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Abstract

Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are charac-
terized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of
cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular
disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress,
calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as
p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic
and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways
through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and
apoptotic machinery excavates the implementation of selective biomarkers, for instance, mMTOR, Bcl-2, BH3 family mem-
bers, caspases, AMPK, PI3K/Akt/GSK3p, and p38/INK/MAPK, in the pathogenesis and progression of neurodegenerative
diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological
intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential
role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to
treat neurodegenerative diseases.

Graphical abstract

Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the
ubiquitin—proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause
cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways
through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and
caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which
are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead
to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in
the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act
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as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds
act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
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Introduction

Accumulation of protein aggregates in the cellular milieu is a
major burden for neurons, and it greatly disturbs the nervous
system homeostasis. These misfolded and aggregated proteins
are hampering the activities and transmission of the neuronal
cell. The accumulation of aggregates induces toxicity, which
causes memory loss, cognitive decline, and impairment in
the maturation of neuronal cells that result in the progression
of several neurodegenerative disorders (NDDs), including
Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyo-
trophic lateral sclerosis (ALS), Huntington’s disease (HD),
and Multiple sclerosis (MS) [1, 2]. Excessive accumulation
of abnormally aggregated/non-functional proteins in the cyto-
plasmic region of the cell leads to organelle damage, which is
responsible for neuronal death in the central nervous system
(CNS) and ultimately leads to cognitive defects and synaptic
dysfunction. Apoptosis and autophagy are two degradation
mechanisms that are currently known for eliminating the
degraded components and quality control of cellular com-
ponents, which is necessary for maintaining cellular home-
ostasis. Autophagy is defined as the lysosomal-dependent
degradation process of cytoplasmic constituents, whereas,
apoptosis is considered as programmed cell death (PCD) of
cells. Autophagy is of three types, namely macroautophagy,
microautophagy, and chaperone-mediated autophagy that
occurs through the formation of autophagosomes followed
by association with lysosomes leads to the formation of the
autophagolysosomal complex. On the contrary, apoptosis
is described as morphological and physiological changes
required to maintain cellular homeostasis by inducing nuclear
membrane destruction, DNA fragmentation, and generation of
apoptotic bodies [3, 4]. Recent studies demonstrated that the
perturbation of autophagic machinery causes accumulation
of misfolded proteins, and excessive induction of apoptotic
mechanism leads to neuronal death that is involved in the
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pathogenesis of NDDs [5, 6]. Excessive loss of neuronal cells
leads to cognitive defects, impaired neurogenesis and neural
differentiation, synaptic dysfunction, and memory impair-
ment, which are characteristic features of NDDs [7, 8]. How-
ever, the molecular crosstalk between autophagic degradation
and apoptotic cell death is a complicated phenomenon and has
provided conflicting results but at the same time necessary for
determining the fate of the cell. However, under physiological
conditions, such as excessive oxidative stress, reactive oxy-
gen species (ROS) production, mitochondrial dysfunction,
and endoplasmic reticulum (ER) stress, neuronal cells exhibit
defective or incomplete autophagic degradation of misfolded
protein aggregates and, therefore, apoptotic machinery that
causes neuronal cell death. Extensive investigations identi-
fied the potential implementation of epigenetic regulator p53
and pro-angiogenic marker vascular endothelial growth factor
(VEGF) in the modulation and regulation of both apoptosis
and autophagy machinery.

Moreover, autophagy is known to have a dual effect on
apoptosis, which involves inhibition and induction of the
apoptosis pathway. Under stress conditions, apart from mis-
folded protein degradation, autophagic machinery, either itself
or through apoptotic induction, causes cell death depend-
ing upon the exposure of a stress condition [9, 10]. Both
autophagy and apoptosis pathways regulate brain homeosta-
sis through the involvement of downstream targets such as
the mammalian target of rapamycin (mTOR), Bcl and BH3
family of proteins, caspases, 5' AMP-activated protein kinase
(AMPK), class III phosphatidylinositol 3-kinase (PI3K),
and glycogen synthase kinase 3 (GSK3p). Recent studies
explored the potential of biomolecules, long non-coding
RNAs (LncRNAs), and micro-RNAs (miRNAs) as therapeu-
tic modulators of these pathways involved in the pathogenesis
and progression of NDDs.

Herein, we provided a comprehensive story derived from
various literature sources to dissect the molecular mechanism
between apoptosis and autophagy in NDDs. In the beginning,
we have discussed about cell death pathways followed by the
shared mechanism between three types of cell death pathways
and the dual role of autophagy on apoptosis. The later part of
the review discusses the molecular markers of cell death in
NDDs with apoptosis and autophagy signaling. Finally, we
discuss the potential application of miRNAs, LncRNAs, and
biomolecules on different cell death pathways.

Overview of cell death pathways

Autophagic pathway: act as pro-death
and pro-survival signaling cascade

Autophagy is a molecular phenomenon used to elimi-
nate damaged organelle and protein aggregates, which is
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characterized by the formation of autophagosomes and
interaction with the lysosome. Cytoplasmic component
degradation in the lysosome is divided into three subtypes
as follows: macroautophagy, microautophagy, and chap-
erone-mediated autophagy. The mechanism underlying
autophagy includes phagophore membrane formation from
the Golgi apparatus, mitochondria, plasma membrane, and
ER, where misfolded proteins and degraded cytoplasmic
material are wrapped, elongated and forms autophagosome.
This autophagosome, through microtubule dynamics, trans-
ports to the lysosome, where the formation of autolysosome
occurs through the fusion of autophagosome and lysosome
[11, 12]. Further, autophagy is a multi-regulatory process
initiated by two major clusters of proteins UNS51-like Ser/
Thr kinases (ULK) complex and PI3K complex. The ULK
complex consists of ULK1/2 family, FAK family kinase
interacting protein of 200 kDa, autophagy-related protein
13 (Atgl3) whereas, PI3K complex consists of vacuolar
protein sorting 34 (Vps34), p15 (Vpsl5), beclinl (Atgb6),
and Barkor (Atgl4) [13, 14]. Two ubiquitin complexes
control the elongation and interaction of autophagosomes.
Firstly, a complex Atg5/Atg7/Atgl2 is formed due to cova-
lent interaction between Atg5/Atg7 and Atgl2. Secondly,
this Atg5/Atg7/Atg12 complex interacts with Atgl6 to form
another complex, AtgS/Atg7/Atgl12/Atgl6, that is required
for autophagosomes elongation. Another complex associ-
ated with the molecular marker of autophagosome is formed
through the proteolytic cleavage of microtubule-associated
protein 1 light chain 3 (LC3) with Atg4B to generate LC3-
II [15-18]. However, autophagosomes require a motor and
kinesin protein along with the recruitment of protein com-
plexes known as the soluble NSF attachment protein recep-
tor (SNARE?5) for relocation along the microtubule, fusion
with the lysosome, and protein degradation [19] (Fig. 1).

Apoptosis pathway: intrinsic and extrinsic cell death
machinery

Apoptosis, an important molecular phenomenon, which
is also known as PCD, is involved in the maintenance of
tissue homeostasis. Apoptosis is best described as nuclear
morphological changes characterized by chromatin regula-
tion, degradation of cytoskeletal proteins, nuclear membrane
breakdown, DNA fragmentation, and generation of apoptotic
bodies adjacent to the cell surface [20, 21]. The physical
execution of apoptosis can be initiated by either the extrin-
sic or intrinsic apoptotic pathway. Moreover, death recep-
tors and internal stimuli such as DNA damage, activation of
pro-apoptotic factors of B-cell lymphoma 2 (Bcl-2) family,
and upregulation of p53 play a major function in regulating
the apoptotic pathway [22, 23]. Extrinsic apoptotic path-
way induces the attachment of tumor necrosis factor (TNF)
family receptor on the cell surface, which increases the

recruitment of fas-associated death domain protein (FADD)
and TNF-related apoptosis-inducing ligand (TRAIL) follow-
ing the binding of initiator caspases (caspase 8 and caspase
9), which initiate its autoproteolytic processing. Initiation
of autoproteolytic processing leads to activation of effector
caspases (caspase 3 and caspase 7), resulting in cleavage
of Bcl-2 homology region 3 (BH3) protein, which induces
pro-apoptotic factors’ activation and alters inner mitochon-
dria membrane permeability [24-26]. On the contrary, the
intrinsic apoptotic pathway, also called the mitochondrial
apoptotic pathway, is a death receptor-independent mecha-
nism and requires Bcl-2 member proteins, consisting of the
BH1-3 domain, to decide whether to undergo mitochondrial
membrane permeabilization or not. Further, intrinsic apop-
totic pathway causes sequestration of pro-apoptotic factors
from mitochondria to cytosol, including cytochrome C, a
second mitochondria-derived activator of caspases/direct
IAP-binding protein with low PI (Smac/DIABLO), HtrA2/
Omi, and apoptosis-inducing factors (AIFs), which results
in the generation of apoptosome complex.

Bcl-2 associated X protein (Bax) and Bcl-2 homolo-
gous antagonist/killer (Bak), which have BH1-3 domain
required for the execution of the mitochondrial apoptotic
pathways in a caspase-dependent or caspase-independent
manner [27-29]. Apoptosis is a highly regulated phenom-
enon controlled by the inhibitor of apoptosis proteins (IAP)
and X-linked inhibitor of apoptosis protein (XIAP), which
can interfere in the caspase activation process leading to
caspase-dependent or caspase-independent apoptosis. Fur-
ther, ROS, nitrogen—oxygen species (NOS), and DNA dam-
age are considered to be inducers of apoptosis, resulting in
the activation of signaling cascade that results in cell death
in various disease models of NDDs. These agents lead to
activation of janus kinases/signal transducer and activator
of transcription protein (JAK/STAT) signaling pathway,
through increased activity of cytokines, such as a nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-
«B) pathway and PI3K-like kinases, respectively, which pro-
motes cell apoptosis [30-32] (Fig. 1).

Necroptosis cell death machinery

Necroptosis is the well-characterized molecular phenomenon
of unprogrammed cell death activated by cellular damage
or pathogenic infiltration regulating necrosis mediated by
receptor-interacting protein kinase 1 (RIPK1) and receptor-
interacting protein kinase 3 (RIPK3). Activation of RIPK1
and RIPK3 eventually leads to plasma membrane permeabi-
lization, activation of cytokines and chemokines, sequester-
ing cell content, and exposure of damage-associated molec-
ular patterns (DAMP’s) [33]. RIPK1 initiated a signaling
cascade, which phosphorylates and activates RIPK3 that
further phosphorylates and activates mixed lineage kinase
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Fig. 1 Molecular connection
between apoptosis and necrop-
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domain-like (MLKL), forming a complex known as necro-
some. Necrosome cause cell rupture because of the pore-
forming ability of MLKL aggregates, modulation of ion
channels, and the inflammasome formation in some cellular
contexts [34—37]. Inhibition of RIPK1, RIPK3, and MLKL
and activation of necrosome in concert with necrosis is the
pharmacological feature of necroptosis. The number of lit-
eratures suggesting the role of caspase 8 inhibition in trans-
ferring the mitochondrial apoptotic pathway to necroptosis
cell death pathway due to increased expression of RIPK3
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and MLKL and initiation due to immune-based ligands [38].
Necroptosis resembles the apoptotic cell death pathways due
to the implication of caspase 8 and death receptors such
as TNF alpha, FADD, Tumor necrosis factor receptor type
1-associated DEATH domain protein (TRADD), and TNF
receptor-associated factor 2 (TRAF2) and hence is called as
alternative cell death signaling pathway [39]. In addition,
FADD/RIP3 and FLIP/RIP3 knock out the model interplay
between apoptosis and necroptosis due to the absence of
FLIP and caspase 8-FLIP heterodimers. In another study
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function of protein kinase B (Akt) as a molecular switch
between apoptosis and necroptosis through phosphorylation,
production of TNFa, and blocking of pro-apoptotic factor
response was demonstrated [40, 41] (Fig. 1).

Crosslinking autophagy and apoptosis
signaling pathway

Calcium efflux and endoplasmic reticulum stress
response

Misfolded protein aggregates cause activation of ER stress
signaling, which involves the synthesis and degradation of
proteins via autophagic pathway and endoplasmic-reticu-
lum-associated protein degradation (ERAD) pathway. Fur-
ther, eliminating the damaged organelle through apoptotic
machinery decides the fate of the cell that depends on the
intensity and time-duration of the implied stress condition
[42]. During this process, molecular chaperone GRP78/BiP
interacts with mechanistic UPR signaling molecules, namely
activating transcription factor 6 (ATF6), protein kinase RNA
(PKR), ER kinase (PERK), and inositol-requiring protein 1o
(IRE1a). The complex between GRP78/BiP and UPR signal-
ing molecules activate respective transducers and assist in
the folding of accumulated proteins. However, PERK attenu-
ates mRNA translation and thus inhibits the entry of newly
synthesized protein in contact with the ER under stress con-
ditions along with elF2a activation [43]. Moreover, elF2a
phosphorylation causes protein synthesis inhibition medi-
ated through a dedicated protein translational mechanism.
Under a high-stress environment, ATF4 causes both
autophagy and apoptosis induction through regulation of
Atg genes, and XIAP interacts with C/EBP homologous
proteins (CHOP/GADD153) mediated through increased
caspase activation [44]. Moreover, CHOP activates apoptotic
pathways through increased expression of pro-apoptotic fac-
tors (such as BIM and death receptor 5), decreased expres-
sion of anti-apoptotic factors (Bcl members), and increased
mitochondrial activity. Further, increased mitochondrial
function leads to elevate cytochrome-c release from mito-
chondrial pores along with EROa and IP3R. Activation of
EROx and IP3R causes an increase in mitochondrial cal-
cium influx, which induces the apoptosis pathway [45].
However, under the ER stress environment, JINK mediated
Bcl-2 phosphorylation leads to Beclin-1/Bcl-2 dissociation
and autophagy activation, while a prolonged stress envi-
ronment causes activation of the apoptotic pathway [46].
Further, ER stress increases calcium influx, which leads
to AMPK activation and inhibits mTOR activity and thus
induces the autophagy pathway. Similarly, ER stress also
causes mitochondrial dysfunction through increased genera-
tion of mitochondrial pores leading to mitochondrial death

via apoptotic machinery [47, 48]. Altogether, it may be con-
cluded that ER stress regulates both autophagy and apopto-
sis machinery through modulating downstream targets and
increased calcium ion concentration leading to mitochon-
drial dysfunction.

The implication of ubiquitin—proteasome system

UPS machinery is the major protein degradation pathway
involved in neuronal regeneration and plasticity, whereas
apoptosis and autophagy are the major regulatory signal-
ing cascade involved in neuronal cell death that leads to
neurodegeneration. Mounting evidence suggests the exten-
sive crosstalk between autophagy, apoptosis, and UPS,
which are involved in regulating brain homeostasis [49]. A
recent study by Tsai et al., demonstrated that administra-
tion of Maackiain (MK) in the SH-SYS5Y cell line prevents
PD pathology through apoptosis inhibition and autophagic
degradation due to increased PINK1/parkin expression and
enhanced UPS machinery [50]. Similarly, Mudawal et al.
demonstrated that dose-dependent administration of lindane
in aged rats at 2.5 mg/kg concentration for 21 days causes
alteration in apoptosis and autophagic markers expression.
The study concluded that administration of lindane causes
significant upregulation of Bax, Bad, caspase 3, caspase 9,
ATGS, ATG12, LC-III levels, and causes a decrease in Bcl-2
expression. Thus, the analysis concluded that administration
of lindane alters the expression of proteins associated with
UPS machinery, autophagic cascade, and apoptotic pathway
[51]. In post-traumatic brain injury, UPS machinery, axonal
degeneration, apoptosis, and autophagic degradation play
an important role, where enhanced expression of UCH-L1
modulates the autophagic pathway and UPS pathway. Con-
gregation of UCH-L1 with TAT promotes neuronal trans-
duction where it causes inhibition of K48-linkage polyubiq-
uitination in the hippocampus but no effects on K65-linkage
polyubiquitination. Further, the combination of UCH-L1 and
TAT decreases autophagic degradation and neuronal apop-
tosis through decreased expression of Beclin-1 and LC3-II
proteins [52].

Further, Guo et al. demonstrated the involvement of
p-p38a as a central mediator of autophagy and apoptosis
in response to UPS impairment. Reduced phosphorylation
of p-p38a in response to BIRB796 causes a decrease in
autophagic flux and neuronal apoptosis [53]. Likewise, the
interaction between E3-ubiquitin ligase FBXO32/atrogin-1
and FOXO3A regulates autophagic and apoptotic cascade.
Thus, administration of Endophilin-A in cultured neurons
downregulates FBXO32 expression, which causes a decrease
in neuronal apoptosis and increases autophagosome forma-
tion [54]. Similarly, administration of Trehalose in HD
patients demonstrated a decrease in ROS levels, ubiqui-
tinated protein expression, caspase 3 expression. Further,
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administration of Trehalose counteracts the decrease in LC-3
levels induced by Epoxomicin [55].

Moreover, Dietary restriction is known to regulate
autophagic and apoptotic cell death through the involvement
of UPS machinery. Shruthi et al. demonstrated that dietary
restriction increases autophagic degradation in a spontane-
ous obese rat model and decreases Bax and p53 activity,
thus preventing neurodegeneration [56]. Further, Xu et al.,
in SH-SYSY cell culture, demonstrated that STAH silencing
through siRNA suppressed apoptosis, promoted cell prolif-
eration, and decreases LC3-II expression [57]. Furthermore,
XIAP, a ubiquitin E3 ligase, regulates mitochondrial depo-
larization, where XIAP in the absence of BH3 protein acti-
vates Bax-induced mitochondrial outer membrane potential
(MOMP). XIAP targets the dysfunctional mitochondria for
the autophagy-lysosomal pathway and delays cytochrome-
C release, hence lowering the mitochondrial apoptotic
potential [58]. Altogether, it may be concluded that UPS
machinery regulates both apoptosis and autophagy signal-
ing cascade through respective downstream targets in case
of neurodegeneration.

Dual role of autophagy on the apoptotic
signaling cascade

In the above sections, direct and indirect factors have been
described through which the relationship between autophagy
and apoptosis has been established, for instance, autophagic
degradation of active caspases, the interaction between
Beclin and proteins of family Bcl, expression activity of
autophagic protein Atg, calpain-mediated cleavage of Atg,
functional activity of cellular FLICE (FADD-like IL-1p-
converting enzyme)-inhibitory protein, and p53 medi-
ated regulation. [59-62]. Autophagy helps in degrading
misfolded and unfolded protein structures, but only up to
a certain threshold beyond which it may cause cell death
either directly or via regulation of apoptosis through com-
mon regulators. Several autophagic proteins were regulating
apoptotic cascade through direct involvement with apoptotic
machinery without activation of the entire autophagic pro-
cess. Numerous studies demonstrated that genetic manipu-
lation in the autophagic pathway regulates the activation of
the Fas-dependent death-inducing signaling complex, which
activates pro-apoptotic genes and initiates apoptotic path-
ways [63]. Moreover, ER stress induced by tunicamycin and
thapsigargin regulates caspase 8 ubiquitination, which forms
a complex containing caspase 8, Atg5, FADD, and translo-
cation autophagosomal membrane. Further, this complex in
the absence of caspase 9, Bax, and Bak leads to the activa-
tion of caspase 8 dependent apoptotic cell death. Moreover,
knockdown of Atg5 and Atg7 resulted in the deficiency of
caspase 8 dependent apoptosis [64, 65]. Different studies
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performed on the regulatory steps of autophagy concluded
that inhibition of late steps of autophagy induced caspase 8
activation, which leads to induction of apoptosis rather than
knockdown of Atg5 and Atg7 at early stages. Thus, activa-
tion of apoptosis due to early inhibition of autophagy contra-
dicted findings of the experiments performed by Amir et al.,
2013, which stated that inhibition of Atg7 leads to caspase-
dependent apoptotic cell death [66, 67]. However, the molec-
ular mechanism and factor that trigger autophagosomes to
initiate caspase activation and the apoptotic pathway are still
poorly understood. Moreover, autophagy is also capable of
apoptosis induction by inhibiting the conserved family of
cytosolic protein known as IAPs by activating caspases [68].
During stress conditions, Atg5 and Atg12 have been evolved
as an important regulator of an apoptotic pathway inde-
pendent of their specific functions in autophagy machinery,
which is cleaved by calpains leading to translocation of its
N-terminal fragment in mitochondria where it mediated the
release of cytochrome c through pro-survival factors such
as BCL and BCLy; . Further, mitophagy is the molecular
phenomenon through which autophagy reduces the tendency
of the cell to undergo an apoptotic pathway. Mitochondria,
as an initiator of apoptosis, release pro-apoptotic factors,
namely cytochrome ¢ and SMAC, which cause the failure of
mitochondrial bioenergetics due to the rupture of the mito-
chondrial membrane. Thus, removal of damaged mitochon-
dria by the autophagic phenomenon can increase the thresh-
old for apoptosis induction [69-72]. Altogether, autophagy
is not only capable of attenuating apoptosis through dam-
aged mitochondria but also the expression of caspases. Hou
et al., demonstrated that autophagy inhibition mediated
by Beclin-1 and Vps34 knockdown causes an increase in
catalytic processing of caspase 8 prodomain, the release of
cytochrome c, and generation of Annexin V-positive cells’
subpopulation in TRAIL-induced Bax-/-Hct cells and cispl-
atin-treated caspase 8 deficient mice cells [73]. Autophagy
is considered a molecular phenomenon through which cells
can evade apoptosis, but the molecular mechanism of such
a process is poorly understood. However, different studies
demonstrated the synergic effect of autophagy inhibitors and
other drugs in estimating the relationship between autophagy
and apoptosis. Fitzwalter et al. observed that autophagy reg-
ulating FOXO3a due to basal autophagy leads to a potential
feedback loop, which on autophagy inhibition increases the
expression of pro-apoptotic factors such as Bcl-2 Binding
Component 3 (BBC3/PUMA), which sensitize apoptotic
pathway [74]. Another study demonstrated that infracted
high mobility group box 1 (HMGB1) upregulated autophagy
by increasing the expression of proteins, including LC3,
Beclin-1, and Atg7, along with the decrease in Bax, Bcl-2,
Caspase 3, and mTOR expression activity [75]. Altogether
it may be concluded that autophagy and apoptosis are two
interconnected molecular phenomena in response to cellular
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stress. However, the mechanism is still not yet understood.
The cytoprotective function of autophagy involves negative
regulation of apoptosis and vice-versa. p53 is another impor-
tant regulator of autophagy and apoptosis, which inhibits
mTOR activity followed by downstream targets, regulates
cell cycle progression and apoptosis pathway. This study
observed that knockdown of p53 or autophagy inducers
mediates the proteasomal degradation of p53 through the
HDM3/E3 ubiquitin ligase system [76, 77].

Molecular phenomenon between apoptosis
and autophagy

Involvement of p53 pathway

Tumor suppressor, TP53 gene encodes p53 protein from
three transcription factor (TF) subunits such as p53, p63, and
p73, which have a central role in transcriptional regulation
involved in the pathogenesis of NDDs. P53, a gatekeeper of
the cell, is activated by different post-translational modifica-
tions, namely acetylation, methylation, and ubiquitination.
Further, it is known that p53 responds to a number of cell
toxicity conditions, such as genotoxicity, oxidative stress,
and metabolic stress [78-81]. p53 is a well-known regula-
tor of autophagy and apoptotic cell death pathways during
the DNA damage response and cell cycle arrest [82, 83].
Moreover, p53 also promotes the activation of both extrin-
sic and intrinsic apoptotic pathways. In the extrinsic path-
way, nuclear p53 accelerates the expression of the APO-1/
Fas receptor and the TRAIL receptor, whereas cytoplasmic
p53 increases the caspase 3 and caspase 8§ activities. In
the intrinsic pathway, nuclear p53 is known to upregulate
pro-apoptotic factors such as PIDD, BH3 only protein, p53
upregulated modulator of apoptosis (PUMA), Phorbol-
12-myristate-13-acetate-induced protein 1 (NOXA), Bax,
and BID leads to caspase 9 and caspase 8 activation. Like-
wise, cytoplasmic p53 translocates towards mitochondria,
promoting the activity of Bax and Bak proteins after forming
a complex with Bcl-2/Bcl-XL and activation of crucial apop-
tosome protein APAF1 [84—-87]. Kim et al. demonstrated
that depletion of intracellular zinc in N,N,N’,N'-tetrakis(2-
pyridylmethyl) ethylenediamine (TPEN) induced mouse
cortical neuronal cells regulate the apoptosis pathway by
p53-induced protein synthesis, where poly(ADP-ribose)
polymerase (PARP)-1 acts as an upstream effector of p53
induced neuronal apoptosis [88, 89].

Different studies have also demonstrated the effect of p53
on the autophagic cell death pathway through inhibition of
the mTOR complex 1 by transcriptional activation of ses-
trin proteins and AMPK. Further, p53 induces the expres-
sion of damaged-regulated-autophagy-modulator (DRAM)
through an unknown molecular mechanism that helps in

regulating the expression of crucial autophagic genes such as
LKB1 and ULK1/2 along with autophagosome maturation
genes such as Atg4, Atg7, and Atgl0 [90-92]. Moreover,
p53 promotes the TFEB/TF binding to IGHM enhancer 3
(TFEB/TFE3) nuclear translocation during the DNA dam-
age response through an increase in TF forkhead box O3a
(FOXO3) expression and activity, which regulates upstream
effectors of the autophagy pathway [93, 94]. However, fur-
ther studies need to be done to understand the mechanism
of p53 in autophagy. p53 mediated increase in autophagic
cell death may be implemented in several neuronal cell
death, but the precise mechanism should be defined before
any concluding remarks. Lee et al. demonstrated the inter-
relation between apoptosis and autophagy in mouse embryo
fibroblasts, where the deficiency of Atg7 leads to induce p53
dependent apoptosis. Moreover, Robin et al. demonstrated
that the absence of p53 in Drosophila results in autophagic
flux impairment, caspase activation, and mortality under
oxidative stress [95] (Fig. 2A).

Angiogenic pathway: role of VEGF

VEGEF is involved in biological processes, such as cell prolif-
eration, cell migration, and tube formation, which can induce
diseases such as NDDs, cancer, arthritis, and diabetes [96].
Recent studies demonstrated the antiproliferative, apoptotic,
and autophagic effects of anti-angiogenic drugs targeting
VEGF, which induces cellular and molecular responses dur-
ing stress conditions. For instance, Liu et al. showed that
apatinib, a highly selective inhibitor of vascular endothelial
growth factor receptor 2 (VEGFR?2) tyrosine kinase that is
involved in the alteration of cell cycle arrest, apoptosis, and
autophagy. Further, inhibition of autophagy increases apop-
totic effect through direct binding between VEGFR2 and
signal transducer and activator of transcription 3 (STAT3).
Inhibition of VEGFR2 mediated by siRNA resulted in the
downregulation of STAT3 and Bcl-2 reinforced autophagy
and apoptosis induced by apatinib [97]. Further, Endostatin
activates autophagy through decreased Bcl-2 expression and
increased Beclin-1 expression in Eahy926 human endothe-
lial cells [98]. Yang et al. 2014 demonstrated the inducing
effect of convallatoxin on autophagy and apoptosis through
increased cleavage of caspase 3 and PARP along with LC3
conversion. Moreover, convallatoxin inhibits the mTOR/
p70S6K signaling pathway, resulting in autophagic induc-
tion and exerting anti-angiogenic activity in-vitro and in-vivo
[99].

VEGF-B is the neuroprotectant lacking general angio-
genic activity that rescues neurons from apoptosis in rat and
mouse cell lines. VEGF-B inhibits the expression activity of
BH3 proteins along with p53, a member of the caspase fam-
ily mediated through activation of VEGFR1, thus hampering
retinal neovascularization [100]. Similarly, Falk et al. 2009
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Fig.2 A Molecular mecha-
nism of P53 involvement in
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demonstrated the neuroprotective implication of VEGF-B in
the culture model of PD where expression of VEGF-B was
upregulated while the activity of VEGF-A remains unaltered
[101].
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Moreover, the lentiviral-mediated expression of VEGF ;5
was found to be neuroprotective in both SHSY-5Y and rat
primary striatal cultures, which attenuated DARPP-32"*
mediated neuronal loss and rescued Exp-Htt aggregation
[102]. Religa et al. 2013 studied the effect of VEGF on
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p-amyloid (Ap) induced endothelial cells in-vitro. VEGF
significantly prevents neuronal apoptosis and restored mem-
ory deficit in the transgenic AD mice model [103]. Further,
the administration of batroxobin would exhibit neuroprotec-
tive effects in the spinal cord injury model mediated through
neurotrophic factors and increased expression of VEGF,
which reduces apoptosis [104]. Administration of VEGFR2
inhibitor PTK787/ZK222584 on primary cerebellar granule
neurons prevented 1-methyl-4-phenylpyridinium ion (MPP*)
induced neurotoxicity followed by neuronal apoptosis. Inhi-
bition of VEGFR?2 activates PI3K/Akt and ERK pathways,
which play the opposite role in MPP*-induced neuronal
apoptosis [105]. Studies in the past demonstrated the plau-
sible function and mechanism of VEGF-B in neurodegen-
eration, altering mitochondrial dysfunction and neuronal
cell apoptosis while lacking traditional angiogenic activity,
especially in the PD model. VEGF also acts as a therapeutic
target in NDDs and can be an interesting topic for crosstalk
between oxidative stress and mitochondrial biogenesis [106]
(Fig. 2B).

Molecular markers of neuronal cell death
Mammalian target of rapamycin

mTOR is the key signaling mechanism of cell growth and
is considered as the master regulator of autophagy, pro-
tein synthesis [107], and mRNA translation [108], tran-
scriptional regulation, and phosphorylation of other pro-
tein substrates. Inhibition of mTOR with rapamycin acts
as an initiator for autophagy induction as mTOR activity
inhibits autophagosome formation, which is crucial for the
induction of autophagy signaling cascade. Alteration in
autophagy cascade, possibly due to mTOR implication, has
been observed in different neurological defects [109-111].
Further, the mTOR signaling cascade has been linked with
the establishment of neuronal plasticity, shape, spine mor-
phology, and axonal development. In an in-vitro study, it
was demonstrated that activation of the mTOR signaling
pathway induces the growth and branching of dendritic cells
along with the reduction of dendritic complexity through
mTOR or S6K1 knockdown. Further, in rat hippocampal
neurons, it was observed that activation of both mTOR1 and
mTOR2 signaling is required for neuronal development and
organization along with the change in expression activity of
Calcium/calmodulin (Ca**/CaM) dependent protein kinase
IT [112-114]. Similarly, the mTOR pathway regulates axon
outgrowth, as shown in mouse dorsal root ganglia neurons
(DRGNS). Further, deletion of TSC2 and association of the
mTOR with tuberin and GTP-binding protein Ras homolog
enriched in the brain (RHEB) was found to promote axon
outgrowth both in the in-vivo and in-vitro mouse model

[115, 116]. Likewise, the mTOR signaling cascade modu-
lates excitatory and inhibitory neurotransmission regulating
synaptic plasticity as observed in the phosphatase and tensin
homolog protein model of the knockout mouse. The mTOR
pathway increases synaptic vesicles, synapse response, and
the number of synapses both in glutamatergic and GABAe-
rgic neurons [117]. Likewise, the mTOR antagonist rapamy-
cin treatment results in hippocampal neurons demonstrated
long-term reduced potentiation promoted by high-frequency
stimulations, together with inhibition of synaptic potentia-
tion promoted by brain-derived neurotrophic factors (BDNF)
[118]. Moreover, rapamycin prevented 3,5-dihydroxypheny-
lalanine induced metabotropic glutamate receptor (mGluR)
mediated long-term potentiation through Akt and mTOR
phosphorylation in CA1 hippocampal neurons [119]. Abun-
dant evidence suggests the possible role of mTOR inhibi-
tion in the anti-aging effect through cellular senescence
relevant to NDDs such as AD, PD, ALS, and HD [120].
In the 3XTg AD and S6K1 knockout mouse model, inhibi-
tion of the mTOR downstream signaling pathway resulted in
decreased cognitive defects by reducing AP and Tau pathol-
ogy [121]. In-vitro and in-vivo models have demonstrated
rapamycin-mediated neuroprotection from synaptic toxic-
ity, tau-induced neuronal cell death, and astrogliosis [122].
Altogether, rapamycin antagonist temsirolimus prevents tau-
induced toxicity and the formation of neurofibrillary tangles
via enhanced autophagy [123]. Several studies have dem-
onstrated the effect of the increased number of autophago-
somes in a-synuclein-induced dopaminergic cell death, sug-
gesting a pivotal role of autophagy pathway induction in the
PD model while inhibition of mTOR with rapamycin causes
an increase in autophagy, which inhibits the accumulation of
ubiquitinated a-synuclein [124, 125] (Fig. 3A).

Involvement of Bcl-2 and BH3 family members

With the limitations of the apoptotic pathway in post-mitotic
neuronal differentiation and maturation, Bcl-2 member was
highly expressed in different forms with proliferating NPCs
in the developing brain. However, the differentiated form in
post-mitotic neurons, as demonstrated by restricted expres-
sion of Bak in post-mitotic neuronal differentiation, depends
on Bax to promote neural apoptosis where the genetic knock-
out of Bax provides neuronal protection in multiple disor-
ders [126-133]. Interestingly, N-Bak, an alternative splicing
form of Bak characterized by additional exon and generation
of BH3 only proteins due to translation, is expressed in neu-
rons that further interact with anti-apoptotic protein Bcl-XL
rather than Bax and induce apoptosis through Bax dependent
pathway. Further, apart from neurotoxic function, N-Bak has
neuroprotective abilities, as demonstrated in different stud-
ies [134—136]. For instance, Ginsenoside Re and Alcohol
Dehydrogenase 1B suppresses A induced neurotoxicity in
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Fig.3 A mTOR is an anti-
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kinase (MAPK) inhibitor (SB203508) in pretreated Huwel
increases caspase 3 cleavage, Bax and Bak expression, and
p53 activity involved in the progression of neuronal apop-
tosis [139].

Moreover, myeloid leukemia cell differentiation pro-
tein (Mcl-1), an anti-apoptotic member of the Bcl-2 fam-
ily, is highly expressed throughout the developing cortex

SHSY-5Y cell culture and AD mouse model, respectively,
through increased Bcl-2/Bax ratio, caspase inactivation, and
reduced cytochrome-c release [137, 138]. He et al. demon-
strated the potential implication of HECT, UBA, and WWE
domain-containing 1 (Huwel), an E3 ubiquitin ligase, in
neuronal apoptosis. It was observed that induction of JNK
inhibitor (SP600125) or a p38 mitogen-activated protein
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regulating apoptotic pathways in differentiating and post-
mitotic neuronal cells. A study concluded that deletion of
Mcl-1 results in the induction of apoptosis, where GCN pre-
cursor does not depend on Mcl-1 for apoptosis [140, 141].
As compared to Mcl-1, the expression pattern of Bcl-XL is
different, which is expressed at a low level in the develop-
ing brain and at a high level in post-mitotic differentiating
neuronal cells where the genetic knockout of Bel-XL is not
able to induce apoptosis in the developing brain but induces
cell death in post-mitotic differentiating cells [142]. Lauren
et al., demonstrated the anti-apoptotic function of Mcl-1 and
Bcl-XL in mouse embryonic CNS during different stages
of neurogenesis promoting cell survival. The authors con-
cluded that the sequential deletion of MCL-1 and BCL-x
promotes cell survival during neurogenesis at embryonic day
10 in proliferating NPC and at day 11 within the post-mitotic
cell population. The same study observed that in the double
knockout mouse model, caspase-dependent apoptosis was
initiated in non-proliferating and proliferating cell popula-
tions [143]. Bcl-2, another member of the Bcl family, is also
widely expressed in developing and mature brain, but unlike
Mcl-1, loss of Bcl-2 does not induce apoptosis but the result
in progressive degeneration of the peripheral and facial neu-
rons due to excessive accumulation of ROS involved in the
regulation of oxidative stress pathways [144, 145]. Moreo-
ver, anti-apoptotic Bcl-w, whose expression is restricted
during embryonic development but highly increased in
post-mitotic differentiating neurons, regulates cell death
signaling cascade. However, the deletion of Bcl-w neither
induces neuronal apoptosis nor sensitizes hippocampal neu-
rons; rather, Bcl-w plays a neuroprotective function in axons
of sensory neurons during axonal degeneration [146—150].

BH3 is a pro-apoptotic protein highly expressed in the
embryonic brain. At the same time, the expression reduces in
the postnatal brain. However, BH3-interacting domain-con-
taining protein 3 (Hrk/DP5), a neuronal-specific BH3 pro-
tein, is significantly expressed in the postnatal brain rather
than the embryonic brain [151-154]. Different experimental
studies demonstrated that consistent deletion or inhibition
of BH3 proteins hampers neuronal apoptosis. Administra-
tion of arsenite causes deletion of PUMA, which causes
an upregulated activity of BH3 only protein and leads to
neuroprotection [155-162]. Post-translational modifications
such as cleavage of Bid and dephosphorylation of Bad along
with modifications in Bim, PUMA, NOXA, Bmf, and Hrk/
DPS5 activated BH3 only proteins transcriptionally induced
by apoptotic stimuli. Interestingly, several apoptotic stimuli
regulate TFs that activate BH3 only proteins such as Bim,
PUMA, Hrk/DP5, and Bmf were transcriptionally activated
by nerve growth factor (NGF) deprivation. Further, activa-
tion of activator protein 1 and TF c-Jun by phosphorylation
result in Bim, PUMA, and Hrk/DP5 induction in response
to neurotoxic elements [157, 160, 163-170]. Moreover,

after the DNA damage response, the P53 signaling path-
way stimulates PUMA and NOXA in response to seizures
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTPY)
induced neurotoxicity, NGF withdrawal, and Ap aggrega-
tion in the mature brain and neuronal cells [155, 171-174].
Activation of FoxO1 and FoxO3a downstream targets such
as AMPK, tribbles pseudokinase 3, macrophage stimulat-
ing 1, and cyclin-dependent kinase 5 (Cdk5/p35) mediate
Bim induction in response to external stimuli such as NGF
withdrawal, oxidative stress, and AP aggregation through
nuclear translocation of FoxO TF either by Akt or 14-3-3
mediated inhibition or sequestering of FoxO TFs [175-181].

Moreover, ER stress induces PUMA and Bim activation
through transactivating their promoters through the interac-
tion between CHOP, Cdk4, and FoxO3a TFs in neuronal
cells, which upregulates the B-Myb required for Bim acti-
vation and neuronal death [182-186]. In healthy neurons,
survival pathways, including PI3K/Akt and MEK/ERK,
represses the expression of BH3 only proteins through inhi-
bition of FoxO3 or inhibition of Akt and ERK itself, which
is involved in the induction of Bim activity via both tran-
scriptional and post-transcriptional mechanism [178, 187,
188]. Further, MEK/ERK survival pathway promoted the
proteasomal degradation of Bim via interaction with ubiq-
uitin ligase tripartite motif-containing 2 through phospho-
rylation on ser65 by ERK1/2 followed by polyubiquitina-
tion and proteasomal degradation, which was found to be
neuroprotective under stress conditions [189, 190]. ERK5
induces phosphorylation of Bad through CAMP-response
element-binding protein (CREB) on ser112, ser136, ser155,
and ser170 regulates Bad expression and pro-apoptotic func-
tions in the mature and adult brain. Similarly, phosphoryla-
tion of ser112 by MEK/ERK/RSK pathway and on ser136
by Akt dissociates its interaction with Bcl-XL and increases
its interaction with 14-3-3 regulatory protein to promote
neuronal survival [188, 191-193].

AMPK and caspases

Being an essential regulator of neurodevelopment and neu-
roprotective activities, the mechanism of caspases in neu-
ronal cell death is still not well defined [194]. Although,
decreased expression of Caspase 3, an effector caspase, was
observed in neuronal cell death caused by neuronal injury in
the ischemic brain model. Further, neurodevelopment activ-
ity was observed in adults as compared to the neonate rodent
model. However, mature neurons reflect both apoptotic and
non-apoptotic pathways, but the maturation of neurons is
also associated with decreased activity of the caspase fam-
ily gene. Moreover, the activation of caspase 3 through the
copper-induced ROS generation causes increased activity
of glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
expression leading to neuronal cell death in the P19 cell
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culture model [195]. Thus, caspase inhibition has the
potential to minimize cell death caused by ER stress, oxida-
tive stress, and calcium withdrawal in NDDs both in-vivo
and in-vitro conditions through a decrease in expressions
of upstream and downstream targets, such as PERK, heat
shock 70 kDa protein 5, CHOP, PARP, HIV-1 TAR RNA
binding protein (TRBP), PKC, TNFa and protein activa-
tor [196, 197]. A study found that downregulation of apop-
totic protease activating factor 1 decreases the activation of
effector caspases, possibly through apoptosome, leading to
impaired neuronal development and reduced synaptic plas-
ticity [198]. Likewise, in PD murine model, the NLR family
pyrin domain containing 3 (NLRP3) antagonist kaempferol
promoted neuroprotection through decreased expression of
caspase 1 along with disruption in NLRP3-PYD and CARD
domain-containing (PYCARD)-caspase 1 complex assem-
bly [199]. Further, inhibition of caspase 1 via caspase 6
resulted in downregulating the proteolytic cleavage at D586
of mutant Htt, axon degeneration, and pathological lesions
[200, 201] (Fig. 3B).

In different experimental studies, it was demonstrated
that inhibition of caspase 1 and caspase 3 signaling path-
way in microglia promotes neuroprotection through reduced
neuroinflammation in microglia, reduced impaired cogni-
tion and regulation of neuronal cell apoptosis, possibly
through a decrease in beta-secretase 1 expression and mac-
rophage stimulating 1/JNK signaling cascade [202-207].
In the case—control study, two caspases 8 variants, that is
p-K148R, and p.I298V are involved in neuronal cell loss,
which on interaction with caspase 3 involved in synaptic
plasticity, microglia inflammation, and memory impairment
[208]. Extracellular adenosine increases the expression level
of caspase 9, followed by caspase 3 through activation of
two independent pathways. A1 adenosine receptor-mediated
adenylate cyclase inhibition and adenosine uptake into cells/
conversion to AMP/activation of AMPK are two independ-
ent pathways, which leads to astrocytoma cell death through
the apoptotic pathway [209]. Moreover, Song et al., dem-
onstrated the crosstalk between autophagy and apoptosis
through AMPK and activated caspase. In this study, inhibi-
tion of the mTOR and the proteasome with rapamycin and
Bortezomib respectively activates AMPK, which phospho-
rylate downstream target Beclin-1 resulted in autophagic
cell death followed by its cleavage through activated cas-
pase resulted in apoptotic cell death through mitochondrial
dysfunction [210, 211].

Further, neurotoxins such as 6-hydroxydopamine, oxy-
gen—glucose deprivation, and MPP™" increase oxidative
stress, followed by an increase in autophagy and apopto-
sis. Inhibition of AMPK phosphorylation and the activa-
tion of mTOR phosphorylation with antioxidants, such as
propofol and alpha-lipoic acid, downregulates autophagic
and apoptotic cell death, which causes an increase in
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synaptic plasticity, cognitive ability, and neuroprotection
[212-215]. Similarly, Meares et al., 2013 observed that in-
vitro AMPK expression inhibits gene expression of C—C
Motif chemokine ligand 2, TNFa, C-X-C motif chemokine
10 and inducible nitric oxide synthase (iNOS), mediated by
IFN-vy through signal transducer and activator of transcrip-
tion 1 [216]. Further, intraperitoneal treatment of lipopoly-
saccharide treated with 5-Aminoimidazole-4-carboxamide
ribonucleotide (AICAR) in the disturbed neuronal mouse
model demonstrated a reduction in TNFa-mRNA expres-
sion level along with increased mRNA expression level of
peroxisome proliferator-activated receptor-gamma coac-
tivator 1-alpha (PGC-1a). The same study observed that
after 24 h of lipopolysaccharide injection treatment with
AICAR decreases glial fibrillary acidic protein (GFAP)
activity. However, different studies demonstrated the detri-
mental effect of AMPK activation as treatment with AICAR
increase apoptosis in SHSY-5Y and Neuro 2a cell culture
models mediated through an increase in caspase 3 activity
[217]. Likewise, it was found that A induced neurotoxic-
ity in human neural stem cells decreases cell viability by
decreasing AMPK activation and expression of neuropro-
tective genes such as Bcl-2 and CREB. The same study
also concluded that AP neurotoxicity causes an increase in
caspase 3, caspase 9, and cytochrome c expression [218,
219]. Altogether, it may conclude that AMPK activation
promotes apoptosis mediated through increased expression
of pro-apoptotic genes such as caspases and cytochrome c.

PI3K/Akt/GSK3p pathway

GSK3 is ubiquitously expressed in the nervous system and
involved in regulating neuronal plasticity, and neurological
disorders with GSK3f remain the dominant form compared
to GSK3a. Inhibition of GSK3 through Akt-dependent
phosphorylation, PI3K activation, and PKC activation impli-
cated in glutamate-induced N-methyl-D-aspartate receptor
(NMDAR) dependent neuronal plasticity and facilitates the
surface transport of potassium voltage-gated channel sub-
family Q member 2 subunits that are involved in the regula-
tion of neuronal excitability [220-223]. It has been consid-
ered that the PI3K/Akt/GSK3p pathway is involved in Ap
induced neurotoxicity, which causes memory impairment
and learning deficits. However, the mechanism behind this
rationale is poorly defined. Further, Akt-dependent inhibi-
tion of GSK3p found to reverse learning and memory deficits
[224, 225]. It has been observed that GSK3f activity causes
hyperphosphorylation of tau protein and accumulation of
amyloid precursor protein, which leads to detachment of
tau from microtubule and decreases amyloidogenic process-
ing, respectively, resulting in neurite degeneration. Further,
GSK3p has the potential to bind with NMDAR receptors,
and modulating their function leads to the accumulation of
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Ca** ions causes degeneration of neurons, ultimately leading
to neuronal cell death [226, 227]. Moreover, the active form
of GSK3 was enhanced in patients suffering from PD, which
is localized with the halo form of a-Synuclein, leading to
memory impairment and neural degeneration [228]. Further,
inhibition of GSK3 activity decreases the aggregation and
phosphorylation of a-Synuclein and increases autophagic
flux, while activation of GSK3p leads to impaired autophagy
[229]. GSK3p has been found to regulate apoptosis through
phosphorylating the downstream targets such as p53, Bax,
p21, and initiate caspase cascade, which is regulated by
many signaling events involved in the modification of mito-
chondrial activity [230, 231]. A study demonstrated that
overexpression of inactive GSK3 mutant prevents apoptosis,
which was later confirmed by studies using specific GSK3
inhibitors. Altogether, reduction in GSK3p serine 9 phos-
phorylation causes increased cytochrome c release and cas-
pase 3 activity and direct involvement in cell death induced
by PI3K/mTOR inhibitor and histone deacetylase inhibitor
such as Trichostatin A in different cell lines [232-234]. Mcl-
2, another Bcl-2 family member, stabilizes mitochondrial
outer membrane permeabilization through Bim and Bid, fol-
lowed by phosphorylation activity at serine 159 recognized
for ubiquitination and degradation. [235, 236]. In neuronal
cells, GSK3p dependent phosphorylation of Bcl-2 family
member Bax at serine 163 induces its mitochondrial trans-
location exerting pro-apoptotic function [237, 238]. Mito-
chondria being the major producer and center of oxidative
stress, undergo mitochondrial permeability transition result-
ing in apoptotic cell death due to GSK3 activation, which
causes hyperphosphorylation of different downstream tar-
gets, namely oxidative damage associated cellular defense
protein nuclear factor erythroid 2-related factor 2 (Nrf2)
[239-242] (Fig. 4A).

Moreover, the implication of GSK3 has been extensively
studied in manipulating autophagy from the last few years.
GSK3p inhibits autophagy by activating mTOR complex
1 through phosphorylation of mTOR associated scaffold
protein raptor on serine 859. Inhibition of GSK3p activity
inhibits mTOR complex 1 and raptor interaction and reduced
phosphorylation of ULK1, followed by increased autophagic
flux [243, 244]. Similarly, inhibition of GSK3f leads to an
increase in AMP/ATP cause AMPK activation followed
by autophagic induction through sequential phosphoryla-
tion of tuberin by AMPK and GSK3p, which causes mTOR
inhibition [245-247]. Apart from its inhibition GSK3p in
the absence of growth factors, activates acetyltransferase
KAT/TIP60, followed by activation of the ULK1 complex
to induce autophagy [248]. Inhibiting GSK3p expression
through enhancing mTOR activity through overexpression
of Aurora A kinase induces resistance to autophagic cell
death while activation of GSK3p signal transduction path-
way mediated by cadmium promotes autophagic cell death

in ROS elevated conditions [249-251]. Further, pharmaco-
logical and genetic knockdown of GSK3f expression and
Akt activation significantly alleviate autophagic cell death
in a neuronal cell, while GSK3f mediated phosphorylation
of MCLI1 has been observed to induce axonal autophagy
and axonal degeneration [252-254]. Inhibiting the activity
of calpain, Akt, and GSK3p reduces the autophagosome
number and increases microtubule stability in paeoniflorin-
treated okadaic acid-induced tau hyperphosphorylated SH-
SYS5Y cell model [255]. Also, the Wnt3a ligand promotes
AMPK activation, followed by GSK3p inhibition modulat-
ing the autophagic phenomenon in hippocampal neurons
[256]. These data suggested that GSK3 has potential rel-
evance in autophagic and apoptotic cell death and maybe a
potential therapeutic target in NDDs.

p38 and JNK MAPK pathway

MAPK, due to its tremendous application in different cel-
lular functions such as apoptosis, cell survival and prolif-
eration, cell differentiation, inflammatory activities, and
external ROS, has been considered as a potential therapeu-
tic target against NDDs. p38 MAPK inhibitors have been
considered as potential therapeutic agents against chronic
inflammatory diseases, including AD, PD, ALS, and HD.
MAPK causes phosphorylation of its downstream targets,
including P38, c-Jun, and JNK signaling, which is linked
with neuronal apoptosis, where c-Jun activation is required
for NGF withdrawal-induced apoptosis. In contrast, inhibi-
tion of c-Jun activity protects neuronal cell death.
Moreover, MAP3K-ASK1 has been associated with
JNK’s activation and promotes neuronal apoptosis in PC12
cells. However, different studies concluded that standalone
JNK signaling was associated with reducing apoptotic cell
death [257-262]. A series of experiments demonstrated the
functional effect of MAPK inhibitors on HMGB I-induced
neuronal apoptosis [263]. A study demonstrated that activa-
tor protein 1 and c-Jun act as both anti and pro-apoptotic
factors depending on the level of stress and suggesting
the implication of defective mitophagy in MAPK/c-Jun-
induced apoptosis [264]. Further, activation of the JNK and
P38 MAPK pathway leads to activation of NF-kB-induced
phosphorylation activity, which leads to proteasome degra-
dation. On the contrary, inhibition of p38 MAPK leads to
impaired proinflammatory NF-«B transcriptional activity
without altering its DNA binding activity. It downregulates
the expression of inducible NO synthase through acetylation
activity of p65 rather than phosphorylation activity [265].
An in-vitro study performed by Papademetrio et al. demon-
strated the autophagy inhibition and apoptosis induction in
both caspase-dependent and caspase-independent patterns
in MIA PaCa-2 and PANC-1 cells. Although, administra-
tion of caffeic acid phenethyl ester reverses autophagic
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| (A) Role of PI3K/Akt in the Regulation of Apoptosis and Autophagy
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Fig.4 A PI3K/Akt is a molecular marker that activates apoptosis
and autophagy, which regulates neurodegenerative disorders. PI3K/
Akt activates GSK3p, which acts on downstream signaling molecules
involved in neurodegenerative diseases. TSC1 and TSC2 activate
mTOR, decreasing neuronal autophagy, followed by an increase in
neuronal toxicity, while activated GSK3f decreases NRF2 expres-
sion and activates neuroinflammation signaling cascade. Activation of
P-CRMP2 and NMDAR mediated through GSK3p increases caspase
3 activations, and the calcium influx respectively lead to an increase
in neuronal apoptosis, ultimately increases memory impairment and
neuronal cell death. B Rotenone and MPTP activate P38 MAPK,
which leads to activation of downstream signaling molecules such as
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JNK, ROS, and iNOS, followed by activation of the signaling mecha-
nism of neurodegenerative disorders. Activation of JNK activates
BIM, increases the release of inflammatory cytokines, and decreases
expression of GSK3p, which further activates Cytochrome-C, inflam-
mation signaling cascade, and neuronal toxicity, respectively, ulti-
mately leads to neurodegeneration. P38 MAPK increases ROS causes
oxidative stress leads to activation of caspase 1 and caspase 2, which
increases neuronal apoptosis followed by memory impairment and
cognitive decline involved in the pathogenesis of neurodegenerative
disorders. Similarly, activation of iNOS releases NO causes mito-
chondrial dysfunction, which increases neuronal toxicity leads to neu-
ronal cell death followed by neurodegeneration
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degradation and apoptotic cell death by inhibiting MAPK
and NF-xB pathways. [266]. Recently, several studies con-
cluded the protective effect of inhibitors, namely doxycy-
cline, steppogenin, neferine, alantolactone, and indirubin,
against lipopolysaccharide-induced primary microglial cells
through inhibition of MAPK phosphorylation and NF-kB
nuclear translocation. Altogether inhibition of MAPK and
NF-kB pathways through the action of inhibitors lowers the
expression of microglial activation markers, including IBA1,
reduced ROS, NOS, and activation of proinflammatory
cytokines [267-271]. The MAPK-activated protein kinase 2
complexes are known to regulate the phenomenon of inflam-
mation through the production and activation of inflamma-
tory mediators. It has been observed that MAPK-activated
protein kinase 2 knockout mice are resistant to endotoxic
stress and involved in the regulation of TNFa, Interleukin 6,
Interleukin 8, and other regulatory cytokines involved in the
process of neuroinflammation [272-274] (Fig. 4B).

Pharmacological intervention targeting
apoptotic and autophagic machinery

Implementation of microRNAs in the regulation
of cell-death pathway

The microRNAs are a family of 23-25 nucleotide sequences
involved in transcriptional regulation that can be used as
potential biomarkers in various diseases, including NDDs.
miRNAs modulate several biological processes, such as
cell cycle progression, apoptosis, autophagy, and inflam-
mation [275, 276]. Various studies demonstrated the role
of miRNA in neuronal cell death, regulating apoptosis and
autophagy. However, the functional mechanism of miR-
NAs in these processes must be elucidated. Table 1 lists the
miRNA that regulates autophagy and apoptosis cascade in
the pathogenesis and progression of NDDs. For instance, H.
Jia et al. demonstrated the effect of the miR-499-5p hypoxic-
ischemic encephalopathy rat model, where it was found
that the administration of miRNA significantly reduced the
expression of C-reactive protein followed by a reduction in
neuronal apoptosis. Further, the study indicated that miR-
499-5p increases spatial learning ability, spatial memory,
and locomotor functions [277]. Similarly, miR-217/138-5p,
miR-15a, and miR-129-5p regulate the expression of sir-
tuin 1, TNFa, IL-18, BDNF, and SOX6 through oxidative
stress, inflammatory pathway, and Akt/GSK3p signaling
cascade, which resulted in decreased neuronal apoptosis in
MPP*-induced SH-SY3Y cells, oxygen—glucose deprivation
neurons of rats, and AD rat model, respectively [278-280].
Likewise, miR-93 regulates the expression activity of the
TLR4/NF-xB signaling pathway through inhibition of
TNFa, IL-6, IL-1pB, and VEGEF, along with the decrease in

pro-apoptotic molecules expression [281]. Further, H. Ge
et al., demonstrated the neuroprotective effect of miR-410 in
6-hydroxydopamine-induced SH-SY5Y and PC12 cellular
PD model through inhibition PTEN/Akt/mTOR signaling
cascade. At the same time, Wang et al. studied that miR-
124 exerts neuroprotective effects in the MPTP-induced PD
model through the hedgehog signaling pathway targeting
endothelin 2. Both studies demonstrated that induction of
miRNA causes a reduction in apoptosis, caspase 3 expres-
sions, and ROS activity [282, 283]. Similarly, Chen et al.
demonstrated that miR-98 reduces A aggregation and
improves oxidative stress and mitochondrial dysfunction
through a notch signaling pathway targeting Hes-related
with YRPW motif protein 2 and decreases hippocampal neu-
ronal apoptosis in the AD mice model [284]. Moreover, in
the SH-SYSY cell line, miR-764 protected the neuronal cell
from hydrogen peroxide-induced neuronal apoptosis through
regulating ninjurin-2 expression and motor neuron functions
[285]. Likewise, miR-429 and miR-34a regulate neuronal
damage by inhibiting apoptotic expression in mouse corti-
cal neurons and MPP-induced SH-SYSY cells, respectively
[286, 287]. Moreover, miRNA was also found to regulate
the ER stress-induced apoptotic pathway. miR-211 inhibits
ER stress and upregulates H3K27 methylation of the CHOP
promoter leads to cell survival [288]. miR-378 and miR-155
regulate caspase -3 activity resulted in decreased apoptotic
expression, whereas, miR-106b attenuates apoptotic pathway
targeting caspase 7 expressions [289-291].

Further, miRNA also modulates the autophagic pathway
by regulating different proteins and complexes involved in
the signaling cascade. It was reported that miR-20a, miR-
106b, miR-372, miR-26b, and miR-93 involved in the regu-
lation of autophagy-mediated through ULK1 and ULK2
complex situated at the beginning of autophagic cascade
[292-294]. Similarly, miR-338-5p, miR-30a, miR-376b,
miR-216a, miR-630, miR-374a, and miR-17-5p suppress the
autophagic pathway through negative regulation of class III
PI3K complex [295-300] (Fig. 5).

Moreover, miR-101, miR-376b, miR-17, and miR-495
modulate ATG4D, ATG4, ATG7, and ATG3 expression,
which resulted in autophagy inhibition [298, 301-303].
Several studies indicated the potential of miRNA as thera-
peutic agents in neuronal autophagy. A study conducted by
Wang et al. demonstrated that overexpression of miR-9a-5p
reverses neurological deficits in MACO rat and SH-SY5Y
cell lines through decreased autophagy and ATGS5 expres-
sion [304]. miR-96 and miR-204 alleviate cognitive impair-
ment by suppressing autophagic signaling cascade and
exerts neuroprotective effects through decreased expression
of LC3, Beclin-1, and mTOR [305, 306]. Likewise, in the
MPTP induced SH-SY5Y and PC-12 PD model, miR-124,
miR-185, and miR-181b rescue memory deficits and cogni-
tive decline through AMPK/mTOR and PTEN/Akt/mTOR
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§ pathway. In addition, Gong et al., 2016 demonstrated that
5 = = S = = miR-124 suppression significantly increased cell apoptosis
S |&a @ @ @ @ and LC3-II/LC3-I ratio, whereas, overexpression of miR-
~ [ o9, e e e P
D s 124 decreases the percentage of apoptotic cells and LC3-1I/
&= & 2 b L8 4‘5 2 LC3-I ratio. Similarly, overexpression of miR-185 and miR-
Q s =S - = . . .
2 g Zwm =52 g8 § 235 181b significantly downregulates the LC3-II/LC3-I ratio
ﬁ = = m-ﬁ 7] :l . .
58 & E 4= %5 5535 &% = £ and apoptosis [307-309]. Moreover, miR-212-5p prevents
e3¢ &3 § §2g & g é Gl LS) £ dopaminergic cell death in the MPTP induced PD mouse
S&2%2 38 ="BPERESE Iegcg model (C57BL/6 mice) through SIRT2 inhibition resultin
|g§%‘)m “Cﬂe v—'AE C\locvz g g
=2 g 53 g S E & % - -_E 5 % in increased p53 acetylation and reduced autophagy [310].
= 29«35 8 S 2 .. . . .
82 TE Z242Efg EEig Similarly, miR-124 in MPTP induced SH-SY5Y PD cell
EQC 5 & Lo owvg S » 5= y
‘*2 S = gog - g2 §T§ g = E,* 5 g < 2 g culture model regulates p62/p38, Bim, and Bax expression
€3 2 £ 88 2958 ¢ § g 2 & 3 £ % level resulted in increased autophagy and decreased neuro-
2 |5 282 ‘B S 089 w2 L8 2 & & = . . I
EISEE 728 P2ES 2255 8285 E & inflammation [311, 312]. Additionally, Zhao et al., demon-
ElwEs S SESS2 0825 53285 . .
385858 228 8228 86520 strated that miR-326 inhibits NOS expression and promotes
== = a 7776

autophagy degradation through the JNK signaling cascade.
miR-326 interacts with X-box binding protein 1, resulting
in increased expression of LC3-II, c-jun, and p-a-synuclein
[313]. Similarly, miR-27a and miR-23b in post-traumatic
brain injury attenuates neuronal deficits and improves cogni-
tive impairment and neurological functions through altered
neuronal autophagy by FOXO3a and ATG12 regulation,
respectively [314, 315].

Long non-coding RNAs as a pharmacological target

sic apoptotic pathway
SYNJ1/PI3K/Akt signaling pathway

AKT/mTOR pathway
The mitochondrial-dependent intrin-
Wnt/B-catenin pathway

Signaling
BNIP-2 axis

LncRNAs are a set of RNAs having more than 200 nucleo-
tides that regulate gene expression, transcriptional activity,

A &
@ ?, g epigenetic modifications, and translational control. Differ-
g g 2 é ent studies indicate the involvement of altered LncRNAs
g B ) _‘S- - —“2’ expression in the progression and pathogenesis of neuro-
‘% ] &} % % L; g logical defects such as AD, PD, ischemic stroke, HD, trau-
Tz é fé L; g f:') matic brain injury, spinal cord injury, and ALS through the
g 73 g S8 E £ - regulation of cell death pathways, namely apoptosis and
= g ;”% % § Ti S 3 autophagy. Table 2 discusses the different potential LncR-
E 2 A =] £ ;:2 = NAs, which regulate the expression of both apoptosis and
= §D§ ?D 2 § § 8 ;: autophagy. For instance, LncRNA metastasis-associated
E g & % 63 & E& § 8 lung adenocarcinoma transcript 1 (MALATI), referred
to as non-coding nuclear-enriched abundant transcript 2
& j=? & & (NEAT2), was found to be expressed in the in vitro model
. = < & g Q of ischemic stroke. Guo et al., 2017 demonstrated that
E |x & 2 2 2 down-regulation of MALAT1 suppresses neuronal apopto-
Z|& = = R E sis through downregulating Beclin-1 dependent autophagy
=2 degradation. In the same study, the authors concluded
é that the downregulation of autophagy is through regula-
§ tion of the MALAT1-miR30a-Beclin-1 axis [359]. Simi-
2 larly, Wu and Yi 2018 concluded that downregulation of
3 ‘é‘ﬁ MALAT]1 reverses neurological defects by inhibiting exces-
g § 3 sive z.lutop.hagy and apoptosis through regulating PI3K/
§ 3 § g Akt s1gr.1a111.1g path.way [360]. Further, LncRNA colorectal
: 9 £ = % neoplasia differentially expressed (CRNDE) also regulates
218 s g E apoptosis and autophagy in different neurological defects.
S A @) & 4 For instance, Chun-Hua et al. 2020 demonstrated that in
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Eig' 5. micrORlest have Involvement of micro-RNAs in Autophagy and Apoptosis Cascade
cen 1mplemented to regu-
late autophagy and apoptosis f . N
signaling in the pathogenesis of 7 Basntcabtis N . D?wnregulatlon. .
neurological defects. Both over- 9 * miR-10b-5p: Rho/ROCK signaling
expression and downregulation * miR-129-3p: The mitochondrial- pa_thway )
of different microRNAs known dependent intrinsic apoptotic * miR-20b-5p: Ras homolog family
to regulate the expression of \ pathway ) \_Mmember C J
apoptotic and autophagic pro- e : I
teins by activating or inhibiting 4 Overexpression A ¥ 9verexPreSSlon
different signaling pathways that 2 ; m!R-133b. TRAF3 pathw?y
ultimately lead to the pathogen- * miR-670: Yap pathway * MIR-338-5p: BCL2L11 axis
esis of NDDs + miR-148-3p: SYNJ1/PI3K/Akt pathway * miR-139-5p: HDAC4 signaling
* miR-132: SIRT1/p53 pathway * miR-17-5p: BNIP-2 axis
S % * miR-128-3p: Bax/Bcl-2 axis and NF-
KB/TNFa/IL-6 axis
* miR-211: p53/PUMA axis
g miR-221: Wnt/B-catenin pathway J
A<:tivates> . Neuronal Inhibits
“_ Apoptosis —
4 Overexpression N "- Inhibits |
* miR-122: MAPK pathway i
- miR-421-3p: mTOR pathway | Inhibits Overexpression
+ miR-181a: P38/JNK cascade + miR-372: Beclin-1 axis
+ miR-181b: P38/JNK cascade - + miR-134-5p: CREB pathway
- miR-421: TLRIMYD88 Neurological
signaling Defects
* miR-185: AMPK/mTOR
cascade Inhibits T
* miR-299-5p: Atg5 axis
miR-132-5p: LC3/Beclin-1 Rtiasies
\ axis Neuronal <
— b </ .—— -
Activates < Autophagy Inhibits
a N
Downregulation 7 -
. miR-140: mTOR axis Diowenegulation
- miR-331-3p: Sequestosome 1 \_MiR-96, miR204: mTOR pathway .
signaling e ) ™\
o o RlatE, ] ! ; Overexpression
: 2:2_2957'?'&2‘_":‘::;“ o - miR-19a-3p, miR-348-5p: mTOR/AKt
. miR-193i)-3p' TSC1/mTOR signaling + miR-221, miR-222: CDKN1B/p27/mTOR
v IR0 Beélin prp * miR-101, miR-17, miR-495, miR-9a-5p:
. i - 4 Atg4/Atg5/Atg7 axis
i Oveisxpression "y - miR-212-5p: SIRT2/p53 axis
- miR-3473b: TREM2/ULK1 pathway = Iit2UR S ARUGSICAR pithway
+ miR-182-5p: SNHG14/miR-182- * miR-124-3p: FIP200 axis
5p/BINP3 axis » miR-21-5p: Rab11a signaling pathway
+ miR-326: JNK signaling * miR-181b, miR-124: PTEN/Akt/mTOR
+ miR-138: SIRT1 signaling » miR-27a, miR-23b: FOX03a axis
miR-20a, miR106b, miR-26b, miR-93: * miR-376b, miR-216a: Class lll PI3K

\& ULK1 and ULK2 axis

// K\ miR-630, miR-374a: mTOR pathway //

hypoxic-ischemic (HI) brain damage (HIBD), silencing of
CRNDE promotes autophagy and inhibits neuronal apop-
tosis both in-vivo and in-vitro conditions [361]. Likewise,
downregulation of CRNDE in traumatic brain injury inhibits
autophagy and apoptosis through regulation of GFAP, BrdU,
NGF, and Nestin [362]. Wei-Lan et al. 2019 concluded that
LncRNA small nucleolar RNA host gene 12 (SNHG12)
inhibits miR-199a, which upregulated the activity of SIRT1
through activation of AMPK. Activation of AMPK leads

to increased autophagy and decreases neuronal apoptosis
[363]. Another member of the SNHG family known as
SNHG14 was considered to be associated with the progres-
sion and pathogenesis of cerebral ischemia—reperfusion
injury. Deng et al. 2020 in HT22 mouse hippocampal neu-
ronal cells demonstrated that SNHG14 promotes neuronal
injury through excessive mitophagy and neuronal apoptosis
by regulating the miR-182-5p/BINP3 axis [338]. Likewise,
Cao et al.,, 2020 concluded that LncRNA SNHG3 promotes
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Table 2 Involvement of long non-coding RNASs in apoptosis and autophagic cascades simultaneously

LncRNA Experimental Disease Pathway Target Role in Apoptosis Role in References

model Autophagy

MIAT OGD/R-induced Ischemic stroke CUL4A-DDBI1- REDDI1 Increases Increases [365]
PC12 cell injury REDDI axis

BACEI1-AS A, 4,-treated SH- AD miR-214-3p/ATGS ATG5 Increases Increases [366]
SYSY cells and
AD Tg mice

HOTAIR MPP*-induced PD miR-874-5p/ ATG10 Decreases Increases [367]
SK-N-SH cells ATG10 axis

BDNF-AS MPP*-induced PD BDNEF/ miR- miR-125b-5p Decreases Decreases [368]
SH-SY5Y 125b-5p axis

17A Ap-induced SH- AD GABAB signaling - Increases Increases [369]
SYSY cells

PVTI1 Streptozotocin- Diabetic mice  — NMDAR Increases Decreases [370]
induced diabetic
mice

RMRP OGD/R-induced  I/R injury PI3K/Akt/mTOR  Bcl-2 and p62 Decreases Increases [371]
injury in SH-
SYSY cells

TCTN2 SH-SYS5Y cell SCI miR-216b-Bec- miR-216b Decreases Increases [372]
line and SCI rat lin-1
model

MEG3 RGC-5s cell line  Glaucoma - Beclin-1, Atg3 Increases Increases [373]

HAGLROS MPP*-induced PD PI3K/Akt/mTOR  miR-100/ATG10 Increases Increases [374]

SH-SY5Y

axis

autophagic degradation and neuronal cell apoptosis through
increased activity of miR-485 and increased expression of
ATGT7 [364]. Thus, despite having several evidence, which
concluded the potential role of LncRNAs in the regulation of
apoptosis and autophagy, simultaneously in the pathogenesis
and progression of neurological defects, there will be a need
for in vivo studies (Fig. 6A).

Small-molecule inhibitors in autophagy
and apoptosis pathways in NDDs

Recent studies implicated the potential of cell death path-
ways, including the autophagic pathway and apoptosis path-
way, in the progression and pathogenesis of various diseases
such as cancer, cardiovascular, and NDDs. These emerging
discoveries led to expanding the pharmacological interven-
tions targeting PCD pathways and provided the opportunities
for development and prosecutions of known drugs or novel
compounds as a therapeutic approach. Autophagy and apop-
tosis were commonly involved in NDD progression mediated
through different signaling cascades and molecules. Oxida-
tive stress, calcium imbalance, mitochondrial dysfunction,
AMPK signaling, inflammatory response, and ER stress are
commonly involved pathways in the autophagic degrada-
tion of accumulated toxic proteins and neuronal apoptosis
due to aggregated misfolded proteins. Further, recent stud-
ies have shown that upregulation of autophagy through

@ Springer

autophagy inducers causes a decrease in the accumulation
of misfolded proteins and delays the progression of NDDs.
Likewise, inhibition of pro-apoptotic proteins and activat-
ing anti-apoptotic proteins through synthetic or natural mol-
ecules delay the progression of NDDs. Thus, induction of
autophagic degradation and inhibition of apoptosis signaling
cascade can be used as a therapeutic strategy for NDDs.
Table 3 discusses the drugs that undergo clinical trials for
induction of autophagy in the pathogenesis of NDDs.
Another study indicated that Apelin-13 reverses amy-
loid-induced memory deficits by inhibiting apoptosis and
autophagy, whereas administration of malathion in N2a neu-
roblastoma cells increases neuronal apoptosis and decreases
autophagic flux through inducing lysosomal membrane per-
meabilization [375, 376]. Apart from NDDs, modulation
of autophagy and apoptosis pathways could be protective
in other neurological diseases, such as spinal cord injury,
sleep deprivation, traumatic brain injury, ischemic stroke,
and epilepsy. For instance, Modafinil protects hippocampal
neurons by inhibiting autophagy and apoptosis pathway in
the mice model, whereas metformin protects neuronal cells
against spinal cord injury through inhibition of autophagy
and apoptosis cascade by regulating mTOR/p70S6K sign-
aling pathway [377, 378]. Similarly, Ganoderma lucidum
extracts reverse MPTP-induced neurodegeneration by
inhibiting excessive autophagy and apoptosis by regulating
oxidative stress and mitochondrial function [379]. Further,
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Elg\I AGS ﬁai(;né;elell(l)ril;gilrflli ed | (A) Involvement of LncRNAs in Autophagy and Apoptosis Signaling |
apoptosis signaling cascade
through modulation of differ- l
ent signaling cascades. For
example, BACE1-AS, HAGL- O BACE1-AS: miR-214-3p/ATG5 axis = Alzheimer’s disease
ROS, MIAT, 17A, and MEG3 O HAGLROS: PI3BK/Akt/mTOR pathway = Parkinson’s disease
through miR-214-3p/ATGS5 d  MIAT: CUL4A-DDB1-REDD1 axis = Ischemic stroke
axis, PI3K/Akt/mTOR pathway, O 17A: GABAB signaling = Alzheimer’s disease
CUL4A-DDB1-REDDI1 axis, O MEGS3: Beclin-1 signaling = Glaucoma
GABAB signaling, and Beclin-1
signaling, respectively, increase l
autophagy and apoptosis simul- | )
taneously. Similarly, LncRNAs, (Apoptoms Cascade
such as HOTAIR, RMRP, and (_ Autophagy CascadD
TCTN?2 through miR-874-5p/ i
ATG10 axis, PI3K/AkmTOR t
and miR-216b-Beclin-1 axis,
respectively, lead to an increase O HOTAIR: miR-874-5p/ATG10 axis = Parkinson’s disease
in au[ophagy and decrease in a RMRP: PIBK/Akt/mTOR pathway =1/R Injury
the apop[osis pathway. R2Q1 a TCTN2: miR-216b-Beclin-1 axis = Spinal cord injury
B natural biomolecules act as
a potential therapeutic agent T
in modulating autophagy .
I;;gﬁ%%?:j;zlirgcz rlodgil;eosr_ders. |(B) Natural Biomolecules as Therapeutic Agents in Autophagy and Apoptosis Signaling
For instance, Flavones and O Lignins O  Phenolics Acid
flavanols modulate mTOR, Q  Flavones O  Alkaloids
Akt, NF-xB signaling, and O  Flavanols O  Flavonols
caspase 3, whereas phenolic U Flavanones
acids and alkaloids modulate
the expression of Atg3 and
Beclin-1. Similarly, Flavanols,
Flavanones, Isoflavones, Alka-
loids, and Flavones regulate
the activity of Bcl-2, whereas
Lignines, Flavones, Flavanols,
and Flavanones regulates the
expression of caspase 9 and NF-kB v \
Atg3 Signaling —~ A
Akt | Caspase-3 I
A A a Flavones
a Flavanols
| Q Ganoderma lucidum
l Rl I — Qa Flavanols
g :’:2‘322?‘27 - a Flavanones
Q  Metformin L .19 Isoflavpnes
a Alkaloids
m] Flavones
m] Apelin-13

recent studies concluded the potential of flavanols, flavonols,
flavones, flavones, and flavanones as therapeutic agents in
the treatment of NDDs through reversing the effects of
dysregulated autophagic degradation and apoptosis. For
instance, Singh et al., demonstrated that administration of
fisetin, a natural flavonol compound in D-galactosidase aged
rats decreased the activity of pro-oxidants and increased the
activity of antioxidants. Further, fisetin causes a decrease
in neuronal cell apoptosis and upregulates the expression

of autophagic genes, such as Atg-3 and Beclin-1 [380].
Likewise, Yang et al., demonstrated that administration of
fisetin improves synaptic dysfunction through the decrease
in neuronal apoptosis and neuroinflammation by inducing
autophagy and activation of AMPK [381]. Further, admin-
istration of rapamycin leads to increased autophagy and pro-
tects the neuronal cell from oxidative stress and apoptotic
cell death [382]. Further, catechin can protect hippocam-
pal neuronal cell apoptosis by inhibiting the INK/MLCK
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Table 3 Autophagy inducer drugs undergo clinical trials in neurodegenerative disease involved different targets obtained from (https://clinicaltr

ials.gov/)

Drug molecule

Target signaling molecule

Disease model

Mechanism

Clinical trails

Sb-742457

Idalopirdine

Nicotinamide

Resveratrol

Lithium

Latrepirdine

Metformin

Rapamycin

mTOR activator

mTOR activator

Lysosomal acidification

TORCI antagonist
AMPK

AMPK
AMPK
AMPK
AMPK

AMPK
AMPK

AMPK

IP,-Ca’*, GSK3p pathway

IP,-Ca®*, GSK3p pathway
IP,-Ca®*, GSK3p pathway
GSK3p

IP,-Ca®*, GSK3p pathway

IP,-Ca®*, GSK3p pathway

IP,-Ca®*, GSK3p pathway

IP,-Ca®*, GSK3p pathway

mTOR antagonist

Increases Lysosomal Degrada-
tion

Increases Lysosomal Degrada-
tion

Increases Lysosomal Degrada-
tion

Increases Lysosomal Degrada-
tion

Increases Lysosomal Degrada-
tion

Increases Lysosomal Degrada-
tion

mTOR antagonist

AMPK

mTORC1

AD

AD

AD

AD

Age-related muscular degenera-
tion

Mood and Depressive Disorders

AD

Late-life exercise

Aging

HD
AD

AD

AD

AD
AD
PD

HD
Cognition
ALS

ALS

HD

AD
Cognition
ALS

Improves cognitive defects

Improves cognition in the hip-
pocampal and frontal cortex
region

Reduces disease pathology and
improves cognitive behavior
in AD transgenic mice

Penetrates BBB to have CNS
effects

NA

Enhances cognitive function
Reduces disease progression
Slow disease progression

Minimizes disease progres-
sion and improves cognitive
dysfunction

Ameliorates disease phenotype

Decreases A levels in CSF and
plasma

Reverses cognitive dysfunc-
tion and positive effects on
biomarkers

Reduces misfolded protein
aggregates

Inhibits disease progression
Improves cognitive function

Inhibits inositol monophos-
phate, leading to elevated
autophagy and decreases
a-synuclein aggregates

Rescues disease symptoms
Improves cognitive dysfunction
Inhibits disease progression
Inhibits disease progression
Inhibits disease pathogenesis

Ameliorates disease phenotype

Slow disease pathological
characteristics

Inhibits misfolded protein
accumulation

Improves cognitive function
Improves cognitive function
Improves cognitive function

Enhances cognition
Enhances cognition

Target autophagy and neuroin-
flammatory response

NCT00708552,
NCTO00710684

NCTO01019421

NCT00580931

NCTO01504854

NCT02625376

NCTO01794351
NCT00678431
NCT02523274

NCT02909699
NCTO01842399

NCT02336633
PMID: 26,362,286

PMID: 26,892,289

NCTO00088387

NCT01055392
NCT03185208
NCT04273932

NCT00095355
PMID: 21,525,519
NCT00925847
NCT00818389
NCT00497159
NCT00387270

NCT00920946

NCT00912288

NCTO00939783

NCT00377715

NCT00954590

NCTO01965756
NCT00620191
NCT03359538
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Table 3 (continued)

Drug molecule

Target signaling molecule

Disease model

Mechanism

Clinical trails

MCI-186 (Edaravone)

Antioxidant

ALS

Ameliorates disease phenotypes

NCTO00330681

SAGE217 GABAA receptor modulator Depressive Disorders Decreases disease pathology PMID: 31,338,688
Nilotinib AMPK PD Increases cognitive function NCT02954978
AMPK PD Increases cognitive function NCT02281474
AMPK PD Increases cognitive function NCT03205488
AMPK AD Increases cognitive function NCT02947893
Tamoxifen Autophagy pathway ALS Improves motor skills NCTO01257581
Autophagy pathway ALS Improves motor skills NCT00214110
Autophagy pathway ALS Improves motor skills NCT02166944
Valproic Acid Epigenetic targets promote AD Delays the progression of NCT00071721
autophagy cognitive and functional
measures of the illness
Different autophagy induction ~ ALS Extends survival of patients NCTO00136110
targets
Statins AMPK PD Inhibits disease progression NCT02787590
AMPK PD Inhibits disease progression NCT03242499
AMPK AD Cognition increases NCT00939822
AMPK AD Cognition increases NCT00303277
AMPK AD Inhibits misfolded protein NCT00486044
accumulation
AMPK AD Inhibits misfolded protein NCT00024531
accumulation
AMPK AD Inhibits disease progression NCTO00053599
AMPK AD Inhibits disease progression NCTO01142336
Nicotinamide Sirtuin AD Improves cognition NCT00580931
Sirtuin AD Improves cognition NCT03061474
Hydroxychloroquine  Lysosomal Inhibition AD Ameliorates disease phenotype PMID: 11,403,336
Lysosomal Inhibition AD Ameliorates disease phenotype PMID: 11,513,909

pathway and microglial activation [383, 384]. Further,
theaflavin decreases neuronal apoptosis by inhibiting the
inflammatory response and ROS-induced oxidative stress
[385, 386]. Naringenin, a dietary flavanone, reduces apop-
totic cell death, inhibits oxidative stress, and improves mito-
chondrial function through Nrf2/ARE signaling pathway
[387, 388], whereas, naringin inhibits neuronal apoptosis
through inhibiting oxido-nitrosative stress and neuroinflam-
matory response [389]. Meng et al. 2021 in a mouse model
of AD, demonstrated that naringin could improve cognitive
function through decreased neuronal cell death by MAPK/
p38 pathway [390]. Further, Guo et al. 2020 demonstrated
that administration of genistein promotes neuroprotection
against AfB-induced neuronal cell death through PI3K/Akt/
Nrf2 signaling pathway, whereas Jiang et al., 2017 con-
cluded that genistein attenuates isoflurane-induced neuro-
toxicity and improves spatial learning and memory abilities
through cAMP/CREB and BDNF/PI3K/Akt pathway [391,
392]. Similarly, equol, a dietary daidzein attenuates neuronal
cell death and promotes neuroprotection through inhibiting

microglial activation and cell cycle reentry [393, 394].
Moreover, apigenin also promotes neuroprotection through
inhibition of neuroinflammatory response and oxidative
stress-induced neuronal apoptosis [395, 396]. Kim et al.,
2021 concluded that administration of apigenin repressed
scopolamine-induced neuronal damage and reduced cogni-
tive impairment. The authors also concluded that neuronal
protection by apigenin is the result of enhanced BDNF activ-
ity, which decreases neuronal apoptosis and amyloidogenesis
[397]. Similarly, luteolin promotes neuroprotection through
reduced neuronal cell apoptosis by regulating SIRT3/
AMPK/mTOR and p62/Keapl/Nrf2 signaling pathway
[398, 399]. In addition, administration of luteolin and api-
genin causes activation of autophagic degradation through
HMOX1 and mTOR/AMPK/ULKI1 complex, respectively,
which promotes neuroprotection [400]. Peruru and Dodoala
in 2021 concluded that diosmin, a citrus flavonoid, promotes
neuroprotection by suppressing NOX4 and its subunits
[401]. Moreover, apart from the above-mentioned polyphe-
nol compounds, studies demonstrated the protective effects

@ Springer



R. Gupta et al.

8028

[veyl

[eTy]

[Tevl

[12r]

lozy]

[61+]

[81+]

[LT¥]

911

[ST¥l
(1]
(1]

[e1v]

[c1v]

S[OAQ] (-] SeseaIoUl

‘UoneANOE [BI[SOIONU SAINPAI ‘UONIUNISAP
ANIUS0o pue juouLredw AIOWAW SAILIONAWY

YO1S OTWAYDST

QINoe Y)Im sjel page ul sarnfur [81qe1od paonpur
-BIWAYDST $20NPal [ LYNIAN JO uoissaidxaronQ

YU/ TDIAN
Suneanoe ‘(oA AN SurseaIour ‘sjex QYDA
U1 J10Op AIOWOW 9 S9JRIOI[OWE PUR ‘SUOTOuny
JIOJOW Pue AIOSUISOJBWOS JO AIOAODAI YY) SAIR
-19[900€ 21008 JIOYAP [1S0[0INAU Y} SISBAIN(
OAIA UT pue onIA Ul sisojdode peonpur-pHw
Suniqryur pue PHw Jurper3ap ‘uorssardxa z9d
Suisearodp £q pue ¢)T-d40 01 € T-dAY Jo
oner oy Sursearout £q xnp drdeydoine seonpuy
de3ISD pue uoneanoe asedsed
PaseaIo9p YINoIYy) UONEIdUSSIPOINAU SISBAIN(

ASeydoine paA[oAUT-3 T/ JOLW SHQIYU]
‘uorssaidxo [ pue SO ‘YIeaP [[29 pasearour
pue uorssaxdxo | 31§ pue ‘JINIA ‘AITIqeIA
[[99 UI 9SBAIOOP PAINPUI-10Y Y} PALNUNY
sisojdode soonpar pue [BAIAINS [RUOINAU
19150§ 01 (AN ) 10308} o1ydonoInau paALIop
-ureiq jo uorssaidxa pojerpow-(gayD) urejoxd
Surpurg-juswae asuodsar JINVO SareII[Ioe]
SIOYOp 10JOUW SINISIY “UOIS
-s21dx0 N SOSBRIOUI PUB UOTIBATIOR YO LW
ASeydojne ssonpur pue ‘vonemnSarumop zgd
pue ‘vonengaidn [-uroag pue [[-gD ‘SuoInou
o1319y( jo sisojdode paonpul-y 1y 31qIyuI ued [
I-ddvd
JO S[OA9] Jea[onu pue UoHeAnoe asedsed soonpay]
ASeydojne pue ‘stsoydode ‘wonewrwreyur Suniqryuy
A3eydojne pue stsojdode ‘uonewrtueyur Suniqryuy
asuodsar £10)
-BWWERPUT SHQIYUT ‘UONBATIOR 9sedsed SaseaIoap
‘syuquyut Kemuyyed Surfeusts YO LW/ LIAV/EId
uonoUNYSAp [BLIPUOYIOIIUL
pas1anar pue ‘ASeydojru syiqrqur ‘uononpoid
SO $9seaI109( "UOIOUNJ [BULIOU SUWIOSOSA]

paurejurew pue ‘z9d/TALLOS ‘€T 1oxrew
ogroads-ASeydoine jo uorssardxo o) seonpay

U AV Iv.L

sye1 page ur saLIn(ur [eI1qaIad

sye1 Aoime—onSeidg

S[199 ¢ H Sussaidxa10r0-p/ LLH-dADH

[opowr SjeI (Jd PRonpur dUOUSJoY

ASAS-HS

(H Jo [opow asnow G/ [OZ

[opou asnowr (Jd padnput YVHAO-9

sje1 A9[me—ongerdg o[ew paonpur UIZeny
[opowr dd AS-ASHS padonpul  ddIN

S99 Z10d paonpur &gy
S99 Z10d paonpur &gy

[opow 21[nd [[90 XS-XASHS paonput gy

2mmmd 199 ¢1-Dd
K3191%0)03K0 paonpur aprxoradoIpAy [A1ng-119)

JOLw/Meld

JOLW/TLIIS

JOLWMAV/AEld

MYd pue JoLw

JOLW/MV/AEld

Sy

ggnHw

gynow

JoLw

AOLW/LV Pue
AOLW/IENSO/LAV/IEId
FOLW/IENSO/LAV/IEId

-dN

PV pue JoLw

C€CZd9d-dAN

ILLVNIAN

9PISOOA[S PIOPLIT [QUIOD)

Sursy

uro01)

unepA[od

ddLD

(IS) seuoAepgoSI UBdqAOS

[orpiqeuue))
QUOJBJOON

ULIPUBSIYOS

weidngoy

qurglog

0UQIRJOY

uornyeordwy

[opout [eyuswLIadXy

syeSre],

punodwo))

Kemyyed sisoydode pue A3eydoine jo uorien3ar oY) Ul PAAJOAUT dIe JB} SI[NIJ[OWOI] JIOYIUAS pue [eInjeu Jo IS § d|qel

pringer

Qs



8029

Autophagy and apoptosis cascade: which is more prominent in neuronal death?

[Lev]

[9¢v]

[sev]

[revl

[eet]

(8l

[Lzv]

[9zy]

[Sevl

suoInau ur uks-o jo uonejkioydsoyd

) sojenude Yorym ‘A3eydoine jo uonearssard
Q) QA[OAUT ABUI SUOINAU [9POW (Id JO U001

urojoxd orx03 Jo uoneperdop drdeydoine
pajease ySnoiyy osuodsar AIojewweYUT SHQIYU]

uonounysAp ondeuAs gjeroroure pue ‘ssons

QAIIEPIXO Pasearour y3noay) pajerpau sisojdode

1199 syuaaaxd ‘gy Jo souereard o13eydojne ‘uors
-sTwsuenoInau pue asdeuks jo A1r3ajur syuaralg

uononpoid sajrjoqelowr

ddV pue Suissac01d JdV ‘S[oA9] ddV Paonpal
03 ‘Surreusis urnsur pue ASeydone Jo anosay

uononpur A3eydojne ‘Ayjiqe

Surures] pue Aroww sasearour ‘uonisodop gy
S9SBAI0IP ‘UoIssaIdxa nel-d pue Jdv Sosea1odq

uonepeISap SUWO0SOsA[oINe sAJoW

-oxd ‘A3oroyed (v JO UOTJRIOI[OWE ‘QWAZUS

Surpeagop-ur[nsur oy} Jo s[oA9[ ) Sunengaidn

Aq uonejkroydsoydiodAy ney, soonpar pue
ASeydoine Sunowoid Aq eoueres[d gy sesearouy

1310 Jo uorssaIdxa 9y} saseaIour

pue “SJINV JO UONEpEISap oy} SHqIyur
“JOLw pue ‘[-u1ddg TI-€07] SoseaIoul NH L
$1091)9 2And3j01doInau pue uedsdjI| SPUAXT

uonouny swosedoid Suneanoe
ySnoxy) uonepeIdap ureonuks-eyde sooueyuyg
stsojdode pue Aot
-X0}03Ad paonpur ST SHqIyur ‘uorjewioj anberd
Q[IUQS SASBAIOAP ‘gy Jo uoneper3ap oreydone
sajowroxd ‘s309fop AIOWAW puUE JATIIUS0D SAINISIY

UonoINds
01-TI ‘Z-"T1 Sourj0}Ao AI1ojewwejul-nue ay)
sasearour ‘¢ asedseo pue Yo w ‘ged srsoydode
pue A3eydoine yiim pajeroosse urejoid oy jo
uorssardxe sasea1d9( -asuodsar Arojewrwreyur

SOJRIOI[WE PUE SUONOUN 2ANTUF00 saroxdwy
sa1e3aI33e UL

-nuks-eydye jo uoneperdop o1deydoine saoueyuyg
Kya3ayur rerpuoyd
-0j1w sJudAId ‘s1091J9 9A199j01doINaU $)IXD

pue uononpurt ASeydoine eia sisoydode syqryuy

S[[9
ASAS-HS UI qd JO [9pOW [BUOINSU PIdNPUT ULS-0

S[[20 BZN Payea) Sd'T

[epow 20TW (T PANSUI 7H-1dV

01w UQGYSL

AV pue WAZL Y el pue sier WAzl

Qotw oruadsuen (1Sd) 1-uruasaxd/(ddv)

SI[99 ASAS-HS paonpur-*£5¢gy
901 [ 9/ LSO Ul OAIA UL PUB SIUI[ IMI[ND [[3D

QOTW OTUAZSURT) UAS-0-]ECV

$9)A001)SE [BO1110D
Krewrrid pue s[[o0 gA{ ‘@orw oruagdsuen [Sd/ddV

[opou asnowr (Y paonpul gy

[opow 21m[nd [[99 dd

[epour 181 (Id

M9S0Ldr O™

grAN-JOLW

HID/JOLW/ IV Eld

JoLw

JOLW pue JINV

urua1ed-g/g e SOAUM

DITN/A0LW/AdNY
[040Lu

S9S0LdIOLW/NY/VSId

[D: 101
/40LW/TOON Pue [N T0/J0LW /LIV/AEId

¢ asedseo pue ‘ged YO LW

JoLw

JoLw

apIsoIpI[es

uroAwredey

urjojmua,
T1dgd

900-1 on3oreuy
qurzesAdiAyjowrena],

OPIUBXOZEBIIN

T UISQIBJA[

DAV

9y punodwo)

0URIRJOY

uornyeordwy

[opout [eyuswLIOdXy

syaSre],

punodwo)

(ponunuoo) ¢ sjqey

pringer

a's



R. Gupta et al.

8030

KIAT)OR URNoTIoIUL
pue Z-X(QD Sejenusije pue ‘yeap [[29 onoydode

[zsy] woly sjudAa1d pue asuodsar A1ojewERYUI-NUY S[[99 Z-Ad PABANIR-SJT NOLWANY /1L Pue sSIdVIN 20¢
ieop [[23
sjuoaald pue uoneMWNOIE 7 SIONPaI ‘doue

[1s+] -1e9[o o13eydoine surdjord papojsiwu padueyuyg o1 QV-3LX ¢ M9SOLA/JOLW/IMY  1SBOA PAYOLIUL-WNIUI[OS
uonenwnooe uroid 91x0) Jo uonepeIIap
or3eydoine pasueyuo ‘sisoydode sjuaraid uon

[ost] -erkioydsoyd ney uorssardxa 1-guipoeq passaxddng S[[99 Z1Dd PaonpuI-proe orepesQ NOLW/JESISOMY urdueren
Kemyyed uonepeiSop [BWOSOSAT
-A3eydoine soueyua ‘uor3o9)01doInau saseaIour

[6v1] ‘uroid 91%0) JO UOIRINWINDOE A} ONPIY [opow 201w JJv qd4L pue JOoLw ureqenQ
uoneAroydsoyd 1adAy ney

[8+1] s)IqIyuI pue 9oueIed[d d13eydoinegd v sosearou] V'N MOoLw V UIXA[es0one[n
uoneanoe ¢ asedsed syqryur y3noy) sisojdode
1190 syuaaaxd pue xnp d13eydoine parredwr el

[L¥¥] -orowre ‘uonounj AIOWSW pue SANIUS0D $2I0JSNY syl A JO uoISal [yD paonpur-urojozoideng ¥9S0Ldr 01w UNNOIND-9UNOIIN
6 osedseo pue ¢ asedsed Jo uonea
-NO® puB 9SB3[a1 ) SWOIYd0IKd paonpul-, ddIN

passarddns g0 ‘[310 PUe “YOLW “MdNY Kemyyed

[6L€]  ‘uonounjsAp JUSWSAOW [eLIPUOYI0II paroxduy d JO [epow asnow paonpur 1IN SurreuSts unyred/TINId PUe JOLW/SIJNY BULIOpOURL)
pasearour Apueoyrusis sem J/[-€D1

[9t+] JO ornjel 9y} ‘uoIssaIdxe UIA[ONUAS-0 SISBAIIR( S[[99 ASAS-HS Ut £1101x010140 paonpul-, ddIN NOLW/AVY/EId 9¢-urjedy
ssof ondeuAs

IS%4] 9} 9NOSAI puB UONIUNJSAP 9ANIUT0d soaoxduuy dorw qV (8L X€) JdoLlw QUI[eAION-T
yreap (129 syuaaaid pue uon
-onpur o13eydony ‘uorssardxa g-dAA sHqryur

[#++] pue uoneI3iu [[99 sjuaadld ‘9A1109301doInaN S[[99 HS-N-3S PoonpuI-urquiony, MOLw pue JVIN/8c-d urgueren

[etpl] Aniqe K1owowr pue uonrus0ar oy aaoxdury oo1w AW (V [ 9/T9LSD AOLW-NdNY opndad ZoTH
yjeap 100 onoidode paonpur
-SSAI}S QATIBPIXO JRIOI[OWE ‘PIIIQIYUT UOIS

[cry]  -serdxe “YOLW pue YOLW-d WV PIV-d MEld S[[23 C1Dd padonpul+ddIN Hv/AEld QuIureIngH
uorssaxdxo [-uroag pue J[-¢DT SOSLaIour uor

[1+#] -epeidop gy o1Seydone pue [ewWOSOSA] SasBAIOU] [opouws asnow [Sd/ddV MOoLw apisodruan
uonojord
-o1nau JIqIYx? ‘A3eydoine sejowoid ‘vonouny

[ovy]  -s&p [epuoydoiw pue uononpoxd SOY sHqryuy S[I92 C1Dd Poonpul-cOCH Kemped Yo Lw-my ddv

uononpur o13eydone y3noxy) sisojdode [epOow 9SBISIP S, IOWIYZ[Y S0J-0 paje

[6c]  siuoaaid pue A3151X0J0INAU PIOJAWE WOI) S3199)01] e[ydosoi(q ‘s[eo redweooddry esnowr gz-1H -IPOW-9SeUny| PoJe[nN3aI-[BUSIS JR[N[[20BNX/IY QUIOAIA [9AON ® ‘AT
uoissa1dxo ggA.L pue ¢H-] SSeaIoul ‘sajes

[8¢+] -2133e urojoxd papiojstuu jo ASeydoine seonpuy S[[92 pajo[dap-¢O Ly ur ngw [fe): (O AL aloseuk(q

Q0uUIgJOY uornyeordwy [epow [eyuswLIadxy syaSre], punodwo)

(ponunuoo) ¢ sjqey

pringer

Qs



8031

Autophagy and apoptosis cascade: which is more prominent in neuronal death?

Ananoe (z9d) [INLSOS Pasea1dop
pue ‘oner [/[1-(€0T) pasealout ‘AY1orxo) prof

[Lo¥] -Awe woiy syuaaaid pue uononpur A3eydoiny SII9D ASAS-HS paean ¢e-szdv SIdINY pIoy dIsoure)
uonouny dANIUZ09 saaodur
[99%] ‘ooueIea[d uonesaIdTe projAwe sejowold Qo oruadsuen} [Sd/ddV PUe S[[29 ASAS-HS MOoLw-Y¢Id crETX1
u0199101doInau $110%d
[sot] pue sanifiqe Arowew pue Surured] soaoxdwy asnowr oruadsuen [Sd/ddV Kemyred JOLW/V/ICI yuspuadap [-uroeg Juorese-¢
yieap
[#9%] 1199 o13eydoine paonpuI-SSANS IATIBPIXO SJUIAAIJ [opow Je1 AInfur Y1Ds NOLW-Y apy[ns uagoipAH
sisojdode [euoInou soje
-nuaye pue uononpold SOY Pasea1dp y3noy SUOINAU QULINW
[eov] PJEIPAUI UOTDIUNISAD [RLIPUOYIOIIUI SIUGADI] Arewrtd pue s[[e0 XGXS-HS ‘T1Dd Paonpur-p) JOLW-NdNY [onseE)
peo[
PIOJAWE pUE NE) SAIRIOI[AWE ‘SUONOUNY AANIUS0D S[[99 [ADVD/ddV
[zov] sonosar ‘Ayifiqe Surures] pue Alowaw saaoidw]  -QHD PuB ASAS-HS ‘oot owedsuen [Sd/ddV SIECIASIdINY — SHB[NOIULIOA BIJOUWRY ],
901 (] UI NiE) JO 9JURIRI[D
o13eydone ay) pue ne) jo uonejkioydsoydradLAy
[19¥] 9 yoq Sunagrey £q SuI[oap ANIUZ00 SANEININ o qv-31LX¢E AOLW/JENSOMY SUIUOIYIWOU[AS
sisojdode
1199 sjuaaaid pue uonepeidop orseydone
[097]  padueyud YSnoIy) AJDTX0J0INAU PIOJAUIE SINOSIY S[[99 71-Dd Paanput gi-1gv AOLW-NEId oV
uorssaxdxo
7dOS paoueyua ‘uononpoid SO paonpar ‘uon
-09)01doINaU 319X ‘Yreap [0 sjuaald pue uon
-eAnoe asedsed syiqryur ‘uonepeidop osrseydone S[[99 ZZ.LH peSewep-n[D-] pue [opow
[6S¥] PaoUBYUS ‘UOTIOUNJ [ELIPUOYO0ITW soAoidw]  dorw (Y padofeasp-S[DIy pue ([eS-p) 9sojoees-p NOLW-1Y BOJESOED B)IURWIY
ASeydoine jo
uononpur pue sisojdode 1100 Juoaa1d sasearosp
Ky1anoe ¢ osedses ‘uonedor3de ney syquyur
[8S¥] ‘suorjouny 9AnIuS0o pue Arowaw sorordwy Qo1 ¢oney, TNSIdNY aprzowd
UONRIOI[OWE SSANS
[LS#] ¥H pue uonowoid ASeydone yjoq uo s309jje reng M qQV v NOLW/ILV/ICId [o1pexeuedojoiq
uoneanoe ¢ asedsed pasearoop y3noIyy
[9st] s1sojdode [euoInau paonpuI-wWNIWpPED SJUIAIJ je1 Ao[me(] oandeids S[ejA NOLWANY pue 7/ 3INI uno[IqoN
surajoid o1X0} Jo uonepei3op oreydojne
[ssy] sojowold ‘s309jap [es13ojoinau parorduy oot [Sd/ddV AN S9d/dINY UTULIOJIOA
Ayiqe Surured|
pue Krowowr seaoxdwr pue uonuSod doueyuyg [epows uor}
[#St] -uonepeidop god pue uoissardxa [[-¢DT posealou] -ounysAp 9ANIUS09 O1IQRIP OAIA-UI PUB ONIA-UL MOLW/SdNY apunj3ear|
suonouny aAnv9)0IdoInou
[¢SH]  s10x0 pue uonouny uonowodo] ‘uedsayiy sarorduy [opow (JH Ieise3oueow eriydosoiq MOLw BISOI BJOIPOUY
Q0UIgJOY uornyeordwy [epow [eyuswLIadxy syaSre], punodwo)

(ponunuoo) ¢ sjqey

pringer

a's



8032

R. Gupta et al.

Table 4 (continued)
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induced neurotoxicity

[469]

Reverses disease progression and activates

SMAAT7 mice and SMN-deficient NSC34 cells

Akt/mTOR

Loganin

autophagic degradation of accumulated toxic

proteins

[470]

Inhibits oxidative stress and inflammatory

In-vivo PD model

Nrf2/mTOR

Sulforaphane

response, prevents from neuronal apoptosis

of lignins and phenolic acid against neuronal apoptosis and
autophagic cell death in NDDs and other neurological dis-
eases. For example, caffeic acid phenethyl ester, a phenolic
compound, prevented neuronal cell apoptosis against AB; 4,
through the modulation of GSK3 in the mice model of AD,
whereas, gallic acid protects from 6-OHDA induced neuro-
toxicity and cell apoptosis through inhibition of oxidative
stress [402, 403]. Similarly, geraniin protected neuronal cells
from apoptosis in PC12 cell culture against AB25-35 toxicity
through the modulation of the NF-kB pathway, whereas arc-
tigenin protected PC12 cell culture against ethanol-induced
nerve damage [404, 405]. Furthermore, recent studies dem-
onstrated the protective effects of natural alkaloids in pre-
venting neuronal cell viability [406—409]. For instance, tri-
cyclic pyridine, an alkaloid from Fusarium lateritium SSF2,
prevents neuronal cell apoptosis against glutamate-induced
oxidative stress in the HT22 hippocampal neuronal cell
line by inhibiting caspase 9 and caspase 3 [410]. Similarly,
dendrobium alkaloids enhanced neural function through
reduced neuronal cell death by modulating the expression
of inflammatory cytokines [411]. Thus, from the evidence
mentioned above, it might be concluded that targeting apop-
tosis or autophagy pathways could be beneficial for reverses
neurological defects. Table 4 lists the natural and synthetic
biomolecules in the regulation of autophagy and apoptosis
machinery (Fig. 6B).

Conclusion and future perspectives

This review displayed the intricacies between two major
cell death pathways, viz. apoptosis and autophagy in NDDs,
which provide a great avenue for therapeutics. These two
pathways have several common mechanisms, such as ini-
tiator and effector molecules, genes and proteins, and sign-
aling pathways that form a connection. With the develop-
ment of research technologies and specific inhibitors, our
understanding of cell death pathways is ready to be executed.
Herein, we tried to elaborate the knowledge about molecu-
lar phenomena between the two death pathways involved
in NDDs, for instance, interactions between targets and
pathological mechanisms of molecular targets involved in
cell death pathways and autophagy. However, many critical
issues must be resolved while targeting cell death pathways
concerning autophagy as a therapeutic approach in NDDs.
Investigating molecular targets, regulatory mechanisms, and
signaling cascade is a matter of extensive research to maxi-
mize the potential of cell death pathways. Moreover, regula-
tion of PCD and NDDs through miRNAs is a new direction
for research in this field, where miRNA may target more
than one component of the cell death pathways or sometimes
may target more than one death pathway. In this review, we
also discussed the molecular mechanism of autophagy and
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apoptosis in NDD’s while focusing on the molecular mark-
ers, signaling cascades, and shared mechanisms such as ER
stress and Ca** concentration. Both autophagy and apoptosis
can regulate each other mediated by inhibition of activation
of apoptosis-associated caspases. However, to maximize the
potential of cell death pathways as a therapeutic approach,
further in-vitro and in-vivo studies are required.
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