and CXCL10 
(vide supra). This B cell-mediated chemokine expression 
was speculated to be dependent on stimulation by activated 
 TH1 cells, since co-culturing of human B cells isolated from 
HCs with human active  CXCR3+  CCR6−  TH1 cells signifi-
cantly induced mRNA expression and secretion of CXCL9 
and CXCL10 by these B cells [152]. Hence, synovial B 
cells presumably become potent CXCR3 ligand producers 
in the  TH1 cell milieu of the inflamed joint [152]. In turn, 
the secreted CXCL9 and CXCL10 could recruit additional 
 CXCR3+ T cells, which consecutively will further stimulate 
B cells.

Posttranslational modifications

The co-localization of IFN-inducible CXCR3-binding 
chemokines and their respective processing enzymes (e.g., 
CD26 [409, 410], CD13 [411], MMPs [412, 413], furin 
[414, 415], etcetera) in the SF and the synovium provides 
an optimal environment to enable PTMs (Fig. 5J) [416]. For 
example, IFN-inducible CXCR3 ligand-mediated ingress of 
 CXCR3+  CD26+ T cells into the synovium may result in a 
negative feedback loop, leading to auto-inactivation [47]. 
CD26 efficiently truncates CXCL9, CXCL10 and CXCL11 
aminoterminally, thereby abrogating their chemotactic 
potential and converting these chemokines into chemotaxis 
antagonists [53, 417–420]. However, data on posttransla-
tionally modified chemokines in the synovial environment 
is momentarily very scarce [385], since current methodol-
ogy for detection of chemokine protein concentrations fail 
to discriminate between chemokine proteoforms.

Atypical chemokine receptors

ACKR1/DARC and ACKR3/CXCR7 have been identified 
on synovial endothelial cells in rheumatoid synovial biop-
sies [421, 422], whereas ACKR2/D6 was detected on stro-
mal cells and  CD45+ leukocytes located in aggregates in 
the synovial tissue of RA patients [423]. Although the role 
of ACKRs in arthritis remains to be unveiled, ACKR1 and 
ACKR3 have been examined in animal models of arthritis 
[94, 422, 424]. ACKR1 mediated neutrophil adhesion to 
endothelial cells in a co-culture of RA patient-derived FLS 
and endothelial cells, resembling the rheumatoid synovium 
[425]. In addition, ACKR1 was found to transport CXCL1 
and CXCL2 through the joint endothelium in mice with K/
BxN serum-transferred arthritis, thereby mediating transen-
dothelial migration of neutrophils and their subsequent entry 
in the joints [424]. It remains to be determined whether 

IFN-inducible CXCR3 ligands—in particular CXCL11 
given its high affinity for ACKR1 [71]—are also transcy-
tosed by ACKR1 from the circulation into the synovium 
and vice versa. In addition, scavenging of CXCL10 in the 
inflamed synovia by ACKR2/D6 expressed on stromal cells 
and circulating leukocytes is another potential mechanism 
that remains to be explored. Furthermore, ACKR3 exerted 
angiogenic actions in the joints during CIA [422]. Treat-
ment of CIA-developing DBA/1 J mice with an ACKR3 
antagonist attenuated clinical arthritis score, coinciding with 
a reduced number of blood vessels present in the synovial 
tissue [422]. Since the utilized ACKR3 antagonist abrogates 
CXCL12-ACKR3 interaction [422], the angiogenic potential 
of ACKR3 in CIA may be mediated through CXCL12 sign-
aling. Again, whether synovial CXCL11 may be involved in 
ACKR3-mediated actions in the inflamed joints is uncharted 
territory. Given the co-localization of ACKR and IFN-induc-
ible CXCR3 ligands in the inflamed synovia, their interac-
tion is likely to occur (Fig. 5K).

Angiostasis

Pronounced upregulation of the angiostatic IFN-inducible 
CXCR3 ligands in SF of patients with RA and JIA—dis-
eases typically characterized by significant angiogenesis 
in the synovial tissue [93, 426]—seems counterintuitive. 
Erdem et al. speculated that augmented synovial levels of 
angiostatic CXCR3 ligands may be a compensating mecha-
nism to cope with increased synovial levels of angiogenic 
chemokines (Fig. 5L) [144]. Thus, extensive neovasculari-
zation in the synovium may be partially prohibited by the 
IFN-inducible CXCR3 ligands, thereby possibly acting in an 
anti-inflammatory manner. Moreover, immunohistochemis-
try showed that synovial endothelial cells were positive for 
CXCL10 expression in JIA [253]. Hence, additional research 
is needed to elucidate whether the CXCR3 ligands may play 
a role in the regulation of angiostasis in synovia of patients 
with inflammatory arthritides.

Final remarks

In general, chemokines are considered protagonists in initia-
tion and maintenance of synovitis through leukocytes dia-
pedesis from the vasculature into the synovium. Eminent 
upregulation of CXCL9 and CXCL10 in the SF—and conse-
quently also in the circulation due to chemokine egress—is 
evident in distinct rheumatic disease entities with a clear 
autoimmune component including RA, oligo- and polyar-
ticular JIA, ankylosing spondylitis, and psoriatic arthritis. 
Given the superimposable clinical manifestations and symp-
tomatology of autoimmune arthritides and inflammatory 
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arthropathies without a clearly defined autoimmune com-
ponent (e.g., osteoarthritis) [427], pronouncedly elevated 
circulatory and synovial levels of CXCL9 and CXCL10 may 
facilitate disease identification during differential diagnosis. 
In the search for suitable biomarkers, utility of serum levels 
of CXCL10 as biomarker may prevail over those of CXCL9 
for monitoring of rheumatic disease activity, since repeated 
measurements of circulatory CXCL10—but not CXCL9—
had acceptable longitudinal reliability [428]. The notion that 
the upregulation of IFN-inducible CXCR3 ligands is a mere 
“bystander” epiphenomenon of synovitis seems implausible, 
since CXCL9 and CXCL10 are equipped with an arsenal 
of pro-inflammatory actions that may deleteriously affect 
the articular environment (Fig. 5A–L), whereas actions of 
CXCL11 in the joints are less well understood and may even 
conversely restrain inflammation. In addition to their gener-
ally acknowledged function of mediating synovial ingress of 
distinct  CXCR3+ leukocyte lineages, CXCL9 and CXCL10 
exert a multitude of molecular activities including ampli-
fying pro-inflammatory cytokine secretion, altering FLS 
morphology towards a proliferative, aggressive and inva-
sive phenotype with augmented MMP secretion, promoting 
secretion of osteoblast-derived bone remodeling enzymes 
and invigorating osteoclastogenesis. When acting in concert, 
these localized actions of CXCL9 and CXCL10 presumably 
facilitate a plethora of pathogenic processes in the synovial 
niche including synovitis, synovial hyperplasia, pannus for-
mation and invasion, bone remodeling, cartilage and bone 
erosion.

Surprisingly, the pivotal aspect of PTMs has remained 
unexplored for the IFN-inducible CXCR3 ligands in inflam-
matory arthritides, despite being an apparent major regula-
tory mechanism of these chemokines [46, 429]. First, the 
IFN-inducible CXCR3 ligands are extremely susceptible to 
PTMs, which drastically fine-tunes their receptor affinity and 
specificity, GAG binding avidity and chemokine potency 
[19, 46]. Second, experimental evidence exists that PTMs 
of CXCL10 have in vivo biological importance [430]. For 
example, in the regulation of tumor immunity, CD26 inhi-
bition prevented processing of bioactive murine CXCL10 
(mCXCL10) into  mCXCL10(3–77) in C57BL/6 mice and 
thereby increased migration of adoptively transferred tumor-
specific  CXCR3+ T cells into B16F10 melanoma upon 
intra-tumoral injection of mCXCL10 [430]. Third, in clini-
cal pathophysiological settings including chronic hepatis C 
virus (HCV), bladder carcinoma and active tuberculosis, 
antibody-based methodology to quantify CXCL10 proteo-
forms in plasma—i.e.,  CXCL10(1–77) and CD26-truncated 
antagonistic  CXCL10(3–77)—has demonstrated that natu-
ral truncated  CXCL10(3–77) is present in plasma and urine 
[431–433]. In addition, plasma  CXCL10(3–77) was found to 
be the predominant CXCL10 proteoform of patients with 
chronic HCV that failed to respond to pegylated IFN-α2/

ribavirin therapy [434] and was found to be positively cor-
related with viral replication in HCV [435]. However, 
antibody-based methods for chemokine proteoform iden-
tification are challenging given that C-terminally and/or 
N-terminally processed proteoforms should be simultane-
ously distinguished, requiring multiple epitopes present in 
confined levels and with only minor structural alterations 
to be recognized concurrently. This urges the development 
of sensitive biochemical techniques that permit simultane-
ous discrimination of full spectra of chemokine isoforms. 
Fourth, recent evidence revealing extensive processing of 
the pro-inflammatory chemokine CXCL8 into CXCL8 pro-
teoforms with increased potency in SF of patients with RA 
and JIA, reaffirms the relevance of PTMs in the synovial 
niche [385]. Altogether, the identification of proteoforms of 
IFN-inducible CXCR3 ligands, offer a definitive substantia-
tion that PTM are indeed crucial for modulating biologi-
cal activity of chemokines and profoundly underscore the 
importance of grasping this facet in any clinicopathologi-
cal context. As such, in addition to the CXCL11-mediated 
anti-inflammatory actions, enzymatic processing affecting 
the stability and modifying the activity of CXCR3 ligands 
into potential antagonists, may underlie the failure of the 
CXCR3-targeting interventions. Moreover, although cur-
rently incompletely understood in vivo, GAGs, ACKRs, 
and CXCR3 forms may also be important to fine-tune the 
molecular interactions and cellular outcomes of the CXCR3 
ligands in the joints. Consequently, improved understand-
ing of the in vivo actions of the posttranslational modified 
CXCR3 ligands, their interactions with distinct CXCR3 iso-
forms and ACKRs, their reciprocal intercommunion with 
each other, cytokines, GAGs, effector and resident cells in 
the synovial niche is needed to further comprehend their 
complex actions in the inflamed joints and to guarantee suc-
cessful application of CXCR3-targeting drugs in diseases 
characterized by chronic inflammatory arthritis.
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