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Abstract
Objective Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabe-
tes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving 
whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model 
(Slc2a4+/−) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet.
Methods Slc2a4+/− mice were used, that performed 5 days of endurance or strength exercise training. Further analysis 
included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial 
function, and experiments with C2C12 cell line.
Results When Slc2a4+/− mice were submitted to the endurance or strength training protocol, improvements were observed 
in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, 
in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improv-
ing skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with 
C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle.
Conclusions Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. 
While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly 
affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of 
physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the 
Slc2a4+/− mouse model.
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Introduction

Hyperinsulinemia may precede body fat gain, insulin resist-
ance, and type 2 diabetes (T2D) development [1–3]. The 
molecular mechanisms connecting hyperinsulinemia to 
metabolic diseases and body fat gain have not yet been fully 
elucidated. Moreover, defects in skeletal muscle insulin sign-
aling are observed much earlier than the onset of T2D in 
people with genetic risk [4]. In humans, skeletal muscle is 
the primary tissue involved in peripheral insulin resistance, 
contributing to insulin secretion by β-cells, insulin circu-
lating levels, insulin resistance, and inflammation, factors 
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related to cardiometabolic risk [5, 6]. Prolonged insulin 
treatment may reduce insulin responsiveness in humans, cor-
roborating that hyperinsulinemia can cause insulin resistance 
[7, 8]. Conversely, in experimental models, reduced insulin 
levels are accompanied by decreased cardiometabolic risk 
and an extended lifespan [9–11].

The regulation of cellular glucose uptake is tightly con-
trolled by several upstream factors that sense and respond 
to fluctuations in systemic glucose levels, maintaining blood 
glucose within a narrow window of normality [12]. Glu-
cose uptake is mediated by different glucose transporters 
that are present in distinct metabolic tissues. The Glucose 
Transporter type 4 (GLUT4), encoded by the Solute Carrier 
Family 2 Member 4 (Slc2a4) gene, plays a pivotal role in 
skeletal muscle, adipose tissue, and brain glucose uptake 
[12, 13]. Some stimuli, such as physical exercise or eat-
ing positively affect the translocation of GLUT4 to the cell 
membrane, facilitating glucose uptake to the intracellular 
compartment, and thus, reducing blood glucose levels [14]. 
However, metabolic disarrangements are associated with 
poor regulation of glucose uptake and a chronic hyperglyce-
mic/hyperinsulinemic state [14]. In addition, mitochondrial 
dysfunction and insulin signaling abnormalities are impli-
cated in the pathogenesis of insulin resistance, the hallmark 
of T2D [15, 16]. A compilation of recent studies suggests 
that upregulation and enhancement of mitochondrial func-
tion may represent a valuable therapeutic strategy to improve 
insulin sensitivity [15].

Herein, we proposed to study the initial responses to 
endurance and strength physical exercise in the heterozygous 
Slc2a4 mouse line (Slc2a4+/−), that harbors GLUT4 content, 
accompanied by hyperglycemia, hyperinsulinemia, insulin 
resistance, and glucose intolerance, but without the presence 
of increased body adiposity. Although this is a previously 
characterized model [17], our objective was to explore two 
short-term exercise protocols (aerobic and strength) that did 
not generate changes in weight and body fat to assess tran-
scriptional and translational adaptations in skeletal muscle. 
It should be noted that the vast majority of studies that have 
explored the impacts of physical exercise on glucose metab-
olism have done so in models of diet-induced or genetically 
modified obesity in which animals show increased adipos-
ity [18, 19]. Another strategy used to induce hyperglycemia 
and hyperinsulinemia is the administration of glucocorti-
coids, which is also associated with changes such as loss of 
muscle mass and an increase in abdominal fat [20]. Other 
studies that investigated the effects of exercise on skeletal 
muscle metabolism were conducted with lean animals and, 
therefore, without changes in circulating insulin and glucose 
levels.

Both aerobic and strength exercise have pleiotropic effects 
on nearly all organ systems, likely with some overlapping 
mechanisms [21]. Therefore, our challenge here was to study 

the effects of short-term physical exercise on the variables 
hyperglycemia and hyperinsulinemia and, with this, demon-
strate how exercise protocols can attenuate this pathophysi-
ological condition. Moreover, the findings will contribute 
to the understanding of the impacts of aerobic and strength 
exercise on conditions of hyperglycemia and hyperinsuline-
mia, which are manifestations that may precede the develop-
ment of obesity and T2D, with both types of exercise having 
specific responses that contribute to glycemic homeostasis 
at the beginning of a physical training program.

Methods

Experimental animals

Male Slc2a4+/− mice (heterozygous) were obtained by cross-
ing Slc2a4−/− females (homozygous) with Wild-Type males 
purchased from  Cyagen®. The generation of this model was 
performed by a pair of TALENs targeting exon 4 of the 
mSlc2a4 gene (NM_009204.2). The DNA from the tail was 
extracted, amplified, and sequenced to confirm the genotype 
of each animal. The following primer was utilized: mSlc2a4-
R: 5′-GCC GAG GAT AGC TGC ATA TTCCA-3; with 466 bp 
product size and 59 °C annealing temperature. All the exper-
iments were conducted according to the Ethics Committee 
of UNICAMP (5107-1/2018 and 5003-1/2018), and the ani-
mals were conditioned to their cages (n = 5/cage) at 22 °C 
with free access to water and a standard diet (Nuvilab). The 
experimental groups were distributed into (1) Wild-Type 
(WT): 8-month-old sedentary mice; (2) Sedentary Slc2a4+/−: 
8-month-old sedentary Slc2a4+/− mice; (3) Endurance exer-
cised Slc2a4+/−: 8-month-old Slc2a4+/− mice that performed 
the endurance exercise training protocol; and (4) Strength 
exercised Slc2a4+/−: 8-month-old Slc2a4+/− mice that per-
formed the strength exercise training protocol. At least n = 7 
mice/group were utilized from different cohorts. Some of 
the animals were intraperitoneally injected with Puromycin 
(40 nM/g of body weight in 1 × PBS, # P-600–100, Gold 
 Biotechnology®) and the gastrocnemius collected after 
20 min. These mice have an important particularity and par-
tial deficiency of GLUT4 in the body, becoming hyperglyce-
mic and hyperinsulinemic, with no change in body adiposity, 
and thus allowing the assessment of the effects of aerobic 
and resistance physical exercise in a unique way in the face 
of this metabolic challenge.

Short‑term endurance exercise training protocol

Before performing the endurance exercise training proto-
col, Slc2a4+/− mice were adapted to the treadmill for 5 days 
at 10 m/min for 10 min (AVS  Projetos®, São Carlos, Bra-
zil). After this period, the incremental load test (ILT) was 
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performed, beginning with the intensity of 3 m/min with 
3 m/min increments every 3 min until identification of the 
exhaustion velocity of each animal. This exhaustion veloc-
ity was used to prescribe the endurance exercise protocol 
intensity. After a 48 h washout, the mice performed 5 days 
of endurance exercise training (60 min running at 60% of 
exhaustion velocity) followed by a 16 h rest period to per-
form the glucose tolerance test (GTT). On the next day, the 
mice were submitted to another session of endurance exer-
cise training followed by performance of the insulin toler-
ance test (ITT) 16 h after the last exercise session. Another 
session was conducted on the next day, and the tissue col-
lection was performed 16 h after the last exercise training 
session. The endurance exercise protocol was carried out 
over a total of 7 days.

Short‑term strength exercise training protocol

Prior to the strength exercise training protocol, the mice 
were adapted to a climbing ladder (AVS  Projetos®, São 
Carlos, Brazil). The ladder used was 70 cm high, 10 cm 
wide, with 1.5 cm between steps, an 80° inclination, and a 
30  cm2 dark chamber at the top of the ladder. The adapta-
tion was conducted for 5 days by placing the animals in 
the dark chamber (1 min) before climbing. Subsequently, 
the animals were positioned 15, 25, and 70 cm below the 
dark chamber in three different attempts to conclude 1 day 
of adaptation. A canonical plastic tube was attached with 
adhesive tape to the animals’ tails with no load during the 
adaptation. An incremental load test on the climbing ladder 
was performed to determine the maximal voluntary carry-
ing capacity (MVCC). This test began with 75% of body 
weight attached to the tail, followed by 5 g increments in 
each climb. The climb was considered successful when the 
animal climbed 70 cm (that represents ~ 12 dynamic move-
ments with each leg). A 5 min rest period was used between 
each attempt. When the animals could not complete the 
climb, the previous carrying capacity was used to prescribe 
the individual load for each animal.

After determining the MVCC, a 48 h period washout 
was applied, and the strength exercise training protocol was 
started. Each exercise session consisted of 20 climbs (~ 30 s/
climbing) with 70% of the MVCC load and 60 s intervals 
between each climb. Each exercise session per animal has 
a duration of 10–15 min of climbing and 19 min of rest 
between the climbs, totalizing ~ 30 min of training for each 
animal. Firstly, the animals performed 5 days of strength 
exercise training followed by a 16 h rest period to com-
plete the GTT. On the next day, the mice were submitted to 
another session of strength exercise training followed by a 
16 h rest to perform the ITT. Another session was conducted 
on the next day before the tissue collection 16 h after the last 

exercise training session. The strength exercise protocol was 
carried out over a total of 7 days.

Behaviour and performance tests

To evaluate any stress effect from exercise protocols, the 
exercised mice were submitted to Elevated Plus Maze (EPM) 
and Open Field (OF) tests as described previously [22, 
23]. The EPM apparatus was composed of two open arms 
(25 × 5 × 0.5 cm), perpendicularly crossed with the closed 
arms (25 × 5 × 16 cm), and 50 cm above the floor. The OF 
was performed in a circular wooden ring (81 cm diameter) 
with 41 cm walls. Approximately 30 min prior to the EPM 
and OF tests, the mice were transferred to the test room. 
Each mouse was placed in the center of the apparatus and 
they were recorded for 10 min for further analysis.

In another cohort of animals, the Slc2a4+/− mice, the 
animals performed the grip strength test on the 1st day. 
After that, on the 2nd day, they initiated the treadmill or 
the climbing ladder adaptation (4 days). On the 5th day, 
both groups performed the exhaustion velocity test. After a 
24 h washout (7th day), mice were submitted to the MVCC, 
followed by another 24 h washout. These tests were con-
sidered the pretreatment performance. On the 8th day, the 
Slc2a4+/− mice were submitted to 7 days of a short-term 
endurance or strength exercise training protocol as described 
previously. Twenty-four hours after the final exercise ses-
sion (15th day), mice from both groups performed the grip 
strength test in the morning and the exhaustion velocity test 
in the afternoon. On the 16th day and 48 h after the last 
exercise session, the mice performed the MVCC test. These 
results were considered the posttreatment performance.

Metabolic parameters (ITT and GTT) and serum 
analysis

The GTT was performed after 5 days of the endurance or 
strength exercise training protocol and 16 h after the final 
exercise session (with a 6 h fasting period). Tail blood 
was collected to measure the fasting glycemia (0’ of the 
GTT) using a glucometer (Accu-Chek glucometer, Roche 
 Diagnostics®), and a 25% glucose solution was injected 
intraperitoneally (i.p.) at 2 g/kg to measure the glycemia 
after 30, 60, and 120 min.

After another exercise training period (6 days of exer-
cise), the ITT was performed. Under the same conditions 
(16 h after the final exercise session and with a 6 h fasting 
period), tail blood was used to obtain the fasting glycemia 
(0′ of the ITT), and an i.p. injection of 0.3% insulin (1.5 U/
kg, Humulin R;  Lilly®, Indianapolis, IN, USA) was admin-
istrated. The glycemia was monitored for 5, 10, 15, 20, 25, 
and 30 min after the insulin injection.
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On the day of the tissue collection (after 7 days of exer-
cise, 16 h after the final exercise session, and with a 6 h fast-
ing period), before the anesthesia injection, the blood from 
the tail was collected to measure the fasting glycemia, centri-
fuged (3000 rpm, 4 °C, for 5 min) to collect the serum, and 
stored at − 80 °C for future analysis. In another cohort of 
Slc2a4+/− animals, the serum was collected before the begn-
ning of the exercise protocol and after 16 h and 90 h. The 
insulin in the serum was measured using an enzyme-linked 
immunosorbent assay  (RayBiotech®, Norcross, GA; #ELM-
Insulin). The calculation: [fasting plasma glucose (mmol/L) 
× fasting plasma insulin (μU/mL)/22.5] was used to deter-
mine the Homeostatic Model Assessment of Insulin Resist-
ance (HOMA-IR) index with the glycemic and insulin levels 
obtained from the exact moment of collection. The serum 
biochemical parameters (TG, cholesterol, and HDL) were 
determined using commercial colorimetric kits  (Laborlab®, 
São Paulo, Brazil). The corticosterone levels were measured 
using Luminex TM multiplex reagents (MSHMAG-21 k-05, 
Merck  Millipore®) following the instructions in the Luminex 
200 instrument with xPONENT 3.1

Molecular analysis (immunoblotting and RT‑qPCR)

At the end of the experiment and 16 h after the final exercise 
session, the animals fasted for 6 h and were anesthetized 
(90 mg/kg ketamine chloral hydrate and 10 mg/kg xylazine). 
The tissues were then collected and stored in liquid nitrogen 
at −80 °C. Some of the animals were insulin-stimulated with 
7 U/kg insulin intraperitoneal injection 10 min before the 
tissue extraction. The samples used in the immunoblotting 
were homogenized in a protein extraction buffer (1% Triton-
X 100, 100 mM Tris (pH 7.4), 100 mM sodium pyroph-
osphate, 100 mM sodium fluoride, 10 mM EDTA, 10 mM 
sodium vanadate, 2 mM PMSF, and 0.1 mg of aprotinin/
ml) using TissueLyser II  (Qiagen®), followed by centrifuga-
tion (12000 rpm, 4 °C for 15 min) and the supernatant was 
collected. In the case of pgWAT, ingWAT, and BAT, the 
centrifugation was performed twice. The protein concentra-
tion was measured using the bicinchoninic acid method. The 
samples were prepared using ~ 30 µg of protein and Laemmli 
6x, then submitted to SDS-PAGE. The gels with the samples 
were transferred to a nitrocellulose membrane, blocked with 
5¢ mil (50 min, RT), washed (TBS + Tween), and incubated 
(4 °C overnight) with the following primary antibodies: 
Puromycin #MABE343, pTBC1D1 (S237) #072268 from 
 Millipore®; pIRβ (Y972) #GTX25678 from  GeneTex®; 
GLUT4 (Slc2a4) #2213, GLUT1 (Slc2a1) #12939, pIGF1Rβ 
(Y1131) #3021, IGF1Rβ #9750, IRβ #3025, pAkt (Thr308) 
#13038, pAkt (S473) #4060, Akt #4685, pAS160 (Thr642) 
#4288, pERK1/2 (T202/Y204) #4370, pTSC2 (Thr1462) 
#3611, pmTOR (S2448) #2971, mTOR #2983, pEIF2α 
(S51) #9721, EIF2α #9722, pS6K (Thr389) #9234, S6K 

#2708, Tfam #8076, VDAC #4866, OPA1 #80471, β-actin 
#370, GAPDH #2118, Vinculin #4650, α-tubulin #2144 
from Cell Signaling  Techonology®; pIRS1 (Y612) #sc-
17195, IRS1 #sc-559, CLPP #ab124822, from Santa Cruz 
 Biotechnology®; Nrf1 #ab55774, OXPHOS #ab110413 
from  ABCAM®; HSP60 #bs-0191R, LONP1 #bs-4245R 
from  Bioss®, and YME1L1 #11510-AP, PINK1 #23274–1-
AP from  Proteintech®. After the primary antibody incuba-
tion, a secondary antibody (rabbit or mouse) was used. The 
membranes were washed and incubated for 50 min at RT and 
labeled with chemiluminescence reagent (ECL), followed by 
image acquisition with G:Box XR5  (Syngene®, Frederick, 
MD, USA). The densitometry of the band was measured 
using UN-SCAN-IT gel 6.1® software.

The real-time polymerase chain reaction (RT-qPCR) 
analysis was performed using complementary DNA (cDNA) 
obtained from a small fragment of tissue (~ 30 mg) that was 
lysed in Trizol (Life  Technologies®, USA) and submitted to 
the RNA extraction protocol. The cDNA was synthesized 
(2 µg) with High-Capacity cDNA Reverse Transcription Kits 
(Applied  Biosystems®, Forest City, CA) and subjected to 
RT-qPCR in a reaction composed of 100 ng cDNA, 150 nM 
primers (reverse and forward), and 2 × iTaq Universal SYBR 
Green Supermix (Bio-Rad®, Hercules, CA, USA) in the 
7500 Fast Real-Time PCR System (Applied  Biosystems®, 
Forest City, CA). The Ct values were adopted to obtain the 
ΔΔCt of target genes normalized by a housekeeping gene 
(Actb). The primer sequences are described in Table S1.

[18F]‑FDG uptake in skeletal muscle

Skeletal muscle glucose uptake was determined using a 
small animal Positron Emission Tomography and Computed 
Tomography (PET/CT) in vivo imaging system (Albira, 
 Bruker®, Massachusetts, USA). The images were analyzed 
using the PMOD workstation. The animals were anesthe-
tized with 2% isofluorane and 5 MBq of 2-deoxy-2-[18F]-
fluoro-d-glucose  ([18F]-FDG, obtained from Nuclear and 
Energy Research Institute-IPEN, Sao Paulo, Brazil) was 
injected in the retro-orbital sinus. The CT was performed 
with 80 kVp, 160 µA, and 1024 projections, during 0.8 s per 
CT rotation, pitch 4.0–5.0 mm, a field of view of 71.3 mm, 
and a scan speed of 24.6 mm/s. After the CT scan, the PET 
scan was initiated, keeping the animal in the same position 
in the craniocaudal direction. The PET scan was started 
60 min after  [18F]-FDG injection and lasted 40 min. The 
scans were reconstructed using PMOD in the LabPET soft-
ware, calibrating the images in Bq/mL from a scanned phan-
tom cylinder. The region of interest (ROI) was constructed 
using CT scans to access the three-dimensional uptake vol-
ume in the gastrocnemius muscle. The images were con-
verted to standardized uptake values (SUVs), normalized by 
the animal’s body weight. The PET scans were performed 
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without or with insulin (0.5 U/Kg, i.p. injection) in an n = 3/
group per condition.

RNA‑sequencing

Total RNA was isolated from gastrocnemius muscle with 
the Trizol (Life  Technologies®, USA) and chloroform/iso-
propanol/ethanol method and sequenced by BRC Sequenc-
ing Core at the University of British Columbia. The RNA 
quality was checked in an Agilent 2100 Bioanalyzer instru-
ment. After the quality test, the library was prepared using 
a Stranded polyA + mRNA kit (Illumina TruSeq mRNA 
stranded). The samples were then sequenced on the Illu-
mina NextSeq 500 with Paired-End 42 bp × 42 bp reads. 
The sequences were aligned to the Mus Musculus mm10 
sequence with a STAR aligner. The raw counts were nor-
malized. Differential expression between groups was per-
formed using the DESeq2 package, and Benjamini & Hoch-
berg adjusted to a p value < 0.05 cut-off. The gene ontology 
analysis (biological process, cellular components, and 
molecular functions) was performed using DAVID platform 
V6.8. The fasting glucose and insulin levels of each mouse 
were correlated with the normalized raw count of each gene 
(R = Spearman coefficient). The heatmaps were built using 
Gene-E online software (https:// softw are. broad insti tute. org/ 
GENE-E/).

Histological analysis and immunofluorescence

During tissue extraction, small fragments collected from 
gastrocnemius, liver, perigonadal white adipose tissue 
(pgWAT), inguinal (ingWAT), and brown adipose tis-
sue (BAT) were fixed in 4% PFA for 24 h. The tissue was 
dehydrated, embedded in paraffin, and sliced at 10 µM in 
a microtome  (Leica®, RM2145). The slides were hydrated 
again and stained with hematoxylin–eosin (H&E) solu-
tion. The H&E images were acquired in optical microscopy 
(LAB2000,  LABORANA®, São Paulo, Brazil) with Moti-
cam Pro 282B 5.0 megapixels  (Motic®, Hong Kong, China). 
The slides of gastrocnemius samples were immunostained 
with GLUT4 primary antibody (NBP-49533) from Novus 
 Biologicals®, followed by goat anti-rabbit rhodamine (sc-
2091, from Santa Cruz  Biotechnology®) secondary antibody 
incubation. The primary antibody was diluted at 1:100 in 
1.5% BSA and the secondary antibody at 1:200 in 1.5% 
BSA. The nucleus was stained with DAPI (#H-1200; Vec-
tor Laboratories, Burlingame, CA, USA). The slides were 
coverslipped and the images were acquired using Leica 
Application Suite software (at 20 x magnification). Positive 
staining was considered as the mean of five muscle sections 
of each group using CorelDraw 2019 software.

High‑resolution respirometry (mitochondrial 
function)

The oxygen consumption of skeletal muscle (50 mg of 
gastrocnemius) and C2C12 cell (1.5 ×  106) samples was 
measured using Oxygraph-2 k (Oroboros  Instruments®, 
Innsbruck, Austria). Sixteen hours after the final exercise 
session, 50 mg of gastrocnemius sample was submitted to 
muscle fiber dissociation using forceps and permeabilized 
with 50 µg/mL saponin (under agitation, 30 min, at 4 °C). 
The muscle fibers were then transferred to the equipment 
chambers in 2 mL of mitochondrial respiration medium 
(MIR). The C2C12 cells were cultured in 100 mm dishes 
and treated for 24 h, followed by trypsinization and resus-
pension in 2 mL of MIR. The samples were placed in the 
equipment chambers. The basal respiration was obtained 
(with 0.5 mM malate, 10 mM glutamate, and 5 mM pyru-
vate), then 2.5 mM ADP were added to measure complex-I-
dependent respiration. Next, 10 mM succinate was injected 
(Complex I and II respiration), with 2.5 mM oligomycin 
(ATP synthase inhibitor), to measure the mitochondrial 
coupling, and 0.5 mM FCCP, to measure the mitochondrial 
uncoupling.

Cell culture

In the cell culture experiments, C2C12 cells (ATCC ® 
CRL-1772™) were grown in Dulbecco’s Modified Eagle’s 
Medium (DMEM, #12100046, ThermoFisher  scientific®) 
with 10% of fetal bovine serum (FBS—Gibco® #A476680), 
and 1% of Penicillin/Streptomycin complexes (P/S—Gibco® 
#15140122) at 37 °C, 5%  CO2, and ~ 80% of confluence. 
To perform the mitochondrial respiration experiments, the 
C2C12 cells were cultured in 100 mm cell culture dishes in a 
low glucose medium (1000 mg/L #11885084, ThermoFisher 
 scientific®), high glucose medium (4500 mg/L, #12100046, 
ThermoFisher  scientific®), or a DMEM containing insulin 
(50 nM, 24 h). The cells were trypsinized, and 1.5 ×  106 
cells were resuspended in 2 mL MIR to evaluate the mito-
chondrial respiration. A portion of these cells were plated 
in a 6-well plate (1.5 ×  105) and treated for 24 h in the same 
conditions to collect the protein lysate. The C2C12 cells 
were treated with tetracycline (30 µg/mL, 24 h) after plat-
ing in a 6-well plate. In another set of experiments, these 
tetracycline-treated cells were stimulated or not with insulin 
(20 nM, 15 min) and collected for immunoblotting analy-
sis. Intracellular glucose uptake was performed by adding 
2-NBDG (#N13195,  Invitrogen®) and insulin (100 nM) for 
30 and 60 min to the cells as described previously [24]. For 
protein synthesis measurement, cells were exposed to puro-
mycin (1 µM) for 30 min and collected for immunoblotting 
analysis.

https://software.broadinstitute.org/GENE-E/
https://software.broadinstitute.org/GENE-E/
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Oxygen consumption, respiratory exchange ratio 
(RER), and heat production

In another cohort, the animals were submitted to 5 days of 
the exercise training protocol. They were acclimated in indi-
vidual cages of the Comprehensive Lab Animal Monitor-
ing System (CLAMS, Oxymax, Columbus  Instruments®) 
for 24 h. The oxygen consumption (VO2), carbon dioxide 
consumption (VCO2), respiratory exchange ratio (RER), and 
heat production (Heat) were recorded over a 24 h period 
after the 1st day of adaptation. The data were analyzed and 
separated for the animals according to the dark and light 
cycle, using a n = 5/group.

Statistical analysis

The data were analyzed by the Student t-test to compare dif-
ferences between two groups or ONE-way Analysis of Vari-
ance (ANOVA) followed by Tukey’s post hoc test to com-
pare more than two groups. In the time-dependent analysis 
(GTT and ITT), a two-way ANOVA test followed by Tukey’s 
was used with a simple effect within rows. The graphs were 
built in GraphPad Prism 8.0.1® software, expressing the data 

as mean ± standard error of the mean (SEM). The statistical 
significance adopted was p < 0.05.

Results

Endurance and strength exercise improves 
whole‑body insulin sensitivity and glucose 
tolerance in  Slc2a4+/− mice

First, our model was validated by DNA sequencing and 
Slc2a4 protein content quantification (Fig. 1A, B). The 
hyperglycemic and hyperinsulinemic phenotypes were 
also validated following these parameters over the months 
(data not shown), which were similar to those previously 
observed [17]. The Slc2a4+/− mice showed increased fast-
ing glucose, fasting insulin, and HOMA-IR, but this was 
reversed by endurance or strength short-term exercise train-
ing (Fig. 1C–E). In addition, the effects of endurance and 
strength exercise on Slc2a4+/− mice related to the fasting 
glucose and insulin levels were lost 90 h after the final exer-
cise session (Fig. S1A–B). The Slc2a4+/− also presented 
insulin resistance and glucose intolerance, which were 

Fig. 1  Physiological parameters. A Genotyping and validation of 
Wild Type (WT) and Slc2a4+/− mice. B SLC2a4 and SLC2a1 protein 
content in the gastrocnemius muscle (n = 5/group). C Fasting glucose. 
D Fasting Insulin. E HOMA-IR index. F. Insulin tolerance test (ITT) 
curve. G Area under the curve (AUC) of the ITT. H Glucose toler-
ance test (GTT) curve. I Area under the curve (AUC) of the GTT. In 

C–E, n = 7/group was used. In F–I, n = 6/group was used. *p < 0.05 
vs WT group. #p < 0.05 vs Slc2a4+/− Sedentary group. In the graphs 
F and H, *p < 0.05 WT vs Slc2a4+/− Sedentary, #p < 0.05 Slc2a4+/− 
Sedentary vs Slc2a4+/− Endurance, &p < 0.05 Slc2a4+/− Sedentary vs 
Slc2a4+/− Strength
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counteracted by both exercise training protocols (Fig. 1F–I). 
These results were observed without significant changes in 
the body weight, Lee index, and adipose tissue weight (Fig. 
S1C–F). There was greater liver weight in the Slc2a4+/− sed-
entary mice, which was attenuated by endurance exercise 
training (Fig. S1H). Moreover, no significant changes were 
observed in the serum biochemical parameters (TG, Cho-
lesterol, HDL), hepatic gluconeogenic enzyme expression 
(Pepck, G6pase, and Pc), and hepatic morphological aspects 
(Fig. S1G, I, J).

Insulin signaling and transcriptomic analysis 
in skeletal muscle

The physiological changes observed in the Slc2a4+/− mice 
are partly reflected by alterations in the skeletal muscle 
insulin signaling pathway. In response to insulin stimulus, 
the sedentary Slc2a4+/− mice showed impaired  pIRY972, 
 pAktT308,  pAktS473, and  pAS160T642 compared to WT mice 
(Fig. 2A). When Slc2a4+/− mice were submitted to the 
endurance exercise training protocol, there was improve-
ment in the  pIRY972,  pIRS1Y612,  pAktS473,  pAS160T642, 
and  pTBC1D1S237 compared to sedentary Slc2a4+/− mice 
(Fig.  2B). In response to the strength exercise training 
protocol,  pIRS1Y612,  pAktT308,  pAktS473,  pAS160T642, and 
 pTBC1D1S237 improved compared to sedentary 
Slc2a4+/− mice (Fig. 2B). The adaptations from the short-
term exercise training protocol were reflected in improved 
skeletal muscle glucose uptake. The endurance protocol 
improved basal skeletal muscle glucose uptake. Both proto-
cols restored the impaired insulin-stimulated skeletal muscle 
glucose uptake in Slc2a4+/− mice (Fig. 2C, D).

To access possible pathways related to endurance and 
strength exercise training adaptation in Slc2a4+/− mice, 
skeletal muscle (gastrocnemius) samples were collected 
and submitted to bulk RNA-seq analysis (Fig. 2E). Firstly, 
distinct genes were down/upregulated by endurance or 
strength exercise training protocols compared to seden-
tary Slc2a4+/− mice (Fig. 2F–I). Regarding the endurance 
exercise training protocol, 92 genes were upregulated and 
81 downregulated compared to sedentary Slc2a4+/− mice 
(Fig. 2G). The strength exercise training protocol upregu-
lated 243 genes and downregulated 138 genes compared to 
sedentary Slc2a4+/− mice (Fig. 2I). Among these regulated 
genes, 8 genes (Cdh4, Ctgf1, Gas1, Hey1, Penk, Ptprb, 
Amd2, and Sorbs2) were commonly downregulated by 
endurance and strength exercise training protocols com-
pared to sedentary Slc2a4+/− mice (Fig. 2J). On the other 
hand, 17 genes (Hspb1, Hspa1a, Hspa1b, Hspa9, Hspb7, 
Dnaja4, Fads6, Hadha, Ogdha, Bcl2l13, Retsat, Srxn1, 
Irx3, Klhl40, Lmcd1, Ninj1, and Nfic) were upregulated 
by both exercise training protocols (Fig. 2J). The modula-
tion of these genes was associated with distinct biological 

processes, cellular components, and molecular functions, 
where both endurance and strength exercise protocols 
showed an association with mitochondrial function (Fig. 
S2). Moreover, significant transcriptional changes were 
observed when comparing the strength and endurance 
exercise protocols in Slc2a4+/− mice (568 upregulated 
and 311 downregulated in strength exercise) (Fig. 2L). It 
is also important to highlight that the effects of exercise 
observed at the physiological and molecular levels in the 
Slc2a4+/− mice were independent of alterations in behav-
ioral responses or corticosterone levels, emphasizing that 
neither exercise protocol was stressful for the animals (Fig. 
S3).

Mitochondrial markers and respiration are impaired 
in  Slc2a4+/− mice, but endurance training restores 
them

As gene ontogeny terms indicated mitochondrial adapta-
tions as important components of the muscle response 
to PA in Slc2a4+/− mice, we investigated mitochondrial 
modulations in the skeletal muscle of Slc2a4+/− mice, 
including mitochondrial unfolded protein response 
markers (UPRmt). Firstly, we observed a lower content 
of mitochondrial markers (CI-NDUFB8 and Tfam) in 
the skeletal muscle of Slc2a4+/− mice compared to WT 
(Fig. 3A–C). Moreover, this was associated with lower 
content of UPRmt markers (YME1L1 and CLPP), and a 
trend (p = 0.07) to decreased LONP1, which was accom-
panied by lower mitochondrial respiration (Fig. 3C, D). 
Importantly, these physiological and molecular alterations 
were not associated with a compensatory browning effect 
in the white adipose tissue (pgWAT and ingWAT) and 
brown adipose tissue, only an augment in Ucp1 mRNA in 
the strength group compared to sedentary Slc2a4+/− mice 
(Fig. S4).

When Slc2a4+/− mice performed the endurance or 
strength exercise training protocol, there were transcrip-
tional changes in OXPHOS-related genes and mitochondrial 
and UPRmt markers compared to sedentary Slc2a4+/− mice 
(Fig. 3E, F). The protein contents of CIII-UQCRC2, CIV-
MTCO1, CII-SDHB, Tfam, HSP60, and YME1L1 were 
upregulated by the endurance exercise protocol compared 
to sedentary Slc2a4+/− mice, a fact that was accompanied 
by increased mitonuclear imbalance and improved mito-
chondrial respiration in skeletal muscle (Fig. 3G–J). Con-
versely, the strength exercise training protocol increased 
CIII-UQCRC2, CIV-MTCO1, Tfam, and OPA1, but did 
not improve mitochondrial function in the skeletal muscle 
of Slc2a4+/− mice (Fig. 3G–J). This result may explain the 
lower RER found only in the endurance exercised mice (Fig. 
S5).
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Fasting glycemia and insulin are correlated 
with mitochondrial alterations in  Slc2a4+/− mice

Because our model is hyperglycemic and hyperinsulinemic, 
we correlated the fasting glucose and insulin levels of the 
Slc2a4+/− mice with OXPHOS and UPRmt-related genes 
in skeletal muscle. In general, most of these genes were 
negatively correlated with fasting glucose (Atp5a1, Uqcc, 
Sdhb, Ndufv1, Shmt2, Lonp1, Pink1) and fasting insulin 

(Atp5a1, Uqcc, Uqcrc1, Sdha, Sdhb, Ndufv1, Shmt2, Tfam, 
Opa1, Vdac, Hspd1, Lonp1, Pink1) (Fig. 4A, B). Thus, we 
tested if glucose or insulin could affect mitochondrial mark-
ers and function in C2C12 cells (Fig. 4C). The exposure 
of C2C12 cells to insulin (50 nM, 24 h) decreased CIV-
MTCO1, CII-SDHB, and CI-NDUFB8 protein contents, as 
well as mitonuclear imbalance (Fig. 4D–E). These changes 
were accompanied by downregulation of Tfam, OPA1, 
VDAC, and HSP60, upregulation of YME1L1, a trend to 

Fig. 2  Insulin signaling and protein synthesis pathway in skel-
etal muscle. A  pIRY972,  pIRS1Y612,  pAktT308,  pAktS473,  pAS160T642, 
 pTBC1D1S237 protein levels in the skeletal muscle of WT and 
Slc2a4+/− mice. B Insulin signaling-related protein levels  (pIRY972, 
 pIRS1Y612,  pAktT308,  pAktS473,  pAS160T642,  pTBC1D1S237) in the 
skeletal muscle of Slc2a4+/− and Slc2a4+/− Endurance and Strength 
groups. C GLUT4 immunofluorescence in the plasma membrane 
of the gastrocnemius muscle in response to insulin. D Standardized 
uptake value (SUV) of  [18F]-FDG uptake in the skeletal muscle of 
WT and Slc2a4+/− groups. E Schematic representation of the samples 
used in the RNA-seq. F Volcano plot of genes differentially expressed 
between Slc2a4+/− Endurance vs. Slc2a4+/− Sedentary group. G 
Heatmap of up/downregulated genes between Slc2a4+/− Endurance 

vs. Slc2a4+/− Sedentary group. H Volcano plot of genes differentially 
expressed between Slc2a4+/− Strength vs. Slc2a4+/− Sedentary group. 
I Heatmap of up/downregulated genes between Slc2a4+/− Strength vs. 
Slc2a4+/− Sedentary group. J Venn diagram and common up/down-
regulated genes in response to endurance and strength exercise train-
ing compared to Slc2a4+/− Sedentary group. K Volcano plot of genes 
differentially expressed between Slc2a4+/− Strength vs. Slc2a4+/− 
Endurance group. L Heatmap of up/downregulated genes between 
Slc2a4+/− Strength vs. Slc2a4+/− Endurance group. In A, B, n = 4, 5, 
5 was used. In C, n = 5/group was used. In D, n = 3/group was used. 
*p < 0.05 vs WT group. #p < 0.05 vs Slc2a4+/− Sedentary group. The 
RNA-seq was performed using gastrocnemius skeletal muscle (n = 5/
group)
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increased LONP1, and a trend to decreased Nrf1 and CLPP 
in response to insulin (Fig. 4F). These molecular changes 
could not modulate the mitochondrial function in C2C12 
cells (Fig. 4G). When C2C12 cells were cultured in a low 
or high glucose medium, there was a decrease in the protein 
content of CV-ATP5A, CIII-UQCRC2, CII-SDHB, and CI-
NDUFB8 and an increase in CIV-MTCO1 in the high glu-
cose group (Fig. 4H, I). In the high glucose group, C2C12 
cells showed increased mitonuclear imbalance, Nrf1, and 
LONP1 content, but lower Tfam, OPA1, VDAC, CLPP, and 
a trend to decreased HSP60 content, which was associated 
with a trend to reduced mitochondrial respiration in response 
to FCCP (Fig. 4K, L).

Mitochondrial impairments could impact insulin 
signaling and protein synthesis in C2C12 cells

As we observed important alterations in mitochondrial 
markers and UPRmt in response to hyperglycemia, 

hyperinsulinemia, and endurance exercise training, we 
investigated if alterations in mitochondria using tetracy-
cline (a blocker of mitochondrial protein synthesis) may 
impact proteins related to the insulin signaling pathway 
and glucose uptake in C2C12 cells (Fig. 5A–G). Firstly, 
the cells treated with tetracycline showed lower levels 
of CV-ATP5A, CIII-UQCRC2, CIV-MTCO1, OPA1, 
YME1L1, and PINK1, with a reduction in the mitonuclear 
imbalance, and a trend to decreased CII-SDHB, Tfam, 
HSP60, and CLPP compared to CTL cells (Fig. 5B–D). 
Thereafter, when tetracycline-treated cells were stimulated 
with insulin, there was impaired  pAktS473,  pAS160T642, 
and glucose uptake compared to CTL-insulin stimulated 
cells (Fig. 5F, G). Thus, we can speculate that mitochon-
drial disarrangements can impair insulin signaling and 
contribute to insulin resistance.

Fig. 3  Mitochondrial markers and function in the skeletal muscle of 
Slc2a4+/− mice. A OXPHOS markers (CV-ATP5A, CIII-UQCRC2, 
CIV-MTCO1, CII-SDHB, and CI-NDUFB8) in the skeletal muscle of 
WT and Slc2a4+/− mice. B Mitonuclear imbalance (MTCO1/ATP5A) 
in the skeletal muscle of WT and Slc2a4+/− mice. C Mitochondrial 
and UPRmt markers (Nrf1, Tfam, OPA1, VDAC, HSP60, YME1L1, 
CLPP, and LONP1) in the skeletal muscle of WT and Slc2a4+/− 
mice. D Mitochondrial function in the skeletal muscle of WT and 
Slc2a4+/− mice. E Heatmap of OXPHOS related genes comparing 
Slc2a4+/− Endurance and Strength vs. Slc2a4+/− Sedentary group. 
F Heatmap of mitochondrial and UPRmt related genes comparing 

Slc2a4+/− Endurance and Strength vs. Slc2a4+/− Sedentary group. 
G OXPHOS markers (CV-ATP5A, CIII-UQCRC2, CIV-MTCO1, 
CII-SDHB, and CI-NDUFB8) in the skeletal muscle of sedentary 
and exercised Slc2a4+/− mice. H Mitonuclear imbalance (MTCO1/
ATP5A) in the skeletal muscle of sedentary and exercised Slc2a4+/− 
mice. I Mitochondrial and UPRmt markers (Nrf1, Tfam, OPA1, 
VDAC, HSP60, YME1L1, CLPP, and LONP1) in the skeletal muscle 
of sedentary and exercised Slc2a4+/− mice. J Mitochondrial function 
in the skeletal muscle of sedentary and exercised Slc2a4+/− mice. In 
A–F, n = 5/group was used. In G–J, n = 4, 5, 5 was used. *p < 0.05 vs 
WT group. #p < 0.05 vs Slc2a4+/− Sedentary group
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Strength exercise increases protein synthesis 
mechanisms in  Slc2a4+/− mice

As muscle adaptations to strength exercise differ from 
endurance exercise, we evaluated the mechanisms of pro-
tein synthesis in Slc2a4+/− mice submitted to a strength 
exercise protocol. Detrimental effects in proteins associated 
with the insulin signaling pathway and protein synthesis 
 (pmTORS2448 and  pS6KT389) were observed in the seden-
tary Slc2a4+/− mice (Fig. 6A). In the exhaustion velocity 
test, both endurance and strength exercised Slc2a4+/− mice 
demonstrated improved final velocity compared to the test 
applied before the exercise training program (Fig. 6B). In 
the grip strength test and the maximal voluntary carrying 
capacity (MVCC), the strength exercised Slc2a4+/− mice, 
but not the endurance exercised, showed better performance 
after the exercise training protocol compared to the pre-pro-
tocol test (Fig. 6C, D). This was associated with molecular 
changes in the skeletal muscle, such as increased  pS6KT389 
in the endurance exercised mice compared to sedentary 

Slc2a4+/− mice (Fig. 6E). The effects of the strength exercise 
training protocol were related to increased pIGF1RβY1131, 
 pmTORS2448, and  pS6KT389, accompanied by improved pro-
tein synthesis in the skeletal muscle compared to the seden-
tary group (Fig. 6E and F). In addition, tetracycline-treated 
cells showed impaired  pS6KT389 and protein synthesis com-
pared to control cells (Fig. 6G and H).

Discussion

Skeletal muscle is critical to controlling glucose homeosta-
sis, contributing to ~ 75% of glucose disposal after glucose 
infusion [5, 6]. Moreover, early defects in skeletal muscle 
insulin sensitivity are observed in people that develop T2D 
many years before the disease diagnosis [4]. Identifying 
early signals before disease establishment could be one key 
strategy to prevent disease progression. In this scenario, 
the classical model of insulin resistance [25] as a primary 
cause of T2D, leading to compensatory hyperinsulinemia 

Fig. 4  Mitochondrial and unfolded protein response markers in skel-
etal muscle and C2C12 cells. A Correlation between fasting insulin or 
fasting glucose with OXPHOS-related genes. B Correlation between 
fasting insulin or fasting glucose with mitochondrial and UPRmt 
markers. C Schematic figure of insulin treatment in C2C12 cells. 
D OXPHOS markers (CV-ATP5A, CIII-UQCRC2, CIV-MTCO1, 
CII-SDHB, and CI-NDUFB8) in C2C12 cells treated with insulin 
(50 nM, 24 h). E Mitonuclear imbalance (MTCO1/ATP5A). F Mito-
chondrial and UPRmt markers (Nrf1, Tfam, OPA1, VDAC, HSP60, 
YME1L1, CLPP, and LONP1) in C2C12 cells treated with insulin. G 
Mitochondrial function in C2C12 cells treated with insulin. H Sche-

matic figure of low (1000 mg/L)/high glucose (4500 mg/L) treatment 
in C2C12 cells. I OXPHOS markers (CV-ATP5A, CIII-UQCRC2, 
CIV-MTCO1, CII-SDHB, and CI-NDUFB8) in the C2C12 cells 
treated with low/high glucose. J Mitonuclear imbalance (MTCO1/
ATP5A). K Mitochondrial and UPRmt markers (Nrf1, Tfam, OPA1, 
VDAC, HSP60, YME1L1, CLPP, and LONP1) in C2C12 cells 
treated with low/high glucose. L Mitochondrial function in C2C12 
cells treated with low/high glucose. In A, B, R is the Spearman cor-
relation coefficient between fasting glucose or insulin and the num-
ber of genes reads in the RNA-seq. In D–L, n = 3/group was used. 
*p < 0.05 vs. respective control group (Basal or Low glucose) group
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is controversial in some cases, where hyperinsulinemia is 
noted before the presence of insulin resistance [26, 27]. 
Therefore, decreasing insulin circulating levels could be 
essential to improve metabolic health and prevent metabolic 
syndrome [9–11]. One possible strategy to control hyper-
insulinemia is using physical exercise programs [28, 29], 
which are regarded as essential to prevent the development 
of T2D [30].

Modulating insulin levels can cause robust changes in 
gene networks [31, 32] and post-translational modifications 
[33, 34]. Likewise, physical exercise is involved in a wide 
range of gene networks and protein modulations in differ-
ent tissues to maintain metabolic homeostasis [35]. In this 
scenario, the investigation of endurance and strength training 
protocols in animals that are hyperinsulinemic and hyper-
glycemic under a chow diet may provide new insights into 
how exercise improves metabolic health. In this study, both 
short-term endurance and strength exercise training pro-
tocols controlled the elevated fasting glucose and insulin, 
leading to improved whole-body insulin sensitivity and glu-
cose tolerance. This response was accompanied by specific 
modulations in skeletal muscle at the protein level, where 
endurance exercise increased  pIRY972,  pIRS1Y612,  pAktS473, 
 pAS160T642, and  pTBC1D1S237, while strength exercise 
increased  pIRS1Y612,  pAktT308,  pAktS473,  pAS160T642, and 
 pTBC1D1S237 compared to sedentary Slc2a4+/− mice. These 

molecular changes occurred concomitantly with improved 
skeletal muscle glucose uptake in response to insulin and 
improved whole-body insulin sensitivity and glucose toler-
ance. However, the effects of both physical exercise proto-
cols on glycemia and insulinemia were abolished 90 h after 
the final exercise session. It is worth noting that these find-
ings with repsect to the physical exercise protocols were not 
linked to changes in corticosterone levels and behavioral 
tests.

To investigate the details of molecular regulation medi-
ated by both short-term exercise training protocols, we 
performed RNA-seq analysis and protein synthesis assay 
in the gastrocnemius skeletal muscle of Slc2a4+/− mice. 
Strength training promoted robust changes in post-trans-
lational mechanisms. After seven days of exercise (and a 
16 h wash out), animals subjected to the strength protocol 
showed increased muscle protein synthesis and strength. 
This is a very important finding as muscle mass content 
is directly associated with insulin sensitivity and glu-
cose tolerance [36, 37]. Conversely, results obtained with 
endurance training are strongly related to transcriptome 
changes. In addition to the genes explored in this study, 
the endurance training protocol also increased the Acti-
vating Transcription Factor 3 gene (Atf3) and decreased 
several genes of the forkhead box family (Foxn3, Foxd2os, 
Foxs1, Fbxl22), showing an important action in nuclear 

Fig. 5  Tetracycline induces mitochondrial impairments and insu-
lin signaling defects. A Schematic figure of Tetracycline treatment 
(30 µg/mL, 24 h) in C2C12 cells. B OXPHOS markers (CV-ATP5A, 
CIII-UQCRC2, CIV-MTCO1, CII-SDHB, and CI-NDUFB8) in the 
tetracycline-treated C2C12 cells. C Mitonuclear imbalance (MTCO1/
ATP5A). D Mitochondrial and UPRmt markers (Nrf1, Tfam, OPA1, 
VDAC, HSP60, YME1L1, CLPP, and LONP1) in the tetracycline-
treated C2C12 cells. E Schematic figure of Tetracycline treatment 
(30  µg/mL, 24  h) followed by insulin stimulus (20  nM, 15  min) 

in C2C12 cells. F Insulin signaling-related proteins  (pIRS1Y612 
 pAktT308,  pAktS473,  pAS160T642) in tetracycline-treated C2C12 cells. 
G 2-NBDG glucose uptake in C2C12 cells in the basal state (B), or 
in response to 30 min of 100 nM insulin (30), or 60 min of 100 nM 
insulin (60). In B–G, n = 3/group was used. In B–D, *p < 0.05 vs. 
CTL cells. In graphs F and G, *p < 0.05 vs. CTL(−) or basal cells, 
#p < 0.05 vs. Tetracycline(−) or basal cells, &p < 0.05 vs. CTL( +) 
cells
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transcription factors. The reduction in Col6a6, Col11a2, 
and Col1a2 also supports the idea that extracellular matrix 
modulation participates in the positive effects of physical 
exercise [38, 39]. Here, we found downregulation of the 
Myoregulin gene (Mrln) in the endurance exercised mice, 
a gene that is negatively correlated with exercise perfor-
mance [40]. Upregulation of Il6, Acox2, Cidea, Mpc1-ps, 
and Pdpr genes in response to endurance training pro-
tocol was also found, as well as in several genes related 
to heat shock proteins (Hspa1a, Hspa1b, Hspb1). In the 
strength training protocol, we also observed downregula-
tion of genes involved with extracellular matrix (Coll1a2 
and Mxra8) and upregulation of heat shock protein-related 
genes (Hspa1a, Hspa1b, Hspb6, and Hspb7). The most 
significant gene improved by the strength training pro-
tocol, Sirtuin 3 (Sirt3), is a well-established deacetylase 
protein, playing a role in skeletal muscle insulin signaling 
and mitochondrial fatty acid oxidation [41, 42].

When we compared the transcriptomic signature 
between strength and endurance training protocols, sev-
eral genes from the mitochondrial oxidative phosphoryla-
tion (OXPHOS) system were upregulated in the strength 
exercise. However, this modulation was not effective for 
changing mitochondrial function in the strength exercise 
group. This may be due to the duration of our protocol, as 
PGC-1α4 expression was increased in the skeletal muscle 
of subjects performing resistance exercise for 3 months 
[43]. In that study, the authors proposed a mechanism by 
which resistance exercise increases anaerobic glycolysis and 
promotes glucose uptake and fatty acid oxidation through 
PGC-1α4, while strength training promotes post-transla-
tional mechanisms involved in muscle protein synthesis 
[43]. The molecular functions related to the upregulated 
genes observed in both exercise training protocols led us 
to look at mitochondrial and UPRmt markers in the skel-
etal muscle of sedentary Slc2a4+/− mice and C2C12 cells 

Fig. 6  Performance tests and protein synthesis in skeletal muscle. 
A Protein synthesis-related proteins (pIGF1RβY1131,  pmTORS2448, 
 pS6KT38, pEIF2αS51) in the skeletal muscle of WT and Slc2a4+/− 
mice. B Exhaustion velocity. C Grip strength test. D Maximal volun-
tary carrying capacity (MVCC). E Protein synthesis-related proteins 
(pIGF1RβY1131,  pmTORS2448,  pS6KT38, pEIF2αS51) in the skeletal 
muscle of Slc2a4+/− and Slc2a4+/− Endurance and Strength groups. F 
Skeletal muscle protein synthesis (anti-Puromycin/mTOR). G Protein 
synthesis-related proteins  (pmTORS2448, pEIF2αS51,  pS6KT389) in tet-

racycline-treated C2C12 cells. H Protein synthesis (anti-Puromycin/
β-actin) in tetracycline-treated C2C12 cells. I Final schematic fig-
ure showing the effects of endurance and strength exercise training 
on skeletal muscle transcriptome and mitochondrial adaptations in 
Slc2a4+/− mice. In A and E, n = 4, 5, 5/group was used. In B, n = 5 
was used. In B–D, n = 7/group was used. In F–H, n = 3/group was 
used. In A, E and F, *p < 0.05 vs WT group. #p < 0.05 vs Slc2a4+/− 
Sedentary group. In G–H, *p < 0.05 vs. CTL(−) cells, #p < 0.05 vs. 
Tetracycline(−) cells, &p < 0.05 vs. CTL(+) cells
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submitted to different challenges. Evidence suggests that 
UPRmt may be an essential response to maintaining cel-
lular homeostasis. After mitonuclear imbalance, the UPRmt 
is an adaptive mechanism to repair and improve mitochon-
drial function contributing to metabolic health and longevity 
[44]. This mechanism is well preserved across the species 
and is sensitive to nutritional and pharmacological interven-
tions [45–47], as well as physical exercise [48–50]. In aged 
mice presenting mitochondrial defects, four weeks of aero-
bic treadmill exercise provided the following adaptations in 
skeletal muscle compared to aged control mice: a increased 
VDAC; b increased mitochondrial-encoded genes (mt-ND1, 
mt-CytB, and mt-D-loop); c increased mitonuclear imbal-
ance (MTCO1/ATP5a ratio); and d increased UPRmt makers 
(HSP60, LONP1, and YME1L1) [49]. In response to high-
intensity interval training (4 weeks), aged mice also showed 
increased mitonuclear imbalance (MTCO1/SDHA ratio) in 
skeletal muscle compared to aged controls. This result was 
accompanied by increased Yme1l1 and Lonp1 mRNA, as 
well as increased mitochondrial biogenesis markers (NRF1, 
Tfam, and VDAC) and mitochondrial-encoded genes (mt-
ND1, mt-CytB, and mt-D-loop) [48].

Our data suggest that hyperinsulinemia or hyperglycemia 
can cause essential alterations in mitochondrial and UPRmt 
markers at the protein level. The sedentary Slc2a4+/− mice 
had lower Tfam, CIII-UQCRC2, YME1L1, and CLPP in 
skeletal muscle compared to WT, which was associated 
with lower mitochondrial respiration in response to succi-
nate, oligomycin, and FCCP. The C2C12 cells maintained 
with high insulin for 24 h demonstrated lower levels of 
Tfam, VDAC, OPA1, CIII-UQCRC2, CIV-MTCO1, CII-
SDHB, CI-NDUFB8, and HSP60, as well as higher levels of 
YME1L1, compared to basal cells. However, these protein 
changes were not associated with alterations in mitochon-
drial function. In addition, maintaining C2C12 in a high 
glucose medium led to a decrease in Tfam, VDAC, OPA1, 
CV-ATP5A, CIII-UQCRC2, CII-SDHB, CI-NDUFB8, and 
CLPP, and an increase in Nrf1, CIV-MTCO1, and LONP1 
compared to cells maintained in a low glucose medium. 
These high glucose cultured cells also demonstrated a trend 
of lower mitochondrial respiration in response to FCCP.

In skeletal muscle, we observed increased mitochondrial 
and UPRmt markers (Tfam, VDAC, CV-ATP5A, CIII-
UQCRC2, HSP60, and YME1L1) in the endurance exer-
cised Slc2a4+/− mice compared to sedentary Slc2a4+/− mice. 
In contrast, the strength exercise training increased only 
Tfam and OPA1. This response may explain the improved 
mitochondrial function observed only in the Slc2a4+/− mice 
performing the endurance training protocol. In addition, 
attenuating mitochondrial markers and UPRmt levels in 
C2C12 cells led to a reduction in Akt phosphorylation at 
T308, pAS160, and pS6K. Therefore, alterations in UPRmt 
may be one of the contributing factors to the changes in 

proteins related to skeletal muscle glucose uptake and pro-
tein synthesis.

Previous studies have shown the role of doxycycline in 
the induction of UPRmt with diverse physiological outcomes 
[44, 51–53]. When Caenorhabditis Elegans (C. Elegans) 
were treated with doxycycline, the worms showed lifespan 
extension, which was associated with lower mitochondrial 
respiration, mitonuclear imbalance induction, and increased 
UPRmt [44]. The same authors demonstrated that this 
mechanism of mitonuclear imbalance and UPRmt induction 
mediated by doxycycline is preserved in mouse hepatocytes. 
Moreover, the effects of doxycycline in controlling lifes-
pan in C. Elegans are associated with a wide range of gene, 
protein, and lipid modulations, which are associated with 
defense response and lipid metabolism [51]. Compared to 
control mice, long-lived Snell dwarf mice exhibited higher 
UPRmt in the liver and lower mitochondrial respiration in 
the primary fibroblasts [53]. This role of doxycycline in lon-
gevity stimulation could also be attributed to attenuation in 
the mitochondrial translation and, consequently, attenuation 
of cytosolic translation [54]. Therefore, the UPRmt adapta-
tions in the conditions explored in this study could play an 
important role in the whole-body metabolism.

It is necessary to reinforce that the present study aimed to 
evaluate the intracellular adaptations in the skeletal muscle 
linked to metabolism, protein synthesis, and mitochondrial 
function that occur at the beginning of physical training. 
Thus, it is known that in this short period, changes in muscle 
strength from strength training are probably only neuromus-
cular adaptations. Prolonged strength training increases mus-
cle mass (which does not happen in a short period), which in 
itself increases glucose disposal. It is likely that resistance 
training changes do not represent the alterations that would 
occur in expected mitochondrial remodeling. Therefore, it 
is probable that some of the results seen here, such as equal 
increases in response to treadmill running and stair climb-
ing exercises, are not what you would expect from long-
term training. In our study, both programs improved skeletal 
muscle glucose uptake and could suggest feasible strategies 
to improve metabolic health and prevent type 2 diabetes 
development (Fig. 6J). Future studies should evaluate other 
isoforms of glucose transporters in skeletal muscle, such as 
GLUT1 and GLUT3. This issue was not fully explored in 
the current investigation and may reveal whether there is any 
compensation through these Gluts in  Slc2a4+/− mice.

Conclusion

In summary, the findings of the present study contribute 
to the prospect of a personalized and targeted prescrip-
tion in the future of physical exercise. In a complementary 
and singular way, we expanded the knowledge about the 
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molecular adaptations occurring at the beginning of aero-
bic and strength training protocols in a hyperglycemic and 
hyperinsulinemic GLUT4-deficient mouse model. While 
endurance exercise plays a vital role in transcriptome and 
mitochondrial activity, strength exercise mainly affects post-
translational mechanisms and protein synthesis. However, 
both short-term exercise models efficiently improved gly-
cemic homeostasis and overcame the metabolic challenges 
from  Slc2a4+/− mice. Therefore, performing both types of 
physical exercise (aerobic and resistance) proved to be a very 
effective way to mitigate the impacts of hyperglycemia and 
hyperinsulinemia (metabolic alterations of an insidious and 
elusive nature) that precede the onset of diabetes.
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