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Abstract
Vessel remodeling is essential for a functional and mature vascular network. According to the difference in endothelial cell 
(EC) behavior, we classified vessel remodeling into vessel pruning, vessel regression and vessel fusion. Vessel remodeling 
has been proven in various organs and species, such as the brain vasculature, subintestinal veins (SIVs), and caudal vein 
(CV) in zebrafish and yolk sac vessels, retina, and hyaloid vessels in mice. ECs and periendothelial cells (such as pericytes 
and astrocytes) contribute to vessel remodeling. EC junction remodeling and actin cytoskeleton dynamic rearrangement are 
indispensable for vessel pruning. More importantly, blood flow has a vital role in vessel remodeling. In recent studies, sev-
eral mechanosensors, such as integrins, platelet endothelial cell adhesion molecule-1 (PECAM-1)/vascular endothelial cell 
(VE-cadherin)/vascular endothelial growth factor receptor 2 (VEGFR2) complex, and notch1, have been shown to contribute 
to mechanotransduction and vessel remodeling. In this review, we highlight the current knowledge of vessel remodeling in 
mouse and zebrafish models. We further underline the contribution of cellular behavior and periendothelial cells to vessel 
remodeling. Finally, we discuss the mechanosensory complex in ECs and the molecular mechanisms responsible for vessel 
remodeling.
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Introduction

The vasculature is the earliest organ formed during embry-
onic development and provides nutrients for the develop-
ment of other tissues. The functional vascular network is 
a closed circulating lumen composed of arteries, veins and 
capillaries that delivers oxygen, nutrients and hormones to 
tissues and organs and excretes metabolic wastes. In the 

early stage of embryonic development, the primary vascu-
lar plexus is formed by vasculogenesis and angiogenesis 
with increased vessel density [1]. This immature plexus 
is followed by complex vessel remodeling to form a tree-
like vascular network through rearranging endothelial cells 
(ECs) [1]. The process of vasculogenesis, angiogenesis, and 
vessel remodeling to form a functional vascular network is 
called “angioadaptation” [2, 3]. At the same time, the vas-
culature always adjusts its morphology to meet the needs of 
the body at different developmental stages. In this review, 
we classified vessel remodeling into vessel pruning, vessel 
regression and vessel fusion based on the EC’s behaviors. 
Vessel pruning is defined here as the segment-by-segment 
reshaping of a vascular bed, characterized by loss of ECs 
and retention of type IV collagen (Col. IV) positive empty 
sleeves [4, 5]. The result of vessel pruning is that the break 
of two previously connected vessels and then merge into the 
existing adjacent vessels. Vessel regression is defined here as 
the complete involution of a vascular bed dependent on the 
programmed apoptosis of ECs [4, 5], such as the pupillary 
membrane (PM) and hyaloid vessels, which usually contrib-
utes to nourishing the development of retinal vascular beds. 
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Vessel fusion is defined as two adjacent vessels that fuse into 
one, accompanied by rapid dilation of the vessel diameter 
[6]. In addition, vascular remodeling not only occurs in the 
process of angiogenesis but also exists in pathological condi-
tions, such as pulmonary hypertension, diabetes and tumors.

In this review, we aim to summarize the vessel remod-
eling process in vertebrates, the role of ECs, pericytes and 
astrocytes in vessel remodeling, the effect of hemodynam-
ics on vessel remodeling, and the mechanisms that regulate 
vessel remodeling.

The way of vessel remodeling

EC programmed apoptosis‑mediates vessel 
regression

Different from vessel pruning, programmed vessel regres-
sion, such as the PM and hyaloid vessels of the develop-
ing eye, mainly refers to the loss of blood vessels of the 
entire network. The hyaloid capillary network is a transient 
vascular network that completely regresses during ocular 
development and is mediated by macrophage-dependent 
programmed EC apoptosis [7–10]. Lobov et  al. found 
that the PM, tunica vasculosa lentis and hyaloid vessels 
are more abundant at P8 in PU.1 mutant mice, which lack 
macrophages, than in WT mice [7]. Endothelial conditional 
knockout of Bim (BimFlox/Flox, VE-cadherin-cre, BimEC), a 
proapoptotic Bcl-2 family member, decreases retinal vascu-
lar apoptosis and hyaloid vessel regeneration [11]. Periostin, 
secreted by intraocular macrophages, promotes hyaloid ves-
sel regression by enhancing the adhesion of macrophages 

to hyaloid vessels [12]. These results strongly support that 
macrophages contribute to the regression of PM and hya-
loid vessels. During vessel regression in PM, the first apop-
totic vessel EC (VEC) is macrophage dependent. Then, this 
VEC enters the vessel lumen to cause angiostenosis and 
blood flow stasis, which trigger subsequent apoptosis of the 
remaining VECs in the affected segments [13, 14]. These 
results demonstrated that not only are macrophages indis-
pensable for programmed vessel regression, but blood flow 
also contributes to VEC apoptosis.

Vessel fusion contributes to vessel dilation

Vessel fusion is an autonomous activity of ECs in which 
two small vessels fuse into one vessel with a larger diam-
eter [15] (Fig. 1a, b). Vessel fusion plays a vital role in the 
dilation of vessel diameter [15, 16]. Vessel fusion occurs at 
the early stage of embryo development, even in the absence 
of vessel smooth muscle cells (vSMCs) [15]. Vessel fusion 
between the dorsal aorta and lateral capillary plexus is regu-
lated by vascular endothelial growth factor (VEGF) during 
Japanese quail embryo development [17]. In vitro models of 
three-dimensional vascular microtissue or uniluminal vascu-
lar spheroids can fuse to form a larger diameter spheroidal 
structure depending on VEGF and preserve the morphologi-
cal architecture of the cultured spheroids [18, 19]. Ryan et al. 
found that vessel fusion was restricted to the highest blood 
flow near the vitelline artery and vein, resulting in a rapid 
increase in the vessel diameter of the cultured mouse embryo 
[6]. The ECs of capillaries with low blood flow migration 
to larger vessels with higher blood flow also contribute to 
enlarging the vessel diameter (Fig. 1a) [6]. Knockout of 

Fig. 1   Vessel fusion contributes 
to engaging the vessel diameter. 
a Vessel fusion in the cultured 
mouse embryo. Blood enters 
the vascular plexus through 
the vitelline artery to the distal 
capillaries and is ultimately 
collected by the vitelline vein 
at E8.5. Vessel fusion (marked 
with circles) occurs in the proxi-
mal vessels that are exposed to 
high blood flow, resulting in a 
rapid change in vessel diameter. 
Vessel hierarchy is established 
through vessel fusion by 
E9.0–9.5, resulting in different 
flow velocity distributions in 
arteries, capillaries and veins. b 
Vessel fusion is mediated by the 
redistribution of ECs. Figure a 
adapted from Ryan et al. [6]
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Mlc2a reduced blood flow velocity, which blocked vessel 
fusion and inhibited the increase in vessel diameter mediated 
by EC migration against blood flow. In conclusion, vessel 
fusion can not only simplify the vascular network, but also, 
more importantly, automatically select the fused vessel seg-
ment according to the magnitude of blood flow velocity, 
which contributes to enlarging the vessel diameter and form-
ing a tree-like structure vascular network.

EC rearrangement mediates vessel pruning

The primary vasculature is formed by angiogenesis, endothe-
lial sprouting and proliferation and contains a large number 
of redundant and nonfunctional vessels. These redundant 
vessels are remodeled into a mature and functional tree-like 
network, which is characterized by a large number of excess 
capillaries undergoing physiological regression [20, 21]. In 
addition, vessel pruning is also accompanied by a reduction 
in the number of vascular loops.

The retinal vasculature develops postnatally in mice, 
which is a good model to study sprouting angiogenesis and 
vessel remodeling (Fig. 2). The mature retinal vasculature 
consists of three distinct vascular plexuses. The primary 
pluxus with few vessels sprouts from the optic nerve head 
at postnatal day (P) 1 and then outgrows to reach the periph-
ery at P8 [22], which localizes to the inner retina ganglion 
cell layer [9]. The veins of the primary pluxus insert into the 
deeper pluxus at the outer edge of the inner nuclear layer 

around P7 [22, 23]. The vessel density, segment length and 
number of branch points peaked at P10 (Fig. 2a). After angi-
ogenesis of the retinal vasculature, vessel pruning is nec-
essary to simplify the primary vascular network (Fig. 2a), 
which is characterized by an increase in IB4-/Col. IV + anti-
body staining (Fig. 2b) [24]. At P18, the retinal vasculature 
was more hierarchical and functional (Fig. 2a). Research has 
shown that 95% of vessel pruning events in the mouse retina 
were not related to EC apoptosis but through EC rearrange-
ment [20]. Our group found that Tecr, a very-long-chain 
fatty acid synthesis, contributes to retinal angiogenesis. 
Endothelial-specific deletion of Tecr caused vascular defects 
with decreased vessel density and branch points at P7, but 
this phenotype disappeared at P5 and P10 [25]. We specu-
lated that a transient effect on vessel density after abolishing 
Tecr was caused by excessive vessel pruning.

Zebrafish embryos develop in vitro, and their transparent 
characteristics make them an excellent model for studying 
vascular development. Researches have shown that the pro-
cess of vessel pruning is present in zebrafish Cranial Divi-
sion of the Internal Carotid Artery (CrDI) [26], zebrafish 
intersegmental vessels (ISVs) [20], zebrafish subintestinal 
veins (SIVs) [27] and zebrafish caudal veins (CV) (Fig. 3a) 
[28].The formation of zebrafish ISVs and endothelial lumen 
involved cell divisions, cell arrangements and dynamic alter-
ations in intercellular junctional complexes by anastomosis 
(Fig. 3a) [29]. Claudio et al. found that arterial cells discon-
nected and retracted from the aorta where venous sprouts 

Fig. 2   Vessel pruning in the mouse retinas. a Fluorescence immuno-
histochemistry of the mouse retinas using isolectin B4 (IB4, grey) to 
show the vasculature. The process of angiogenesis and vessel prun-
ing in the mouse retina from P6 to P18. The vessel density reaches a 
pink at P10. Vessel pruning contributes to decreasing the vessel den-

sity from P10 to P18. Scale bar 200 μm. b Fluorescence immunohis-
tochemistry of the mouse retinas using anti-collagen type IV (Col. IV, 
green) and IB4 (red) to visualize vessel pruning at P10. Arrowheads 
indicate the segments undergoing vessel pruning, characterized by 
IB4-/Col. IV + antibody staining. Scale bar 200 μm
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connected to the ISV during ISV pruning by monitoring 
the dynamics of ECs with mosaic endothelial expression 
of membrane-bound eGFP in Tg(kdrl:mCherry-CAAX) 
embryos (Fig.  3a) [20]. The disconnection of the ISVs 
involved cell migration but was unrelated to EC apoptosis. 
The parallel and vertical branches of SIVs in zebrafish are 
remodeled from the reticular structure with multiple vascular 
loops, accompanied by an increase in nuclei number(Fig. 3a) 
[27]. Therefore, SIV pruning is a synergistic effect involv-
ing the dynamic migration of cells and the collapse of the 
lumens. During 1.0–4.0 days postfertilization (dpf) of the 
zebrafish embryos, midbrain vasculature formed by angio-
genesis with a large number of vascular loops and redundant 
segments. Vessel pruning plays a critical role in the develop-
ment of midbrain vasculature to reduce the complexity of the 
vascular network by migrating ECs from pruned segments 

to adjacent unpruned segments (Fig. 3a) [30]. Furthermore, 
vessel pruning of zebrafish midbrain vascular networks was 
preferentially restricted to segments that were either located 
between two parallel primary vessels (H-type) or were one 
of the two nearby segments that formed a small local loop 
(O-type) [30]. zebrafish CV is remodeled from ventral cap-
illaries of the CV plexus (CVP) as a novel animal model 
to study vessel pruning [28]. We showed that CV forma-
tion is accompanied by a decrease in vascular loops from 
36 h postfertilization (hpf) to 72 hpf through vessel pruning 
(Fig. 3a) [28].

Vessel pruning is a process of EC rearrangement, which 
resembles anastomosis in reverse in morphology [20, 27, 
31]. Franco et al. proposed that vessel pruning includes 
four distinct steps: initial selection, stenosis, retraction 
and resolution [20, 32]. Our results showed a similar 

Fig. 3   Anastomosis and vessel pruning events in the zebrafish model. 
a The process of anastomosis and vessel pruning in zebrafish vascu-
lature. The central panel shows an overview of the zebrafish vascular 
beds. Sprouting and anastomosis have been studied in the palatocere-
bral artery (PLA), the communicating vessel (CMV) and the segmen-
tal arteries (aISV). Vessel pruning has been studied in the midbrain 
vasculature, the subintestinal vein (SIV), the segmental veins (vISV) 
and the caudal vein (CV). Figure a adapted from Charles et al. [34]. 
The process of zebrafish CV pruning is mediated by EC rearrange-
ment, which includes the stages of selection pruning segment (b), 

cell migration (c), stenosis (d), retraction (e) and close-up (f). b The 
diameters of the lower branch and the upper branch are the same at 
the beginning of vessel pruning. c, d The ECs marked with blue and 
green migrate against the blood flow, resulting in vessel stenosis at 
the lower branch. e, f The ECs marked with blue and green migrate 
into the adjacent vessel, finishing the pruning of the lower branch. 
The arrow indicates the direction of blood flow. The rearrangement of 
ECs during vessel pruning is marked with blue and green. The arrows 
in (c, f) indicate the direction of EC migration. The arrows in (d, e) 
indicate vessel stenosis. Figure b–f adapted from Wen et al. [28]
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process of zebrafish CV pruning driven by EC rearrange-
ment (Fig. 3b–f) [28]. Tg(kdrl:mCherry; fli1a:nEGFP) and 
Tg(fli1a:nEGFP);Ki(cdh5-mRFP) transgenic fish were used 
to explore the relationship between EC migration and ves-
sel stenosis. At the beginning of CV pruning, the diameters 
of the two branches were almost the same (Fig. 3b). Then, 
EC nuclei, marked with blue and green at the lower branch, 
migrated against the blood flow (Fig. 3c), resulting in ves-
sel stenosis (Fig. 3d). After that, the ECs retracted to the 
neighboring segments from the lower branch (Fig. 3e, f). 
Finally, the lower branch was pruned (Fig. 3f) [28]. The 
results demonstrated that the migration of EC nuclei con-
tributes to vessel stenosis. In vessels without perfusion, both 
vessel stenosis and EC migration to the neighboring branch 
contribute to vessel pruning [27, 28]. Lowell et al. found that 
the preservation of vessel segments is determined by cellular 
decision-making behavior at bifurcations. The pruned cells 
prefer to choose vessel segments with larger shear stress or 
more cells [33].

Usually, vessel pruning is irrelevant to EC apoptosis. 
However, Eva et al. found that CrDI pruning in zebrafish is 
accompanied by EC death [26]. In contrast to the regression 
of hyaloid vessels in mice [7], EC death during CrDI prun-
ing is independent of macrophages [26]. During dorsal CrDI 
pruning, 1–2 of a total of 3–4 ECs undergo apoptosis, and 
the remaining ECs migrate toward the dorsally located Pri-
mordial Midbrain Channel or the ventral CrDI [26]. Zhang 
et al. reported that EC apoptosis was indeed associated with 
brain vessel pruning in zebrafish [35]. Microglia, but not 
macrophages, contribute to the clearance of apoptotic ECs. 
However, microglia are dispensable for brain vessel prun-
ing. The EC apoptosis-accompanied pruned vessels had two 
important characteristics: 1) most of these segments were 
longer than those without apoptosis, and 2) the nuclei of 
adjacent blood vessels occupied both ends [35]. Although 
EC apoptosis occurs during vessel pruning, it is not abso-
lutely required for the completion of this process [26, 36]. 
EC-specific deletion of Caspase-8 or Bak/Bax in mice did 
not affect vessel pruning, even though it decreased cell death 
[37, 38]. These results strongly proved that EC apoptosis 
is not essential to vessel pruning and cannot trigger vessel 
pruning under physiological conditions.

EC junction/F‑actin dynamic rearrangement 
contribute to vessel remodeling

Vessel pruning is a process of cell rearrangement that 
involves lumen collapse and cell-to-cell junction remod-
eling. Lenard et al. characterized vessel pruning as type I 
and II pruning depending on the perfusion of the pruning 
branches [27, 39]. Type I pruning is characterized by lumen 
collapse before cell rearrangement with nonlumenized, 

multicellular tube with continuous junctional connections. 
Type II pruning is cell rearrangement resulting in a unicellu-
lar tube by cell self-fusion that then collapses, and the bridg-
ing cell is incorporated into the major branch [27]. In the 
mouse retina, lumen disconnections occur in nonperfused 
vessels with discontinuous vascular endothelial junctions 
labeled by VE-cadherin or zona occludens proteins (ZO-1) 
[20]. Usually, the junctions form an isolated ring structure 
surrounding a patch of apical endothelial membrane with a 
continuous Col. IV basement membrane, which is similar to 
morphological anastomosis in reverse [20].

Research has proven that dynamic F-actin rearrangement 
at EC junctions and assembly of endothelial filopodia are 
indispensable to angiogenesis sprouting and lumen forma-
tion [40, 41]. Actin dynamics interact with both the VE-
cadherin/catenin complex and the membrane cytoskeleton to 
control cell–cell adhesion, cell shape change or cell motion 
[42]. F-actin or stress fibers aligned parallel to the direction 
of flow when ECs were exposed to high blood flow in vivo 
or shear stress in vitro [43]. Once blood flow is reduced, ECs 
will reorganize the actin skeleton with a decreased num-
ber of stress fibers and change their position to the cells’ 
peripheral band [44]. To dissect the role of EC junctions 
and F-actin in vessel pruning, we generated the knock-
in (KI) zebrafish Ki(cdh5-mRFP) and the transgenic line 
Tg(Fliep:lifeact-EGFP), in which VE-cadherin is marked 
with red fluorescence and EC F-actin is marked with green 
fluorescence. We showed that the dynamic polymerization 
and depolymerization of VE-cadherin and F-actin were 
observed during CV pruning. Usually, discontinuous VE-
cadherin occurred before disruption of F-actin at the multi-
cellular to unicellular stage and retraction stage. Moreover, 
deletion of klf6a or tagln2 in zebrafish resulted in abnor-
mal CV pruning caused by disruption of VE-cadherin and 
F-actin rearrangement [28]. Therefore, it is clear that vessel 
pruning is a dynamic process of EC junction and F-actin 
cytoskeleton rearrangement.

The contribution of periendothelial cells 
to vessel remodeling

The role of periendothelial cells, such as pericytes and astro-
cytes, in vascular development and maturation is well stud-
ied. Their contribution during vessel remodeling is rather 
unclear. The interaction between pericytes and ECs is one of 
the important factors affecting vascular morphology and ves-
sel remodeling [45]. As early as 1998, Benjamin et al. found 
that disruption of pericyte-EC associations leads to exces-
sive vessel pruning in a hyperoxia-induced mouse model 
[46]. During the regression of hyaloid vessels, apoptosis is 
observed in ECs and pericytes. Furthermore, the apoptosis 
of pericytes is more frequent than that of ECs [10]. Bim 
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alleles (BimFlox/Flox) and pericyte pdgfrb-cre (BimPC) mice 
were used to reduce pericyte apoptosis, which inhibited 
hyaloid vessel regression and retinal vessel pruning [11]. 
Suppression of VEGF production leads to an immature vas-
cular network because of reduced pericyte coverage [47]. 
Pericytes secrete CXC receptor 3 (CXCR3) ligands, which 
activate the CXCR3 signaling pathway in ECs and promote 
vessel pruning [48]. Pericyte maturation is regulated by 
phosphoinositide 3-kinase (PI3K) signaling. Pericyte con-
ditional knockdown of PI3K blocks pericyte proliferation 
and enhances pericyte maturation, resulting in fewer branch 
points of retinal vessels compared to the control at P6 [49]. 
The above results demonstrated that pericytes function 
not only directly in vessel pruning but also in pericyte-EC 
interactions.

Retinal astrocytes colocalize with the inner layer of 
retinal blood vessels as oxygen sensors during neonatal 
development and vascular remodeling [9]. Astrocyte prolyl 
hydroxylase domain proteins (PHDs) are oxygen sensors, 
and their deletion results in elevated hypoxia inducible fac-
tor (HIF)-2α protein levels and fewer mature astrocytes. 
Immature astrocytes cause increased retinal vascular density 
due to defective vessel pruning [50]. Astrocytes express not 
only VEGF but also β- and γ-crystallins, which function 
together in regulating vessel regression of the developing 
eye [51–53]. The expression of Aquaporin 4 (AQP 4), the 
major water channel in astrocytes, is elevated in astrocytes 
in human persistent fetal vasculature (PFV) disease. The loss 
of AQP4 leads to astrocytes ensheathing the hyaloid artery, 
thus preventing regression of the hyaloid vessels [54]. Con-
ditional knockout of Vhl in retinal astrocytes using floxed 
alleles in glial fibrillary acidic protein (GFAP)-Cre mice 
resulted in transient accelerated vessel regression, followed 
by increased vessel branch points of primary hyaloid ves-
sels [9]. In the process of vessel pruning in the zebrafish 
brain, microglia act as scavengers to clear apoptotic ECs 
but are dispensable for vessel pruning [35]. These results 
demonstrate the contribution of astrocytes during vessel 
remodeling.

The role of hemodynamics in vessel 
remodeling

The inner layer of the vascular structure is composed of a 
monolayer of ECs that directly sense and transduce hemo-
dynamic forces into molecular signaling to regulate vascular 
development. Endothelial mechanic sensors such as integ-
rins, platelet endothelial cell adhesion molecule-1 (PECAM-
1)/vascular endothelial cell (VE-cadherin)/vascular endothe-
lial growth factor receptor 2 (VEGFR2) complex, and notch1 
contribute to angiogenesis, vessel integrity and vessel 
remodeling [55–59]. Although the early stages of vascular 

development, such as vasculogenesis and angiogenesis, have 
been well studied, the maturation of vascular networks, such 
as vessel remodeling, needs to be further studied.

The segment with lower blood flow will be pruned

Hemodynamics plays a very important role in vascular 
development, vessel remodeling, maturation, and vessel 
quiescence under physiological conditions. The magnitude 
of flow shear stress (FSS) is coincident with blood flow 
velocity and inversely correlated with vessel diameter. Cor-
respondingly, arteries, capillaries, and veins present differ-
ent magnitudes of blood flow to adapt to tissue develop-
ment. We have previously reported that decreasing blood 
flow by tnnt2a MO inhibits CVP angiogenesis in zebrafish 
embryos and leads to an oversimplified CVP vasculature, 
which is regulated by the ERK5-klf2a-nos2b axis [60]. When 
zebrafish embryos were exposed to a simulated micrograv-
ity (SM) environment from 24 to 36 hpf, the heartbeat of 
zebrafish was significantly reduced. This SM environment 
resulted in an increased intercapillary number and a wider 
CVP in zebrafish embryos [61, 62]. Several groups have 
identified that vessel pruning preferentially occurs at seg-
ments under low blood flow and the stabilization of seg-
ments under high blood flow [20, 28, 30]. The average blood 
flow velocity in unpruned segments is higher than that of 
pruned segments during vessel pruning of zebrafish mid-
brain vasculature [30]. To prove this theory in vivo, time-
lapse imaging of CV pruning in Tg(flk1:EGFP;gata1:dsRed) 
transgenic fish was performed to clarify the relationship 
between the magnitude of blood flow and vessel pruning 
[28]. The average velocity of red blood cells (RBCs) in the 
vascular branch was calculated to assess the magnitude of 
blood flow. The data showed that the diameters of the two 
branches were almost the same before the initiation of CV 
pruning in zebrafish (Fig. 4a). However, the blood flow of 
the lower branch is slower than that of the upper branch 
at this stage (Fig. 4a). Then, vessel stenosis occurs at the 
lower branch (Fig. 4b). The difference in blood flow gradu-
ally increased between the upper and lower branches until 
there was no blood perfusion in the lower branch (Fig. 4c). 
Finally, the lower branch is pruned, while the upper branch 
remains (Fig. 4d, e). This result revealed that a decrease in 
blood flow occurred before vessel stenosis in the pruned 
segment, which may trigger the segment with lower blood 
flow to prune [28]. Furthermore, we found that klf6a could 
respond to blood flow to regulate CV pruning [28]. Kochhan 
et al. found that maintaining blood flow through the dorsal 
CrDI by laser ablation of the adjacent nasal ciliary artery 
(NCA) prevents dorsal CrDI pruning [26]. SIV plexus prun-
ing, CV pruning, and CrDI pruning are blocked after slow-
ing blood flow by triciane treatment or tnnt2a MO injection 
at the single-cell stage in zebrafish embryos [26–28]. CrDI 
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pruning is blocked during heartbeat blocking with tricaine 
treatment but recovers vessel pruning after drug withdrawal 
[26]. Lucitti et al. found that vessel remodeling is defec-
tive in Mlc2a−/− mouse embryos, in which both plasma and 
erythroblast flow in the circulation are disrupted [63]. In 
conclusion, hemodynamics is the key factor in regulating 
vessel remodeling.

Shear stress induces ECs to align in their direction and 
to polarize [64, 65]. Cell polarization in the direction of 
blood flow plays a vital role in cell migration [65]. Franco 
et al. found that ECs polarized toward adjacent vessels dur-
ing vessel pruning [20]. However, there are misaligned or 
nonpolar ECs at the lower wall shear stress segments rela-
tive to adjacent segments with higher wall shear stress [20]. 
Our results demonstrated that ECs did not exhibit polarity 
in pruned segment during zebrafish CV pruning [28]. EC 
polarity is tightly associated with the magnitude of blood 
flow. However, CV exhibits low blood flow from 48 to 60 
hpf compared to arteries, when arterial ECs already become 
polar [64]. This may be one of the reasons to explain the 
nonpolarity ECs during CV pruning.

Mechanical sensors of ECs in vessel remodeling

Blood flow coordinates the behavior and function of ECs 
to form a mature vascular network, but how ECs read and 
interpret the signals generated by hemodynamics is not 
clear. The branching structure of the arterial tree is based 
on the adaptive response of the vessel diameter induced by 
wall shear stress [66]. ECs are exposed to different magni-
tudes of FSS, which in turn sense and respond to changes 
in blood flow to regulate the morphology and function of 
blood vessels. Our understanding of how ECs recognize the 
distributions of the different magnitudes of blood flow to 
regulate gene expression and adjust vascular morphology 
is limited. Recently, scientists have gained some insights 
into EC mechanosensors and signal transduction, including 
integrins, the PECAM-1/VE-cadherin/VEGFR2 complex, 
and notch1 (Fig. 5).

In the event of mechanotransduction, the extracellular 
matrix (ECM) plays a pivotal role in the interaction of the 
matrix and cells (Fig. 5). The matricellular protein throm-
bospondin-1 (Thbs1) binds to integrin αVβ1 to regulate 
the focal adhesion-actin complex by promoting the nuclear 
shuttling of YAP. Deletion of Thbs1 in mice disrupted 
mechanotransduction by inhibiting Thbs1/integrin/YAP 
signaling, resulting in abnormal vessel remodeling [58]. 
Integrins mediate FSS-induced AKT phosphorylation by 
PI3K and ERK1/2 activation [56, 67, 68]. FSS stimulates 
the activation of integrins and binding to ECM proteins, 
which induces the transient inactivation of Rho and the 
activation of downstream JNKs. The transient inactiva-
tion of Rho is adequate for cytoskeletal alignment in the 
direction of flow [57]. Integrins also interact with cadher-
ins to regulate actin cytoskeleton alignment, intracellular 
forces, endothelial integrity, focal adhesion remodeling and 
cell contractility, which are critical for cell migration [57, 
69–71]. These results indicate that integrins may participate 
in FSS-involved vessel remodeling by regulating the actin 
cytoskeleton and junction rearrangement.

The mechanosensory complexes PECAM-1, VE-cad-
herin and VEGFR2 transmit mechanical force into cell 
signaling to regulate vessel remodeling, cardiac develop-
ment and atherogenesis (Fig. 5) [55]. PECAM-1 directly 
senses mechanical force and then activates Src, whereas VE-
cadherin functions as an adaptor with its binding partner 
β-catenin to bind with VEGFR2 and activate downstream 
PI3K and integrins [55, 72, 73]. Another study from the 
same group showed that VEGFR3 is also a component of 
this complex and is involved in regulating the hemodynamic 
response of ECs [74]. The shear stress “set point” at which 
ECs have a preferred level of FSS is related to the level of 
VEGFR3 in the cells. Increasing the level of VEGFR3 in 
ECs decreases the “set point”, but this is the opposite of 
lymphatic ECs [75, 76]. PECAM-1−/− mice exhibited thin-
ner intima-media and adventitia induced by partial carotid 
ligation, which implied that PECAM-1-dependent signal-
ing is necessary for flow-induced vessel remodeling [77]. 
The downstream target of low shear stress (LSS), a small 

Fig. 4   The role of blood flow during vessel pruning, in which the seg-
ment with lower blood flow is pruned. a The diameter of the upper 
branch and the lower branch is the same before vessel pruning, while 
the blood flow velocity of the lower branch is lower than that of the 

upper branch. b Vessel stenosis occurs at the lower branch with low 
blood flow. c No blood perfusion in the lower branch. d, e The lower 
branch is pruned, while the upper branch remains
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fraction of VE-cadherin phosphorylation on Y658, causes 
the dissociation of P120ctn and binds to polarity protein 
LGN to mediate FSS sensing [78]. VE-cadherin phospho-
rylation by treatment with LSS and DAPT (N-[N-(3,5-
difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, 
an inhibitor of the Notch pathway, inhibits vessel fusion 
[79]. However, Src inhibition can prevent VE-cadherin 
phosphorylation in ECs to rescue hyperfusion [79]. VEGF 
stimulation promotes the fusion of blood vessels in mouse 
allantoic-derived vascular spheroids or in avian embryos 
[15, 18]. Overexpression of VEGF by implanting VEGF-
soaked heparin chromatography beads causes an increase 

in vascularity and an enlarged dorsal aorta in quail embryos 
because of increased vessel fusion events between the dor-
sal aorta and lateral capillary plexus [17]. Inhibition of 
circulating VEGF by the fusion protein Flk1/KDR recep-
tor leads to increased capillary density but no difference in 
cell apoptosis during the programed regression of the PM 
[13]. The transmembrane semaphorin6A (Sema6A)-null 
mice shows a reduction of hyaloid network complexity and 
branch points due to increased cell death by downregulating 
VEGFR2 [80]. The deficiency of metabolic enzyme CDP-
diacylglycerol synthetase-2 (CDS2) induces the secretion 
of VEGFA, which in turn promotes vessel remodeling by 

Fig. 5   Mechanosensors regulate vessel remodeling, including inte-
grin signaling, VE-cadherin, VEGFR2/3, PECAM-1 complex and 
Notch1 signaling. Integrins interact with Thbs 1 to promote YAP 
nuclear translocation and regulate vessel remodeling by promoting 
cell migration, junctions and actin cytoskeleton rearrangement. Flow 
shear stress (FSS)-induced ERK1/2 activation and Akt phosphoryla-
tion depend on integrin binding to extracellular matrix (ECM) pro-
teins. The combination of integrins and ECM proteins induces a 
transient inhibition of Rho and the activation of downstream JNKS, 
which is necessary for cytoskeletal alignment in the direction of flow. 

The mechanosensory complex, PECAM-1-VE-Cadherin-VEGFRs, 
activates the PI3K-Akt pathway to promote cell migration. PECAM-1 
directly senses mechanical force and then activates Src, and VE-cad-
herin binds with β-catenin and VEGFR2/3 to activate downstream 
P13K and integrin. The NOTCH1 mechanosensory complex senses 
FSS and regulates junctions and actin dynamics, which includes the 
processes of (i) FSS-induced endocytosis of DLL4; (ii) cleavage of 
NOTCH1 to expose the transcellular domain (TCD); and (iii) binding 
to the LAR with VE-cadherin and TRIO to activate the downstream 
target RAC1
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regulating PIP3 and FOXO1 nuclear accumulation [81]. In 
conclusion, the mechanosensory complexes PECAM-1, VE-
Cadherin and VEGFRs not only perform mechanotransduc-
tion but are also important for vessel remodeling.

The transmembrane receptor Notch1, as an important 
signal pathway in the process of angiogenesis and vessel 
remodeling, has been proven to be a mechanosensor [39, 
59, 82, 83]. The transmembrane domain of Notch1, together 
with VE-cadherin, the transmembrane protein tyrosine 
phosphatase LAR and the RAC1 guanidine-exchange fac-
tor TRIO, forms a receptor complex that senses mechanical 
force and contributes to vascular barrier function by promot-
ing the assembly of adherens junctions (Fig. 5) [59]. During 
ISV differentiation in zebrafish, venous blood flow or weak 
pulsatility induces upstream migration of ECs to replace 
arterial ECs and transformation of the vISV. However, arte-
rial blood flow or strong pulsatility of the two adjacent ISVs 
prevents venous EC migration by activating Notch signaling 
in ECs [84]. Therefore, blood flow magnitude-induced Notch 
signaling activation is necessary for the differentiation of 
aISVs and vISVs. Notch signaling is only responsible for 
postnatal vein and perivenous capillary plexus remodeling 
but not for artery remodeling in a mouse retina model [85]. 
Lobov et al. demonstrated that the Delta-like ligand 4 (Dll4)/
Notch pathway is involved in vessel remodeling and regres-
sion in oxygen-induced retinopathy (OIR) or the matura-
tion of the neoretina [86]. Dll4/Notch inhibits the perfusion 
of microvessels by reducing the expression of the vasodi-
lator adrenomedullin and promoting the expression of the 
vasoconstrictor angiotensinogen to regulate vessel remod-
eling [86]. Loss of Notch-regulated ankyrin repeat protein 
(Nrarp) leads to excessive vessel pruning events regulated 
by Notch-dependent cell cycle arrest and Cyclin D1-induced 
Lef1/ctnnb1/Wnt signaling in retinal vessel segments [87]. 
Overall, Notch1 functions as a mechanosensor and plays an 
indispensable role in angiogenesis and vessel remodeling.

Wnt signaling regulates vessel remodeling

The Wnt family consists of 19 highly conserved glyco-
proteins, which are classified into canonical (β-catenin-
dependent) and non-canonical (β-catenin-independent) 
signaling. Wnt signaling plays a pivotal role in vascular 
angiogenesis, vessel remodeling and vascular regeneration 
during vascular development and disease [88–90]. In this 
section, we will illustrate the role of Wnt signaling in vessel 
remodeling (Fig. 6).

Conditional knockout of Evi, the Wnt secretion factor, 
causes decreased microvessel density in the mouse retina 
and tumor angiogenesis [91]. Costaining of IB4 and Col. 
IV revealed increased empty basement membrane sleeves 
in Evi-ECKO mouse retinas, indicating that the decreased 

microvessel density was caused by increased vessel prun-
ing. Further studies have shown that downregulation of the 
apoptosis-related gene Tek and upregulation of the prolif-
eration-related gene Cdkn1a and apoptosis-related genes 
Bax and Stat2 account for increased vessel pruning [91]. 
Wnt signaling enhancer R-spondins 3 (Rspo3) mutant mice 
die at approximately E10, causing the primary capillary 
plexus of the placenta to fail to undergo proliferation and 
remodeling [92]. Scholz et al. found that the phenotype of 
Rspo3-ECKO was consistent with that in Evi-ECKO mouse 
retinas, showing decreased vascular density, excessive ves-
sel pruning, and increased EC apoptosis [91, 93]. Rnf213, 
Usp8, and Trim30α expression is increased in Rspo3-ECKO 
ECs, which inactive non-canonical WNT/calcium signaling 
at the level of NFAT, thus causing excessive vessel pruning. 
During the development of the mouse retina, the loss of the 
non-canonical Wnt ligands Wls, Wnt5a or Wnt11 leads to 
an increase in the sensitivity of ECs to shear stress, result-
ing in endothelial polarization and EC migration against 
blood flow under LSS, thus aggravating vessel pruning [94]. 
APCDD1 is a negative regulatory protein of Wnt/β-catenin 
signaling. Apcdd1 knockout mice show a transient increase 
in vascular density during P10–P12 due to decreased ves-
sel pruning in the retinal vasculature. However, there was 
no difference between Apcdd1−/− and WT mice in retinal 
vascular density at P14 [95]. Treatment with the canonical 
Wnt inhibitor DKK-1 or sFRP-1 prevents microvessel prun-
ing and increases vascular density in a rat mesentery model 
[96]. Deletion of Frizzzed (Fz)4, the coreceptor low-density 
lipoprotein receptor-related protein (Lrp)5 or Ndp results in 
decreased vascular density during postnatal retinal vascular 
development in mice [97, 98]. However, deficiency of fzd4 in 
adult zebrafish increases the vascular density of the ventral 
retina, not the dorsal retina [99]. Endothelial-specific dele-
tion of β-catenin leads to embryonic death, causing abnor-
mal vascular morphogenesis and an inability to remodel to 
a tree-like structure, such as enlarged or irregular lumen, 
abnormal branching of umbilical vessels, lacunae-like bifur-
cations, and blind ending [100]. β-Catenin gain-of-function 
(GOF) embryos show the absence of a perineural vascular 
plexus due to a lack of correct remodeling of small vessels. 
Dll4/Notch signaling and downstream effectors are signifi-
cantly increased in β-catenin GOF mutants, which impair 
EC migration and vessel pruning in the yolk sac and head 
[101]. Nrarp acts as a downstream target of Dll4/Notch 
signaling in ECs to regulate Notch- and Lef1-dependent 
Wnt signaling, thus contributing to vessel stability during 
angiogenesis. Therefore, the balance of Notch signaling is 
the key factor for vessel pruning in this event. Nrarp is spe-
cifically expressed at newly formed branch points, and its 
deletion leads to excessive vessel pruning with reduced ves-
sel density and branch points. Loss of Lef1 and endothelial-
specific deletion of Ctnnb1 phenocopy the deficient retinas 
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Fig. 6   Role of Wnt signaling in vessel remodeling. Non-canonical 
Wnt ligands activate Wnt/Ca2+ signaling and regulate vessel remode-
ling at the transcriptional level of apoptosis- and proliferation-related 
genes. Evi/Wls/R-spondin3 (Rspo3) activate non-canonical WNT/
calcium signaling at the level of NFAT1 by downregulating Rnf213, 
Usp18, and Trim30α, which balance the level of cell survival genes to 
regulate vessel pruning in the retina. Canonical Wnt signaling recep-
tors, coreceptors and ligands cooperate with Dll4/Notch signaling, 
and pericytes secrete Ang II to balance the progress of vessel remode-
ling. Canonical Norrin/Fz4/Lrp5/6 accelerate β-catenin nuclear trans-

location and control the transcription of Cyclin D1 or Myc-Cdkn1a to 
regulate cell survival. The negative regulatory factor Apcdd1 controls 
vessel density transiently in retina during P10-12. Dll4/Notch signal-
ing stimulates expression of Nrarp and contributes to canonical Wnt 
signaling by interacting with Lef1/Ctnnb1. Ang2 produced by peri-
cytes has a dual identity in the regulation of cell death. On the one 
hand, Ang2 suppresses Akt to permit cell death. On the other hand, 
Ang2 promotes the secretion of Wnt7b by macrophages to activate 
the Wnt/β-catenin pathway, which inhibits cell death by promoting 
cell cycle entry to regulate hyaloid regression
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of Nrarp mice. The expression of the Notch target Hey2 is 
increased, and the expression of Cyclin D1 is decreased in 
Nrarp−/− mice. Dll4/Notch signaling induces the expression 
of Nrarp, which negatively regulates Notch signaling and 
interferes with p21CIP-dependent cell cycle arrest. Nrarp 
could significantly induce Lef1/Ctnnb complex-regulated 
cell cycle arrest by transcriptional activation of Cyclin D1 
[87]. In conclusion, Nrarp-mediated cell proliferation by 
balancing Notch and Wnt signaling may be a main mecha-
nism accounting for vascular stabilization.

In addition, Wnt signaling also regulates hyaloid vessel 
regression (Fig. 6). Lrp5 or Lrp6 mutant mice show a defect 
in hyaloid regression and delayed retinal vascular growth 
caused by a halted cell cycle and decreased cell apoptosis 
[102]. Knockout of either Ndp or Fz4 leads to delayed hya-
loid regression. Norrin activates canonical Wnt signaling by 
interacting with the Fz4 receptor and Lrp coreceptor to regu-
late hyaloid regression [97, 103]. Myc, Wnt/β-catenin path-
way target gene and the gene regulates cell cycle and cell 
death, deletion of it increases the expression of Cdkn1a and 
resulting in the persistence of hyaloid vessels. Myc/Cdkn1a 
is required for cell cycle entry and proper levels of cell apop-
tosis to promote hyaloid regression [4]. Lobov et al. found 
that the expression of Wnt7b is increased in hyaloid mac-
rophages from P1 to P5 [7]. Deficiency of Lrp5, Lef1 and 
Wnt7b results in persistent hyaloid vessels, causing reduced 
EC apoptosis [7]. Macrophage Wnt7b activates the WNT 
pathway in adjacent ECs through cell–cell contact and then 
regulates EC cell cycle entry, apoptosis and programmed 
capillary regression [7]. Wnt7b in macrophages is stimulated 
by the suppression of PI3K-Akt survival signaling in ECs 
through angiopoietin (Ang)2, which triggers ECs to enter 
the cell cycle and die in the G1 phase of the cell cycle as a 
result of reduced VEC apoptosis [104].

Conclusions and perspectives

To ensure functional vascular network formation, vessel 
remodeling is indispensable for the process of vascular 
development. In this review, we described the differences 
and characteristics of vessel pruning, vessel regression and 
vessel fusion. Our previous studies showed that hemody-
namic foci are required for EC junctions and actin cytoskel-
eton rearrangement, EC migration, cell proliferation and 
cell apoptosis, which are necessary for angiogenesis and 
vessel remodeling [28, 60, 62, 105]. Studies have found 
that segments with low blood flow tend to be pruned, while 
segments with high blood flow are maintained [20, 28]. In 
addition, the segment that is longer than others also likes to 
be pruned, which is accompanied by EC apoptosis [35]. The 
mechanosensory complexes PECAM-1/VE-Cadherin/VEG-
FRs and Notch1 play an important role in vessel remodeling. 

PECAM-1 directly senses FSS and transduces the focus to 
cell signaling. VE-cadherin is an adapter for the mechanic 
sensor [55]. Furthermore, VE-cadherin and actin cytoskel-
eton rearrangement contribute to cell migration during ves-
sel pruning. In addition, blood flow connects with Notch 
signaling, the Wnt pathway and VEGFR to regulate vessel 
remodeling.

The study of biomechanics and vessel remodeling mecha-
nisms aims to explore scientific issues and principles and 
to serve clinical medicine. Vessel remodeling is not only 
indispensable during physiology vasculature development, 
but essential in pathogenic process of various cardiovascular 
disorders, including atherosclerosis, hypertension, stroke, 
tumors metastasis [106]. Vessel remodeling is characterized 
by EC morphological structure and phenotype changes, such 
as endothelial-to-mesenchymal transition (EndoMT), under 
pathological conditions. ECs generally function in migra-
tion, hypertrophy, proliferation and apoptosis [16, 23]. 
Pathological vessel remodeling is also influenced by hemo-
dynamic forces. We aim to elucidate how mechanical fac-
tors produce biological effects and regulate cardiovascular 
development under physiological conditions. In addition, we 
determined the mechanically sensitive genes to explore their 
effect on vascular development and the molecular mecha-
nism. Overall, insight into the mechanism of vessel remod-
eling under physiology may discovery new disease-related 
genes and cell signaling, which may be the entry point for 
vessel remodeling-associated disease treatment.

The department of “Mechano-Developmental Biology” 
was established at Chongqing University in 2010. A series 
of hemodynamic-vascular developmental biology studies 
have been carried out, and a number of research papers 
have been published. Our lab used transgenic zebrafish 
(Tg(flk1:EGFP), Tg(kdrl:mCherry), Tg(gata1a:dsRed), 
Tg(fli1a:nEGFP), Tg(UAS:EGFP), Tg(fli1a:B4GALT1-
mCherry), Ki(cdh5-mRFP)) to explore the effect of blood 
flow on angiogenesis and vessel remodeling during develop-
ment and arterial stenosis under physiological and pathologi-
cal conditions. The combination of confocal microscopy and 
an in vivo microcirculation real-time tracing system makes 
zebrafish a powerful tool for studying blood flow-associated 
vascular development. We found that the reduction in blood 
flow velocity affects the angiogenesis and pruning process 
of CVP in zebrafish embryos [28, 60].

However, some issues remain to be studied: (1) The molec-
ular mechanism of the interaction between ECs and perien-
dothelial cells in regulating vessel remodeling; (2) How ECs 
sense different intensities of FSS to conduct vascular remod-
eling; and (3) The signaling pathway should be studied to 
better understand vessel remodeling under both physiologi-
cal conditions and pathological conditions. In most cases, the 
vascular system is simplified and simulated, or only a small 
part of the blood vessels are separated from the whole vascular 
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network to be studied, which lacks the integrity of the vascular 
network. In fact, the vascular network is a tree-like structure 
with complex vascular branches. Previous studies have shown 
that the differentiation of arteries/veins is regulated by Notch 
signaling [107]. Arterial, venous or capillary ECs show differ-
ent polarities in the same period during development, which 
is regulated by apelin receptor signaling [64]. These results 
demonstrated that arteries, veins and capillaries are regulated 
by different signaling pathways. Further studies are needed 
to explore the molecular mechanisms of blood vessel forma-
tion mediated by blood flow. Only by better reconstruction 
of a full-scale model of circulation can we better analyze its 
molecular mechanisms. Fortunately, using zebrafish, we can 
monitor blood flow distribution in the whole blood vessel net-
work in real time, which allows us to investigate in vivo the 
pathways that modulate flow sensing and response in different 
types of vessels. Our ultimate aim is to draw a hemodynamics-
sensitive gene map covering the vascular network. In addition, 
this model can be used to explore the initiation and early devel-
opment of diseases and their molecular mechanisms, including 
hypertension, atherosclerosis and other pathologic conditions. 
In general, we hope that our research will contribute to the 
treatment of numerous pathological conditions in the clinic.
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