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Abstract
The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a 
complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until 
postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter rang-
ing from 30 to 200 nm, have been considered a significant medium for information communication in both physiological and 
pathological processes. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, 
we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs 
were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, 
we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomes of cochlear 
sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related to inner ear development, 
anatomical structure development, and auditory nervous system development. These results all suggest that sEVs exist in 
the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV 
microRNA and protein targets for future studies of the roles of cochlear sEVs.
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Introduction

The cochlea in the inner ear is an important auditory signal 
transduction organ that develops from embryonic day (E)9 
through postnatal day (P)21 [1]. The detection of sound 
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waves and transmission of sound information to the brain 
are both dependent on cochlear hair cell (HCs) [2]. The 
first cochlear HCs develop at E11, and ultimately three 
rows of outer hair cells (OHCs), one row of inner hair cells 
(IHCs), and supporting cells (SCs) beneath the HCs are 
formed [3]. By P3, the total number of HCs peaks and will 
remain basically unchanged, while the morphology of the 
HCs will change as the HCs mature from P3 to P21 [4, 5].

HC maturation involves many complex developmental 
processes, such as the formation of hair bundles, synapses, 
and mechanical transduction channels (METs) [6–8]. 
Hearing formation requires the establishment of proper 
innervation, and the afferent nerves of the inner ear gradu-
ally form an outer spiral bundle of OHCs from P0 to P3 
[9]. In the first 7 days after birth, hair bundles and METs 
develop gradually, and mature innervation patterns emerge 
gradually between P14 and P21 [9, 10]. At P7, HCs have 
mature mechanical transduction abilities, which is the 
most important aspect of formation of the auditory system 
[11]. Hearing onset and HC synapses gradually mature at 
P12–14, during which time mice gradually obtain the ini-
tial ability to hear [12]. Adult ranges of cochlear potentials 
can be initially tested at P11, but adult ranges and sensi-
tivities of cochlear potential do not mature until P14 [13]. 
Mature cochlear potentials are essential for the formation 
of hearing. At P21, the morphology and function of the 
cochlea are mature, and hearing function can be measured 
by auditory brainstem response. During the process of HC 
maturation, the characteristics of SCs, especially inner 
ear progenitors, also change dramatically. SCs have been 
reported to act as inner ear stem cells and to transdifferen-
tiate into HCs by induction of Wnt signaling or inhibition 
of Notch signaling in newborn mice [14, 15]. However, the 
stemness of SCs deteriorates with age, and their capacity 
to divide is completely lost by P14 [16].

It has been reported that many important transcription 
factors and signaling pathways are associated with the 
development of the cochlea, such as Sox2, Atoh1 [17], and 
the Wnt, Notch, and FGF signaling pathways [18, 19]. In 
addition, many microRNAs (miRNAs), such as miR182, 
miR183, and miR124, are also reported to regulate inner ear 
tissue differentiation and to maintain cell differentiation and 
proliferation [20, 21]. However, the cochlea’s development 
is a complicated process, and many regulatory processes and 
the factors that are involved remain to be elucidated.

Small extracellular vesicles (sEVs) have become a 
research hotspot in recent years and are reported to be 
involved in intercellular signal transmission during many 
important pathological and physiological processes 
[22–24]. sEVs have sizes from 30 to 200 nm and can be 
generated by various cells [25]. The contents of sEVs 
include numerous proteins and nucleic acids that are 
protected by a phospholipid bilayer structure from being 

digested by extracellular substances, and these materials 
can be delivered to recipient cells and thus contribute to 
cellular communication and signal transmission [26, 27]. 
sEVs participate in cell proliferation and differentiation 
in both pathological and healthy situations through sign-
aling pathways mediated by miRNAs [28–30], and sEVs 
are involved in intercellular signal transmission during 
the development of brain neural circuits and in regulating 
growth patterns during embryonic development [31, 32].

Although sEVs have been extensively studied in cancer 
and other diseases, limited studies have been performed on 
the role of sEVs in the cochlea. This may be because as 
the mice age the otic vesicle outside the cochlea gradually 
becomes ossified and becomes rigid, especially after P10, 
which makes it difficult to obtain the substances inside the 
cochlea. However, it is known that in the utricle SC-derived 
exosomes can protect HCs against neomycin-induced ototox-
icity [33] and that inner ear stem cell-derived exosomes can 
reduce ototoxic drug damage by transferring miR-182-5p to 
HEI-OC1 cells [34, 35]. At present, the research on inner 
ear-derived sEVs is based on in vitro models, and there is 
no research on sEVs in intact inner ear tissues.

In this study, we extracted cochlear tissue-derived sEVs 
from mice at different ages after birth and systematically 
analyzed and characterized their protein and miRNA 
contents for the first time. We used transmission electron 
microscopy (TEM), western blotting, and nanoparticle track-
ing analysis (NTA) to quantify the characteristics of sEVs 
and then performed proteomics and small RNA-seq to ana-
lyze the differentially expressed proteins and miRNAs and to 
predict the functions of these proteins and miRNAs. These 
results are expected to provide important information for 
the subsequent functional analysis of sEVs in the cochlea.

Materials and methods

Isolation of cochlear tissue‑derived sEVs

The cochleae were obtained from P3, P7, P14, and P21 FVB 
mice. sEVs were isolated from 45 mouse cochleae accord-
ing to the ultracentrifugation method as previously reported 
[36, 37]. Briefly, the cochleae were dissected, placed in a 
centrifuge tube with PBS buffer, and then ground for 1 min 
at 40 Hz in a grinder (Jingxin, Shanghai, China). The sample 
was filtered with a pore size of 0.22 µm after differential 
centrifugation to eliminate cell debris and microvesicles 
(600 × g for 10 min, 2000×g for 15 min, and 12,000×g for 
50 min, all at 4 °C). The filtered samples were concen-
trated to 1–1.5 ml in a 50 ml 100 kDa molecular weight 
cutoff (MWCO) ultrafiltration centrifuge tube (Millipore) 
at 3000×g for 15 min at 4 °C. The samples were then ultra-
centrifuged at 110,000×g for 2 h at 4 °C to obtain sEVs. 
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After discarding the supernatant, the sEV pellets were 
resuspended, washed with PBS once, and ultracentrifuged 
a second time at 110,000×g for 2 h at 4 °C. The sEVs were 
finally resuspended in 400–500 μl PBS for the following 
experiments.

Transmission electron microscopy

A total of 10 µl of sEV sample was dropped on an electron 
microscope copper grid and dried at room temperature and 
then negatively stained with 1.5% phosphotungstic acid (pH 
7.4) at room temperature for 5 min. The images of cochlear 
sEVs were obtained by TEM (JEM-2100, Hitachi, Tokyo, 
Japan) with an accelerating voltage of 200 kV.

Nanoparticle tracking analysis

NTA (NS300, Malvern, United Kingdom) was used to iden-
tify the size and concentration of sEVs. A total of five 60-s 
videos were obtained for each sample, and the dispersed 
light signal of the sEVs was gathered using an optical micro-
scope. According to Brownian motion of particles, the sizes 
and concentrations of the sEVs were averaged from the five 
videos.

Immunofluorescent staining

Immunofluorescent staining was performed according to a 
previous study [38]. In brief, cochleae were decalcified with 
0.5 M ethylene diamine tetraacetic acid (EDTA) after being 
fixed in 4% (v/v) paraformaldehyde. The cochleae were 
then blocked and incubated with primary antibodies. Fluo-
rescence-conjugated secondary antibodies were then added 
and bound to primary antibodies. A Zeiss LSM 700 confocal 
microscope was used to capture fluorescent images of the 
cochleae. The primary antibodies included anti-myosin7a 
(Proteus Bioscience, #25-6790, 1:1000 dilution), anti-Sox2 
(R&D systems AF2018-SP, 1:1,000 dilution), anti-CD63 
(ab217345, 1:1,000 dilution), and anti-CD9 (ab92726, 
1:1500 dilution). Alexa Fluor 647 donkey anti-goat IgG 
(Invitrogen, A-21447, 1:400 dilution), Alexa Fluor 555 don-
key anti-rabbit IgG (Invitrogen, A-31572, 1:400 dilution), 
and Alexa Fluor 488 donkey anti-mouse IgG (Invitrogen, 
A-21202, 1:400 dilution) were used as secondary antibodies.

Western blotting

Small extracellular vesicles were freeze-dried and then 
lysed in 200 μl RIPA lysis buffer (Beyotime) with 1 × pro-
tease cocktail (Roche) for 30 min at 4 °C. The protein 

quality was assessed using a BCA kit (Beyotime). The 
samples were boiled for 15 min at 95 °C in 5 × sodium 
dodecyl sulfate (SDS) loading buffer. SDS polyacrylamide 
gel electrophoresis was utilized to isolate the sEV proteins, 
which were then transferred onto a polyvinylidene dif-
luoride membrane at 275 mA for 90 min. The membrane 
was blocked with 5% BSA (5% (v/v) bovine serum albu-
min in 0.1% (v/v) Tween-20 in phosphate buffered solution 
(PBS)) for 1 h at room temperature and then incubated 
with primary antibody overnight at 4 °C. The second day, 
the membrane was incubated with HRP-conjugated sec-
ondary antibody (Abclonal, 1:2,000 dilution). SuperSig-
nal West Pico Plus chemiluminescent substrate (Thermo 
Scientific) was employed for visualizing the target bands 
on a Tanon-5200 automatic chemical imaging system. The 
primary antibodies were anti-CD63 (ab217345, 1:1000 
dilution), anti-CD9 (ab92726, 1:1500 dilution), anti-
Tsg101 (ab125011, 1:2000 dilution), anti-mouse EEA1 
(Santa Cruz Biotechnology, 1:100 dilution), anti-rabbit 
Rab7 (Cell Signaling Technology, 1:1,000 dilution), anti-
GAPDH (Kangchen, KC-5G4, 1:2000 dilution), anti-Syn-
apsin-1 (Cell Signaling Technology 5297T, 1:1000), and 
anti-VGLUT3 (Synaptic Systems 135203, 1:1000).

RNA extraction and quantitative real‑time PCR

Small extracellular vesicle samples were mixed with 
1 ml Trizol (Invitrogen, 15596-026) on ice for 5 min, 
then centrifuged at 17,970×g for 5 min at 4 °C. The sam-
ple was mixed with 200 μl chloroform, vortexed to mix 
well, and then placed on ice for 10 min. After centrifuga-
tion at 17,970×g for 15 min at 4 °C, the supernatant was 
mixed with an equal amount of isopropanol, incubated 
for 10 min, and centrifuged at 17,970×g for 10 min at 
4 °C. The RNA pellet was washed with 70% ethanol after 
removing the supernatant then dissolved in 25 μl RNase-
free water.

Total RNA from sEVs was reverse transcribed to cDNA 
using an miRNA first-strand cDNA synthesis kit (Vazyme 
#MR101) following the manufacturer’s directions. Real-time 
PCR was done using an Applied Biosystems real-time PCR 
instrument with miRNA Universal SYBR qPCR Master Mix 
(Vazyme, #MR101-01) to quantify the miRNA expression 
levels. All primer sequences are listed in the supplemental 
table. The levels of miRNAs were compared using two-
tailed, unpaired Student's t tests after being standardized to 
small nuclear RNA U6.

Small RNA sequencing and analysis

For the small RNA-seq library, a minimum of 2 μg RNA 
single sample (n = 3) was used as the starting material. 
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Following the manufacturer's protocol, sequencing librar-
ies were created using the NEBNext® Multiplex Small RNA 
Library Prep Set for Illumina® (NEB, USA), and miRNA 
data were evaluated by FASTQC (v 0.11.5). Sequences were 
aligned to the reference genome derived from MirBase v22.1 
(http://​www.​mirba​se.​org/) using Bowtie2 (v 2.2.5). The 
miRNA expression level in each sample was determined by 
featureCounts (v 2.0.0) and then normalized with the CPM 
(counts-per-million) algorithm, and differential expression 
analysis was performed in edgeR (v 3.30.3) using |log2Fold-
Change|> 2.0 and p < 0.05 as the threshold. Short Time-
Series Expression Miner (STEM) (v 1.3.13) software was 
used for expression trend analysis. To avoid too many false 
positives, only miRNA-targeted genes in the Tarbase v7.0 
database [39], which were identified experimentally, were 
selected.

DIANA-279 miRPath v.3 was used to assess miRNA 
enrichment pathways [40], and the Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses were employed to investigate functional annota-
tion and pathway enrichment. The cumulative effects of the 
specified miRNAs were evaluated using the "genes-Union" 
algorithm. The Fisher accurate test with a microT threshold 
of 0.8, false discovery rate (FDR) correction, and a p value 
threshold of 0.05 was used for enrichment analysis.

Protein digestion

The freeze-dried sEVs were dissolved in buffer consisting 
of phosphatase inhibitor cocktails, 10 mM TCEP, 40 mM 
2-chloroacetamide, 12 mM sodium deoxycholate, 50 mM 
Tris–HCl, and 12 mM sodium lauroyl sarcosinate (pH 8.5) 
(Sigma-Aldrich) by boiling for 10 min at 95 °C. After 
that, the samples were diluted fivefold with 50 mM tri-
ethylammonium bicarbonate and digested for 3 h at 37 °C 
with Lys-C (Wako) at 1:100 (w/w). To further degrade 
the peptides, the samples were treated overnight at 37 °C 
with trypsin at a ratio of 1:50 (w/w). To acidify the sample 

with a concentration of 1% TFA, ethyl acetate solution 
and 10% trifluoroacetic acid (TFA) were adjusted in a 
1:1 ratio according to the aforementioned combination. 
The sample solution was vortexed before being centri-
fuged at 15,000×g for 3 min. The organic phase on the 
top was discarded, and the aqueous phase at the base was 
harvested and freeze-dried by refrigerated vacuum centri-
fuge (Laconco CentriVap). The desalting was performed 
on an 8 mm extraction disk as directed by the manufacturer 
(3 M Empore 2240-SDB-XC). All samples were stored at 
– 80 °C.

LC–MS/MS and quantitative data analysis

LC–MS/MS was performed as previously described [41]. 
Briefly, the peptides were solubilized in 10 µL 0.1% for-
mic acid (FA), and 2 µL of the nanoElute was used for 
proteomics analysis. All peptides could be separated in a 
25 cm internal packed column in the mobile phase with a 
fluid velocity of 300 nl/min. The timsTOF Pro mass spec-
trometer (Bruker) was connected to the nanoElute in real 
time, and the data settings were adjusted to full scan (m/z 
100–1700) by the mass spectrometer.

Using the PEAKS Studio X+ program (Bioinformat-
ics Solutions Inc), the raw files were explicitly compared 
with the UniProt database to obtain clean data. There were 
no duplicate entries in the identification of proteins and 
peptides, but special peptides and proteins were found. 
To examine differential proteins, markers of exosomes, 
and isolated inner ear proteins in the various samples, 
the intensities of the peptides were quantified using a 
label-free approach. The Perseus software was utilized to 
investigate the differential expression of sEV proteins of 
the cochlea based on these data. DAVID (https://​david.​
ncifc​rf.​gov/) was conducted to identify biological process 
terms from GO and KEGG pathway analyses, and the pro-
tein–protein interaction network was obtained by STRING 
database (http://​string-​db.​org/).

Statistical analysis

All data in this study are shown as the mean ± SD, and all 
analyses were performed using GraphPad Prism 7 soft-
ware. When analyzing the different groups, we performed 
a two-tailed, unpaired Student’s t tests to evaluate statisti-
cal significance. Statistical significance was defined as a 
value of p < 0.05.

Fig. 1   Isolation and characterization of cochlear tissue-derived sEVs. 
a The workflow for isolating cochlear tissue-derived sEVs by ultra-
centrifugation. b TEM of cochlear sEVs. Scale bar = 100 nm. c West-
ern blotting of cochlear tissue lysate (TL) and sEV samples. CD63, 
CD9, and Tsg101 were used as sEV markers, and EEA1, Rab7, 
GAPDH, Synapsin-1, and VGLUT3 from other organelles were used 
as negative markers. d NTA of cochlear sEVs from P3, P7, P14, and 
P21 mice. e Immunofluorescent staining of CD63 and CD9 (red) in 
the P3 cochlea. Myo7a (green) and Sox2 (blue) were used as HC and 
SC markers, respectively. OHC, outer hair cell. IHC, inner hair cell. 
DC, Deiters’ cell. IPC, inner pillar cell. OPC, outer pillar cell. IPhC, 
inner phalangeal cell. Scale bar = 20 μm

◂

http://www.mirbase.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://string-db.org/
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Results

Isolation and characterization of cochlear 
tissue‑derived sEVs

Small extracellular vesicles were isolated from the cochlear 
tissue of mice at P3, P7, P14, and P21 by ultracentrifugation 
as described previously [36, 37] (Fig. 1a). Considering that 
the cochlea is surrounded by the rigid otic vesicle, we dis-
sected the cochleae and ground them in a grinder at 40 Hz 
as gently as possible so as not to break open the cells. The 
samples were centrifuged at low speed (600×g and 2000×g) 
to remove cell debris and then at high speed (12,000×g) 
to remove large EVs. After passing through a 0.22 µm fil-
ter, the samples were concentrated by ultrafiltration with a 
100 kDa MWCO ultrafilter. Finally, sEVs were isolated by 
ultracentrifugation at 110,000×g. The RNAs and proteins 
extracted from sEVs were used for miRNA sequencing and 

proteomics analysis, respectively. TEM by negative staining 
indicated the oval shape of sEVs (Fig. 1b), and we character-
ized the size and number of sEVs from mice of different ages 
by NTA and confirmed that the diameter of the sEVs was 
30–200 nm (Fig. 1d). Typical sEV marker proteins—such 
as the tetraspanins CD63 and CD9—and the composition of 
ESCRT-Ι complex Tsg101 were detected in cochlear tissue-
derived sEVs by western blotting (Fig. 1c). Marker proteins 
for other vesicles, including EEA1 (endosome marker), 
Rab7 (lysosome marker), GAPDH, and Synapsin-1 and 
VGLUT3 (synaptic vesicles markers) were used as negative 
markers of sEVs and were not detected in the sEV sam-
ples (Fig. 1c). We also used immunofluorescent staining to 
confirm the presence of CD63 and CD9 in HCs and SCs 
(Fig. 1e). We further characterized the morphology and pro-
tein markers of sEVs and other vesicle markers in the four 
age groups by TEM and western blotting (Supplementary 
Fig. S1), which all showed a cup-like shape and typical sEV 

Fig. 2   Transcriptome analysis of cochlear sEV miRNAs from P3, 
P7, P14, and P21 mice. a Cluster analysis of cochlear sEV miRNA 
sequencing data. b The Venn diagram of the miRNA sequencing 
data. c All differentially expressed miRNAs in the four samples. P3 

data were used as the control as indicated by the blue line. d The top 
50 highly expressed cochlear sEV miRNAs from P3 (blue), P7 (red), 
P14 (green), and P21 (yellow) mice
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marker expression. Together, these results suggest that this 
isolation method of cochlear tissue-derived sEVs is feasible 
and can yield relatively pure sEVs.

Micro analysis of cochlear tissue‑derived sEVs 
from mice of different ages

Small extracellular vesicles contain a variety of RNAs, 
especially miRNAs, which play important roles in gene 
regulation and thus mediate numerous biological processes 
[42, 43]. Because the role of sEV miRNA in the cochlea is 
poorly understood, we employed small RNA-seq to evalu-
ate the cochlear tissue-derived sEVs from P3, P7, P14, and 
P21 mice and to identify differentially expressed miRNA 
during the development of the cochlea.

The correlations of the samples were tested by hierarchi-
cal clustering analysis, and the P3, P7, P14, and P21 groups 
were well-separated according to their Spearman correlation 
coefficients (Fig. 2a). We detected a total of 561 miRNAs, 
including 454, 453, 465, and 455 miRNAs from cochlear 
tissue-derived sEVs from P3, P7, P14, and P21 mice, respec-
tively (Fig. 2b). Furthermore, there were 18, 17, 17, and 
15 miRNAs that were uniquely expressed at P3, P7, P14, 
and P21, respectively (Fig. 2b). The expression levels of all 
miRNAs at P3, P7, P14, and P21 are shown in Fig. 2c. We 
compared the differentially expressed miRNAs between each 
of the age groups pairwise (Supplementary Fig. S2), and the 
top 50 most-abundant miRNAs in the four age groups are 
shown in Fig. 2d.

We found 179 miRNAs that were differentially expressed 
across the four age groups by pairwise comparison, includ-
ing 57, 33, 29, and 60 miRNAs that were highly expressed 
at P3, P7, P14, and P21, respectively (Fig. 3a, p < 0.05, 
fold change > 2). Further analysis of the 179 differen-
tially expressed miRNAs showed that 18 of these miR-
NAs became more prevalent in sEVs with age, while 17 
miRNAs decreased with age (Fig. 3b, c). Of the increased 
miRNAs, miRLet-7f-5p [44], miRLet-7e-5p [45], miRLet-
7c-5p [46], miR29a-3p [47], miR146b-5p [48], miRLet-
7d-5p [49], miR338-3p [50], miR144-3p [51], miRLet-7j 
[52], miR449a-5p [53], miR30c-1-3p [54], miR147-3p [55], 
miR30c-2-3p [56], and miR1195 [57] have been attributed 
to a range of biological processes including cellular prolif-
eration, cellular differentiation, and cellular signaling and 
communication. miR3074-1-3p, miR3095-3p, miR344b-
3p, and miR3057-5p have no reported biological functions. 
For the decreased miRNAs, miR495-3p [58], miR140-3p 
[59], miR434-5p [60], miR322-3p [61], miR409-3p [62], 
miR674-3p [63], miR335-3p [61], miR543-3p [64], miR341-
3p [65], miR202-5p [66], miR369-3p [67], miR330-3p [68], 

miR370-3p [69], miR335-5p [70], miR503-3p [71], and 
miR503-5p [72] have been reported to be related to bio-
logical processes, and only miR299a-3p has no reported 
function. We verified the 18 increased miRNAs by qPCR, 
and Fig. 3d shows that the expression of seven miRNAs 
(miRLet7c-5p, miR29a-3p, miR449a-5p, miR147-3p, 
miR30c-2-3p, miR3095-3p, and miR1195) was matched to 
the results of the bioinformatics analysis. The specific infor-
mation for these seven miRNAs is listed in Table 1, includ-
ing gene ID, number of predicted target genes, functional 
description, and references.

Functional analysis of differentially expressed 
miRNAs in cochlear sEVs

The GO and KEGG pathway analyses of the highly 
expressed miRNAs at P3, P7, and P14 were performed 
with DIANA-mirPath v.3 (http://​snf-​515788.​vm.​okean​os.​
grnet.​gr/) using the target genes in the Tarbase v7.0 data-
base (http://​www.​micro​rna.​gr/​tarba​se). These miRNAs in 
cochlear sEVs at different ages have different biologi-
cal functions (Fig. 4). Notably, the GO analysis showed 
that these miRNAs are mainly involved in anatomical 
structure development, cell differentiation, developmen-
tal maturation, growth, cell cycle, and vesicle-mediated 
transport (Fig. 4a, c, e, g). Figure 4b, d, f, h shows that 
the highly expressed miRNAs at P3, P7, P14, P21 are 
involved in the mTOR, PI3K-Akt, TGF-β, Wnt, Hippo, 
Notch, and cGMP-PKG signaling pathways. These find-
ings suggest that these pathways are likely to be involved 
in the development of the cochlea and the formation of 
the auditory system. Among them Wnt, Notch, TGF-β, 
and Hippo signaling have been implicated in progenitor 
cell proliferation and differentiation as well as cell plane 
polarity during inner ear development [73, 74].

Label‑free quantitative proteomics analysis 
of cochlear tissue‑derived sEVs from mice 
of different ages

Considering that proteins in sEVs also play important roles 
as biomarkers and in multiple biological processes [75, 76], 
the protein contents of the sEV sample from the cochleae 
of P3, P7, P14, and P21 mice was analyzed utilizing label-
free quantitative proteomics. Each group included three 
biological replicates, and the samples clustered well with 
no outliers (Fig. 5a). A total of 5231 proteins were iden-
tified, and 2257 of these were present in all four groups 
(Fig. 5b). sEV marker proteins (Tsg101, CD63, CD9, CD81, 
and Flotillin-1) were also found among these proteins by 
mass spectrometry (Table 2). Figure 5c shows the top 50 

http://snf-515788.vm.okeanos.grnet.gr/
http://snf-515788.vm.okeanos.grnet.gr/
http://www.microrna.gr/tarbase
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most-abundant proteins in the P3, P7, P14, and P21 sEV 
samples. In addition, we compared all identified proteins 
with the Exocarta and Vesiclepedia databases and found 
that 978 proteins overlapped with Exocarta and 115 proteins 

overlapped with Vesiclepedia (Supplementary Fig. S3a). 
Figure S3b shows that 8, 6, 8, and 7 proteins of the top 
100 proteins in P3, P7, P14, and P21 cochlea-derived sEVs 
were reported among the top 100 proteins in the Exocarta 
and Vesiclepedia databases. These results suggest that many 
sEV proteins in the Exocarta and Vesiclepedia databases 
were also found in our sEV samples and that there were sEV 
proteins in our samples that were not in the EV databases 
and thus might be newly identified EV proteins in cochlear 
tissue-derived sEVs.

Fig. 3   The differentially expressed cochlear sEV miRNAs from P3, 
P7, P14, and P21 mice. a Heatmap of the differentially expressed 
miRNAs. b Heatmap of the up-regulated miRNAs as mice age. c 
Heatmap of the down-regulated miRNAs as mice age. d qPCR veri-
fication of some differentially expressed miRNAs. Values lower and 
higher than the mean are shown by blue and red scales, respectively. 
*p < 0.05, **p < 0.01, ***p < 0.001, n = 3

◂

Table 1   Validated miRNA candidates of age-related cochlear tissue-derived sEVs with the numbers of target genes and functional categories

miRNA Gene ID Number of 
target genes

Functional description Reference

mmu-miRLet7c-5p 387246 558 Cell differentiation, anatomical structure 
development, ion binding, cell death, 
growth, developmental maturation, cell 
cycle, endocytosis, axon guidance, TNF 
signaling pathway, AMPK signaling path-
way, TGF-beta signaling pathway, mTOR 
signaling pathway, MAPK signaling path-
way, MAPK signaling pathway

Chen et al. [45], Morgado et al. [131], Yao et al. 
[132], Zhang et al. [133] and Chen et al. [134]

mmu-miR29a-3p 387222 451 Cell differentiation, anatomical structure 
development, ion binding, cell cycle, cell 
death, anatomical structure formation 
involved in morphogenesis, cell division, 
growth, developmental maturation, positive 
regulation of apoptotic process, axon guid-
ance, TNF signaling pathway, AMPK signal-
ing pathway, TGF-beta signaling pathway, 
mTOR signaling pathway, MAPK signaling 
pathway, Hippo signaling pathway

Qu et al. [47], You et al. [135], Volpicelli et al. 
[136], Wang et al. [137] and Tumaneng et al. 
[138]

mmu-miR449a-5p 723868 469 Cell differentiation, anatomical structure 
development, ion binding, cell differen-
tiation, anatomical structure development, 
ion binding, cell motility, cytoplasmic 
membrane-bounded vesicle, cell junction, 
endocytosis, axon guidance, AMPK signal-
ing pathway, TGF-beta signaling pathway, 
mTOR signaling pathway, MAPK signaling 
pathway, Hippo signaling pathway

Shu et al. [16], Ni et al. [53], Wu et al. [138] 
and Bou Kheir et al. [139]

mmu-miR30c-2-3p 723964 209 Anatomical structure development, regulation 
of epidermal cell differentiation

Tang et al. [56], Hu et al. [140], Hand et al. 
[141] and Liang et al. [ 142]

mmu-miR3095-3p 100526502 156 MicroRNA metabolic process, tissue homeo-
stasis, inner cell mass cell differentiation, 
positive regulation of cAMP-mediated 
signaling, post-embryonic development, 
post-embryonic body morphogenesis, cell 
proliferation in the forebrain, regulation of 
canonical Wnt signaling pathway, auditory 
receptor cell fate commitment, positive 
regulation of transcription of Notch receptor 
target, regulation of timing of cell differen-
tiation, long-term depression, mTOR signal-
ing pathway

Chiang et al. [143] and Kozomara et al. [144]

mmu-miR147-3p 387165 13 Wnt and MAPK signaling, inflammatory 
responses

Tang et al. [55] and Liu et al. [108]

mmu-miR1195 100316676 79 Cell differentiation, apoptosis Zhang et al. [145] and Tagne et al. [57]
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We performed quantitative analysis of cochlear sEV 
proteins and found many differentially expressed proteins 
between the different age groups (Supplementary Fig. S4), 
suggesting that the expression of many sEV proteins changes 
with the development of the cochlea. We found 3,120 pro-
teins that are differentially expressed across the four age 

Fig. 4   The GO and KEGG pathway analysis of differentially 
expressed cochlear sEV miRNAs from P3, P7, P14, and P21 mice. 
GO analysis of miRNAs of P3 (a), P7 (c), P14 (e), and P21 (g) mouse 
cochlear sEVs. KEGG enrichment pathways analysis of miRNAs of 
P3 (b), P7 (d), P14 (f), and P21 (h) mouse cochlear sEVs. The size 
of the bubble indicates the number of miRNAs, and the intensity of 
the color shows the number of genes targeted by the miRNA in all 
figures. P3 (blue), P7 (red), P14 (green), P21 (yellow)

◂

Fig. 5   Proteomics analysis of cochlear sEV proteins from P3, P7, 
P14, and P21 mice. a Cluster analysis of cochlear sEV proteomics 
data. b The Venn diagram of cochlear sEV proteomics data. c The top 

50 most highly expressed proteins of cochlear sEVs from P3 (blue), 
P7 (red), P14 (green), and P21 (yellow) mice

Table 2   Mass spectrometry 
analysis identified typical sEV 
proteins

Name Accession − 10lgP Intensity

P3 P7 P14 P21

TSG101 Q61187 214.54 4.11E+03 1.57E+03 2.75E+03 1.79E+03
CD9 P40240 293.38 4.24E+04 1.99E+04 5.30E+04 3.44E+04
CD63 P41731 195.28 7.86E+03 2.46E+03 1.52E+04 4.64E+03
CD81 P35762 248.37 1.46E+04 5.28E+03 2.05E+04 5.33E+03
Flotillin-1 O08917 376.55 1.03E+04 3.66E+03 1.31E+04 4.46E+03
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groups (Fig. 6a), and among them the expression level of 17 
proteins increased with age (Fig. 6b), while the expression 
level of 124 proteins decreased with age (Fig. 6c). These 
results suggest that the expression patterns of proteins in the 
cochlear tissue-derived sEVs are correlated with age and may 
play significant roles in the formation of the inner ear system.

Functional analysis of differentially expressed 
cochlear sEV proteins

We performed GO analysis to identify the biological pro-
cesses, molecular functions, and cell membrane components 
of the differentially expressed proteins (Fig. 7a–c). For the 
enriched biological processes, GO annotations indicated that 
these proteins are involved in cell, development, ion, neuron, 
signal communication, and vesicle processes. We mapped 
the top 20 molecular functions and cell membrane compo-
nents of these proteins, and this showed that these proteins 
are mostly involved in ion binding, catalytic activity, protein 
binding, and RNA binding. In addition, the cellular compo-
nents analysis revealed that these proteins are mostly found 
in the cytoplasm, the endomembrane system, and the plasma 
membrane.

We next conducted KEGG pathway analysis of the dif-
ferentially expressed proteins, which showed that these pro-
teins are mostly involved in the neurotrophin, AMPK, mTOR, 
PI3K-Akt, and cGMP-PKG signaling pathways and in endo-
cytosis (Fig. 7d). According to GO, KEGG analysis and 
previous reports, we screened out 20 proteins from 141 age-
related proteins (17 increased and 124 decreased with age as 
we showed above) that are reported to play roles in the inner 
ear and/or to be involved in the processes of development, cell 
differentiation, and proliferation. Table 3 lists these 20 top 
candidate proteins, including their UniProt accession num-
bers, functional descriptions, and references, which should be 
studied in the future to elucidate their roles in cochlear sEVs. 
These results suggest that cochlear sEVs may act as media-
tors in intercellular communications. Finally, to analyze the 
interactions between differentially expressed sEV proteins, 
we created a STRING protein interaction network (Fig. 7e).

Discussion

Small extracellular vesicles are important mediators in cel-
lular communication and signal transmission, and they also 
can be used as naturally occurring carriers for drugs and 
biomarkers in clinical trials. At present, most researchers 
extract sEVs from in vitro culture systems, and previous 
research on inner ear sEVs has also relied on in vitro culture 
systems [33, 77]. However, the in vitro culture environment 
cannot truly replicate the in vivo environment, and sEVs 
derived from inner ear tissues can more accurately depict 
sEV functions in the inner ear. Therefore, we extracted sEVs 
from cochlear tissue for the first time and studied the miRNA 
transcriptomes and proteomics of the cochlear tissue-derived 
sEVs. We found that typical sEVs could be isolated from the 
cochlea by ultracentrifugation, and we identified 561 miR-
NAs and 5,231 proteins in cochlear tissue-derived sEVs that 
are engaged in multiple biological functions, including cel-
lular communication, development, and vesicle production.

The cochlea is surrounded by the otic vesicle that gradu-
ally ossifies and becomes rigid as the mouse ages, espe-
cially after P10, and this makes it difficult to dissect the 
basilar membrane for extracting cochlear tissue-derived 
sEVs. Some recent studies have used enzyme digestion for 
the purpose of maintaining the integrity of the cells as much 
as possible to extract EVs from fat, brain, and tumor tissues 
[36, 78–81], while other studies have ground the tissues as 
a necessary step for extracting EVs [80, 82–84]. Crescitelli 
et al. showed that the digestive enzymes in the existing tis-
sue extraction methods are ineffective for bone tissue, and 
the methods for this type of tissue need further optimiza-
tion [85]. Considering the above factors, we improved the 
extraction method based on the scheme of Crewe et al. [36]. 
We used low-frequency grinding of the cochlear tissue to 
avoid breaking open the cells, and we increased the cen-
trifugal force (12,000×g) for removing large vesicles and 
for isolating sEVs. TEM and NTA showed that the cochlear 
tissue-derived sEVs we extracted had typical sEV shapes 
and sizes. The western blotting also showed that the typical 
sEV markers—CD63, CD9, and Tsg101—could be detected 
in the sEV samples, while contaminating proteins Rab7, 
EEA1, Synapsin-1 and VGLUT3 from other vesicles and 
the intracellular protein GAPDH were not detected, which 
further confirmed the integrity and relative purity of the 
sEVs extracted by our method.

One of the important contents of sEVs is nucleic acids, 
which include miRNAs, lncRNAs, tRNAs, mtDNAs, and 

Fig. 6   The differentially expressed cochlear sEV proteins from P3, 
P7, P14, and P21 mice. a Heatmap of the differentially expressed 
cochlear sEV proteins. b Heatmap of the up-regulated proteins as 
mice age. c Heatmap of the down-regulated proteins as mice age. Val-
ues lower and higher than the mean are shown by blue and red scales, 
respectively

◂
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ssDNA [86]. Among them, miRNAs are reported to have a 
role in numerous biological processes including organ devel-
opment and maturation and cell communication [87, 88]. 
In addition, miR-318 from mesenchymal stem cell-derived 
sEVs promotes chondrogenesis by suppressing TAOK1 [43], 
and miR135a derived from epithelial exosomes accelerates 
the mesenchymal production of dentin matrix proteins by 
triggering the Wnt/β-catenin signaling pathway [37]. There-
fore, small RNA-seq was performed to characterize the miR-
NAs in cochlear tissue-derived sEVs and to elucidate their 
possible roles in the cochlea. We identified 561 miRNAs 
in cochlear sEVs, including 179 differentially expressed 
miRNAs, and we found that the expression of 18 miRNAs 
increased and 17 miRNAs decreased as the mice aged. We 
used qPCR to verify the expression of miRNAs and found 
that 7 miRNAs (miRLet7c-5p, miR29a-3p, miR449a-5p, 
miR147-3p, miR30c-2-3p, miR3095-3p, and miR1195) 
were consistent with the RNA-seq analysis results. Over-
expression of miRLet7c-5p can inhibit laryngeal squamous 

cell carcinoma cell proliferation and can regulate microglial 
activation during the repair of brain injury [46, 89], and 
upregulation of miR30c-2-3p suppresses gastric cancer and 
the proliferation of renal cell carcinomas [56, 90]. miR29a-
3p, miR449a-5p, and miR147-3p have been reported to be 
accumulated in exosomes derived from oral squamous cells, 
macrophages, and bronchoalveolar lavage fluid [53, 55, 91, 
92]. In addition, upregulation of miR29a-3p rescues bron-
chopulmonary dysplasia and has a negative regulatory effect 
on the Smad, NFκB, and canonical Wnt signaling pathways 
[93–95]. Importantly, miR29a-3p directly targets the Wnt-
related genes DVL3 (Dishevelled 3), CSNK2A2 (casein 
kinase 2 alpha 2 polypeptide), FZD3 (Frizzled family recep-
tor 3), and FZD5 (Frizzled family receptor 5) [95]. These 
seven miRNAs whose expression increases as mice age are 
listed in Table 1, and they may be involved in the develop-
ment of the cochlea after birth and may act as new targets 
to be further studied in the future to elucidate the detailed 
mechanisms behind cochlear development.

Fig. 7   GO and KEGG pathway analysis of differentially expressed 
cochlear sEV proteins from P3, P7, P14, and P21 mice. Differentially 
expressed cochlear sEV proteins were identified by GO analysis as 
part of biological processes (a), molecular components (b), and cell 
membranes (c). d KEGG pathway analysis showing the significantly 

enriched pathways of differentially expressed cochlear sEV proteins 
in the four age groups. The size of the bubble shows the amount of 
protein, and the intensity of the color indicates the number of genes 
targeted by the protein in a and d. e The STRING network analysis 
for cochlear sEV proteins
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We also performed GO and KEGG analysis on the highly 
expressed miRNAs. GO analysis showed that these miRNAs 
are important for growth, development, maturation, anatomi-
cal structure development, ion binding, cell differentiation, 
and cell proliferation, all of which are relevant to cochlear 
development events. The enriched miRNAs in the sEVs are 
involved in the Hippo, MAPK, Wnt, Notch, TGF-β, and 
PI3K-Akt signaling pathways, most of which are essential 
to the development of the cochlea and in regulating the pluri-
potency of stem cells. These results showed that miRNAs 
enriched in cochlear tissue-derived sEVs may be essential 
for cell communication during inner ear development.

Proteins are another major component of sEVs and 
play significant roles in cell communication, mediation of 
immune responses, and proliferation of cancer cells and as 
markers for disease diagnosis [96, 97]. We performed prot-
eomics analysis of the cochlear tissue-derived sEV proteins 
and identified 5,231 proteins, including 3,120 differentially 
expressed proteins, in the four age groups. We also found 
the sEV marker proteins CD63, CD9, CD81, and Tsg101 in 
the proteomics data, which again verified the purity of our 
isolated cochlear sEVs. We identified 1,051 proteins in the 
cochlear sEVs that overlapped with proteins in the Vesicle-
pedia and Exocarta databases.

Among the differentially expressed sEV proteins, we 
found that the expression of 17 proteins increased and the 
expression 124 proteins decreased as the mice aged. For the 
17 increased proteins, Slc4a10, Fbxo2, and S100b are related 
to the process of neurodevelopment and in regulating the 
differentiation and excitability of neurons [98, 99], which 
suggests that these three proteins may be involved in the 
innervation of the cochlea that is required for hearing func-
tion. Fbxo2 is enriched in the inner ear and is a key regula-
tor of age-related hearing loss [100]. Tlr3 is also present in 
the inner ear and regulates immune responses [101, 102], 
and Tlr4 acts as a mediator in protecting HCs from dam-
age by exosomes secreted by SCs [33]. This suggests that 
Tlr3 might also have a protective role on inner ear develop-
ment. In addition, Slc4a10 is important for maintaining ion 
homeostasis in the inner ear, and the absence of Slc4a10 
can lead to hearing loss [103, 104]. Among the proteins that 
decrease with age, Hnrnp [105], Ddx5 [106], Ilf3 [107], 
Lamtor5 [108], Psmd2 [109], Ddb1 [110], and Chd4 [111] 
are reported to be related to cell proliferation and differ-
entiation. Ptbp1 [112], Chd4 [113], Ruvbl2 [114], Cul4a 
[115], and Lama4 [116] are required for early developmental 
processes and neuronal differentiation, and some proteins 
are also present in the inner ear, such as P3h1 [117], Sorcs2 
[118], Panx3 [119, 120], Idh1 [121], and Lamb1 [122]. P3h1 
knockout mice showed dysplasia of middle ear bones and 
hearing impairment [117]. Sorcs2 regulates HC develop-
ment by maintaining the shape of the cilia [118], while Idh1 
is a protein found in the cochlea and may play a role in 

age-related hearing loss by acting as an antioxidant [121, 
123]. Panx3 is a pannexin channel protein and is mainly 
present in the cochlear bone structure and is essential for 
the maintenance of cochlear morphology [119, 120], and 
the expression of Panx3 is regulated during development and 
reaches its peak at P8 [119]. The GO and KEGG analysis 
of 17 increased and 124 decreased proteins and previous 
reports of these proteins, some of which are expressed in the 
inner ear, showed that they affect the ion balance of the inner 
ear and mediate inner ear immunity and cilia formation [98, 
99, 101, 103, 119]. In addition, some proteins are involved 
in various developmental processes of the skeletal and nerv-
ous systems [111, 115, 117] and regulate cell proliferation, 
differentiation, apoptosis, and other cellular communication 
processes [110, 111]. Table 3 lists the 20 top candidate pro-
teins among them. These cochlear sEV proteins may play 
important roles and may be used as new targets for studying 
the development of the cochlea in the future.

We conducted GO and KEGG analysis of the differen-
tially expressed proteins. The GO analysis revealed that 
cochlear tissue-derived sEV proteins play significant roles in 
various biological processes such as Ras protein signal trans-
duction, cell proliferation, cell differentiation, neuron dif-
ferentiation, endocytosis, cellular ion homeostasis, nervous 
system development, and organ development and that these 
proteins are involved in many molecular functions, including 
ion binding, protein binding, and RNA binding. The cellular 
components analysis showed that sEVs can be secreted from 
the cell, cytoplasm, and endomembrane system. According 
to the KEGG pathway analysis, these proteins are involved 
in axon guidance, the synaptic vesicle cycle, the AMPK 
signaling pathway, the mTOR signaling pathway, the PI3K-
Akt signaling pathway, and endocytosis. Synapses on HCs 
are connected to spiral neurons for transmitting signals to 
the brain, and this activity is essential for hearing function 
[8, 124, 125]. In addition, these pathways have also been 
reported to be critical for the biological functions of the 
inner ear. Down-regulating the AMPK signaling pathway 
can reduce noise-induced damage to HCs and can prevent 
age-related hearing loss [126, 127]. The mTOR signaling 
pathway is involved in reprograming Myc/NICD to promote 
HC regeneration [16], and age-related hearing loss and HC 
damage can be relieved by inhibiting the mTOR signaling 
pathway [128, 129]. Balancing the AMPK and mTOR sign-
aling pathways can further protect HCs from damage by 
ototoxic drugs [130]. We also created a STRING protein-
interaction network investigating the interactions between 
differentially expressed sEV proteins, and this showed that 
sEV proteins involved in vesicles, development, neurons, 
signal communication, cellular processes, and ion homeo-
stasis have close interactions with each other and with other 
differentially expressed cochlear sEV proteins. These results 
indicate that sEVs may be critical for the development of the 
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cochlear nervous system, as well as for the protection and 
regeneration of HCs during development.

In summary, we isolated cochlear tissue-derived sEVs 
from mice of different ages after birth by ultracentrifugation 
and characterized the miRNA transcriptomes and proteom-
ics of these sEVs to elucidate their possible roles. We found 
561 miRNAs and 5,231 proteins in the cochlear sEVs, and 
among them 179 miRNAs and 3,120 proteins were differen-
tially expressed at different ages. We further analyzed these 
differentially expressed miRNAs and proteins and found 
that the expression of many miRNAs and proteins may be 
relevant to the maturation of HCs, to changes in SC charac-
teristics, to neural development, and to the protection of HCs 
from P3 to P21. These miRNAs and proteins might be used 
as new targets for further studying the detailed mechanism 
of cochlear development after birth.

Based on our results, we speculate that sEVs play a regu-
latory role in the maturation of HCs, HC regeneration from 
inner ear stem cells, and neural development in the inner ear 
after birth, and this should be further confirmed in future 
studies.
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