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Abstract
The human GPCR family comprises circa 800 members, activated by hundreds of thousands of compounds. Bitter taste recep-
tors, TAS2Rs, constitute a large and distinct subfamily, expressed orally and extra-orally and involved in physiological and 
pathological conditions. TAS2R14 is the most promiscuous member, with over 150 agonists and 3 antagonists known prior 
to this study. Due to the scarcity of inhibitors and to the importance of chemical probes for exploring TAS2R14 functions, we 
aimed to discover new ligands for this receptor, with emphasis on antagonists. To cope with the lack of experimental structure 
of the receptor, we used a mixed experimental/computational methodology which iteratively improved the performance of 
the predicted structure. The increasing number of active compounds, obtained here through experimental screening of FDA-
approved drug library, and through chemically synthesized flufenamic acid derivatives, enabled the refinement of the binding 
pocket, which in turn improved the structure-based virtual screening reliability. This mixed approach led to the identification 
of 10 new antagonists and 200 new agonists of TAS2R14, illustrating the untapped potential of rigorous medicinal chemistry 
for TAS2Rs. 9% of the ~ 1800 pharmaceutical drugs here tested activate TAS2R14, nine of them at sub-micromolar concen-
trations. The iterative framework suggested residues involved in the activation process, is suitable for expanding bitter and 
bitter-masking chemical space, and is applicable to other promiscuous GPCRs lacking experimental structures.
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Introduction

G-protein-coupled receptors (GPCRs) are the largest fam-
ily of membrane proteins, with ~ 800 members in humans 
[1]. GPCRs are involved in countless cellular processes as 
their main function is related to translation of extracellu-
lar signals, usually chemicals, into intracellular stimuli. A 
total of ~ 180,000 different ligands known to target human 
GPCRs are reported in the GPCRdb [2], defining a broad 
ligand spectrum for many members belonging to this fam-
ily. Indeed, over 200 receptors are targeted by more than 
100 ligands and ~ 100 by more than 1000, according to 
data retrieved from GLASS [3]. The long list of GPCRs 
targeting molecules includes over 450 drugs approved 
by the FDA, representing one third of the FDA-approved 
drugs (December 2022) [2, 4]. Interestingly, 52% of these 
GPCRs targeting drugs are antagonists [2].

The 25 human bitter taste receptors (TAS2Rs) belong 
to the GPCR family and are known to recognize over 
1000 natural or synthetic bitter molecules [5], including 
several drugs [6, 7]. The TAS2Rs expressed within the 
taste buds on the tongue are responsible for the bitterness 
perception, which is a valued property for selected foods 
and beverages, but a major obstacle in many foods and 
in drug compliance [8–11]. The extra-oral expression of 
bitter taste receptors is now established [12], and their 
potential as new pharmacological targets (i.e. for lungs 
disease treatment [13, 14]) or as off-target [15] is often 
debated. Therefore, potent agonists and antagonists are 
required as biochemical probes for studying the roles of 
ectopic TAS2Rs, and for developing novel modulators of 
taste properties in foods and drugs.

The most promiscuous bitter taste GPCR in humans 
is TAS2R14 [16, 17], which is responsible for the detec-
tion of a great variety of bitter molecules. Extra-oral 
expression of TAS2R14 has been confirmed in differ-
ent tissues, including heart, lungs, thyroid gland and the 
brain [18–21] and linked with several physiological and 
pathological conditions [12]. For example, TAS2R14 in 
the human placental tissue has been suggested as contribu-
tor to the immunological regulation at the maternal–fetal 
interface [22]; activation of TAS2R14 expressed within 
the airway smooth muscle induces significant bronchodila-
tion; increased TAS2R14 expression was associated with 
worse survival in adrenocortical carcinoma and esopha-
geal adenocarcinoma [23], but prolonged overall survival 
in pancreatic ductal adenocarcinoma [24].

To unravel the physiological roles of TAS2Rs and 
TAS2R14 in particular, antagonists are of great importance. 
However, despite multiple experimental studies or ligand-
based and structure-based guided screens [6, 25], only a few 
antagonists of TAS2R14 were discovered so far [26].

While this study was performed, no experimental struc-
ture was available for any of the TAS2Rs. Modeling was 
challenging due to low sequence identity with available 
structural templates (~ 11%) [27, 28] and subsequent lacking 
details on ligand binding and receptor activation mechanism.

To overcome the lack of structural data, we applied a 
mixed computational/experimental approach to discover 
TAS2R14 antagonists and agonists in an iterative methodol-
ogy. In each iteration, we identified new compounds through 
cell-based screen of drug-like molecules and/or through syn-
thesis of derivatives of the known agonist flufenamic acid 
(FFA). The new obtained dataset of known active molecules 
was employed to improve the performance of TAS2R14 
models in their ability to discriminate actives from decoys 
(compounds supposed not to bind the receptor) through 
Induced Fit Docking (IFD) followed by Retrospective Vir-
tual Screening (RVS). IFD allows a rearrangement of the 
binding pocket side chains and, consequently, new TAS2R14 
conformations generation. RVS computes the IFD conforma-
tions’ performance relying on docking score-based ranking 
of docked actives and decoys. The top two performing 3D 
models, one dedicated to agonists and one to antagonists’ 
detection, were selected in each iteration and employed for 
virtual screening (VS). Specifically, two cycles of structure-
based and mixed structure and ligand based screening of a 
multi-million compounds library [29] allowed the identifica-
tion of three antagonists and six agonists, a remarkable result 
considering the difficulties in finding TAS2Rs antagonist 
and the low number (n = 29) of computationally predicted 
compounds that were experimentally tested. In addition, the 
RVS performances of the AlphaFold model [30] and of a 
homology model based on the TAS2R46 CryoEM structure 
[31] (both not available at the beginning of this study) were 
also evaluated.

Including both experimental and computationally driven 
procedures, we found a total of 200 new agonists and 10 
new antagonists and highlighted new TAS2R14 structural 
features related to ligands binding. Comparison of TAS2R14 
agonists vs antagonists dedicated models suggested new 
hypotheses pertaining to TAS2R14 activation.

Results

The 3D models of TAS2R14 were shown to be useful for 
finding agonists through a structure-based approach [17, 
32]. Starting from a model generated with I-TASSER [33] 
defined as IT0 throughout the manuscript, two iterations of 
structure refinement, each one followed by structure-based 
and mixed structure and ligand-based detection of TAS2R14 
ligands, were applied. The models nomenclature is “IT” fol-
lowed by the number of the iteration and by a “+” symbol 
if the model is for agonists screening, or a “−” symbol for 
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antagonists’ screening. The ligands employed in each itera-
tion are summarized in Table 1. Each iteration starts with a 
pure experimental strategy to increase the number of known 
active ligands that are then used within the computational 
part of the methodology to identify additional new actives. 
A third iteration was performed to get the final models.

Iteration 1: chemical synthesis of new active 
molecules

Flufenamic acid (FFA) is an FDA approved non-steroidal 
anti-inflammatory analgesic, which activates the TAS2R14 
receptor at sub-micromolar concentrations, while most of 
the bitter molecules require higher concentrations [5]. FFA 
is amenable to chemical modifications, and following a pre-
vious study [32], several FFA derivatives were synthesized 
and tested for their ability to activate or inhibit the receptor. 
FFA served as the main agonist against which inhibition was 
tested. 39 of the newly synthesized derivatives were agonists 
(Supplementary File S1 and S2), while 7 were antagonists 
(Table 2 and Fig. 1a). These compounds were combined 
with the previously known TAS2R14 actives, including 17 
FFA derivatives from [34]. 

Iteration 1: conformations generation and selection

The dataset of TAS2R14 active compounds included 209 
agonists and 10 antagonists (Table 1). These molecules 
were used to create circa 1900 conformations of the pro-
tein by applying IFD (Schrödinger Release 2021-1: Induced 
Fit Docking protocol, Schrödinger, LLC, New York, NY, 
2021) to the IT0 starting model. The same ligands were also 
employed, together with a set of decoys, to evaluate the con-
formations quality through RVS. The model with the highest 
Enrichment Factor 10% (EF10%) and Area Under the Curve 

(AUC) for antagonists was chosen for further antagonists 
screening (model name: IT1−) and the model with the high-
est EF1% and AUC for agonist discrimination was chosen 
for further agonists screening (model name: IT1+) (see 
paragraph “Iteration 3: final models, top performances” for 
models performances).

Iteration 1: virtual screening and ligands’ clustering 
strategies

The Enamine REAL compound library, a drug-like dataset 
of molecules complying the “rule of 5” and lacking PAINS 
and toxic compounds, comprised ~ 23 million compounds 
when this study started [29]. The compounds were docked 
to both IT1− and IT1 + , ~ 6000 compounds with high 
docking scores to both models were selected. Indeed, while 
IT1− prioritized antagonists only over decoys, IT1 + pri-
oritized both agonists and antagonists over decoys, a fea-
ture that can be exploited to increase the chances of new 
antagonists’ identification (Supplementary Fig. S1). At this 
stage, about a quarter of TAS2R14-active compounds are 
FFA derivatives, discovered in this study or previously [32], 
biasing the IT1+ binding site toward fitting to this scaffold. 
Similarly, most of the antagonists possess the same scaf-
fold and are therefore recognized by IT1+ (Table 1). For 
IT1−, we currently have a very small retrospective virtual 
screening training set due to the low number of antagonists 
available, with three quarters of the agonists differing from 
the FFA structure. This could be the reason for the low 
performance obtained by IT1− for agonist discrimination. 
Among the ~ 6000 compounds collected, 7 were selected for 
purchase and testing. Two of them showed agonistic activity 
(LF6 and LF9, Supplementary Table S1), while no antago-
nists were found.

Table 1  Agonists and antagonists available for each computational 
iteration and source details (BitterDB: compounds retrieved within 
the literature, not within this study; Flu derived: FFA derivatives; 
Comp screen: active compounds found in this work through the 
computational methodology; FDA library: agonists derived from the 
experimental screening of the FDA-approved drug library (Discov-

eryProbe™, ApexBio)). Within each iteration output, the number of 
output ligands includes the ones used as input for that iteration plus 
the ones discovered through the computational screening. For each 
data source, the number of new ligands compared to the previous 
iteration step is indicated with a “+” symbol and the total cumulative 
number retrieved through that source is specified within parenthesis

Compounds Iteration 1 Iteration 2 Iteration 3

Agonists Input: 209
BitterDB: 170
Flu derived: 39

Output: 212
Comp screen: + 3 (3)

Input: 391
BitterDB: + 24 (194)
Flu derived: + 14 (53)
FDA library: + 141 (141)
Comp screen: + 0 (3)

Output: 394
Comp screen: + 3 (6)

Input: 394
Same ligands as iteration 2

Antagonist Input: 10
BitterDB: 3
Flu derived: 7

Output: 11
Comp screen: + 1 (1)

Input: 12
BitterDB: + 1 (4)
Flu derived: + 0 (7)
Comp screen: + 0 (1)

Output: 14
Comp screen: + 2 (3)

Input: 14
Same ligands as iteration 2
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The structure-based virtual screening results were also 
used as a filter for a ligand-based strategy: the ~ 6000 com-
pounds were clustered, together with the active ligands, 
using a hierarchical clustering algorithm. Three Enamine 
compounds that clustered together with known actives were 
selected for purchase and experimental testing, finding one 
new antagonist (LF1) (Fig. 1b and Table 2) and one new 
agonist (LF3) (Supplementary Table S1).

Iteration 2: Cell‑based screening of drug‑like 
compounds and new chemical synthesis

In parallel to the first iteration of the computational meth-
odology, a large cell-based in vitro screening of an FDA-
approved drug library (DiscoveryProbe™, ApexBio) was 
performed, using the IP-One  HTRF® assay (384-well for-
mat) to asses TAS2R14 activation. The library included 
1791 compounds with well-characterized bioactivity, bio-
availability, and safety profiles and was primary screened 
at a final single concentration of 30 µM [35, 36]. With this 
criterion, 161 library compounds were identified as active 
(141 previously unknown) (Supplementary File S3). The 
active library compounds from the primary screen were fur-
ther tested for their activity at 3 µM and thereafter at 1 µM 
and 0.3 µM, resulting in 38, 24 and 9 active compounds, 

respectively. For comparison, the dose–response curve of 
FFA  (EC50 = 0.42 µM) shows an intrinsic activity of approxi-
mately 90%, 70%, and 50% at 3 µM, 1 µM, and 0.3 µM, 
respectively, corresponding to FFA  EC90,  EC70, and  EC50 
values. These numbers take into account the results of a 
counter-screen against TAS2R14 uninfected HEK293T 
cells (mock cells), which suggested five false positives 
compounds that were excluded from the list of agonists due 
to unspecific accumulation of inositol monophosphate (IP) 
(Supplementary File S3).

The inactive compounds from the FDA screening were 
docked to the IT2− model and 10 top ranking compounds 
were selected for antagonism test, but none showed antago-
nistic activity.

Additionally, 14 new agonists were identified through 
chemical modification of the FFA (Supplementary File S1 
and S2). The FDA library compounds and the new FFA 
derivatives were combined with the updated list of actives 
retrieved within the literature and with the compounds 
obtained in iteration 1, and used as input set for iteration 2 
(Table 1).

Table 2  Pharmacological 
data for tested 
compounds (antagonists 
retrieved within this study) 
and the reference agonists FFA 
and aristolochic acid obtained 
by measuring Gαqi-mediated 
accumulation of IP1

a

a Measurement of G-protein signaling was performed applying the IP-One  assay® (Cisbio) in HEK293T 
cells transiently co-transfected with the human TAS2R14 receptor and the hybrid G-protein Gαqi
b Inhibition of the agonist effect of 1 µM of FFA/aristolochic acid
c Potency of TAS2R14 activation as mean value in µM ± SEM
d Maximum efficacy in % ± SEM relative to the full effect of FFA
e Number of individual experiments all performed in duplicates/triplicates
f Potency to inhibit the effect of 1 µM FFA as mean value in µM ± SEM
g Maximum inhibitory efficacy was analyzed by subtracting the effect at the highest concentrations of test 
compound suitable for inhibition from 100% and is displayed as % ± SEM
h Potency to inhibit the effect of 1 µM aristolochic acid as mean value in µM ± SEM

Agonistic effect Inhibitory  effectb

EC50 (µM)c Emax (%)d nf FFA as agonist Aristolochic acid as agonist

IC50 (µM)f Emax (%)g Ne IC50 (µM)h Emax (%)g Ne

FFA 0.43 ± 0.04 100 10 – – – – – –
Aristol. acid 0.83 ± 0.2 100 4 – – – – – –
LW 118 – < 5 2 4.0 ± 0.49 83 ± 4 8 2.7 ± 4.1 82 ± 17 3
LW 129 – < 5 3 3.7 ± 0.62 > 95 5 – – –
LW 131 – < 5 2 4.1 ± 1.6 > 95 2 – – –
LW 145 3.2 ± 1.2 − 14 ± 5 6/11 3.8 ± 0.64 88 ± 6 5 – – –
LW 148 – < 5 6 4.4 ± 1.6 > 95 6 – – –
LW 209 0.48 ± 0.1 − 19 ± 3 4 4.1 ± 1.3 96 ± 4 3 – – –
LWYW22 – < 5 1 3.8 ± 1.5 > 95 2 – – –
LF1 – − 8 2 6.8 ± 3.2 75 ± 7 5 11 ± 6.1 > 95 3
LF14 – − 15 ± 22 2 22 ± 16 76 ± 17 3 14.3 ± 5.8 53 ± 10 3
LF22 – − 29 ± 5.6 2 7.2 ± 3.7 63 ± 13 3 4.3 ± 2.6 59 ± 16 3
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Iteration 2: Conformations generation and selection

IT2 + and IT2− were generated starting from the top 
performing model of iteration 1. The active dataset now 
included 391 agonists and 12 antagonists (Table 1), and 
was employed for IFD models’ generation and RVS for 
performance evaluation. Selection of the IT2 models was 

performed as for iteration 1. Unlike iteration 1, the best 
agonist discriminating model did not get satisfying results 
in antagonist detection and thus a VS strategy differing 
from the one applied in iteration 1 was employed.

Fig. 1  Dose dependency of the 10 TAS2R14 antagonists identified in 
this study and their 2D structure. Values represent the means, error 
bars indicate SEM of 2–11 independent experiments, each treatment 
performed in three replicates. a Derivatives of FFA showing antago-
nistic effect on TAS2R14 in the presence of 1 µM of FFA. b Antago-

nists identified through the computational methodology having a dif-
ferent scaffold compared to the FFA derivatives. c Dose dependency 
of the inhibitory effect of 4 TAS2R14 antagonists identified in this 
study in the presence of 1 µM aristolochic acid
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Iteration 2: Virtual screening and tanimoto 
similarity + clustered docking strategies

The same Enamine library employed for VS during iteration 
1 was docked to the IT2− and IT2 + models. Seven com-
pounds were chosen for in vitro test based on the IT2−: 
one was experimentally found to be an antagonist (LF22, 
Table 2 and Fig. 1b), and two were found to be agonists 
(LF25 and LF26, Supplementary Table S1). Five compounds 
were selected based on a high docking score in the IT2 + and 
no agonists nor antagonists were identified.

An additional approach for candidates’ selection was 
based on the assumption that, usually, similar ligands bind 
in a similar way to the same receptor. Hence, we first looked 
for active-2D similar compounds through Tanimoto score 
within the Enamine REAL library. Then, among these 
selected molecules, the ones with a binding pose similar 
to the topologically similar active molecule were chosen. 
Particularly, by docking an active compound to all of the 
iteration 2 IFD conformations and by clustering the ten bind-
ing poses that got the highest docking score, we obtained 
one representative pose for the active. Similarly, we got a 
representative binding pose for the similar candidates found 
within the library. A structural comparison was then per-
formed and some candidates selected based on binding pose 
similarity with the docking of the active. This strategy was 
applied to the available antagonists, with 4 Enamine REAL 
compounds reaching the in vitro test. One antagonist (LF14, 
similar to the FFA derivative agonist lw209) (Table 2 and 
Fig. 1b) and one agonist (LF11, similar to the antagonist 
LF1 found in iteration 1) (Supplementary Table S1) were 
found. The same strategy was also applied to the 14 agonists 
that activated TAS2R14 at 0.3 μM, the lowest concentra-
tion tested in the FDA library screening. Three compounds 
similar to the known agonists (two to butoconazole nitrate, 
one to sulconazole nitrate) having a similar predicted bind-
ing orientation or interaction pattern with the receptor when 
compared to the docking of the agonist, were selected for 
testing, resulting in no hits.

Characterization of antagonists

Among the antagonists with novel scaffolds discovered 
through the computational study, LF1, LF14, and LF22 were 
able to reduce the activity of the receptor and block FFA 
induced TAS2R14 activity with a half-maximal inhibitory 
concentration of 6.8 ± 3.2, 22 ± 16 and 7.2 ± 3 µM, respec-
tively (Table 2 and Fig. 1b).

In order to investigate the antagonistic effect of the dis-
covered compounds, another TAS2R14 reported agonist, 
aristolochic acid, was tested. This is a natural bitter com-
pound known to activate three different TAS2Rs (TAS2R14, 
TAS2R43, TAS2R44) [37]. In an extensive TAS2R14 

mutagenesis study, Nowak et al. suggested that FFA and 
aristolochic acid bind differently in the receptor-binding 
pocket [17]. A derivative of FFA (LW118) and the com-
pounds having different scaffolds derived from the compu-
tational study (LF1/LF14/LF22) inhibit both flufenamic and 
aristolochic acid in dose response manner (Fig. 1b, c). At the 
maximal tested concentration of the antagonists (30 µM), 
IP1 accumulation was reduced to basal level by LF14 and 
LF22, or to complete signal blockage by LF1 and LW118.

Iteration 3: Final models, top performances

The full set of ligands (394 agonists and 14 antagonists 
(Table 1)), was employed to build the last models, IT3− and 
IT3+ . New IFD conformations (> 1500) were generated 
starting from the model used for iteration 2 and the top per-
forming ones in terms of RVS were selected. Evaluating all 
the models generated through the different iterations using 
the most updated dataset of ligands shows an improvement 
in their VS performances (Fig. 2). A substantial increase 
in the EF values is evident for both agonist and antagonist 
models when comparing the first iteration with iteration 3 
results, while AUC values have a different behavior accord-
ing to the model. For the antagonist, a constant increase is 
observed, and for the agonist a slight decrease (circa -0.03) 
is registered. This trend can be explained by the presence of 
the Extracellular Loop 2 (ECL2) acting as a lid on top of the 
binding site and limiting the docking of bulky compounds in 
our models (Supplementary Fig. S2). The largest TAS2R14 
antagonist known so far has a molecular weight (MW) of 
390 g/mol, while the largest agonist is almost 1000 g/mol. 
High MW compounds are probably most affected by the lid 
feature, thus influencing the agonist model performances.

Only 6 agonists were identified by IT0 within the top 168 
(1%) RVS screened compounds, while 52 were identified 
using the IT3+ model. Five antagonists out of 14 identified 
by IT0 within the top 59 (10%) screened ligands, increased 
to 12 in IT3− model (Fig. 2a, b, bottom panels).

A comparison between the first (IT0) and the last mod-
els (IT3− and IT3+) generated in this work shows a mas-
sive rearrangement of the side chains within the binding 
site (Fig. 3a). The FFA docked to the IT3+ clashes with the 
 F1865.46 of the superposed IT0 (superscript numbers: Balles-
teros-Weinstein numbering [38]). Indeed, the binding site is 
slightly shifted towards the intracellular side in the IT3+. As 
a consequence, also other residues involved in binding, such 
as  W893.32 and  N933.36, have different orientations.  N933.36 
and  Y2406.48 evolve through the generation of a H-bond in 
the IT3+, an interaction missing within IT0.
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Agonist/antagonist model comparison

There are only subtle differences between agonist and 
antagonist models IT3+ and IT3−, in line with the high 
similarity between agonists and antagonists themselves. 
The main structural divergence involves two positions asso-
ciated with activation in several class A GPCRs, namely 
 N933.36 and  Y2406.48 (Fig. 3b). The interaction between 
these two positions observed within the IT3+ is lacking 
in the IT3- due to a different arrangement of the  N933.36 
side chain. In several GPCRs like MC4R, S1PR1, AGTR1 
or CNR1, a similar orientation rearrangement of position 
3.36 and/or 6.48 is involved in receptor activation, driving 
the typical transmembrane helix 6 (TM6) movement char-
acterizing the GPCR active state [39, 40]. The interaction 
between the two residues is often regulated by the nature 

of the binding ligand, adjusting the contact between the 
two residues [41–47]. Our final agonist model IT3+, when 
compared to IT3−, shows an additional H-bond between 
 N933.36 and  Y2406.48 due to a displacement of N93, while 
Y240 remains almost unaltered. Experimental mutagen-
esis data on TAS2R14 show an increase in FFA  EC50 by at 
least two orders of magnitude for both Y240A and N93A 
mutants [17], supporting the hypothesis that the interaction 
3.36-6.48-ligand is essential for receptor activation regula-
tion. Details regarding the role of the ligand in the 3.36-
6.48 switch are reported in paragraph “Agonists/antagonist 
similarity and selectivity”. An analysis of additional residues 
potentially involved in agonist/antagonist discrimination 
suggested by using different strategies is available within 
the Supplementary Text S1 and Supplementary Fig. S3.

Fig. 2  Models’ evaluation across iterations. a Models’ performances 
in terms of AUC and EF1% calculated by using the final dataset of 
agonists and decoys. Circles represents the models derived from 
IT0, different iterations are represented with different colors. All 
the models within this panel are intended to be “+”. IT# = model at 
iteration #; AF = AlphaFold model (at iteration 0: cyan star symbol; 
at iteration 1: blue star symbol); HM0 = homology model based on 

the TAS2R46 template (cyan “X” symbol: iteration 0). AF0, IT0, and 
HM0—all colored in cyan—are the original models (no IFD). In the 
bottom panel, the AUC showing the performances obtained for the 
top 1% of the results, including the number of agonists identified in 
the top 1% of the docked results ranked according to docking score. 
b Same as a for the antagonists (models “−”) with EF10% on y-axis
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AlphaFold model

AlphaFold, the artificial intelligence program, was a mile-
stone in protein structure prediction [48]. While the project 
was in its final stages, we downloaded the AlphaFold model 
of TAS2R14 (Q9NYV8 (TAS2R14_HUMAN)) from the 
EMBL–EBI database [30], named here AF0. One of the 
main differences between AF0 and IT models is the absence 
of a long ECL2 in AF0 (Supplementary Fig. S2). Our mod-
els have an ECL2 of circa 23 residues, potentially acting 
as a lid on top of the binding site (as already discussed in 
“Iteration 3: final models, top performances”), while Alpha-
Fold model shows a short ECL2 made of three residues. 
AF0 and AF1+ , the latter derived from one iteration of IFD 
and RVS by using the final set of active ligands—the same 
dataset used for IT3 models—exhibits better AUC values 
than the in-house models for the same iteration (IT0 and 
IT1, respectively; Fig. 2a, b). A possible explanation is that 
the lid-ECL2 of our models impede the fitting of several 
ligands within the reduced-size-binding pocket, affecting 
the performances. To reduce the spatial constraints, another 
test was performed after that the ECL2 from the IT3+ was 
removed. Though this did not lead to IT3+ AUC improve-
ment (Fig. 2a) the number of docked agonists increased 
by ~ 22% compared to the standard IT3+, suggesting that 
another iteration—starting from ECL2-lacking conforma-
tions could lead to improved values.

Another major difference with our models is that AF0 
lacks an interaction between 3.36 and 6.48 due to the place-
ment of 6.48 one helix turn below (Supplementary Fig. S2), 
a distance that does not allow any direct contact.

The EF results obtained with the IT3 models are slightly 
better than the AF1 models, suggesting IT3 as the best 
model for structure-based virtual screening and AF1 as a 
good candidate for additional refinement through iterations.

Homology model based on the TAS2R46 structure

The cryoEM structure of TAS2R46 has been recently 
released [31]. This increases the sequence identity of 
TAS2R14 with available structural models from circa 11% at 
the beginning of this study to the current ~ 45% with the new 
TAS2R46 structure. We used the PDBid 7XP6 as a template 
for homology model of TAS2R14 using SwissModel [49]. 
The single homology model (HM0) was evaluated in its abil-
ity to discriminate agonists and antagonists from decoys, 
obtaining EF value for agonists discrimination slightly better 
than their AlphaFold AF0 and I-TASSER derived IT0 coun-
terparts (Fig. 2), and the top AUC registered within the mod-
els of this study. On the other hand, poor results are obtained 
for the antagonist model. Since 7XP6 is an active conforma-
tion, we built a second TAS2R14 structure based on the apo 
TAS2R46, 7XP4, to perform retrospective virtual screening 
for antagonists. Results are similar to what was obtained for 
7XP6-based model, with AUC of 0.45 and EF10% of 0.71%, 
comparable with the performances obtained for IT0.

Similar to the AlphaFold model, this homology model 
space residues 3.36 and 6.48, not showing any type of inter-
action between these two positions.

Fig. 3  a Superposition between IT0 (yellow licorice) and IT3+ (green 
licorice). In purple licorice, the FFA (agonist) docked to the IT3+. 
b Superposition between IT3+ in complex with FFA (both in green 
licorice) and IT3− in complex with the FFA derivative antagonist 
LW131 (both in orange licorice). The two ligands overlap within 
the binding site. The H-bond interaction observed only in the IT3+ 

between 3.36 and 6.48 is shown as a yellow-dotted line and it is 
potentially affected by the presence of the para substituent on ring 
B (orange transparent circle) of the antagonist. c 2D structure of the 
ligands from panel b. The typical arrangement for FFA derivative 
antagonists—substituent in position para on ring A—is shown
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Agonists/antagonist similarity and selectivity

The similarity between the agonist FFA and its deriva-
tives that act as antagonists allows a direct comparison. 
Small modifications to active ligands altering the mol-
ecule’s effect on the receptor have been already observed 
for TAS2R14 with the agonist flavanone and the three 
flavanone derivatives blockers [26], as well as for other 
GPCRs [50–53]. The similarity between TAS2R14 ago-
nists and antagonists also explains why some compounds 
turned out to be experimental agonists, though found com-
putationally while looking for antagonists or vice versa. 
Interestingly, all of the seven antagonists found through 
testing of derivatives share the presence of substituents on 
position para of ring A (Figs. 1, 3C). We hypothesize that 
the presence of a substituent in this position is responsible 
for the change in orientation of side chain 3.36 discussed 
within paragraph “Agonist/antagonist model compari-
son” (see Fig. 2B), affecting the activation status of the 
receptor.

The selectivity of the new antagonists was tested with 
SwissTargetPrediction, a webserver for prediction of prob-
able protein targets of small molecules [54]. For each of 
the potential targets, the probability to bind it ranges from 
0 to 1. The only two molecules with at least one predicted 
protein target—no TAS2R—with a probability higher 
than 0.25 are LW118 (max value = 0.42) and LW209 (max 
value = 0.22), while the average probability for all of the 
292 potential targets found by the algorithm for the 14 
antagonists is limited to 0.11. In addition, all the ligands 
found within this study underwent BitterMatch, a machine 
learning algorithm for prediction of TAS2R subtypes 

binding bitter molecules with 80% precision in prospective 
testing [55]. The majority (131 out of 210, ~ 62%) of the 
compounds are predicted to be selective for TAS2R14. The 
algorithm identifies TAS2R14 as the only human TAS2R 
target for all of the ten inhibitors, potentially paving the 
way for specific inactivation of the receptor. All of the 
53 FFA derivatives acting as agonists are predicted to be 
selective for TAS2R14, as well as the 6 LF agonists dis-
covered through the computational methodology (LF3, 
LF6, LF9, LF11, LF25, LF26). Among the 141 new ago-
nists discovered through the FDA library screening, 62 are 
predicted to be selective for TAS2R14, other 62 to activate 
at least one additional receptor (TAS2R10, TAS2R39, or 
TAS2R46), 3 are selective for TAS2R46 and 14 are pre-
dicted as not binding any TAS2R.

TAS2R14 ligands’ chemical space

The final dataset of TAS2R14 active molecules includes, as 
of April 2023, 394 agonists and 14 antagonists. A Principle 
Components Analysis (PCA) of these dataset shows that the 
FFA derivatives (LW compounds), as well as the molecules 
discovered via the computational study (LF compounds) 
represent only a restricted portion of the chemical space 
(Fig. 4a). The library including the LF molecules was sub-
ject to Enamine REAL filters related to MW (≤ 500), SlogP 
(≤ 5), number of H-Bonds Acceptors (≤ 10) and H-Bonds 
Donors (≤ 5), number of rotatable bonds (≤ 10) and Topo-
logical Polar Surface Area (≤ 140), limiting the topology 
spectrum of ligands that can be discovered. Therefore, 
new possibilities for different ligands can still be explored 
by using different ligands libraries. The main descriptors 

Fig. 4  a PCA showing the chemical space occupied by the TAS2R14 ligands. The molecules are colored according to source and type of activ-
ity. For each PC, the molecule with highest and lowest value are shown. b For each PC, the 3 main descriptors affecting the PC are reported
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influencing the Principal Components (PC) are related 
to aliphatic (PC1) and aromatic (PC2) features (Fig. 4b). 
Increasing the presence of these structures and, therefore, 
the ligand MW, would lead to exploration of new areas of 
the chemical space.

Discussion

In this study, a mixed experimental and computational 
approach was applied to find 10 antagonists and 200 agonists 
of a broadly tuned bitter taste GPCR, the human TAS2R14, 
for which no experimental 3D structure is available. The 
receptors 3D models obtained by means of IFD procedure 
provide hypotheses on ligands’ binding and on residues 
involved in activation.

Methodology and models performance

The methodology is iterative and, since the novel chemi-
cals identified in each iteration are used to further refine the 
receptor models, potentially represents a perpetual proce-
dure toward VS performance improvement for promiscuous 
GPCRs. Applied to agonists or antagonists, this technique 
allows to generate different models tailored for screening 
one category of ligands or the other. Each iteration com-
prised several steps: expansion of the set of actives through 
experimental methodologies; generation of receptor con-
formations through induced fit docking using the known 
ligands; conformations selection using performance evalua-
tion through retrospective virtual screening; expansion of the 
set of actives through testing of structure and ligand-based 
predictions.

Two iterations were applied in this study, followed by a 
refinement step with the most updated list of ligands which 
was performed to generate the final models. While IT0, the 
original model, is able to capture 1 agonist per 28 decoys 
within the top 1% of the retrospective virtual screening 
results, our final agonist-discriminating model captures an 
agonist per 3.2 decoys, 8.6 times more efficient. The possi-
bility to locate an antagonist within the top 10% of the RVS 
results improves by 1.7 folds. These models can be further 
used for prospective screening of libraries of interest.

Ligands discovered

All of the 10 antagonists and 121 out of the 200 agonists here 
discovered (> 60%) are predicted by BitterMatch to be selec-
tive for TAS2R14 over other bitter taste receptors. A total of 
14 compounds from the FDA library activate the TAS2R14 
receptor at submicromolar concentration (Vinorelebine 

ditratate, Vorapaxar, Fosbretabulin, Flufenamic acid, 
Butoconazole nitrate, Levonorgestrel, Sulconazole nitrate, 
Etonogestrel, Desogestrel, Bromocriptine mesylate, Podo-
phyllotoxin, Aristolochic acid, Vinorelbine, Vinblastine), 
nine of them newly discovered here as TAS2R14 ago-
nists. The antagonists could open new possibilities for lead 
compounds generation and provide probes in the study of 
TAS2Rs, but further cell-based studies will be required to 
prove it. Interestingly, a recent preprint by Miller and col-
laborators shows that activation of endogenous TAS2R14 in 
HNSCC (Head and Neck Squamous Cell Carcinomas) cell 
line, elicited either by lidocaine or by FFA, is inhibited by 
LF1 and by LF22 [56], antagonists found within this study.

Receptor activation

The high similarity within the binding sites of the IT3+ agonist 
model and the IT3− antagonist one is not surprising, given 
other GPCRs [57] and agonist–antagonist 2D similarities 
found here.  N933.36 is the only residue located at the bottom 
of the binding site that modifies its orientation between the two 
models, forming an H-bond with  Y2406.48 in the IT3+ agonist 
model. In several GPCRs, the modulation of this interaction by 
binding ligands regulates the shift of the  TM6 characterizing 
the GPCR state [41–46, 58]. Experimental mutagenesis data 
support the theory of a pivotal role for these two residues in 
TAS2R14 [17]. Comparison between the agonist FFA and the 
derived antagonists suggests that the addition of a substituent 
in position para of ring A could alter the orientation of  N933.36 
(Fig. 3b, c), determining receptor activation through the regu-
lation of the H-bond with  Y2406.48. However, the homology 
model derived from the recently published TAS2R46 struc-
ture, as well as the TAS2R46 structure itself (7XP6), and the 
AlphaFold model, do not show the 3.36–6.48 interaction, due 
to a TM6 shift by one helix turn compared to our models, 
which increases the distance between  N933.36 and  Y2406.48 
(Supplementary Fig. S2).

Additional remarks. As a noteworthy member of the GPCR 
family, TAS2R14 is a promiscuous receptor that recognizes 
hundreds of different molecules. It belongs to the ~ 80% of 
GPCRs for which the experimental 3D structure has not been 
solved yet (December 2022) [2]. Cryo-EM has opened up new 
possibilities in GPCR structural biology, but stabilization of 
the receptor by ligands remain essential for experimental 
structural discovery [59, 60]. Therefore, the strategy employed 
within this study can be applied to a large cluster of receptors 
with the same challenges, facilitating ligand discovery and 
structural stabilization, while improving the structural knowl-
edge of the receptor and discovering new ligands.

The systematic exploration of ligand modifications by 
medicinal chemistry, which is still underemployed for TAS2Rs 
targeting compounds, showed very promising results. Similar 
exploration starting from ligands other than the FFA should 
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be investigated in the future. Among the compounds identi-
fied within this study, novel scaffolds for bitter inhibitors have 
been identified, providing the basis for developing more stable, 
effective, synthetically accessible blockers.

Materials and methods

Structure‑based approach

Generation of TAS2R14 conformations: induced fit docking

Generation of TAS2R14 conformations was performed for 
each iteration and by means of IFD.

Iteration 1: the initial receptor structure, IT0, was gener-
ated with I-TASSER [33]. The software was chosen based on 
results obtained at CASP13 (https:// www. predi ction center. 
org/ casp13/ zscor es_ final. cgi? model_ type= best& gr_ type= 
server_ only) [61]. The receptor was prepared with the pro-
tein preparation wizard (Schrödinger Release 2021-1: Pro-
tein preparation wizard, Schrödinger, LLC, New York, NY, 
2021) available within the Schrödinger Suite (Schrödinger 
Release 2021-1, LLC, New York, NY, 2021). The 
TAS2R14’s active ligands known while performing this step 
were prepared with the ligprep tool (Schrödinger Release 
2021-1: Ligprep, Schrödinger, LLC, New York, NY, 2021). 
The glide grid was generated based on the SiteMap results 
(Schrödinger Release 2021-1: SiteMap, Schrödinger, LLC, 
New York, NY, 2021), and all the active ligands docked to 
the receptor using the OPLS3e force field [62] with the IFD 
protocol available within Schrödinger (Schrödinger Release 
2021-1: Induced fit docking protocol, Schrödinger, LLC, 
New York, NY, 2021). Up to five poses for each ligand were 
retained. Prime refinement was conducted for each pose 
of each of the known ligands, using an implicit membrane 
defined as spanning the transmembrane helical portions of 
the protein structure.

Iteration 2: the starting structure was the IT1+. The list 
of TAS2R14 ligands was updated with the FFA derivatives 
and the drug-like compounds retrieved within this study, as 
well as the active chemicals detected in iteration 1. These 
ligands were prepared with ligprep and the same procedure 
as iteration 1 was applied, with the maximum number of IFD 
poses limited to 3 per ligand.

Iteration 3: the third iteration of IFD was performed by 
following the same procedure as for iteration 2, by adding 
to the list of agonists and antagonists the active compounds 
from the second iteration.

A single round of IFD was also applied to the original 
AlphaFold model by using the complete list of active ligands 
from iteration 3.

Retrospective virtual screening and models’ selection

In each of the three iterations, evaluation of the IFD con-
formations VS performances was accomplished through 
RVS. An agonist discriminating model and an antagonist 
discriminating model were selected in two different docking 
experiments within the same set of conformations generated 
within that iteration. The set of actives (agonists or antago-
nists) was docked to the respective iteration conformations 
together with a set of decoys. The decoys for the agonist 
discriminating conformation selection differ from the one 
used to select the antagonist models. In both cases, they 
were retrieved with DUD-E http:// dude. docki ng. org/ [63] by 
using as input the list of corresponding active compounds.

Iteration 1: a total of 10,967 decoys for the agonists and 
499 for the antagonists were generated, after removals of 
duplicated chemicals within the same list.

Iteration 2: same approach employed for iteration 1 using 
as input for DUD-E the compounds available after iteration 
1. Out of 16,280 DUD-E compounds, 1511 were randomly 
chosen and replaced with the inactive compounds tested in 
the FDA approved drugs TAS2R14 screening. A total of 538 
DUD-E decoys were used for the iteration 2 antagonists’ 
model selection.

Iteration 3: the 16,407 decoys for the agonist model 
employed in iteration 3 were retrieved as in iteration 2. A 
total of 840 decoys were suggested by DUD-E for the third 
iteration of antagonist model selection. These were screened 
through BitterIntense, a machine learning software that, 
based on the chemical structure of the input molecules, pre-
dict their level of bitterness [8]. The 266 molecules with the 
highest scores in terms of bitter intensity were deleted from 
the list of decoys, leaving 574 DUD-E decoys.

The final set of active ligands and decoys employed for 
iteration 3 were also used for RVS of the AlphaFold models 
evaluation, as well as for RVS of the TAS2R14 homology 
model based on the TAS2R46 template (not underwent IFD) 
that was generated using SwissModel [49] with either 7XP6 
or 7XP4 TAS2R46 structure as template. The ECL2 of the 
7XP4-derived model was removed prior to docking, since 
it blocked the binding site and prevented the docking of any 
molecule.

As previously done for the active compounds, in each 
iteration, the decoys were prepared with the LigPrep tool. 
The Glide Grid for each conformation was generated 
through the cross-docking tool available within Schrödinger, 
by setting the grid center for each model at the centroid of 
the associated docked ligand. The grids were then used as 
input for the Schrödinger Virtual Screening Workflow tool 
together with the prepared active and decoy ligands in order 
to perform the docking on any IFD model. The Glide HTVS 
algorithm was selected. For all the iterations, the results of 
docking to each conformation were analyzed by means of the 

https://www.predictioncenter.org/casp13/zscores_final.cgi?model_type=best&gr_type=server_only
https://www.predictioncenter.org/casp13/zscores_final.cgi?model_type=best&gr_type=server_only
https://www.predictioncenter.org/casp13/zscores_final.cgi?model_type=best&gr_type=server_only
http://dude.docking.org/
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Schrödinger Enrichment Calculator tool that, giving as input 
the list of actives, the number of decoys and the docking file 
with the ligands ordered according to their docking score, 
calculate several parameters useful for performance evalua-
tion. Particularly, the evaluation of the IFD models’ ability 
to discriminate agonists was performed by using the EF1% 
and the AUC parameters. The EF1% corresponds to the con-
centration of active ligands found within the top 1% of the 
results sorted by docking score compared to their concentra-
tion within the whole set of actives plus decoys. Therefore, 
an EF1% equal to 10 means 10 times higher chances to find 
an active compound within the top 1% results than randomly. 
The EF1% was replaced by the EF10% in the evaluation for 
the antagonist model due to the reduced dataset of active 
compounds available for the blockers. The AUC, similarly to 
the EF, is highly used in retrospective analysis of VS. It plots 
the true positive fractions versus the false positive fractions 
for all the compounds in the sorted dataset. EF was prior-
itized over AUC for models’ selection. Indeed, AUC curves 
summarize the ability of the method to rank the whole set 
of docked ligands [64], whereas in our virtual screening, we 
focus on a subset of the screened compounds, particularly 
the top ranked, since our final aim is to conduct experimen-
tal test for a selection within the top ranked compounds. 
AUC, EF1% and EF10% values throughout the manuscript 
are always calculated by using the final dataset of active 
ligands in order to compare the different models.

Virtual screening

Once a model has been selected, the VS of compounds 
library was performed for the first two iterations. Slightly 
different procedures were employed for each iteration for 
compounds selection, in order to adapt the available data to 
the methodology that better fit. Again, the Enamine REAL 
library [29] compounds that was screened against the top 
IFD models was prepared with the LigPrep tool, while the 
receptors with the Protein Preparation tool.

Iteration 1. The ∼ 23mln compounds of the Enamine 
REAL library were docked to the top agonist and antag-
onist discriminating models from iteration 1. The Virtual 
Screening Workflow tool was employed. This application 
uses the Glide program and allows to perform the docking 
in the three following steps. For any of the two receptors, 
the entire REAL dataset was docked using the HTVS dock-
ing algorithm. The top 20% ranked compounds according 
to the Glide score underwent step 2 and were docked for a 
second time by using the SP algorithm. The top 20% were 
selected for the final docking step performed with the XP 
algorithm. Since the agonist discriminating model from iter-
ation 1 showed good performances in antagonists’ discrimi-
nation, the compounds to test experimentally were chosen 
among the 5797 ligands that reached the XP stage in both the 

models, in order to increase the chances to find antagonists. 
Glide score and visual inspection of the interactions with 
the receptor were used to select the top candidates for the 
experimental test.

Iteration 2. The Enamine REAL library was docked to 
both the best agonists and antagonists discriminating mod-
els from iteration 2 using the HTVS docking algorithm 
through the Virtual Screening Workflow. The top 1% of 
ranked compounds was then docked with the XP algorithm 
to the same receptors and the compounds that underwent 
experimental validation were selected from the top ranked 
compounds according to the Glide score, followed by visual 
inspection of the 2D chemical structure and receptor/ligand 
interactions.

Structure/ligand‑based approaches

Binary fingerprints‑based hierarchical clustering

Molecular binary fingerprints allow the structural descrip-
tion of a molecule through a series of binary digits specify-
ing the presence or absence of certain substructure within 
the compound. Fingerprint comparison is therefore useful 
for similarity calculation between molecules. Among the 
available set of fingerprints, the MolPrint2D were calcu-
lated within Canvas (Schrödinger Release 2021-3: Canvas, 
Schrödinger, LLC, New York, NY, 2021) for 5797 Enam-
ine molecules reaching the final docking stage of iteration 1 
and for the known active compounds. The MolPrint2D were 
selected because, in a fingerprint comparative study, were 
identified as the best ones in retrieving actives [65]. Based 
on the calculated fingerprint, the compounds were clustered 
together by using the hierarchical clustering tool available in 
Canvas. Enamine compounds falling within the same cluster 
of active molecules were selected.

Tanimoto similarity and clustered docking

Assuming that, in most of the cases, similar ligands bind 
in an analogues manner to the same receptor, the Enamine 
REAL library was screened to find compounds similar to 
known blockers.

The MolPrint2d binary fingerprints were calculated for 
the antagonists and for the Enamine REAL library using 
Schrödinger. For each antagonist, the Tanimoto score based 
on the fingerprint was calculated with any of the REAL com-
pounds by means of the same software. Only compounds 
exceeding the threshold of 0.3 were selected for further 
studies.

The binding of each Enamine candidates was compared to 
that of the similar antagonist. For each of the known antago-
nists, the ten conformations from RVS iteration 2 obtaining 
the top docking scores were selected. Out of these binding 
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poses, a representative receptor/ligand structure was chosen 
by clustering using the conformer_cluster script available 
in Schrödinger. The complex with the best docking score 
within the most populated cluster was selected. Similarly, 
the Enamine compounds retrieved because of their Tani-
moto score, were docked to the same ten receptors as the 
antagonist they are similar to, then clustered and a repre-
sentative pose selected. The selection of the compounds to 
test was based on a comparison of the binding pose obtained 
of each antagonist with the candidate molecules similar to 
it. Candidate compounds with similar orientation within 
the pocket with their corresponding antagonist and having 
receptor/ligands interaction similar to their antagonist coun-
terpart were chosen. The same approach described for the 
antagonists was applied to the FDA drug-like compounds 
showing activation at the lowest concentration. Compounds 
similar to these 14 molecule were found through Tanimoto 
score within the Enamine library, and the clustered docking 
strategy was applied for candidates’ selection.

Predictions with BitterMatch

BitterMatch algorithm was applied to the list of agonists 
and antagonists according to the protocol described in 
[55]. Briefly, the 3D structures of the compounds were 
prepared using LigPrep (Schrödinger Release 2021-1: Lig-
Prep, Schrödinger, LLC, New York, NY, 2021) and Epik 
(Schrödinger Release 2021-1: Epik, Schrödinger, LLC, 
New York, NY, 2021) in pH = 7.0 ± 0.5. The 3D structures 
were used to calculates chemical properties using Canvas 
(Schrödinger Release 2019-1: Canvas, Schrödinger, LLC, 
New York, NY, 2019) and similarities of the ligands to the 
training set based on linear and MolPrint2D fingerprints. All 
the features were inputted into the trained model to obtain 
the predictions.

Principal component analysis

To explore the conformational space occupied by the known 
TAS2R14 ligands, we performed PCA with an in-house 
python script adapted from https:// chem- workfl ows. com/ 
artic les/ 2019/ 07/ 02/ explo ring- the- chemi cal- space- by- pca/. 
A total of 43 descriptors were calculated with RDKit and 
the data normalized with the MinMaxScaler. The 67% of 
variance is explained by the top 2 PC (49% and 19%).

Cell‑based system

Cell culture

All the experiments were performed using HEK293T cells. 
Cells were cultured in plates with 10% Dulbecco's Modified 

Eagle’s (DMEM) Medium, containing 10% Fetal Bovine 
Serum (FBS), 1% l-glutamine amino acid, and 0.2% peni-
cillin streptomycin. Every 2–3 days, when plates were at 
80% confluence, the medium was removed, and cells were 
transfected into a fresh growth medium. Cells were kept in 
the incubator, in 37 °C and 5%  CO2.

Compounds

Compounds tested were obtained from Sigma-Aldrich (St. 
Louis, MO, USA) and Enamine (Kyiv, Ukraine). Com-
pounds were dissolved in DMSO. Serial dilutions of com-
pounds were prepared in the stimulation buffer of the kit 
(containing 50 mM LiCl to prevent IP1 degradation) at the 
desired working concentration on the day of the experiment 
(Cisbio IP-ONE-Gq KIT).

IP‑one assay

For functional expression of the human bitter taste receptor 
TAS2R14, HEK293-T cells were grown at about 50–80% 
confluence and transiently transfected with 2 µg of a plas-
mid (pcDNA3.1) encoding N-terminally modified TAS2R14 
(N-terminal addition of a cleavable HA-signal peptide, fol-
lowed by a FLAG-tag and the first 45 amino acids of the 
rat somatostatin receptor 3) [32, 66] and 1 µg of a plasmid 
encoding the chimeric Gαqi5 protein (Gαq protein with the 
last five amino acids at the C-terminus replaced by the cor-
responding sequence of Gαi, gift from The J. David Glad-
stone Institutes, San Francisco, CA and from Bruce Conklin 
(Addgene plasmid # 24,501; http:// n2t. net/ addge ne: 24501; 
RRID:Addgene_24501) [67] employing Mirus TransIT-293 
(Peqlab) in a 1:3 DNA to reagent ratio.

24 h after transfection, the transfected cells were sus-
pended in 10% DMEM and seeded onto a 384-well culture 
micro plate (Greiner). The plate was then kept in an incuba-
tor for 24 h to obtain cell adherence. The next day, cell cul-
ture medium supernatant was removed from the plates and 
stimulation buffer was added to each well. Cells were then 
treated by the addition of the tested compounds. Plates were 
incubated for 150 min, to allow IP1 accumulation inside the 
cell. For investigation TAS2R14 inhibition, the cells were 
first pre-incubated for 30 min with potential inhibitor, fol-
lowed by addition of 1 µM of FFA/aristolochic acid and 
continuing incubation for further 150 min.

Accumulation of second messenger was stopped by add-
ing detection reagents (IP1-d2 conjugate and Anti-IP1cryp-
tate TB conjugate) (dissolved in kit lysis buffer). FRET-
ratios were calculated as the ratio of emission intensity of 
the FRET acceptor (665/10 nm) divided by the FRET donor 
intensity (620/10 nm). Raw FRET-ratios were normalized 
to buffer conditions (0%) and the maximum effect of FFA 

https://chem-workflows.com/articles/2019/07/02/exploring-the-chemical-space-by-pca/
https://chem-workflows.com/articles/2019/07/02/exploring-the-chemical-space-by-pca/
http://n2t.net/addgene:24501
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(100%) and the obtained responses were analyzed using 
the equation for sigmoid concentration–response curves 
(four-parameter) implemented in GraphPad Prism 9.3 for 
Windows (GraphPad Software, La Jolla, USA) to derive the 
maximum effect (Emax, relative to FFA/aristolochic acid) 
and the ligand potency  (EC50). For antagonist properties the 
maximum effect at 1 µM FFA/aristolochic acid was nor-
malized to 100%. Per compound, 2–11 independent experi-
ments were performed, with each concentration in duplicate/
triplicates.

FDA‑approved drug library screening

Accumulation of inositol monophosphate (IP) as functional 
assay in 384‑well format for TAS2R14 activation

The determination of G-protein stimulated TAS2R14 acti-
vation was measured by applying the IP-One  HTRF® assay 
(Cisbio, Codolet, France) according to the manufacturer’s 
protocol and as described previously [1]. In brief, HEK293T 
cells were grown to a confluency of approximately 80% and 
transiently co-transfected with the cDNAs of the hybrid G 
protein Gαqi5-HA (Gαq protein with the last five amino acids 
at the C-terminus replaced by the corresponding sequence 
of Gαi; a gift from J. David Gladstone Institutes San Fran-
cisco, CA) [4] and a slightly modified human TAS2R14 (this 
modification included the fusion of a haemagglutinin (HA) 
signal followed by a Flag-tag and the first 45 amino acids of 
rat somatostatin receptor 3 (SSTR3) to TAS2R14 in front 
of its N-terminus) [5] applying TransIT-293 Mirus trans-
fection reagent (MoBiTec, Goettingen, Germany). The next 
day, cells were seeded into black 384-well plates (Greiner 
Bio-One, Frickenhausen, Germany) and maintained for 
24 h at 37 °C. After incubation with test compounds (single 
concentration for screening experiments; a final range of 
concentration from 100 pM up to 30 μM for dose–response 
experiments) dissolved in stimulation buffer (total V = 20 µl), 
at 37 °C for 150 min (unless otherwise stated), the detection 
reagents were added (IP1-d2 conjugate and Anti-IP1cryptate 
TB conjugate, each dissolved in lysis buffer), and incubation 
was continued at rt for 60 min. Time-resolved fluorescence 
resonance energy transfer (HTRF) was measured using the 
Clariostar plate reader (BMG, Ortenberg, Germany).

Description of the FDA‑approved drug library 
and control compounds

The DiscoveryProbe™ FDA-approved drug library (L1021-
100, APExBIO, USA), consisting of 1971 FDA-approved 
drugs with known bioactivity and safety data in humans, 
was purchased from Biotrend Chemikalien GmbH, Cologne, 
Germany. The library was provided as 10 mM stock solu-
tions in DMSO (100 µL), arrayed in 96-well format sample 

storage tube boxes with screw caps (23 boxes in total) 
and was stored at − 80 °C until use. FFA was prepared 
as a 10 mM stock in DMSO (Sigma-Aldrich, Steinheim, 
Deutschland) and was stored at − 80 °C until use.

Primary screening procedure of the FDA‑approved 
drug library − 30 µM final concentration

The FDA-approved drug library was screened to assess 
TAS2R14 activation in an endpoint 384-well format assay, 
performing the IP-One  HTRF® assay (Cisbio, Codolet, 
France). Each library compound (176 compounds/assay 
plate) was tested at a final single concentration of 30 µM 
and 0.3% (v/v) DMSO in the assay buffer on duplicate 
assay plates, running in parallel. Every 384-well plate in 
the screen included 24 wells each for stimulated (30 µM 
FFA 0.3% (v/v) DMSO)) and unstimulated (0.3% (v/v) 
DMSO) controls. 0.3 µM FFA (0.3% (v/v) DMSO) was 
added as an additional control (16 wells/assay plate). 
Electronically adjustable tip spacing multichannel equal-
izer pipettes (Thermo Fisher Scientific GmbH, Dreieich, 
Germany) were used for seeding cells and for pipetting, 
diluting and mixing steps during the screening procedure. 
On each day of screening, library sample storage tube 
boxes were thawed, equilibrated to room temperature and 
centrifuged before use. Then, the library compounds and 
controls, dissolved in DMSO, were prediluted to twofold 
final concentration into 96 deep-well plates (nerbe plus, 
Winsen/Luhe, Germany) containing stimulation buffer 
(Cisbio, Codolet, France) in a total volume of 333 µL 
and were subsequently transferred into the assay plates 
containing cells (total V = 20 µl/well). The assay was run 
and data was collected as described above for TAS2R14 
expressing HEK293T cells.

Confirmation screening procedures—3 µM, 1 µM 
and 0.3 µM final concentration

The resulting selected “hit” library compounds from the 
primary screening assay were further tested for their activ-
ity at 3 µM and thereafter at 1 µM and 0.3 µM. Therefore, 
hit library compounds from the primary screen (30 µM) 
were rearrayed and serially diluted from the 96-vial 
boxes stocks (10 mM in DMSO) into 96-well microplates 
(V-bottom, PS, clear, Greiner Bio one, Frickenhausen, 
Germany) in DMSO with a concentration of 1 mM and 
330 µM, 100 µM, respectively. Plates were sealed and 
stored at − 80 °C until use, performing the same screen-
ing assay format and protocol as described above for 
TAS2R14 expressing HEK293T cells. In addition, for 
counter screens (specificity) mock-transfected cells (empty 
pcDNA 3.1) were used.
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Data analysis and hit selection criteria

All raw data were processed and analyzed using Micro-
soft Excel (Microsoft Corp., Redmond, WA) and PRISM 
6.0 (GraphPad Software, San Diego, CA). In each of the 
384-well assay plates, the stimulated (30 µM FFA and 0.3% 
(v/v) DMSO, n = 24, 100% activation) and unstimulated 
(0.3% (v/v) DMSO, n = 24, 0% activation) control wells 
were averaged (mean) and the standard deviation (S.D.) 
was calculated. Library compound-treated wells were nor-
malized to the percentage activation (% activation) of those 
controls. Library compounds were considered as active hits 
when the activation (%) > (mean norm. (unstim. control.) + 3 S.D. 
(unstim. control.) on each of the duplicate assay plates [35, 36]. 
Unpaired two-tailed Student’s t tests were used for statistical 
significance.

Synthesis of flufenamic acid derivatives

The procedure for synthesis of FFA derivatives is detailed 
within the Supplementary File S1.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 023- 04765-0.
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