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Abstract
Vascular smooth muscle cells (VSMCs) are involved in phenotypic switching in atherosclerosis. This switching is character-
ized by VSMC dedifferentiation, migration, and transdifferentiation into other cell types. VSMC phenotypic transitions have 
historically been considered bidirectional processes. Cells can adopt a physiological contraction phenotype or an alternative 
"synthetic" phenotype in response to injury. However, recent studies, including lineage tracing and single-cell sequencing 
studies, have shown that VSMCs downregulate contraction markers during atherosclerosis while adopting other phenotypes, 
including macrophage-like, foam cell, mesenchymal stem-like, myofibroblast-like, and osteochondral-like phenotypes. How-
ever, the molecular mechanism and processes regulating the switching of VSMCs at the onset of atherosclerosis are still 
unclear. This systematic review aims to review the critical outstanding challenges and issues that need further investigation 
and summarize the current knowledge in this field.
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Introduction

Mature VSMCs modulate the diameter of blood vessels and 
hence regulate blood flow distribution and blood pressure. 
In the blood vessels in adults, VSMCs exhibit low synthetic 
activity and proliferation rates and possess special signal-
ling molecules, ion channels, and proteins that regulate the 
contraction of blood vessels. Differentiated VSMCs show 
a high level of plasticity, allowing them to flexibly change 
phenotypes depending on the local environmental stimuli 
[1]. However, most studies have traditionally focused on the 
conversion of VSMCs from contractile to secretory types, 
whereas the current research focuses on subsets of smooth 
muscle cells (SMCs) and their transformation to different 
cell types. Contractile VSMCs often alter their phenotypes 

and proliferation and migration patterns to participate in tis-
sue repair. Once the reparative process ends, VSMCs regain 
their nonproliferating contractile phenotype. In atheroscle-
rosis, a fibrous cap forms at the injury site. The restora-
tion of VSMCs is dysregulated in certain contexts, leading 
to the transformation of VSMCs into other cell types, e.g., 
fibroblast-like cells [2, 3], macrophage-like cells [3–9], 
adipocyte-like cells [10, 11], and chondrocyte-like cells [2, 
3, 12, 13]. In addition, accumulating evidence suggests that 
these transitions to an abnormal phenotype may contribute 
to vascular diseases, e.g., atherosclerosis. Understanding the 
mechanisms and signalling cascades that lead to a specific 
phenotype could uncover important avenues for designing 
effective interventions for vascular diseases.

Phenotype of VSMCs

Contractile vs synthetic VSMC phenotype 
in atherosclerosis

The transition of VSMCs from a basal state contractile phe-
notype to a so-called synthetic phenotype was first described 
in the early 1980s [14]. In healthy arteries, medial arterial 
contractile VSMCs are spindle-shaped and function as 
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arterial elastic constrictors and produce extracellular matrix 
(ECM). SMC-specific differentiation proteins are mainly 
important components of the contractile machinery and 
cell anchoring of smooth muscle cells (e.g., α-smooth mus-
cle actin (α-SMA), smooth muscle 22α (SM22α), myosin 
heavy chain 11 (MYH11), calmodulin, and h-calmodulin). 
In disease states such as atherosclerosis and vascular injury, 
VSMCs switch to a secretory phenotype characterized by 
reduced expression of SMC-specific markers and a change in 
cell morphology from elongated/spindle-shaped to rhombic/
epithelial-like [15]. It is critical to note that the attributes 
listed above refer to the "averaged" or "ideal" dedifferentia-
tion state. Within an injured or sick vasculature, populations 
of dedifferentiated VSMCs can be extremely variable, both 
in terms of dedifferentiation grade and phenotypic diver-
gence caused by exposure to different environmental signals.

VSMCs‑derived phenotype in atherosclerosis

VSMCs play a role in atherosclerosis by remodelling the 
arterial wall to sustain blood flow in damaged arteries due to 
atherosclerotic alterations. VSMCs have been proven in vitro 
and in vivo to be capable of transdifferentiating into other 
cell types, such as chondrocyte-like cells, macrophage-like 
cells and foam cells. As early as 1968, Wissler proposed the 
idea that VSMCs formed at least part of the foam cells in ath-
erosclerotic plaques [16]. Later, Andreeva et al. found colo-
calization of the macrophage marker CD68 and the smooth 
muscle cell marker α-SMA in atherosclerotic human aortic 
cells [17]. In addition to forming macrophage-like cells and 
foam cells, VSMCs can also transdifferentiate into osteoblas-
tic/chondrocyte-like cells [12, 13, 18]. During the VSMC 
phenotypic transition, VSMC-specific marker expression 
changes, such as the loss of α-SMA, SM22α, and MYH11. 
At the same time, VSMCs gain the ability to express markers 
of other cell types such as pluripotent vascular stem cells, 
macrophages, adipocytes and fibroblasts, which posses a 
significant challenge for VSMC identification.

Detection methods for VSMCs phenotypes

Traditional methods for detection of VSMC 
phenotype

Traditional methods for detecting the phenotype of VSMCs 
generally include observation of cell morphology under 
light microscopy, transmission electron microscopy, phase-
contrast microscopy, and immunohistochemical blotting and 
immunofluorescence methods to detect SMC-specific dif-
ferentiation markers [19–21]; however, these methods may 

misidentify cell types, and therefore, the use of advanced 
gene fate targeting technology is required.

New approaches for detection of VSMCs phenotype

The advent of lineage tracing and single-cell sequencing 
in recent years has not only confirmed the previous view 
that VSMCs transdifferentiate into macrophage-like cells 
and chondrocyte-like cells but has also revealed the trans-
differentiation of VSMCs to various cell phenotypes. The 
differentiation of SMCs into 'inflammatory' macrophage-
like cells may contribute to the instability of atherosclerotic 
lesions, whereas the transition of SMCs to 'synthetic' fibrotic 
SMCs may stabilize lesions by increasing the thickness of 
the protective fibrous cap. These unique cells derived from 
VSMCs drive the molecular events that regulate atheroscle-
rotic plaque stability, including fibrous cap formation and 
rupture, lipid retention, inflammation, calcification, and 
extracellular matrix composition. Whether the phenotypic 
shift in SMCs is primarily protective or detrimental to ath-
erosclerosis and whether both effects depend on the micro-
environment remain uncertain; however, it is possible that 
VSMC-derived cells play a dual role such that they not only 
enhance plaque stability but also exacerbate plaque rupture.

Lineage tracing of VSMCs in atherosclerosis

Traditional pedigree tracing methods include those that 
rely on dye injection, fluorescent proteins, or marker trac-
ing. With the development of genetic recombination and 
sequencing technologies, related barcoding techniques 
relying on the Sleeping Beauty transposase, Cre-loxP and 
CRISPR-Cas9 systems have gradually been developed and 
are widely used [22]. Several studies based on lineage trac-
ing advanced our understanding of the functional conse-
quences of clonality, plasticity and eventually the fate of 
VSMCs within plaques, indicating that they play a more 
significant and complex role in atherosclerosis than previ-
ously believed [6, 23–28]. In mice, Feil et al. used lineage 
tracing to demonstrate that VSMCs can clonally expand 
and transform into macrophage-like cells, which constitute 
a major component of advanced atherosclerotic lesions [5]. 
Shankman et al. showed that > 80% of smooth muscle cells 
in advanced atherosclerotic plaques lose classical contractile 
markers, such as ACTA2, 30% of such cells have an acti-
vated state of lgals3, and a small proportion of these cells 
express mesenchymal stem cell (MSC) markers or myofi-
broblast-like markers, such as SCA1 and ACTA2/PDGFRβ 
[6]. Notably, the knockout of Krüppel-like factor 4 (KLF4), 
a transcription factor required for VSMC de-differentiation, 
led to a significant decrease in the number of macrophage-
like cells and the extent of atherosclerotic lesions [6]. Dobni-
kar et al. also identified VSMC-derived cells expressing the 
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MSC marker SCA1 in healthy arterial media and atheroscle-
rotic plaques [29]. These cells may represent a highly flex-
ible intermediate population that is highly inflammatory-sus-
ceptible and capable of generating VSMCs that can contract 
or phenotypically switch. Several other studies have shown 
that fibrotic caps include most αSMA-positive cells [30–32], 
rejecting earlier assumptions that αSMA-positive cells are 
generated by bone marrow-derived cells [33, 34]. The rain-
bow confetti system combined with the genetic lineage trac-
ing strategy of VSMCs has demonstrated, surprisingly, that 
the origin of VSMCs in mouse atherosclerotic plaques arises 
from the oligoclonal expansion of a few cells in the vessel 
wall [5, 26–28]. Chappell et al. used multicolour labelling to 
demonstrate that VSMCs in atherosclerotic plaques are oli-
goclonal, originating from a small subpopulation of VSMCs 
[26]. Additionally, lineage tracing revealed that the progeny 
of individual VSMCs were involved in Mac-3-expressing 
macrophage-like core cells in plaques in addition to consti-
tuting αSMA-positive fibrous caps. Jacobsen et al. reached a 
similar conclusion based on an analysis of the clonal struc-
ture of SMCs in chimeric mice and mice with a randomly 
recombinant fluorescent transgene [27]. The above studies 
suggest that the contribution of SMCs to disease arises from 
the overproliferation of a few pre-existing medial cells and 
that plaque cell expression from VSMCs is traditionally 
associated with macrophages (CD68, LGALS3/MAC2 and 
LAMP2/MAC3) [5, 23, 26, 28], mesenchymal stem cells 
(SCA1) [6, 29], myofibroblasts (ACTA2/PDGFRβ) [6, 28] 
and chondrocyte-like cells (BMP2, RUNX2, OPN, ALP and 
BGLAP) [13, 35–38]. Genetic fate mapping of VSMCs in 
atherosclerosis is presented in Table 1.

Single‑cell RNA sequencing of VSMCs in atherosclerosis

Single-cell RNA-seq (scRNA-seq) analyses examine the 
gene expression of each cell and assemble cells into distinct 
subpopulations [39]. This approach has shown that cells 
express a whole set of genes that are known to participate 
in the conversion process, and although these cells do not 
necessarily show the characteristics of fully converted cells, 
they can be found during the conversion process in a way 
that was not possible before.

Recently, single-cell RNA sequencing was employed to 
gain a better understanding of the heterogeneity of athero-
sclerotic plaques, including heterogeneity in specific cell 
types. In particular, even in healthy arteries, VSMCs show 
variation in morphology and gene expression, including 
the discovery of rare, atypical SCA1-positive VSMCs and 
encoding genes associated with phenotypic behavioural 
transitions [29, 40]. Alencar et al. constructed a model of 
thoracic aortic atherosclerosis and then collected samples for 
RNA-seq and chromatin immunoprecipitation sequencing of 
KLF4 and octamer-binding transcription factor-4 (OCT4). 
These authors found that SMC-specific KLF4 gene dele-
tions exhibit genomic features almost opposite to those of 
Oct4 knockouts and that their putative target genes play an 
important role in regulating SMC phenotypic changes [41]. 
The authors also found that Lgals3-positive vascular smooth 
muscle-derived cells appear to be an earlier transitional state 
that subsequently gives rise to at least three other SMC phe-
notypes in advanced lesions, including a KLF4-dependent 
osteogenic phenotype that may lead to plaque calcification 
and plaque instability [41]. Similarly, Pan et al. combined 

Table 1   Genetic fate mapping of VSMCs in atherosclerosis

Cells of VSMC-derived in plaques Tracing method Mouse model Refs.

Macrophage-like VSMCs Tagln-CreERT2 Myh11-Cre-
ERT2 TCTA2-CreERT2

R26R-lacZ
R26R-mT/mG
R26R- EYFP
R26R-Confetti
R26R-Brainbow

Apoe−/− HFD or chow diet
PCSK9-D377YAAV, HFD diet

[5, 6, 23, 26–28]

MSC-like VSMCs Tagln-CreERT2 Myh11-Cre-
ERT2 TCTA2-CreERT2

R26R-lacZ
R26R-mT/mG
R26R- EYFP
Rosa26-tdTomato
R26R-Confetti
R26R-Brainbow

MGP−/− chow diet
Apoe−/− HFD diet or chow diet
LDLr−/− HFD diet

[6, 13, 28, 29, 32]

Myofibroblast-like VSMCs Myh11-CreERT2
R26R-EYFP

Apoe−/− HFD diet [2, 3, 6]

Osteochondrogenic-like VSMCs Tagln-CreERT2
R26R-lacZ

MGP−/− chow diet
LDLr−/− HFD diet
ApoE−/− chow diet

[6, 13, 32]
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scRNA-seq and SMC fate maps of human and mouse ath-
erosclerotic plaques to identify an intermediate cell state of 
SMC origin [3]. SMC-derived intermediate cells are referred 
to as 'SEM' cells with pluripotent potential due to their abil-
ity to differentiate into macrophage-like cells and fibrochon-
drocyte-like cells and revert to an SMC-like phenotype. Fur-
thermore, in symptomatic human atherosclerosis, all-trans 
retinoic acid (RA) prevented the translocation of SMCs to 
SEM cells by activating RA signalling, reducing the ath-
erosclerotic burden and promoting fibrous cap stabilization. 
Subsequently, the authors identified several retinol-respon-
sive genes with downregulated expression in unstable human 
atherosclerotic lesions. Notably, these genes were closely 
associated with coronary heart disease (CAD)-related risk 
variants. However, these associations require further inves-
tigation. Wirka et al. analysed human and mouse atheroscle-
rotic lesion samples by scRNA-seq and found that the tran-
scriptional phenotype of SMCs in the samples was regulated 
and that these cells acquired distinct fibroblast-like cell phe-
notypes instead of the typical macrophage-like phenotype 
[2]. However, this finding contradicts the results obtained in 
other studies investigating macrophage-like SMCs in mouse 
and human lesions [4–7]. This discrepancy may be explained 
as follows: previous studies were performed in the aortic 
root, which contains numerous mesenchymal and epicardial 
cells, thereby severely limiting the sensitivity of detecting 
VSMC phenotypic shifts in the lesion. This discrepancy has 
prompted researchers to pay attention to the heterogeneity 
of spectral tracer markers, objective factors, such as the 
dose of tamoxifen, and the need to combine lipid staining 
with spectral tracers or molecular markers of cellular status 
when analysing macrophage states in atherosclerosis. Dob-
nikar et al. found significant differences in gene expression 
in seven clusters that segregate Myh11-expressing SMCs 
into VSMCs within the abdominal aorta (AA) and thoracic 
aortic (TA) [29]. Several of these genes are involved in the 
regulation of VSMC phenotype, inflammation, and cardio-
vascular disease, suggesting that VSMCs perform diverse 
functions. These findings elucidated the clonality of SMC 
invasion and growth in atherosclerotic plaques. Wong et al. 
completed the eQTL mapping of human coronary artery 
smooth muscle cells (HCASMCs) by analyzing RNA-seq 
data and whole genomes of unrelated multiethnic donors, 
and the results indicated that certain SMC genes (e.g., 
SMAD3, PDGFRA, and SIPA1) may increase the risk of 
CAD, while other SMC genes (e.g., TCF21 and FES) may 
exert antiatherosclerotic effects. Transcription factor 21 
(TCF21) is a CAD gene associated with the disease. Spe-
cific knockdown of TCF21 in SMCs significantly inhibits 
phenotypic regulation of SMCs in mice, leading to a reduc-
tion in fibroblasts and protective fibrous caps at damaged 
sites. Furthermore, in patients' coronary arteries, TCF21 
expression was highly connected with SMC phenotypic 

regulation, whereas increased TCF21 expression was asso-
ciated with a decreased risk of developing CAD in human 
CAD-associated tissues [2, 42]. These results suggest that 
the conversion of VSMCs to fibroblasts has atheroprotective 
effects. Single-cell transcriptome technology also identified 
a small number of VSMCs that may be Sca1 + progenitor 
cells that 'overreact' to inflammatory stimuli [43]. Tang et al. 
performed scRNA-seq and cell fate mapping and found that 
indeterminate Sca1 + PDGFRa + cells in the arterial wall 
transmigrated into the medial layer after severe injury, where 
they formed SMCs, which is similar to previous research 
showing that the contribution of SMCs to disease arises 
from the overproliferation of a few pre-existing medial cells 
[44]. Further studies found that SMCs formed under the con-
trol of yes-associated protein (YAP) had a higher prolifera-
tive capacity in vascular repair than pre-existing SMCs [44]. 
These findings concerning heterogeneity offer new possibili-
ties to study different smooth muscle cell subpopulations and 
their function in atherosclerosis (Fig. 1).

Factors and signalling pathways 
influencing phenotypic switching of VSMCs 
in atherosclerosis

The phenotypic transformation of VSMCs in the body is 
often affected by a series of molecules and the integration 
of environmental factors, which mainly include lipids, reti-
noids, inflammatory mediators, growth factors, oxidative 
stress, blood flow shear stress, and cell-to-cell interactions. 
Then, VSMCs are transdifferentiated into various types of 
cells in the disease state, such as macrophage-like cells, 
foam cells, osteochondral-like cells, mesenchymal stem-like 
cells, and myofibroblast-like cells in disease states (Fig. 2). 
In recent decades, researchers have identified multiple sig-
nalling pathways that regulate the VSMC phenotypic tran-
sition process under the induction of various risk factors 
(Fig. 3).

VSMCs transdifferentiate from the contractile type 
to synthetic‑like type

Transforming growth factor-β (TGF-β) is a multifunctional 
cytokine [45]. Typically, TGF-β signalling induces the dif-
ferentiation of VSMCs and regulates the interaction of cells 
with the extracellular matrix [46]. KLF4 inhibits this effect 
of TGF-β and promotes the dedifferentiation of VSMCs 
[47]. Glycoprotein M6B (GPM6B) influences SMC differ-
entiation by activating TGF-β-Smad2/3 signal transduction 
[48]. It is generally accepted that both insulin-like growth 
factor 1 (IGF-1) and TGF-β inhibit the phenotypic transfor-
mation of VSMCs [49, 50].
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Platelet-derived growth factor-BB (PDGF-BB) was 
among the first factors identified to promote the pheno-
typic transformation of VSMCs and has been widely used 
in in vitro experiments as a model for generating dediffer-
entiated cells from VSMCs. PDGF-BB exerts its pro-SMC 
dedifferentiation effects mainly through the Ras/Raf/MEK/
ERK [51], PI3K/Akt [52], NF-κB [53] and JAK2/STAT3 
[54, 55] pathways. This leads to transcription of dedifferenti-
ated genes under the control of SRF, as well as suppression 
of SMC-specific markers. In addition, extracellular signal-
regulated kinase (ERK) phosphorylates myocardin-related 
transcription factor (MRTF) in the cytoplasm, preventing its 
nuclear translocation. Most importantly, PDGF-BB induces 
KLF4, which controls the transcriptional program of SMC-
specific genes by preventing the SRF/MYOCD complex 
from binding to the promoters of pro-differentiation genes. 
PDGF-BB intervention activates Rho-associated coiled-coil-
forming kinases (ROCKs) levels in VSMCs from human 
aortas [56]. ROCKs mediate Rho-induced changes in the 

actin cytoskeleton, mainly through phosphorylation of the 
myosin light chain (MLC), thereby mediating the contrac-
tion of VSMCs [56, 57]. Other growth factors, such as basic 
fibroblast growth factor (bFGF) and epidermal growth factor 
(EGF), are widely considered factors that induce the matura-
tion and differentiation of VSMCs [58].

The ECM (collagen IV, laminin, and perlecan) drives 
VSMC phenotypic transformation by binding integrin 
receptors on the VSMC surface and triggering a series of 
intracellular signal transduction pathways [59]. Generally, 
the basal lamina surrounds SMCs, and laminin and colla-
gen IV in the basement membrane is crucial for maintain-
ing VSMCs in a quiescent phenotype [60]. However, some 
abnormal components of the basement membrane appear 
under the disease state, such as fibronectin and syndecan-4. 
Collagen I can promote the transformation of VSMCs to a 
synthetic phenotype from a contractile phenotype and this 
conversion is blocked by an integrin beta-1 antibody [61]. 
Shi et al. showed that when VSMCs are cultured in vitro, 

Fig. 1   Overview of vascular smooth muscle cells (VSMC) pheno-
typic transition within media and atherosclerotic lesions in mice. 
Lineage tracing and scRNA-seq studies have shown that partially 
contractile VSMCs transform into transitional pluripotent cells (e.g. 
lgals3 + VSMCs, SEM cells and MSC-like SMCs) in response to 
environmental stimuli. SEM cells have the potential to differentiate 
into macrophage-like SMCs and fibrochondrocyte-like SMCs and 
even revert to their contractile phenotype. ATRA can inhibit the con-
version of SMCs to SEM cells. KLF4-dependent Lgals3-activated 
VSMCs subsequently exhibited a shift to a variety of SMC pheno-
types, including inflammatory cells, ECM-rich cells, osteogenic phe-

notypes and macrophage-like cells. Whether MSC-like SMCs can dif-
ferentiate into other SMC phenotypes is currently unclear. There are 
two possible sources of SMC foam cells in atherosclerotic plaques. 
One is foam cells derived directly from SMCs and the other is from 
macrophage-like SMCs. It is unclear whether SMCs need to acquire 
a macrophage-like phenotype to become foam cells, or whether they 
become foam cells before expressing macrophage markers. OCT4 and 
SMC-specific knockout of TCF21 inhibit SMC phenotypic modula-
tion in mice. ATRA indicates all-trans retinoic acid; KLF4, krüppel-
like factor 4; TCF21, transcription factor 21; OCT4, octamer-binding 
transcription factor 4
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fibronectin polymerization can promote the transformation 
of VSMCs to a synthetic phenotype from a contractile phe-
notype via a Rac1-dependent pathway [62]. Syndecan-4 is a 
transmembrane acetyl heparan sulfate proteoglycan. Ikesue 
et al. showed that in mice, deletion of syndecan-4 resulted 
in the restricted formation of neointima after vascular injury 
and reduced proliferation of vascular smooth muscle cells 
[63]. A recent study found that the basement membrane pro-
tein Nidogen-2 enhanced the interaction between Jagged1 
and Notch3 and amplified downstream signalling activation, 
thereby maintaining the contractile phenotype of VSMCs 
and inhibiting subsequent neointimal formation following 
vascular injury [64].

NOX4-ROS signalling is involved in the phenotypic 
switching of VSMCs in the vascular system [65]. Reactive 
oxygen species (ROS) are generated mainly from NADPH 
oxidase (NOX) [66]. The mammalian NOX family mainly 

has seven members: NOX1-5 and DUOX1/2 [66]. In rodent 
and human aortic SMCs, the main ROS-producing NOXs 
are NOX1 and NOX4 [67–69]. NOX1 is associated with the 
de-differentiation of VSMC [70]. Moreover, NOX1 plays a 
key role in VSMC migration, proliferation, and extracellu-
lar matrix production following vascular injury [71, 72]. In 
contrast to NOX1, NOX4 is required for the maintenance of 
the differentiated VSMC phenotype [70]. In addition, NOX4 
also mediates VSMC migration [73]. It is exactly an active 
area of investigation how NOX1 and NOX4 regulate such 
diverse functions in VSMC. A previous study found that the 
NOX4-mediated modulation of the levels of VSMC-specific 
genes is involved in p38 MAPK/NF-κB activation [74]. The 
JAK/STAT cascade modifies NOX1 and NOX4 in human 
aortic SMCs [75]. In addition, studies have shown that 
E2F transcription factors are positive regulators of NOX4 
transcription in VSMCs [76] and that mechanical tension 

Fig. 2   Influencing factors and transcription factors/co-factors of 
the phenotypic switching of VSMCs. The phenotypic switching of 
VSMCs in  vivo is often influenced by the integration of a range of 
extracellular signals, signalling pathways, and transcription factors. 
The main extracellular signals (e.g. lipids, retinoic acid, inflammatory 
mediators, growth factors, reactive oxygen species) activate signalling 
pathways that converge on transcription factors (e.g. KLF4, NF-κB, 
SP-1, and TCF21) to regulate the transdifferentiation of VSMCs into 
various cell types such as macrophage-like cells, foam cells, osteo-
chondrocytes, mesenchymal stem cell-like cells and myofibroblast-
like cells in disease states. MYOCD is a cofactor of SRF that binds 

to the CArG-box element within the promoter of contraction-related 
genes to promote VSMC contractile gene expression. Many transcrip-
tion factors (e.g. KLF4, NF-κB, SP-1, and TCF21) repress the expres-
sion of contraction-related genes by inhibiting SRF binding to CArG-
boxes. TGFβ, transforming growth factor-β; IGF, insulin-like growth 
factor; ECM, extracellular matrix; Ang II, angiotensin II; ROS, reac-
tive oxygen species; MYOCD, myocardin; SRF, serum response fac-
tor; KLF4, krüppel-like factor 4; NF-κB, nuclear factor-κB; SP-1, 
specificity protein-1; Elk1, Ets-like protein 1; Runx2, runt-related 
transcription factor 2; TCF21, transcription factor 21
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stimulation increases the production of NOX1 through myo-
cyte enhancer factor 2 (MEF2), resulting in the conversion 
of contractile VSMCs to a synthetic phenotype [77]. In addi-
tion to the previously listed components, haemodynamic fac-
tors [78] and intercellular interactions [79] both contribute 
to the phenotypic alteration of VSMCs.

VSMCs transdifferentiate to a macrophage‑like state 
and foam cells

It has long been thought that VSMCs can take up and accu-
mulate lipids to form foam cells, thereby influencing the 
progression of atherosclerosis [16]. Human arteries exhibit 
diffuse intimal thickening (DIT) before the development 
of atherosclerosis, and lipids occur in the deeper layers of 
the SMC- and extracellular matrix-rich DIT [80]. Notably, 
SMC and SMC foam cells are not as pronounced in mouse 
models of atherosclerosis as they are in human lesions [81]. 

Fig. 3   Signals mediating the phenotypic switching of VSMCs. The 
TGF-β signalling pathway is involved in the differentiation of SMC 
towards a contractile phenotype. Some growth factors (e.g., PDGF) 
exert their role in promoting VSMC dedifferentiation mainly through 
the Ras/Raf/MEK/ERK, PI3K/Akt, NF-κB, and JAK2/STAT3 path-
ways. Activation of Wnt/β-catenin protein signalling may promote the 
osteogenic transdifferentiation of VSMC. ECM binding to integrins 
causes activation of FAK. Phosphorylated FAK recruits Grb2-SoS 
complex, which then activates its downstream Ras and PI3K path-
ways. H2O2 is released from NOX4, which activates the PI3K and 
NF-κB pathways and mediates the VSMC phenotypic switch. In the 
nucleus, RA acts as a ligand for the RA receptor (RAR) and binds 
to the retinoic acid X receptor (RXR) near the target gene as a het-

erodimer with the RA response element (RARE) and thus regulates 
VSMC phenotype switching. Abbreviations: TGF-β, transforming 
growth factor β; SARA, Smad anchor for receptor activation; Grb2, 
growth factor receptor-bound protein 2; SoS, son of seven-less; Ras, 
rat sarcoma; Raf, Raf protein kinase; MEK, mitogen-activated ERK-
regulating kinase; ERK, extracellular signal-regulated kinase; Elk1, 
Ets-like protein 1; PI3K, phosphatidylinositol 3-kinase; Akt/PKB, 
protein kinase B; mTOR, mammalian target of Rapamycin; FOXO4, 
forkhead box protein O; JAK, The Janus kinases; H2O2, hydrogen 
peroxide; NOX4, NADPH oxidase-4; ROS, reactive oxygen species; 
IKK, I kappa B kinase; NF-κB, nuclear factor kappa-B; ECM, extra-
cellular matrix; FAK, focal adhesion kinase; RA, retinoic acid
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In mouse models, lipids appear to be deposited in narrow 
subendothelial spaces with limited SMCs and ECM [80]. 
Hypercholesterolaemia and dyslipidaemia promote the 
accumulation of low-density lipoprotein (LDL) within the 
vascular wall, where LDL is modified and transformed into 
oxidized low-density lipoprotein (oxLDL) in the presence 
of increased ROS. Moreover, VSMCs migrate in the suben-
dothelial space, phagocytose oxidized LDL via scavenger 
receptors (e.g., LOX-1, SR-A, CD36, SR-BI and CXCL16/
SR-PSOX) and differentiate into lipid-containing foam 
cells [82]. SMCs with a synthetic phenotype may be con-
verted to foam cells through a different lipid metabolism 
than contractile SMCs and partly due to reduced expression 
of cholesterol esterase and the cholesterol efflux transporter 
ABCA1 (ATP-binding cassette transporter). Higashimori 
M et al. found that SMC cholesterol enrichment in vitro 
stimulated the expression of cholesterol acyltransferase-1 
mRNA and that cytoplasmic cholesteryl ester accumulation 
was expressed in a Toll-like receptor 4 (TLR4)-dependent 
manner [83]. Yin et al. discovered that oxLDL activated the 
TLR4/MyD88/NF-B inflammatory signalling pathway in 
VSMCs, which, in turn, increased ACAT1 expression and 
promoted VSMC foam cell formation [84]. Another study 
showed that TLR4 is involved in the formation of VSMC 
foam cells induced by oxidized LDL via the Src and Sirt1/3 
pathways [85]. The above results suggest that inflammatory 
signalling mediated by TLR4 may be involved in the forma-
tion of VSMC foam cells induced by oxLDL. The original 
observations by Rong XJ et al. demonstrated that after cho-
lesterol loading, mouse aortic smooth muscle cells transdif-
ferentiated to a macrophage-like state in vitro, accompanied 
by the loss of VSMC markers (α-SMA, SM22α, MYH11, 
and CNN1) and the appearance of macrophage-like markers 
(CD68 and Mac-2) that accelerate atherosclerosis progres-
sion [4]. Further studies by Dr. Fisher's laboratory revealed 
that cholesterol loading induced the conversion of VSMCs to 
a macrophage-like phenotype through the downregulation of 
the miR-143/145–myocardin axis [8]. However, to date, the 
exact mechanism of VSMC foam cell formation has not been 
elucidated. The question of whether SMCs need to acquire a 
macrophage-like phenotype to become foam cells or whether 
they become foam cells and then express macrophage mark-
ers remains unanswered. SMC foam cells have the full char-
acteristics of foam cells and constitute most foam cells in 
atherosclerotic plaques in both humans [7] and mice [86], 
whereas the properties and functions of macrophage-like 
SMCs are still not fully clear. The net effect of macrophage-
like SMCs on the various stages of atherosclerotic plaque 
formation needs to be investigated in depth.

In addition to lipid metabolism, inflammatory factors, vas-
oactive substances, and oxidative stress are important factors 
influencing VSMC transdifferentiation. Macrophage migra-
tion inhibitory factor (MIF) is a critical pro-inflammatory 

mediator. Fan et al. found that MIF inhibited the p68 pro-
tein and reduced the expression of SRF, which controls the 
transcription of VSMC differentiation marker genes, thereby 
inducing VSMC dedifferentiation [87]. Interleukin-lβ (IL-
1β) increases the uptake of unmodified LDL via LDL recep-
tors and enhances the conversion of VSMCs to foam cells 
by increasing cholesterol esterification [88]. In addition, 
interleukin-l9 (IL-19) reduced LDL receptor adapter protein 
1 (LRP1) expression and oxLDL uptake, thereby reducing 
lipid accumulation in VSMCs [89]. LRP1 is a lipoprotein 
receptor that actively converts VSMCs into lipid-rich foam 
cells. Sendra et al. showed that in human VSMCs, Ang II 
increased LRP1 expression and LRP1-mediated aggregated 
LDL uptake, thereby contributing to the formation of lipid-
rich atherosclerotic lesions [90]. Secretory phospholipase 
A2 upregulates SR-A1 and LOX-1 protein expression and 
enhances LDL uptake in VSMCs, inducing a macrophage-
like transition from smooth muscle foam cells [91]. The 
activity of Noxa1-dependent NADPH oxidase is critical for 
VSMC plasticity since it promotes KLF4-mediated transfor-
mation to macrophage-like cells and plaque inflammation 
and expansion [92]. Bao et al. discovered that late glycosyla-
tion end products induced the formation of foam cells from 
VSMCs and their transdifferentiation to a macrophage-like 
state [93]. Hyperglycaemia promotes VSMC-derived foam 
cell formation by increasing CD36-mediated modified LDL 
uptake and decreasing ABCG1-regulated cellular cholesterol 
efflux, an effect associated with increased oxidative stress 
and activation of NF-κB pathway signalling [94]. SMC Dre-
brin inhibits atherosclerosis by reducing the transdifferentia-
tion of SMCs to macrophage-like foam cells in a Nox1- and 
KLF4-dependent manner [95].

VSMCs transdifferentiate to an osteoblastic‑like 
state

VSMCs lose their ability to express smooth muscle-specific 
markers in response to multiple stimuli and phenotypically 
change from contractile to osteoblast-like cells, which may 
subsequently lead to atherosclerotic calcification in vivo 
[96–98]. The exposure of VSMCs to high concentrations 
of phosphate and calcium promotes this transformation, a 
process that activates bone morphogenetic proteins (BMPs) 
and the WNT signalling pathway by upregulating Runt-
related transcription factor 2 (RUNX2) and msh homeobox 2 
(MSX2) transcription factors [98–100]. This process can 
also be mediated by oxygen free radicals [101, 102]. After 
transformation, the cells can produce matrix proteins [98, 
103]. Furthermore, Sirtuin 1 can delay the transformation 
of high phosphate-induced VSMCs into an osteogenic phe-
notype [104, 105]. Inhibition of the H2O2-activated AKT 
signalling pathway blocks osteogenic phenotypic transdif-
ferentiation and Runx2 induction in VSMCs [102]. Chronic 
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exposure to high glucose (HG) alone or in combination with 
oxLDL enhanced the expression of bone morphogenetic 
protein-2 (BMP2), secreted phosphoprotein 1 (SPP1), and 
alkaline phosphatase (ALPL) in VSMCs, implying a process 
of transdifferentiation towards osteoblast-like cells [106]. 
Calcium and osteoprotegerin inhibit vascular calcification 
by regulating IGF1R expression [107]. Kanno et al. found 
that NO inhibited the differentiation of VSMCs towards 
osteoblasts and that cyclic guanosine phosphate (cGMP)-
dependent protein kinase inhibitors restored the inhibitory 
effect on osteoblast differentiation of VSMCs [108]. Further 
studies revealed that NO inhibited TGF-β signalling via a 
CGMP-dependent pathway, thereby preventing the differen-
tiation of VSMCs towards osteoblasts [108]. Uraemic toxin 
[109], AGEs [101], and oestrogen [110] all lead to pheno-
typic changes in VSMCs towards osteoblasts. RANKL is 
expressed in VSMCs and is thought to stimulate the osteo-
genic differentiation of VSMCs [111]. In addition, secreted 
Frizzled Related Protein 5 (SFRP5) inhibits VSMC trans-
formation to osteoblast-like cells and is involved in regulat-
ing the wnt3a-mediated noncanonical signalling pathway by 
inhibiting the Rho/ROCK/JNK signalling pathway [112]. 
In addition to VSMC conversion to foam cells, cholesterol 
loading is involved in VSMC osteogenic transdifferentia-
tion, altered bone-related protein gene expression, and cal-
cification [113–116]. Further studies revealed that the NFAT 
signalling pathway regulated the oxLDL-induced transition 
of VSMCs to an osteoblast-like phenotype [114]. Parhami 
et al. showed that HDL-C in vitro inhibited the osteogenic 
differentiation of VSMCs [117]. More recently, Neven et al. 
suggested that midlayer calcification is a phenotypic trans-
formation of VSMCs to chondrocytes rather than osteo-
blasts [118]. Still, the mechanism of vascular calcification 
to the osteoblast or chondrocyte phenotype needs further 
investigation.

VSMCs transdifferentiate to a mesenchymal stem 
cell‑like state and a myofibroblast‑like state

Chen et al. found that the specific deletion of SMC TGF-β 
signalling was associated with the transformation of contrac-
tile SMCs into MSC-like intermediates that can develop into 
osteoblast-like cells, chondrocyte-like cells, adipocyte-like 
cells, and macrophage-like cells in Apoe −/− mice fed a 
high-cholesterol diet [119]. Recent studies have found that 
stem cell antigen-1 (Sca 1) is expressed in VSMC-derived 
cells within healthy vessels and atherosclerotic lesions [6, 
29]. However, although a subset of SMC-derived cells in ath-
erosclerotic lesions express multiple markers of MSCs, there 
is no evidence that they are pluripotent and therefore do not 
appear to be capable of MSCs. The SMC-derived SEM cells 
identified by Pan et al. have stem cell properties and have 
the potential to differentiate into fibrochondrocyte-like cells. 

The proportion of ACTA2 + cells was significantly increased 
after induction of SEM cells with TGFβ1. Notably, all-trans 
retinoic acid (ATRA)-activated retinoic acid (RA) signal-
ling inhibited the expression of SEM cell markers in vitro 
and suppressed SMC-to-SEM cell transformation. It is sug-
gested that the RA signal plays an important role in regulat-
ing the SMC phenotypic transition. RA, an active metabolite 
of vitamin A, regulates cell proliferation and differentiation 
by binding the following two subfamilies of nuclear recep-
tors: retinoid X receptors (RXRγ, RXRβ, and RXRα) and 
RA receptors (RARγ, RARβ, and RARα) [120]. Previous 
studies have demonstrated that RA can regulate VSMC phe-
notypes by binding RA-reactive elements located in target 
genes through nuclear receptors [121]. The RA receptor-
specific agonist Am80 inhibits the activity of the transcrip-
tion factor KLF5 to attenuate the phenotypic modulation of 
SMCs [122]. Smoothelin, a marker of late vascular smooth 
muscle cell differentiation, is not expressed in differenti-
ated myofibroblasts and can, therefore, be used to differ-
entiate differentiated myofibroblasts from mature VSMCs 
[123, 124]. During the evolution of vascular diseases, such 
as atherosclerosis or restenosis, VSMCs may lose specific 
differentiation markers, such as smoothelin markers, and 
become similar to myofibroblasts [125].

Transcriptional factors/co‑factors 
mediating phenotypic switching of VSMCs 
in atherosclerosis

The expression of SMC-specific contractile proteins is 
dependent on the regulation of a network of transcription 
factors/cofactors in the promoter regions of their genes. 
Three transcription factors, namely, myocardin (MYOCD), 
serum response factor (SRF), and Krüppel-like factor 4 
(KLF4), are thought to be key components of this network 
[6, 126, 127]. MYOCD is a critical regulator of SMC con-
tractility [128]. MYOCD is highly expressed in VSMCs 
and effectively activates CArG-dependent [129] and CArG-
independent [130] target gene expression. MYOCD can-
not attach directly to the target gene's CArG box due to the 
absence of a DNA binding structural domain. In contrast, 
MYOCD can interact with SRF's N-terminal MADS-box 
via a Q-rich structural domain and bind the target gene's 
CArG box, forming an MYOCD-SRF-CArG box complex 
that activates the gene responsible for smooth muscle cell 
contraction, thereby maintaining the differentiation state 
and contractile phenotype of VSMCs [127, 131, 132]. 
MYOCD-related transcription factors (MRTFs)-A and B 
have also been identified as coactivators of SRF. SRF is a 
stimulus-responsive transcription factor that is a member of 
the Mcm1-Agamous-Deficiens-SRF-structural domain fam-
ily of transcriptional regulators. SRF contains the following 



	 F. Zhang et al.

1 3

6  Page 10 of 19

two functional domains: the N-terminus is a DNA-binding 
structural domain that associates with the serum response 
element or CArG-box and contains the MADS structural 
domain that facilitates DNA binding and homodimerization, 
and the C-terminus is thought to be a structural domain that 
regulates cofactor binding [126]. Almost all smooth muscle 
contraction marker genes have one or more SRF binding 
sites (CArG-box sequences) in the promoter or first intron. 
As transcription factors, SRFs are not transcriptionally 
active on their own and, therefore, need to interact with 
many SRF cofactors to coregulate the expression of target 
genes [133]. Under basal conditions, KLF4 expression in 
VSMCs is very low and is rapidly induced after injury to 
VSMCs; it is generally believed that KLF4 may inhibit the 
expression of specific genes encoding contractile proteins 
by competing with SRF for binding to CArG [134]. Other 
transcription factors acting on the MYOD/SRF complex 
have been demonstrated to play a critical role in SMC dif-
ferentiation/dedifferentiation. By interacting with SRF and 
MYOCD, phosphatase and tensin homologues (PTEN) [135] 
have been demonstrated to maintain the contractile pheno-
type of SMCs. In contrast, phosphorylated ETS domain-con-
taining protein-1 (pELK-1) [136], Yin Yang 1 (YY1) [137] 
and forkhead box protein O (FOXO4) [138] induce SMC 
dedifferentiation through their interaction with the MYOCD/
SRF complex. By interacting with the KLF4 promoter, 
specificity protein-1 (Sp-1) [139] regulates SMC phenotypic 
alterations. Dedicator of cytokinesis 2 (DOCK2) [140], a rac 
activator, was recently identified as a novel regulator of the 
SMC phenotype. It competes with MYOCD for interaction 
with SRF, which is required for SMC dedifferentiation, and 
DOCK2 and KLF4 synergistically suppress MYOCD/SRF 
interactions. Transcription factor 21 (TCF21) knockdown 
experiments in SMCs demonstrate that TCF21 promotes 
phenotypic regulation in vivo [2]. Further studies established 
that TCF21 may interact directly with MYOCD to disrupt its 
functional association with SRF and transcriptional regula-
tion of SMC genes [141].

Epigenetic mechanisms regulating 
the phenotypic switching of VSMCs 
in atherosclerosis

The epigenetic state is coordinated by numerous converging 
and reinforcing signals, including DNA methylation, histone 
modifications and non-coding RNAs [142]. In recent years, 
extensive progress has been made in our understanding of 
the complex epigenetic mechanisms underlying the pheno-
typic modulation of VSMCs in atherosclerosis (Fig. 4).

DNA methylation

In mammalian cells, DNA methylation is a process through 
which methylation is selectively added to cytosine by 
the DNA methyltransferases DNMT1, DNMT3A, and 
DNMT3B, and this process mediates gene silencing [143]. 
Early studies involving further analysis of genome-wide 
methylation in normal and atherosclerotic arteries by high-
pressure liquid chromatography have shown that the content 
of 5-methylcytosine (5-MC) tends to decrease in atheroscle-
rotic arteries compared with that in normal arteries [144]. 
Liu et al. discovered that ten-eleven translocation-2 (TET2) 
and 5-hydroxymethylcytosine (5hmC) were abundant in 
a differentiated VSMC experimental model but were dra-
matically reduced in a dedifferentiated VSMC experimen-
tal model and human atherosclerosis [145]. Additionally, 
silencing TET2 reduced the expression of contractile genes 
in VSMCs while significantly increasing the expression of 
synthetic phenotypic markers. In ApoE−/− mice fed a high-
fat diet, the DNA methyltransferase inhibitor 5-aza-2-de-
oxycytidine (5-Aza) significantly reduced atherosclerotic 
lesions and inhibited the activity of DNA methyltransferase 
while reducing the overall 5-methylcytosine content in ath-
erosclerotic lesions [146]. In addition, during the phenotypic 
regulation of SMCs cultured in vitro, overall hypomethyla-
tion occurs, which is accompanied by a decrease in DNA 
methyltransferase activity [147, 148].

Several studies have shown that DNA methylation regu-
lates certain SMC genes, thereby affecting the regulation of 
the SMC phenotype and the development of vascular dis-
eases. The methylation-dependent combination of recom-
bination signal-binding protein for the immunoglobulin J 
region (RBPJ) and a GC repressor has been shown to nega-
tively regulate the activity of smooth muscle myosin heavy 
chain (SM MHC) promoters and RBPJ has been shown to 
inhibit the expression of SMC markers in phenotypically 
regulated SMCs [149]. Interestingly, LPS or a high-fat diet 
downregulates miR-152, a DNMT1 repressor, resulting in 
the hypermethylation of the oestrogen receptor-α gene in 
human or rat aortic SMCs [150]. MIR-1298 is methylation-
dependent and affects the proliferation and migration of 
VSMCs by targeting connexin 43 [151]. DNMT1, a nega-
tive regulator of arterial stiffening, maintains the contractile 
phenotype of VSMCs. A previous study demonstrated that 
DNMT1 plays a vital role in the PDGF-induced phenotypic 
transformation of rat airway smooth muscle cells [152]. 
Recently, a report demonstrated that DNMT suppression 
with 5-Aza enhances mineralization in human aortic SMCs 
in vitro by demethylating the promoter of alkaline phos-
phatase [153].

The ECM influences SMC phenotypes and DNA meth-
ylation [148]. During SMC proliferation, the collagen type 
XV alpha 1 gene (COL15A1) is hypomethylated, leading 
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to the elevation of gene expression involved in atheroscle-
rosis development and the SMC phenotype [154, 155]. 
DNA methylation levels are altered in rat visceral SMCs 
grown on denatured versus native collagen [148]. Plating-
damaged collagen increases SMC proliferation, and this 
increase is reversed by 5-Aza [148]. The matrix precisely 
regulates the localization and expression of DNMT3A and 
affects the differentiation of SMCs exposed to denatured 
matrix ± hypoxia [156]. In addition, the study further 
revealed that the expression of nuclear DNMT3 in SMCs 
on damaged collagen was increased. Substrate stiffening 
in VSMCs induces the phenotypic transition of VSMCs by 
downregulating DNMT1 expression. Through the extracel-
lular matrix, altered DNA methylation may affect the SMC 

phenotype, resulting in the transdifferentiation of VSMCs 
to an osteoblast-like phenotype. These studies demonstrate 
that DNA methylation occurs during the phenotypic transi-
tion of SMCs, but additional evidence is required to deter-
mine whether DNA methylation is causally related to this 
process and, if so, the underlying mechanisms.

Histone modifications

Histone acetylation and deacetylation are strictly regulated 
by histone acetyltransferase (HAT) and histone deacetylase 
(HDAC) and are closely related to eukaryotic gene tran-
scription. In the early SMC differentiation A404 cell model 
induced by RA, SRF enrichment and SMC CARG inclusion 

Fig. 4   Epigenetic mechanisms regulating the phenotypic switching 
of VSMCs in response to vascular injury or atherosclerotic disease. 
The epigenetic processes include DNA methylation, histone modifi-
cations, non-coding RNA expression. During the phenotypic regula-
tion of SMCs cultured in  vitro, overall hypomethylation occurs. In 
the basal state, SMC contractile genes (e.g. SMα-Actin) are post-
translationally modified through alterations such as acetylation 
of histones 3 and 4 (H3Ac and H4Ac) and dimethylation of H3K4 
(H3K4diMe). These modifications are thought to remodel chroma-

tin structure, allowing the SRF-Mycardin complex to bind to CArG-
box elements and drive SMC-selective gene expression. In contrast, 
loss of previously activated histone modifications (e.g. H3/H4 Ac 
and H3K4diMe) and reduced ability of the SRF-Mycardin complex 
to bind to the CArG-box suppressed the expression of SMC marker 
genes. Non-coding RNAs (mainly microRNAs, long non-coding 
RNAs and circular RNAs) also play a key role in the VSMC pheno-
typic switch. The arrows and T-shaped ends represent promoting and 
inhibiting phenotype switch, respectively



	 F. Zhang et al.

1 3

6  Page 12 of 19

region histone H3 and H4 hyperacetylation were observed 
[157]. It has been shown that stimulation of the coactiva-
tor CREB binding protein (CBP) to the SM22 promoter 
depends on HAT activity. HDAC overexpression inhibits 
SM22 promoter activity, whereas the HDAC inhibitor tri-
chostatin A stimulates SM22 promoter activity in a CArG 
box-dependent manner and induces endogenous SM22 
gene expression [158, 159]. Myocardin is a coactivator of 
SRF transcription specifically expressed in the heart and 
smooth muscle and can induce the histone acetylation of 
nucleosomes surrounding SRF-binding sites near the con-
trol region of the smooth muscle gene. Other studies have 
found that myocardin increases the association of SRF with 
methylated histones and CArG box chromatin during the 
activation of the SMC gene. McDonald et al. observed that 
the deacetylation of histone H4 and the loss of SRF binding 
inhibit SMC differentiation after vascular injury. In contrast, 
KLF4 recruits histone H4 deacetylase activity into the SMC 
gene and prevents SRF from binding methylated histones 
and CArG box chromatin, thereby inhibiting SMC gene 
expression [160]. The relationship between histone acetyla-
tion and the pathway affects the phenotypic transformation 
of SMCs. The overexpression of HAT proteins (P300 and 
CBP) has been shown to enhance TGFβ1-induced SM22 
promoter activity [161]. In comparison, the overexpression 
of HAT inhibitors, such as Twist1, but not Twist2/Dermo-1 
and E1A, inhibits TGFβ1's effect. Studies involving chro-
matin precipitation measurements have revealed that PDGF-
BB induces the dissociation of the MKL factor from the 
CArG-containing region of SMC marker genes. This type 
of dissociation is mediated by the MKL factor and the phos-
phorylation of Elk-1 at early stages but is later mediated by 
the histone acetyl enzymes HDAC2, HDAC4, and HDAC5, 
which are induced by low levels of the promoter regions of 
acetylated histone H4 [162]. HDAC4 regulates the prolif-
eration and migration of SMCs induced by PDGF-BB by 
generating ROS via Ca2 + /calmodulin-dependent protein 
kinase and activating p38 mitogen-activated protein kinase/
heat shock protein 27 signals [163]. Additionally, the inhi-
bition of SMC differentiation marker genes by poVPC is 
associated with a low level of histone H4 acetylation at the 
SM-actin promoter, which is mediated by the recruitment 
of HDAC2 and HDAC5 [164]. During phenotypic switch-
ing, the sequence combination of pELK-1 and KLF4 in 
G/C repressor regions largely silenced SMC marker genes. 
HDAC2 is recruited by the pELK-1-KLF4 complex, which 
results in reduced histone acetylation and epigenetic silenc-
ing [136]. A recent study performed H3K4me2 demethyla-
tion in smooth muscle-specific genomes by constructing a 
specific epigenetic editing system (Myocd-LSD1) and found 
that stable histone modification of H3K4me2 mediated DNA 
demethylation by acting as a TET2 binding site and that 
H3K4me2-demethylated smooth muscle cells lost their cell 

identity and muscle function and enhanced smooth muscle 
cell phenotypic plasticity [165]. This study sheds new light 
on the mechanism of "epigenetic memory" in smooth muscle 
cells and provides new clues for vascular smooth muscle-
mediated prevention and treatment of cardiovascular disease. 
Christian L et al. found that mutations that affect both TGF-β 
signalling and the VSMC cytoskeleton lead to the forma-
tion of the HDAC9-MALAT1-BRG1 tricompound histone, 
which binds chromatin and inhibits contractile protein gene 
expression while causing increased trimethylated modifica-
tions of histone H3-lysine 27 [166].

MicroRNAs

MicroRNAs (miRNAs) are involved in various regulatory 
pathways, including the phenotypic switching of VSMCs. 
MiRNAs also modulate VSMC phenotypes by interacting 
with transcription factors (SRF, myocardin, MRTFs, and 
KLF) and the cytoskeleton, affecting the differentiation of 
VSMCs. Albinsson S et al. used SM22Cre-Dicerflox mice to 
reveal that the knockout of Dicer triggers embryonic lethal-
ity on embryonic day 16.5, which was characterized by 
decreased SMC marker proteins and proteins, impaired con-
tractile function and disarrangement of aortic elastic lamel-
lae [167]. It was demonstrated that in contrast to cells in a 
normal vascular wall, proliferating VSMCs have reduced 
miR-143/145 levels [168]. Cordes et al. discovered that miR-
145 modulates the levels of VSMC differentiation transcrip-
tion factors, e.g., CaMKIIδ, myocardin, and KLF4 [169]. 
Evidence indicates that miR-145 elevates myocardin levels 
but downregulates CaMKIIδ and KLF4 levels, which is con-
sistent with the fact that miR-145 promotes a contractile 
phenotype in VSMCs. Farina FM et al. discovered that miR-
128-3p is a new phenotypic switch regulator of VSMCs, 
and KLF4 is a direct target of miR-128 capable of regulat-
ing the methylation status of the key VSMC gene MYH11 
[170]. MiR-22 is also a novel phenotypic switch regulator 
in VSMCs and targets ecotropic viral integration site 1 
(EVI1) and methyl CpG binding protein 2 (MECP2), which 
regulate H3K9me3 enrichment in the promoter regions of 
SMC-specific genes [171]. MiR-31-5p significantly inhib-
its the myocardin levels and aggravates the pathological 
VSMC phenotypic switch and aortic aneurysm/dissection 
(AAD), while the inhibition of aldehyde dehydrogenase 2 
(ALDH2) can attenuate this effect [172]. Platelet-derived 
miR-223 seems to promote the phenotypic switch of VSMCs 
in arterial injury repair by directly targeting PDGFRβ [173].

LncRNAs

LncRNAs are RNAs that regulate gene expression and 
usually do not encode proteins [174]. Lung adenocarci-
noma metastasis-associated transcript 1 (MALAT1) can be 
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combined with the immunoprecipitate of histone deacetylase 
9 (HDAC9) and the chromatin remodelling enzyme Brahma-
related gene 1 (BRG1), and silencing MALAT1 expression 
can inhibit immunoprecipitate stability, downregulate the 
levels of proliferating cell nuclear antigen, cyclin D1, and 
osteopontin genes, and promote the switch of SMCs from a 
synthetic phenotype to a contractile phenotype [166, 175]. 
MYOSLID, a VSMC-selective and SRF/CArG-dependent 
lncRNA that promotes the assembly of fibronectin through 
the nuclear transfer of myocardin-related transcription factor 
A, transcriptionally activates the VSMC contraction gene 
and its downstream signals and thus stabilizes the VSMC 
contraction phenotype [176]. Ahmed et al. further found 
that nuclear paraspeckle assembly transcript 1 (NEAT1) 
can block the interaction between histone methyltransferase 
1 and WD repeat-containing protein 5 (WDR5) by binding 
the epigenetic activator WDR5 protein, and this blockade 
regulates histone methyltransferase 1 catalytic function, 
reduces the combination of serum response factors and the 
CArG box in the smooth muscle-specific gene promoter, 
and inhibits the expression of smooth muscle contraction-
related proteins [177]. Bell et al. performed RNA sequenc-
ing of VSMCs in coronary arteries from humans and found 
that the new lncRNA SENR (smooth muscle and endothe-
lial cell-rich migration/differentiation-associated) exhibited 
cytoplasmic localization, and its downregulated expression 
stabilized the contractile phenotypes of SMCs [178]. Studies 
have shown that lncRNA-GAS5 can regulate VSMC func-
tion through the Wnt/β-catenin signalling pathway [179]. 
In addition, GAS5 can use multiple Smad-binding elements 
to competitively bind the Smad3 protein as a molecular 
decoy to negatively regulate the TGF-β/Smad3 signalling 
pathway and thus inhibit TGF-β-induced VSMC differen-
tiation. A recent study found that the ECM gene was down-
regulated and that the contraction gene was upregulated in 
the lncRNA Mymsl gene-knockout mouse aorta, indicating 
that the lncRNA Mymsl regulates the phenotypic transition 
of VSMCs [180]. LncRNA ANRIL modulates the pheno-
typic switch of HASMCs by acting as a molecular scaffold 
to promote the combination of HDAC3 and WDR5 to form 
an HDAC3 and WDR5 complex, regulating the expression 
of target genes, such as NOX1, through histone modifica-
tion and upregulating the level of ROS [181]. In conclusion, 
lncRNAs constitute a new class of cellular phenotype transi-
tion regulators that may also be used as therapeutic targets 
for atherosclerosis and related cardiovascular diseases.

CircRNAs

CircRNAs constitute a class of non-coding RNAs with a 
covalently closed-loop structure. In contrast to conventional 
linear RNAs, circRNAs are formed by reverse splicing and 
do not have a 5′ end cap or a 3′ end poly(A) tail structure 

and, therefore, have features and functions that linear RNAs 
do not have [182]. CircRNAs could act as microRNA 
sponges to regulate VSMC phenotypes. Lasse S Kristensen 
et al. showed that circ_Lrp6, a circular RNA enriched in 
VSMCs with multiple putative binding sites for miR-145, 
blocked miR-145-mediated regulation of VSMC differen-
tiation [183]. Another study used circRNA sequencing to 
identify circMAP3K5 in human coronary artery SMCs, 
which play a major role in the dedifferentiated phenotype of 
VSMCs, and demonstrated at the cellular and animal levels 
that circMAP3K5 acts as a competitive endogenous RNA to 
close miR-22-3p and that miR-22-3p deletion indeed fails to 
inhibit the TET2 pathway, thereby maintaining VSMC dif-
ferentiation [184]. Xu et al. also found that circDiaph3 regu-
lates the differentiation of rat VSMCs. circDiaph3 expres-
sion upregulation inhibits the function of miR-148a-5p, 
thereby downregulating Diaph3 protein levels and convert-
ing mature contractile VSMCs to dedifferentiated immature 
synthetic VSMCs by reducing the synthesis of contractile 
SMC markers and increasing the synthesis of type I collagen 
and elastin fibres [185]. The overexpression of circ-SATB2 
was found to inhibit SM22α expression [186]. Yang et al. 
found that circCHFR is also involved in the regulation of 
phenotypic changes in VSMCs [187]. An increasing number 
of researches suggest that circRNAs play significant roles 
in the pathogenesis of atherosclerosis induced by VSMCs 
phenotypic switching. However, the lack of a comprehen-
sive understanding of the precise biogenesis and regulatory 
mechanisms of circRNAs has hindered progress in this area 
of research and delayed the use of circRNAs in clinical diag-
nosis and therapy.

Conclusion and future perspective

For many years, VSMCs were undervalued, mischaracter-
ized, and commonly labelled cells that promote atheroscle-
rosis and/or stable plaques. Recent progress in VSMC line-
age tracing and new transcriptomic technologies in mouse 
models of atherosclerosis further validate the idea that 
VSMCs have broad plasticity, reveal transitional cell types 
derived from previously constricted VSMCs with distinct 
molecular characteristics with different phenotypes playing 
distinct roles in lesion development, and suggest that differ-
ent stimuli trigger behavioural changes in these cells. New 
research has also confirmed the theory from decades ago that 
the clonal expansion of a few VSMC-derived cells occurred 
in atherosclerosis. In addition to confirming previous ideas 
and theories, these new techniques revealed the existence of 
transcriptomic heterogeneity in VSMCs in atherosclerosis 
and led to the identification of additional cell subpopulations 
and VSMC-associated genes. However, there are still some 
problems, such as the heterogeneity factor of spectral tracer 
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markers, the dose of tamoxifen, and objective factors, such 
as vascular tissue analysis techniques, that can affect the 
reliability of the results.

To develop effective therapeutic strategies to limit car-
diovascular risk, it is necessary to address several questions. 
First, does the limited number of VSMCs have a predeter-
mined route to migrate from the mid-membrane and undergo 
a fate transition in the endothelium to the SEM cell state? 
Second, do VSMCs have a predetermined route to migrate 
towards the plaque fibrous cap or necrotic core? Finally, are 
there specific factors that induce the differentiation of SEM 
cells into multiple VSMC-derived cells and their relative 
importance in the pathogenesis of atherosclerosis? Under-
standing the mechanisms of VSMC plasticity is necessary 
for achieving easy targeting of vascular smooth muscle phe-
notypic therapy to inhibit atherosclerotic plaque progression. 
scRNA-seq analyses of normal and diseased human coro-
nary arteries are expected to identify CAD candidate genes 
coexpressed in cells expressing SMC markers and define 
distinct SMC subpopulations in diseased coronary arteries 
that could elucidate the pathogenesis of the disease. The next 
step is to integrate VSMC-specific fate maps and single-cell 
transcriptomics with human genetics to find novel regulatory 
mechanisms and candidate targets for the therapeutic modu-
lation of VSMC phenotype switching. Advances in imaging 
and nanotechnology can also be used to detect inducers of 
clinically unstable plaque lesions.

Theoretically, the observation of an increase in the num-
ber of transformed functional cells in healthy vessels should 
be alarming. Again, knowledge of the molecular character-
istics of these cells may help selectively target these cells 
with specific drugs, and treatment should specifically tar-
get a harmful subpopulation of VSMCs, reversing their 
phenotype or reprogramming the cells into atheroprotec-
tive VSMCs. However, such prospects are still in the early 
stages. Recent studies have been performed in mice, allow-
ing access to large numbers of vascular smooth muscle cells 
and modifying their genomes for genealogical labelling. 
Further studies are needed to translate the available results 
first into human cells and then into the clinical detection of 
an increase in the number of functional cells converted into 
healthy vasculature.
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