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Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells (IMCs) with immu-
nosuppressive functions, whereas IMCs originally differentiate into granulocytes, macrophages, and dendritic cells (DCs) 
to participate in innate immunity under steady-state conditions. At present, difficulties remain in identifying MDSCs due to 
lacking of specific biomarkers. To make identification of MDSCs accurately, it also needs to be determined whether having 
immunosuppressive functions. MDSCs play crucial roles in anti-tumor, angiogenesis, and metastasis. Meanwhile, MDSCs 
could make close interaction with osteoclasts, osteoblasts, chondrocytes, and other stromal cells within microenvironment 
of bone and joint, and thereby contributing to poor prognosis of bone-related diseases such as cancer-related bone metas-
tasis, osteosarcoma (OS), rheumatoid arthritis (RA), osteoarthritis (OA), and orthopedic trauma. In addition, MDSCs have 
been shown to participate in the procedure of bone repair. In this review, we have summarized the function of MDSCs in 
cancer-related bone metastasis, the interaction with stromal cells within the bone microenvironment as well as joint micro-
environment, and the critical role of MDSCs in bone repair. Besides, the promising value of MDSCs in the treatment for 
bone-related diseases is also well discussed.
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Introduction

Cancer-related bone metastasis, rheumatoid arthritis (RA), 
osteoarthritis (OA) and other bone-related diseases have 
threatened people's health seriously and bring economic 
burden to the society. Bone-related diseases, although less 
incidence than cardiovascular diseases as well as cancer, 
are generally difficult to cure and have poor prognosis. To 
develop therapeutic efficacy, several studies are dedicated 
towards finding effective and novel treatment strategies such 
as gene therapy and osteoimmunological treatment. The 

latter is based on the osteoimmune system created by the 
close interaction between skeletal system and immune sys-
tem, and osteoimmune system contains all cells in the bone 
marrow; the novel field of osteoimmunology is developed to 
investigate the effect of the cross-talk among bone cells and 
immune cells on inflammation-related bone erosion, hemat-
opoietic stem cell regulation, and tumor progression [1]. As 
bone marrow-derived cells, MDSCs are a heterogeneous 
population of immature myeloid cells (IMCs) [2]. Recent 
studies have focused on MDSCs as an important compo-
nent of osteoimmunology and make the further investigation 
about the critical role of MDSCs in bone-related diseases 
[3].

MDSCs are bone marrow-derived suppressor cells that 
were first identified and noted in a lung cancer model in 
1987 [4]. Previous studies have shown the essential role of 
MDSCs in malignant tumors. Meanwhile, several studies 
have focused on the precise mechanisms underlying the 
development, accumulation, and function of MDSCs. Accu-
mulating evidence has demonstrated that MDSCs also play a 
significant role in autoimmune diseases, trauma, infectious 
diseases, etc. [5].
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All in all, based on previous studies on the roles and 
functions of MDSCs in cancer, autoimmune diseases, and 
trauma, we make the hypothesis that the immunosuppres-
sive function of MDSCs may be used as therapeutic target 
for bone-related diseases. In addition, MDSCs have other 
functions besides immunosuppression such as angiogenesis 
and transplantation immune tolerance induction, which will 
greatly expand the application prospect of MDSCs [6, 7]. 
We will summarize the functional role of MDSCs in bone-
related diseases and develop novel therapeutic strategies in 
clinical treatment.

Main phenotypic and functional 
characteristics of MDSCs

MDSCs are a group of immature immune cells, derived from 
myeloid lineage, which are heterogeneous in morphology, 
phenotype, and function, and characterized by suppression 
of immune response. MDSCs are subdivided into two main 
groups of granulocytic/polymorphonuclear (G-MDSCs/
PMN-MDSCs) and monocytic (M-MDSCs). PMN-MDSCs 
are alike neutrophils in morphology and phenotype, while 
M-MDSCs are similar to monocytes in morphology and phe-
notype. Previous studies have shown that MDSCs are found 
in both mice and humans, but with different phenotypic 
markers. CD11b+Gr1+ is the phenotypic marker of MDSCs 
in mice. According to the different expression of Ly6G 
and Ly6C on their surface, the phenotype of M-MDSCs in 
mice is CD11b+Ly6G−Ly6Chigh, while that of G-MDSCs 
is CD11b+Ly6G+Ly6Clow [8–10]. However, the phenotype 
of human MDSCs is more complex and diverse. MDSCs 
express CD33 and CD11b but not maturation markers such 
as HLA-DR in human [11]. M-MDSCs have the phenotype 
HLA-DR–/lowCD11b+CD33+CD14+CD15–, whereas PMN-
MDSCs express HLA-DR–CD11b+CD33midCD14–CD15+ 
[12]. Interestingly, recent studies identified a new population 
of MDSCs, early-MDSCs (e-MDSCs), playing the role of 
precursors for both M-MDSCs and PMN- MDSCs, which 
are phenotypically HLA-DR−CD33+Lin−(CD3−CD14−

CD15−CD19−CD56−) [13–15]. Obviously, the focus of 
current work is to find highly specific markers to accurately 
identify MDSCs. Fortunately, recent studies have shown that 
lectin-type oxidized LDL receptor 1 (LOX-1) can be used as 
a specific marker to accurately identify PMN-MDSCs [16]. 
However, specific markers to accurately identify M-MDSCs 
are still insufficient. In summary, accurate identification of 
MDSCs by cellular phenotype alone is insufficient and still 
requires the judgment of whether acting as immunosuppres-
sive cells.

It is evident from the name itself that MDSCs are char-
acterized by immunosuppressive function. In the com-
plex immune network, MDSCs exert immunosuppressive 

functions through multiple pathways involving both soluble 
mediators and the interaction among different cells. Not-
withstanding MDSCs interact with multiple immune cells, 
the most important target cells are T cells. MDSCs can com-
petitively consume cysteine in the microenvironment, upreg-
ulate the activity of inducible nitric oxide synthase (iNOS), 
arginase 1 (Arg-1) and thus consume l-arginine to inhibit 
T cells generation. MDSCs can also inhibit T cells immune 
response by producing reactive oxygen species (ROS) [17]. 
By note, the mechanisms by which M-MDSCs and PMN-
MDSCs exert immunosuppressive function are different. 
M-MDSCs significantly upregulate iNOS expression but not 
ROS mainly by activating STAT1, and iNOS generates large 
amounts of nitric oxide (NO). Many studies have demon-
strated NO not only suppresses T cell proliferation, but also 
induces apoptosis of T cells [18]. Moreover, ROS likewise 
reacts with NO, leading to peroxynitrite production, and the 
latter nitrify TCR to induce T cells apoptosis [19]. However, 
PMN-MDSCs produce high levels of ROS and less NO by 
activating STAT3 as well as upregulating NADPH oxidase 
(NOX2) [20, 21]. Both types of MDSCs can upregulate the 
activity of Arg-1 [22]. In a word, M-MDSCs and PMN-
MDSCs both have immunosuppressive function, but the 
mechanisms are not identical. Besides, MDSCs can also 
exert immunosuppression through multiple substances, 
including TGFβ, IL-10, COX2, indoleamine 2,3-dioxyge-
nase (IDO), etc. [5]. And MDSCs highly express osteopontin 
(OPN) to inhibit T cells producing interferon-γ (IFN-γ) in 
the tumor microenvironment, thereby attenuating the cyto-
toxicity of CD8+T cells [23]. Respectively, OPN promotes 
the recruitment and immunosuppressive activity of MDSCs, 
and participates in proliferation, invasion, angiogenesis, 
and metastasis of tumor cells [24]. MDSCs not only inhibit 
acquired anti-tumor immunity, but also innate anti-tumor 
immunity. As the important effector of innate immunity, it 
is not surprising that natural killer (NK) cells are suppressed 
by MDSCs. Li et al. have found that MDSCs, through mem-
brane-bound TGF-β1, not only inhibit NK cells cytotoxicity, 
but also suppress the expression of NKG2D and IFN-β in 
NK cells [25]. Moreover, the production of IL-10 by MDSCs 
also affects the function of NK cells [26]. DCs are another 
major target of MDSCs, which play an important role in the 
immune defense due to their superior antigen presentation 
and T-cell activation properties. Substantial results showed 
that the increase of MDSCs may be related to the inhibition 
of DCs differentiation, function, and accumulation [26, 27]. 
Unfortunately, it is still fully unclear the mechanism underly-
ing the direct impact of MDSCs on DCs. Hu et al. found that 
MDSCs inhibited TLR-ligand-induced IL-12 production of 
DCs by IL-10 production and suppressed T cells stimula-
tory activity of DCs in a murine model of hepatocellular 
carcinoma [26, 28]. Furthermore, MDSCs express vascular 
endothelial growth factor (VEGF) under the stimulation of 
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activated hypoxia-inducible factor 1α (HIF-1α) in tumor 
microenvironment, which inhibits the differentiation of DCs 
[29]. Besides, Wang et al. found Notch and STAT3 signaling 
were required for MDSCs exerting the function of suppress-
ing the differentiation, maturation, and antigen presentation 
ability of DCs in vitro and in vivo, while STAT3 signal-
ing promoted the expression of NOX2 and then produced 
a large amount of ROS to achieve the function of MDSCs 
[14, 30]. Beyond that, MDSCs can differentiate into tumor-
associated macrophages (TAMs), tumor-associated dendritic 
cells (TADCs), and tumor-associated neutrophils (TANs), 
and these cells directly suppress NK cells and CD8+T cells 
through the expression of signal mediators such as Arg-1, 
iNOS, TGF-β, IL-10, and cysteine [31].

In addition to inhibiting anti-tumor immune responses, 
MDSCs also activate tumor growth by promoting angio-
genesis and metastasis. There are several modulators such 
as VEGF, basic fibroblast growth factor (bFGF), VEGF ana-
logue Bv8, and matrix metalloprotease 9 (MMP-9) produced 
by MDSCs that can induce angiogenesis and invasion at the 
tumor site [32]. Besides, MDSCS not only induce angio-
genesis and protect tumor cells from immune detection, 
but also establish a pre-metastatic niche (PMN) to promote 
tumor cells metastasis [33]. Therefore, substantial reports 
have shown that MDSCs an play important role in inhibiting 
anti-tumor immunity as well as promoting angiogenesis and 
metastasis in the tumor microenvironment (Table 1).

Besides focusing on the function of MDSCs in can-
cer, on no account should we ignore the role of MDSCs 
in other non-cancer inflammatory conditions. The latter 
is currently mainly widely involved in sepsis, trauma, 

pregnancy, infectious diseases, autoimmune diseases, 
etc. [5]. Autoimmune diseases result primarily from the 
accumulation of immune cells and immunoglobulins gen-
erated in response to excessive inflammation. The exces-
sive inflammatory response damages normal tissues and 
impairing functions, and when it occurs in joint tissues 
manifests as arthritis. Therefore, downregulating exces-
sive inflammatory responses to return to a normal state 
is an effective therapeutic strategy against autoimmune 
diseases. This suggests that MDSCs act as a "nice man" 
in these diseases, since they are immunosuppressive cells. 
However, many studies have also shown that MDSCs 
could perform pro-inflammatory immune responses in 
autoimmune disorders [34]. In summary, MDSCs play 
double-edged sword role in autoimmune diseases, such as 
inflammatory arthritis.

Based on the origin of MDSCs, it is natural to specu-
late that MDSCs are abundant in bone marrow. Indeed, 
MDSCs are found at very high levels in bone marrow 
under pathological conditions according to several exper-
imental results [12]. Therefore, MDSCs and bone cells 
share a common microenvironment. In addition, MDSCs 
are also found to exhibit high levels at inflammatory reac-
tion sites, such as synovial fluid, which means it is rea-
sonable to infer that MDSCs are widely present in the 
joint microenvironment under the pathological conditions 
of joint inflammation. In conclusion, we speculate that 
MDSCs may have potential interactions with osteoblasts, 
osteoclasts, chondrocytes, and other stromal cells in the 
bone microenvironment and joint microenvironment, indi-
cating the crucial role of MDSCs in bone-related diseases.

Table 1   Functions and relevant mechanisms of MDSCs in cancer-related bone metastasis

Functions Mechanisms Associated cytokines References

Anti-tumor immune responses Reduce T cells numbers and inhibit T 
cells immune response

ROS, iNOS, Arg-1, IL-10, TGFβ, IL-10, 
COX2, IDO, OPN

[5, 17–24]

Suppress NK cells function TGF-β1, IL-10 [25, 26, 31]
Inhibit DCs differentiation, function, and 

accumulation
IL-10, VEGF, NOX2, ROS [26–30]

Differentiate into TAMs, TADCs, and 
TANs

Arg-1, iNOS, TGF-β, IL-10, cysteine [31]

Angiogenesis N/A VEGF, bFGF, VEGF analogue Bv8, 
MMP9

[32]

Bone metastasis EMT IL-6, TGF-β1, OPN [24, 48–50]
PMN formation TGF-β, Arg-1, ROS, COX-2, Bv8, MMP-

9, S100A8, S100A9, OPN
[24, 53]

Modification of bone microenvironment Differentiate into osteoclasts NO, HIF-1α, MCP-1 [71, 72, 76, 77]
Promote osteoclasts migration MMP-9 [73]
Stimulate endogenous macrophages to 

differentiate into osteoclasts
NO, IL-1, IL-6, M-CSF [71, 74]
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The function of MDSCs in bone 
metastasis, bone microenvironment, joint 
microenvironment, and bone repair

MDSCs not only promote the growth of tumor cells, but 
also participate in tumor metastasis. Because the bone 
microenvironment provides suitable survival conditions 
for metastatic tumor cells, bone often serves as a preferred 
reservoir for tumor cells, facilitating further metastatic dis-
semination [35]. According to meaningful studies, bone 
metastasis in breast and prostate cancer may accounts for 
more than 80% of cases of metastatic bone disease [36]. 
Moreover, MDSCs are also involved in bone destruction, 
including osteolytic and osteoblastic lesions [37]. In addi-
tion, MDSCs show high levels in bone marrow, peripheral 
blood, and lesion location under pathological conditions, 
the latter including tumor sites and joint inflammation sites 
[12]. In this section, we will make the detailed illustration 
about the critical role of MDSCs in the bone microenvi-
ronment and joint microenvironment so as to perform the 
involvement of MDSCs in the progression of bone-related 
diseases. Besides, we will also summarize the multifaceted 
role of MDSCs in bone repair.

Regulatory role of MDSCs in bone metastasis

Distant metastasis is the major cause of failure in clinical 
treatment and mortality in cancer patients. Bone is the 
third most common site of metastasis, and bone metastasis 
is a multi-step process [38]. Initially, after epithelial-to-
mesenchymal transition (EMT) as well as local invasion, 
few disseminated tumor cells are released and sowed into 
the PMN through peripheral blood circulation, laying basis 
for tumor cells colonization [39–41]. MDSCs regulate the 
PMN formation and evolution before the appearance of 
colonization [41]. Then the surviving tumor cells, adapting 
to the niches, grow immediately or enter a dormancy state 
upon interaction with the local environment, which may 
last several years [42]. Finally, when inhibited to a certain 
extent, dormant tumor cells can reactivate and form micro-
metastasis, ultimately entering a growth phase [43]. And 
then the tumor cells gradually become independent of the 
microenvironment and modify bone with the development 
of metastasis [44].

The occurrence of such complex distant metastasis is 
inseparable from the contribution of MDSCs, which play 
pleiotropic roles throughout the process. MDSCs have 
been shown to secrete cytokines and chemokines that 
promote EMT [45]. The term "EMT" is used to describe 
malignant tumor cells change their phenotype from epi-
thelial cells with polarity into mesenchymal cells with 

migratory ability [46]. The process promote tumor cells 
infiltration and metastasis, and may also allow tumor cells 
to escape apoptosis induced by certain factors [47]. Zhu 
et al. found that Ly6GmiLy6CloCD11b+CXCR2+ subpop-
ulation (named CXCR2+ MDSCs) were predominately 
expanded and recruited in tumor microenvironment during 
breast cancer progression and metastasis, inducing EMT 
of breast cancer via IL-6 [48]. IL-6 has also been shown 
to initiate EMT via STAT3 signaling, which directly leads 
to the inhibition of E-cadherin expression and loss of 
cell–cell adhesion [49]. MDSCs can also secrete TGF-
β1, another important inflammatory cytokine, to induce 
EMT, invasion, and metastasis via TGF-β1/Smad as well 
as nuclear factor kappa B (NF-κB) signaling [50]. Moreo-
ver, MDSCs trigger the expression of miRNA101 in tumor 
cells, which subsequently inhibits the co-repressor gene 
C-terminal binding protein-2 (CtBP2), and CtBP2 directly 
targets the stem cell core gene, resulting in increased pro-
liferation of cancer stem cells as well as increasing meta-
static and tumorigenic potential [51]. As mentioned above, 
MDSCs are the key criminals of tumor PMN formation. 
Liu et al. defined the PMN by six characteristics, including 
immunosuppression, inflammation, angiogenesis/vascu-
lar permeability, lymphangiogenesis, organotropism, and 
reprogramming [52]. The results of studies on various can-
cers have shown that chemokines, cytokines, and growth 
factors from MDSC, including TGF-β, Arg-1, ROS, COX-
2, Bv8, MMP-9, S100A8, and S100A9, are involved in 
the formation and evolution of multiple features of PMN 
[53]. Unfortunately, the specific mechanism of MDSCs in 
PMN formation during bone metastasis remains largely 
unknown. In addition, MDSCs can also make effects on the 
growth phase of tumors via the release of VEGF, bFGF, 
VEGF analogues Bv8, and MMP-9, which regulates the 
tumor microenvironment at the metastatic site and thereby 
causing tumor growth as well as local angiogenesis [32].

With the exception of directly participating in the pro-
cess of bone metastasis, MDSCs can also indirectly promote 
bone metastasis by inhibiting anti-tumor immune response. 
Besides the functions of MDSCs in the anti-tumor immune 
response described above, MDSCs can also suppress NK 
cells and CD8+T cells by differentiating into TAMs, TADCs, 
and TANs. TAMs, TADCs, and TANs achieve anti-tumor 
immune response by expressing iNOS, arginase, TGF-β, 
IL-10, and cysteine [31].

In the microenvironment, bone and tumor cells gradually 
form a vicious cycle, namely, tumor cells modify bone and 
then promote their own flourish [54]. Bone metastasis can 
break the balance of dynamic remodeling of bones, result-
ing in excessive osteolysis and/or osteogenesis, forming 
osteolytic or osteoblastic lesions [55]. Breast cancer metas-
tasis are predominantly osteolytic, whereas metastasis from 
prostate cancer is predominantly osteoblastic. Nevertheless, 
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some patients with bone metastasis have mixed osteolytic 
and osteoblastic lesions [56]. The main mechanisms of 
osteolytic and osteoblastic lesions are distinct from each 
other [57]. Essentially, both lesions result from breaking the 
dynamic cycle of normal bone remodeling by osteolytic and 
osteoblastic factors [58]. Osteoclasts dominate the formation 
of osteolytic lesions via the release of several osteoclasto-
genic factors from tumor cells [59]. Tumor-derived parathy-
roid hormone-related protein (PTHrP), FGF, platelet-derived 
growth factor (PDGF), insulin-like growth factor I(IGF-I), 
bone morphogenetic proteins (BMP), prostaglandin E2 
(PGE2), epithelial growth factor (EGF), IL-1, and IL-6 can 
promote the growth of tumor cells themselves in the form 
of "autocrine", induce the production and release of recep-
tor activator of nuclear factor kappa B ligand (RANKL) by 
osteoblasts as well as stromal cells, and decrease osteopro-
tegerin (OPG) levels [60, 61]. RANK is expressed on the 
surface of osteoclast precursors as well as osteoclasts, and 
binds RANKL to promote the fusion, differentiation as well 
as maturation of osteoclast precursors through transcrip-
tion factors like mitogen activated protein kinase (MAPK), 
NF-κB signaling, and activator protein 1 (AP1); the bind-
ing of RANK to RANKL also enhances osteoclasts function 
through c-Src signaling [62]. OPG, as a "bait" receptor of 
RANKL, binds to RANK, thereby blocking the RANKL 
signaling. Therefore, upregulated RANKL level and down-
regulated OPG level break the dynamic balance of bone 
remodeling in the bone tumor microenvironment. After oste-
olysis, TGF-β, PDGF, IGF-1, Ca2+, and FGF are released 
from bone matrix, which can promote tumor cells growth 
and further osteolysis [63]. In osteoblastic lesions, osteo-
blasts play a dominant role by interacting with tumor cells. 
Osteoblasts-derived TGF-β, IGF, and FGF attract tumor 
cells and stimulate tumor cells proliferation and growth; 
tumor cells secret TGF-β, BMP, IGF, FGF, Wnts, endothe-
lin-1 (ET-1), and PTHrP, which induce osteoblast osteogene-
sis and form a vicious cycle [64]. ET-1, as a mitogenic factor 
of osteoblasts, inhibits the expression of dick-kopf-1 (DKK-
1) that is Wnts signaling antagonist, and thus induces osteo-
blasts differentiation [65]. Lipoprotein-related receptors 5 is 
the receptor of Wnts and can increase the level of β-catenin 
protein after binding; β-catenin protein as a transcription 
factor promotes osteoblast differentiation and synthesis of 
collagen precursor of bone matrix [66]. Bedsides, ET-1 can 
also bind to endothelin A receptor (ETAR) of osteoblasts 
to induce osteoblast proliferation and osteogenesis through 
β-catenin and MAPK [67]. Additionally, prostate specific 
antigen (PSA), a tumor marker, plays a momentous role in 
the balance of dynamic remodeling of bones; PSA inhib-
its RANKL expression but promotes OPG expression by 
osteoblasts to inhibit osteolytic activity, presenting osteo-
blastic activity [68]. PSA also sections PTHrP and inhibits 
the activity of osteoclasts [69]. On balance, the vicious cycle 

delineates how tumor cells manipulate osteoblasts as well as 
osteoclasts to generate required factors for promoting their 
own growth and establishment. Compelling evidence has 
emerged in recent years indicating that MDSCs are also a 
significant part of the cycle. The specific mechanisms how 
MDSCs contribute to vicious cycle will be described below.

Cross‑talk among MDSCs, osteoclasts, 
and osteoblasts contributes to bone loss

It has been shown that MDSCs are highly concentrated in 
bone marrow. Meanwhile, it may be performed the promis-
ing close relationship among osteoclasts, osteoblasts, and 
MDSCs in the bone marrow microenvironment [12, 70]. 
Note that in bone metastasis, the cross-talk among MDSCs, 
tumor cells, osteoclasts, and osteoblasts "portrays" a more 
complex vicious cycle. As progenitors of osteoclasts, mac-
rophages are differentiated from MDSCs. Therefore, it is 
reasonable to speculate MDSCs within the bone micro-
environment could also differentiate into osteoclasts, con-
tributing to bone erosion and disease progression. Sawant 
et al. revealed a NO-dependent mechanism that could drive 
MDSCs to differentiate into osteoclasts through the HIF-1α 
signaling in the bone metastasis microenvironment of breast 
cancer [71]. As described previously, HIF-1α is elevated 
in MDSCs in the tumor microenvironment, and HIF-1α 
also induces NO production via iNOS [72]. Studies have 
shown that MDSCs not only differentiate into osteoclasts 
directly, but also may interact with osteoclasts through 
other ways. Osteoclasts that are derived from MDSCs also 
express MMP-9, which is critical for osteoclasts migrate 
continuously to enlarge the area of bone loss [73]. In addi-
tion, MDSCs may also stimulate endogenous macrophages 
to differentiate into osteoclasts by secreting NO, IL-1, 
IL-6, and macrophage colony-stimulating factor (M-CSF) 
[71, 74]. Noting that only MDSCs isolated from the bone 
microenvironment with bone metastasis could differentiate 
into mature and active osteoclasts; MDSCs isolated from a 
tumor-bearing mouse without bone metastasis are not able 
to differentiate into osteoclasts [75]. This indicates that bone 
microenvironment is essential for MDSCs to differentiate 
into osteoclasts. The tumor cells in breast cancer metasta-
sized to the bone secrete monocyte chemoattractant protein 
1 (MCP-1, also known as CCL-2), which can promote NO 
secretion that is a necessary molecular for inducing MDSCs 
to differentiate into osteoclasts [76]. In addition, MCP-1 
can bind to CCR-2 (CCL-2 receptor) expressed by MDSCs, 
promoting the differentiation of MDSCs into osteoclasts 
[77]. Meanwhile, MDSCs release TGF-β to induce tumor 
cells to secret PTHrP, which stimulates osteoclast-mediated 
bone destruction [78]. Interestingly, the immunosuppres-
sive function of MDSCs can also have influence on osteo-
clastogenesis to some extent. MDSCs dampen T cells to 
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secret osteoclastogenesis inhibitors, including IFN-γ, IL-4, 
and IL-10, thereby indirectly boosting the process of bone 
resorption; IFN-γ interfere the RANKL-RANK signaling 
to suppress osteoclastogenesis [79]. In summary, MDSCs 
differentiate into osteoclasts directly or regulate osteoclas-
togenesis indirectly in cancer. As another important part of 
the bone microenvironment, osteoblasts also promote the 

release and activation of MDSCs by phosphorylating the 
Src family in MDSCs as well as upregulating VEGF-A and 
IL-6 to disrupt VCAM-1/integrin β1 axis [80]. Besides, mul-
tiple myeloma suppresses runt-related transcription factor 2 
(Runx2) expression in osteoblasts, which in turn increase the 
number of MDSCs in bone marrow [81]. Moreover, in dif-
ferent mouse models of cancer, extra domain A (EDA)-FN 
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produced by osteoblasts upregulates Arg-1 expression in 
MDSCs, inducing tumor growth [82]. In addition to OPN 
expressed by MDSCs (mentioned above), osteoblasts and 
osteoclasts also produce OPN to act on MDSCs as well as 
tumor cells [83]. In conclusion, osteoblasts promote the gen-
eration and activation of MDSCs in the bone microenviron-
ment, and then MDSCs induce osteoclastogenesis through 
direct differentiation into osteoclasts or other indirect path-
ways in cancer, ultimately resulting in bone loss (Fig. 1).

Moreover, recent studies elucidate a novel role of 
MDSCs as osteoclast progenitors not only in cancer, but 
also in inflammatory diseases (Fig. 2). Zhang et al. found 
a significant increase in MDSCs in bone marrow of colla-
gen-induced arthritis (CIA) mice and that the number of 
circulating MDSCs correlates with disease activity. They 
also found MDSCs from CIA mice could differentiate into 
functional osteoclasts when cocultured with M-CSF and 
RANKL in vitro and in vivo, and IL-1α could promote the 
differentiation by activating the NF-κB signaling [84]. Addi-
tionally, many studies have shown that the proportion of 
circulating MDSCs positively correlates with the proportion 
of circulating Th17 cells [34]. As for the mechanisms of the 
simultaneous expansion, accumulating evidence lends sup-
port to the viewpoint that MDSCs secrete IL-1β and TGF-β 
to mediate CD4+T cell differentiation into Th17 cells, and 
the latter stimulate bone loss mainly through two ways 
[85]. On one hand, IL-17 employed by Th17 cells not only 
directly enhances the expression of RANKL in osteoblasts 
and fibroblast-like synoviocytes (FLS), but also induces 
macrophages to produce pro-inflammatory cytokines, such 
as TNF-α, IL-1, and IL-6 [86]. These cytokines also acti-
vate osteoclastogenesis by inducing RANKL expression 
and inhibit osteoblasts differentiation by inducing DKK-1 
expression [87]. On the other hand, Th17 cells are also 

found in the bone marrow and express high surface levels 
of RANKL [88]. In summary, MDSCs could upregulate the 
number and function of Th17 cells, which in turn induces 
the differentiation and activation of osteoclasts by various 
mechanisms. However, it is also shown that the proportion 
of circulating MDSCs are negatively correlated with the pro-
portion of circulating Th17 cells in RA patients [89]. There-
fore, whether Th17 cells and MDSCs are partners or rivals 
remains to be further studied. Moreover, many studies dem-
onstrated that the levels of Treg cells were decreased in the 
peripheral blood, while the levels of MDSCs were increased 
[90]. However, the specific mechanism of the phenomenon 
is still unclear. Treg cells can inhibit bone loss by affect-
ing the proliferation and differentiation of osteoclasts and 
osteoblasts. The mechanisms of Treg cells repressing osteo-
clasts mainly include cell contact-dependent mechanisms 
and inhibitory cytokine-dependent mechanisms [91]. Treg 
cells express high surface levels of cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4), which is a vital molecule 
to mediate cell contact-dependent inhibition of osteoclasts 
generation [92]. Besides, many studies have demonstrated 
that Treg cells secrete inhibitory cytokines including gran-
ulocyte–macrophage colony-stimulating factor (GM-CSF), 
IFN-γ, IL-5, and IL-10 to inhibit osteoclasts generation [93]. 
And IL-10 can downregulate the expression of RANKL and 
M-CSF but upregulate OPG, which in turn inhibits osteo-
clasts maturation and differentiation [94]. In terms of act-
ing on osteoblasts, Treg cells express TGF-β and activate 
intracellular effectors including MAPK and Smad-related 
proteins to promote the proliferation and differentiation of 
osteoblasts [95]. Besides, Treg cells could increase the level 
of Wnt10b, an osteoblastic Wnt ligand, thereby activating 
Wnt signaling in osteoblasts to induce osteoblasts differen-
tiation [96]. Collectively, Treg cells could inhibit the dif-
ferentiation of osteoclasts but promote the differentiation of 
osteoblasts, which suggests MDSCs could act on osteoblasts 
and osteoclasts indirectly by repressing Treg cells. However, 
the underlying mechanism of MDSCs suppressing Treg cells 
requires further investigation.

Double‑edged sword role of MDSCs in joint 
microenvironment

Arthritis is mainly caused by the infiltration of various 
immune cells, including T cells, B cells, neutrophils, etc. 
However, in the joint microenvironment, in addition to the 
above typical immune cells, compelling clinical and experi-
mental studies have emerged in recent years indicating that 
MDSCs in synovial fluids, spleen, and peripheral blood 
from patients with arthritis are increased [34]. There have 
been many reports showing that MDSCs are involved in the 
poor progression of several diseases. However, opinions are 

Fig. 1   The role of MDSCs in bone metastasis. Initially, MDSCs pro-
mote EMT of primary tumor cells via IL-6-STAT3, TGF-β1/Smad as 
well as NF-κB signaling. Besides, MDSCs trigger the expression of 
miRNA101 in tumor cells, which subsequently inhibits the CtBP2. 
Then, MDSCs secrete TGF-β, Arg-1, ROS, COX-2, Bv8, MMP-9, 
S100A8, S100A9, and OPN, which are involved in the formation and 
evolution of multiple features of PMN, and PMN provide a favora-
ble survival environment for disseminated tumor cells. In addition, 
MDSCs can also lay an important role in the growth phase of tumors 
via the release of VEGF, bFGF, VEGF analogues Bv8, MMP-9, and 
OPN to regulate the tumor microenvironment at the metastatic site. 
Reciprocally, tumor cells secrete MCP-1, IL-1, IL-6, IL-10, TNF-α, 
and OPN to promote MDSCs. MDSCs differentiate into osteoclasts 
through HIF-1α signaling or express MMP-9 to induce osteoclasts 
migration. In addition, MDSCs may also stimulate endogenous 
macrophages to differentiate into osteoclasts by secreting NO, IL-1, 
IL-6, M-CSF. Osteoblasts also promote the release and activation of 
MDSCs through upregulating VEGF-A, IL-6, and EDA-FN. In addi-
tion, osteoblasts and osteoclasts also produce OPN to act on MDSCs 
as well as tumor cells. Moreover, MDSCs dampen T cells to secret 
osteoclastogenesis inhibitors, including IFN-γ, IL-4, and IL-10, 
thereby indirectly boosting the process of bone resorption

◂
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divided into whether MDSCs play an anti-inflammatory or 
proinflammatory role in arthritis (Fig. 2).

MDSCs are well known for immunosuppressive function. 
By the same token, MDSCs inhibit inflammatory response 
through various mechanisms in arthritis. Jiao et al. found 
that increased circulating MDSCs were negatively correlated 
with Th17 cells in RA patients [89]. Furthermore, Zhang 

et al. found that adoptive transfer of MDSCs reduced the 
level of TNF-α, IL-6, IL-17, and IL-10 in joint microenvi-
ronment, while the number of Th17 cells were decreased 
[97]. However, the mechanism responsible for this phe-
nomenon is unknown. Th17 cells are widely involved in 
the processes of arthritis diseases, including RA, psoriatic 
arthritis, systemic lupus erythematosus, and OA [98, 99]. 

Fig. 2   The role of MDSCs in the bone microenvironment and joint 
microenvironment when rheumatoid arthritis. In the bone microenvi-
ronment, MDSCs, with the help of other immune cells and cytokines, 
directly or indirectly interact with osteoclasts and osteoblasts to 
induce bone loss. The immune cells include Th17 cells, Treg cells, 
macrophages, and the cytokines include pro-osteoclastogenesis fac-
tors (TGF-β, IL-1β, M-CSF, RANKL, IL-1α, NF-κB, IL-6, TNF-α) 
and anti-osteoclastogenesis factors (CTLA-4, GM-CSF, IFN-γ, IL-5, 

IL-10, TGF-β, MAPK, Smad, Wnt10b). In the joint microenviron-
ment, on one hand, MDSCs play a pro-inflammatory role by promot-
ing Th17 cells. And various pro-inflammatory cytokines are involved, 
including IL-1β, IL-6, IL-26, IL-17A, IL-17F, IL-22, IL-23, TNF-α, 
and GM-CSF. On the other hand, MDSCs paly an anti-inflammatory 
role through the interaction with Th17 cells, Treg cells, macrophages, 
chondrocytes. Besides, anti-inflammatory factors such as TNF-α, 
IL-1β, IL-6, and IL-10 are involved in the interaction
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Th17 cells could secret IL-17A, IL-17F, IL-22, and TNF-α 
or cell-contact with synovial fibroblasts to activate synovial 
fibroblasts [100–102]. The activated synovial fibroblasts pro-
duce MMPs, which are involved in cartilage destruction and 
matrix turnover [103]. Besides, chondrocytes are impaired 
by IL-17A and TNF-α secreted by Th17 cells, leading to 
cartilage damage [104]. The cross-talk between Th17 cells 
and immune cells, including macrophages and neutrophils, 
also can exacerbate the severity of RA. Honorati et al. found 
that IL-17 could promote the expression of VEGF by both 
chondrocytes and FLS in the development of OA, which 
led to the excessive proliferation of blood vessel network 
and synovial hypertrophy [105, 106]. Moreover, IL-17 could 
inhibit chondrocytes from producing proteoglycans and pro-
mote the synthesis of enzymes of the MMPs group. And 
IL-17 affects the expression of other cytokines that damage 
cartilage in the course of OA, such as IL-1β, TNF-α, IL-6, 
NO, and PGE2 [107]. Collectively, MDSCs protect stromal 
cells in the joint microenvironment from impeding intra-
articular inflammation by suppressing Th17 cells. Moreo-
ver, Park et al. found that MDSCs could attenuate joint 
inflammation by promoting the proliferation of Treg cells 
in CIA mice. IL-10 may be a key cytokine for MDSCs to 
enhance Treg cells proliferation [108]. Treg cells could also 
exert their immune suppressive function like MDSCs. The 
positive effect of MDSCs on Th17 cells may counteract the 
aggravating arthritis process that FLS induce the conversion 
of Treg cells into Th17 cells or inhibit Treg cells via secret-
ing IL-6 [109]. Additionally, Treg cells from OA patients 
have been found to secrete IL-10 and TGF-β at the synovium 
[110]. It has been proved that IL-10 could promote the trans-
formation of the mesenchymal cells into chondrocytes by 
stimulating the expression of BMP-2 and BMP-6 [111]. And 
TGF-β could stimulate the production of proteoglycans, type 
II collagen, and chondrogenesis [112]. MDSCs affect not 
only adaptive immunity, but also innate immunity. Zhang 
et al. found that the amount of CD11b+CD68+ macrophages 
were reduced at the joint tissues in the CIA mice after treat-
ing with MDSCs [97]. However, the mechanism by which 
MDSCs suppress macrophages is unknown. Macrophages 
are activated in response to pro-inflammatory factors and in 
turn the activated macrophages produce pro-inflammatory 
cytokines, including TNF-α, IL-1β, IL-6, IL-23, and GM-
CSF. The cytokines then act on osteoblasts, chondrocytes, 
synovial fibroblasts, and neutrophils, inducing inflamma-
tion in the synovium and eventually leading to joint damage 
[113]. Furthermore, macrophages play important roles in 
the pathogenesis of OA. There are two main pathways of 
macrophages activation, among which the classical activa-
tion pathway is macrophages differentiate into M1 subset 
to initiate the inflammatory process [114]. Currently, the 
underlying mechanism of how M1 macrophages induce or 
aggravate OA remains unclear. One possible mechanism is 

that M1 macrophages could induce FLS to release MMPs as 
well as growth factors [115]. Another possible mechanism 
is that M1 macrophages alter chondrocyte metabolism, such 
that the R-spondin-2 protein secreted by the M1 subset acti-
vates β-catenin signaling on chondrocytes, leading to high 
expression of MMP1, MMP-3, MMP-9, MMP-13, IL-1β, 
TNF-α, IL-6, IL-8 [116]. Collectively, MDSCs may sup-
press macrophages by some unknown mechanism to allevi-
ate intra-articular inflammation.

In addition to anti-inflammatory effects, MDSCs also play 
a proinflammatory role in joint microenvironment, which is 
incompatible with the expression of their name. Therefore, 
Mahmoud et al. named these cells as "myeloid-derived pro-
inflammatory cells"(MDPCs) [12]. MDSCs exert proinflam-
matory function by interacting with other immune cells or 
stromal cells in the joint microenvironment. Guo et al. found 
that MDSCs and Th17 cells were simultaneously increased 
in synovial fluid of RA patients [34]. And the MDSCs of RA 
patients could promote both the differentiation of Th17 cells 
and Th17 responses in vitro. When MDSCs were depleted 
in CIA mice, the differentiation of Th17 cells as well as 
IL-17A and IL-1β production were also inhibited. After 
adoptive transferred MDSCs, the severity of the arthritis 
was increased along with the rise of both Th17 cells dif-
ferentiation and the level of IL-17A as well as IL-1β [117]. 
Besides, studies have found that MDSCs produce high lev-
els of IL-1β [34]. Combined with the role of Th17 cells in 
arthritis, MDSCs promote the differentiation of Th17 cells 
as well as the Th17 responses by secreting IL-1β in RA 
patients and CIA mice, thereby aggravating inflammatory 
reaction, destruction of cartilage, and synovial hypertrophy. 
Moreover, it has been reported that the OPN level is highly 
elevated in the synovial fluid of patients with RA and OA, 
and the increased OPN was suggested to participate in the 
pathogenesis and progression of RA and OA by promoting 
inflammation [118, 119]. And OPN has been demonstrated 
to induce MDSCs recruitment. However, whether MDSCs 
produce OPN within the joint microenvironment as they do 
in the tumor microenvironment remains unclear [23]. Taken 
together, MDSCs influence joint stromal cells either indi-
rectly by interacting with important immune cells or directly 
by acting on them within the joint microenvironment. The 
cross-talk among them determines the double-edged sword 
effect of MDSCs in the joint microenvironment.

MDSCs are widely involved in bone repair

The efficacy of bone repair determines the prognosis of 
trauma, arthritis, tumors, and other orthopedic diseases, so 
it is necessary to clarify the mechanism of bone repair and 
the influencing factors on bone repair [120]. And the mul-
tifaceted roles of MDSCs in bone repair will be discussed 
as follows.
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The first phase of bone repair is acute inflammation, so 
bone repair is not solely the involvement of osteoblasts, 
osteoclasts as well as other stromal cells, but also inflam-
matory cells [121]. Neutrophils, macrophages, and other 
cells infiltrate the injury sites and promote the release of 
a variety of cytokines, chemokines, and growth factors, 
forming the early acute inflammation of bone repair. The 
early acute inflammatory response could create a favora-
ble microenvironment for bone repair through clearing 
immune complexes, nascent malignant cells, and necrotic 
tissue debris. However, dysregulated inflammation sup-
presses bone formation, therefore it is necessary to prevent 
excessive inflammatory response [122]. Fortunately, MDSCs 
could exert their immunosuppressive effect to restrain exces-
sive inflammatory response and maintain immune homeo-
stasis [22]. When trauma occurs, IMCs are recruited to the 
sites of injury under the stimulation of cytokines as well as 
chemokines and behave as MDSCs under the stimulation 
of the injury environment [123]. Taken together, MDSCs 
can dampen excessive acute inflammatory responses and 
maintain homeostasis through immunosuppressive charac-
teristics, for which MDSCs play an important role in bone 
repair. Moreover, Kawai et al. found that MDSCs may be 
involved in bone formation by expressing Runx2 and osteo-
calcin, which both promote osteoblasts differentiation when 
bone healing [124]. However, when large segment of bone 
defects is inflicted by malignant tumors, chronic inflamma-
tion or extensive trauma, the immunosuppressive function 
of MDSCs is instead detrimental to bone repair. Because of 
the overexpression of Arg-1, MDSCs inhibit body's defense, 
leading to difficulty in bone healing and even infections 
[125]. Moreover, the promotion of osteoclastogenesis by 
MDSCs is also reversed to bone repair.

In the process of bone repair, when angiogenesis is poor, 
it leads to failure of bone healing, termed a nonunion. As 
mentioned above, MDSCs could promote tumor angiogen-
esis via the production of VEGF-A, bFGF, Bv8, and MMP9. 
However, whether MDSCs could enhance angiogenesis in 
bone repair is controversial. Levy et al. demonstrated that 
a large number of IMCs infiltrated into the injury site from 
the initial stages of fracture healing to complete bone heal-
ing. And they also found that removal of MDSCs led to 
poor fracture healing but accelerated fracture healing with 
adoptive transfer of IMCs. The functional assays on IMCs 
revealed that IMCs were not as functional as MDSCs [126]. 
Conversely, Wang et al. found that MDSCs could promote 
angiogenesis in the polymethyl methacrylate (PMMA)-
induced membrane via expression of VEGF-A, angiopoietin 
2 (Ang2), and HIF-1α [127]. And the PMMA-induced mem-
brane plays a key role in bone repair. In summary, MDSCs 
are widely involved in the bone repair, but the mechanisms 
involved remain unclear, and further studies will lead to new 
therapeutic strategies for bone repair.

Therapeutic strategies for bone‑related 
diseases by targeting MDSCs

Cancer‑related bone metastasis

Metastasis is a critical stage of cancer progression, remain-
ing to be a major challenge in treatment of cancer and 
a leading cause of cancer-related mortality [128]. Bone 
is one of the most common sites for certain metastatic 
cancer, and the processes mainly include the growth of 
the primary tumor, EMT, the PMN formation and evolu-
tion, colonization, survival or dormancy, reactivation, the 
growth of disseminated tumor cells, and bone modifica-
tion [40, 44, 53]. MDSCs are widely involved in these 
processes [53]. Therefore, in recent years, a variety of 
MDSCs-targeted immune therapies have been developed 
to prevent the processes of bone metastasis [3].

The strategies of MDSCs-targeted immune therapies 
for cancer-related bone metastasis rely on four main prin-
ciples: (1) Blocking the positive effect of MDSCs on pri-
mary tumor. Because the primary tumor is the initial factor 
causing bone metastasis, this principle is indispensable. 
(2) Inhibiting the role of MDSCs in the process of bone 
metastasis, such as EMT, the formation of PMN and so 
on. (3) Targeting MDSCs in the bone microenvironment 
to reduce vicious cycle. (4) Increasing the cell death rate 
of MDSCs to disrupt homeostasis of MDSCs. Combined 
with these principles, MDSCs-targeted immune therapeu-
tic strategies include limiting the generation, recruitment, 
and localization of MDSCs, impeding the immunosuppres-
sive function of MDSCs, blocking the effect of MDSCs 
on PMN formation, targeting MDSCs death pathway, and 
suppressing the osteoclastogenesis of MDSCs (Table 2, 
Fig. 3).

Firstly, limiting the generation, recruitment, and local-
ization of MDSCs mainly includes two aspects. On the 
one hand, prevention of MDSCs generation and recruit-
ment could be workable. Obviously, the generation of 
MDSCs can be inhibited if the MDSCs-prone cytokines 
and chemokines are blocked. Current therapeutics that 
exploit this strategy include curcumin (an IL-6 inhibitor), 
BMP-4 (reducing the expression of G-CSF), r84 (an anti-
body against VEGF) and sulforaphane (SFN, an inhibitor 
of MIF) [129–132]. At the transcriptional level, the gen-
eration of MDSCs is inhibited by interferon regulatory 
factor-8 (IRF-8) that is a master regulator of normal mye-
lopoiesis, but IRF-8 is often silenced in MDSCs because 
of tumor-derived factors [133]. Therefore, elevating IRF-8 
expression is a potential approach to inhibit MDSCs gener-
ation, and upregulating IRF-8 conversely promotes normal 
myelopoiesis to produce monocytes, neutrophils, and DCs 
to boost anti-tumor innate immunity. Interestingly, MDSCs 
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Fig. 3   The therapeutic strategies for cancer-related bone metastasis 
by targeting MDSCs. Based on the principles for MDSCs-targeted 
immune therapies that we have discussed, therapeutic strategies for 
cancer-related bone metastasis by targeting MDSCs fall into five 
main groups. Starting from the section with blue as the background 
color, five therapeutic strategies are shown clockwise. The strate-

gies include: a limiting the generation, recruitment, and localiza-
tion of MDSCs, b impeding the immunosuppressive function of 
MDSCs, c blocking the effect of MDSCs on PMN formation, d tar-
geting MDSCs death pathway, e suppressing the osteoclastogenesis of 
MDSCs
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highly expressed OPN by silencing IRF-8 [134]. There-
fore, elevating the level of IRF-8 could not only inhibit the 
enhanced recruitment and function of OPN on MDSCs, 
but also suppress the promoting role of OPN in cancer. 
Drugs proven effective to hinder MDSCs from the marrow 
to the tumor microenvironment include chemokine (C-X-C 
motif) receptor 2 (CXCR2) inhibitor, chemokine (C-X-C 
motif) receptor 4 (CXCR4) antagonists, and colony stimu-
lating factor 1 receptor (CSF-1R) inhibitors [135]. On the 
other hand, considering that MDSCs could differentiate 
into mature myeloid cells without immunosuppressive 
function, thus the treatment that promote MDSCs differ-
entiation is also feasible. It has been reported that all-trans 
retinoic acid (ATRA), Vitamin D3, Vitamin A, STAT3 
inhibitors, and DNA demethylating agent 5-aza-2'-deoxy-
cytidine could induce MDSCs differentiation [136–138]. 
Similarly, promoting the polarization of MDSCs into mac-
rophages is also a practicable method, in which representa-
tive drugs are docetaxel and paclitaxel [139].

Secondly, impeding the immunosuppressive func-
tion of MDSCs is a viable therapeutic strategy. As men-
tioned above, MDSCs upregulate iNOS expression by 
activating STAT1, ROS expression by activating STAT3 
or NOX2, and Arg-1 expression to exert immunosup-
pressive effects. More recent approaches using STAT3 
inhibitors aim to block the activation of STAT3, such 
as sunitinib, AZD9150, and BBI608, or a conjugate of 
the STAT3 antisense oligonucleotide (ASO) tethered to 
immunostimulatory toll-like receptor 9 (TLR9) agonist 
(CpG-STAT3ASO) conjugates. And all of these STAT3 
inhibitors could reduce the immunosuppressive func-
tion of MDSCs [140]. Moreover, the suppressive effect 
of MDSCs could also be eliminated using p-STAT3 or 
STAT3-targeted siRNA to interfere with STAT3 mRNA 
[141]. Nuclear factor E2-related factor 2 (Nrf2), a tran-
scription factor, attenuates the ROS accumulation in 
MDSCs [142]. Synthetic triterpenoid, such as omavelox-
olone (RTA-408), CDDO-Me (RTA-402), and CDDO-Im 
(RTA-403), could upregulate the level of Nrf2 to reduce 
the production of ROS and prevent the immune suppres-
sive effect of MDSCs [143–145]. N-Hydroxy-nor-L-argi-
nine (nor-NOHA), an Arg-1 inhibitor, could reduce the 
level of Arg-1 to block the immunosuppressive activity of 
MDSCs [146]. Targeting cyclooxygenase-2 (COX-2) could 
reduce the synthesis of PGE2, which induces MDSCs to 
produce Arg-1 and iNOS [147]. And the synthesis of 
PGE2 is regulated by COX-2, RIPK3 as well as fatty acid 
transport protein 2(FATP2), which means these molecules 
could be potential target for treatment [140]. COX-2 inhib-
itors include acetylsalicylic acid, NS-398, aspirin, and 
celecoxib. Besides, lipofermata is a selective inhibitor of 
FATP2. Similarly, the application of phosphodiesterase 
5 (PDE5) inhibitors, including sildenafil, tadalafil, and 

vardenafil, could also be workable for reducing the pro-
duction of Arg-1 and iNOS in MDSCs [148]. Moreover, 
it has been reported that 1-methyl-L-tryptophan (1-MT) 
or STAT3 antagonist JSI-124 could reduce the level of 
MDSC-produced IDO; STAT3-dependent IDO expres-
sion is required for exerting immunosuppressive effects 
of MDSCs in breast cancer [149].

Thirdly, blocking the effect of MDSCs on PMN forma-
tion. S1PR1-STAT3 signaling is key for MDSCs coloniza-
tion at future metastatic sites, therefore targeting S1PR1-
STAT3 signaling in MDSCs by CpG-STAT3 siRNA or 
CpG-S1PR1 siRNA would effectively reduce the formation 
of PMN and thereby preventing metastasis [150]. Besides, 
reducing the levels of PMN formation factors produced by 
MDSCs might also be workable, therefore the inhibitor of 
TGF-β, Arg-1, ROS, COX-2, Bv8, MMP-9, S100A8, and 
S100A9 might be potential therapeutic approaches [24].

Fourthly, targeting the cell death pathways of MDSCs 
may be an effective therapeutic strategy to inhibit MDSCs. 
The homeostasis of MDSCs is not only regulated by dif-
ferentiation or generation pathways, but also by cell death 
pathways. Sinha et al. found that FasL( +) T cells counter 
kill MDSCs via the Fas-FasL apoptosis pathway [151]. 
However, MDSCs increase the expression of Bcl-xL and 
decrease the expression of Bax by down-regulating IRF-
8, thereby negatively modulating the Fas-FasL apoptosis 
signaling pathway [152]. Guha et al. found that STAT3 
inhibitors (STATTIC or BBI608) precisely induce cell 
death through the Bax-dependent apoptosis pathway, and 
the finding established the link between STAT3 inhibi-
tion and Fas-FasL apoptosis of MDSCs [153]. Therefore, 
Bcl-xL is a potential target to induce MDSCs death. Fur-
thermore, Condamine et al. described that the reason for 
higher cell death rate of MDSCs compared to neutrophils 
and monocytes is that ER stress regulates MDSCs through 
TNF-related apoptosis-induced ligand receptors (TRAIL-
Rs)-mediated apoptosis, which suggests that TRAIL-Rs 
may serve as potential targets for inhibiting MDSCs [154]. 
Moreover, as tumor cells apoptosis inducer, ceramide also 
activates lysosomal cathepsin B and cathepsin D to attenuate 
autophagy and induces ER stress to suppress MDSCs, which 
has performed the potential clinical value of ceramidase 
inhibitor [155]. Besides, Smith et al. found that decitabine 
(DAC) promoted cell death through the disrupting DNA 
methylation of RIP1-dependent targets of necroptosis, and 
further studies revealed that MDSCs autocrine IL-6 to regu-
late STAT3-DNMT epigenetic axis, thereby silencing the 
TNFα-RIP1 necroptosis pathway [156]. In addition to DAC, 
there are other chemotherapeutic agents that can induce the 
death of MDSCs. It has been reported that MDSCs can be 
eliminated by chemotherapy with gemcitabine, 5-fluoroura-
cil, CD33 monoclonal antibody (mAb), liver-X receptors 
(LXRs) agonists (including GW3965 and RGX-104), and 
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peptibodies consisting of S100A9-derived peptides, which 
all could impair the survival of MDSCs [157–161]. But the 
mechanism of their impairment is not the same.

Finally, the approaches to suppress the osteoclastogenesis 
of MDSCs are also effective. Many studies have shown that 
cysteine protease (including legumain) and cysteine cathep-
sin could suppress osteoclastogenesis of MDSCs in breast 
cancer [162]. Intriguingly, the Nrf2 activator RTA-408 not 
only blocks the immunosuppressive effects of MDSCs, but 
also attenuates osteoclastogenesis by inhibiting STING 
dependent NF-κB signaling [163]. Besides, NG-mono-
methyl-l-arginine acetate (l-NMMA), an iNOS inhibitor, 
prevents MDSCs from differentiating into osteoclasts by 
inhibiting NO signaling [164]. In fact, there are many other 
modalities of MDSCs-targeted immune therapies beyond the 
above-mentioned chemotherapy. These treatments include 
radiotherapy using radiation to kill MDSCs, combination 
immunotherapy synergistically with other classical immu-
notherapies, and epigenetic therapy.

Osteosarcoma (OS)

OS is the most common bone malignancy in children and 
teenagers [165]. However, the treatment of OS has not pro-
gressed over the years and is still mainly based on surgical 
resection and chemotherapy, resulting in no improvement in 
overall survival. Fortunately, several evidence demonstrated 
that MDSCs extensively infiltrated OS tissues and sup-
pressed immune responses, therefore MDSCs have gained 
increasing attention as the new target of OS immunotherapy 
(Table 2).

It has been shown that metformin (Met) inhibits the 
growth of K7M2neo OS by regulating MDSCs, and the 
inhibition is independent of T cells. The mechanism 
behind the above phenomenon is that Met can regulate 
the metabolism of MDSCs to decrease oxidative phospho-
rylation (OXPHOS) while increasing glycolysis. Besides, 
ROS production in MDSCs could also be inhibited by Met 
[166]. Recently, Jiang et al. shed light on the OS-infiltrating 
MDSCs were CXCR4 positive, and the binding of CXCR4 to 
SDF-1 could reduce the apoptosis of MDSCs by activating 
downstream AKT pathway. They also found that AMD3100, 
a CXCR4 antagonist, could synergize with anti-PD-1 anti-
body immunotherapy to treat OS in a murine [167]. Also 
augmenting anti-PD-1 antibody immunotherapy is (S)-(−)-
N-[2-(3-Hydroxy-1H-indol-3-yl)-methyl]-acetamide (SNA), 
which is specific inhibitor of phosphatidylinositide 3-kinases 
δ/γ (PI3Kδ/γ). Shi et al. reveled that SNA treatment could 
decrease the expression of arginase and iNOS, as well as the 
phosphorylation of AKT and S6 downstream of PI3K on 
OS-infiltrating MDSCs [168]. In addition, SNA treatment 
promoted the polarization of MDSCs towards the TAM-M1 
population in OS. IL-18 could induce MDSCs to migrate 

into the OS tissue, which means that IL-18 inhibitor is like-
wise potential MDSCs-targeted therapy [169]. As standard 
treatment for OS, neoadjuvant chemotherapy, including the 
use of doxorubicin, cisplatin, and ifosfamide (IFO), has 
similarly been shown to eliminate MDSCs on patients with 
OS [170]. Similarly, ATRA treatment reduces the quantity 
of M-MDSCs and diminishes the suppressive potency of 
PMN-MDSCs in mice models of sarcoma, thereby treating 
OS [171].

The cure rate for patients with localized disease 
approaches 70%, whereas the 5-year overall survival rate 
for patients with metastatic disease is less than 25% [165]. 
Therefore, therapies that prevent OS metastasis are criti-
cal for patients with OS. Since MDSCs can hinder T-cell 
infiltration into the PMN, especially pulmonary metastasis, 
MDSCs targeted therapy may also be a potential therapeutic 
approach to block OS metastasis [172].

Rheumatoid arthritis (RA)

RA is an autoimmune disease that causes polyarticular, 
symmetrical, aggressive joint erosion by inducing synovi-
tis and subsequent cartilage as well as bone destruction. In 
the joint cavity of RA patients, leukocytes, especially Th17 
cells, Th1 cells, Treg cells, monocytes, and macrophages, 
infiltrate into it and cause synovial hyperplasia. The infil-
tration of leukocytes and the secretion of proinflammatory 
cytokines drive the maturation of osteoclast precursors into 
osteoclasts, thereby eroding the bone. Meanwhile, synovial 
cells proliferate excessively and secrete a large number of 
MMPs as well as collagenases, which degrade proteoglycans 
and type II collagen, the main components of extracellular 
matrix (ECM), and ultimately destroy articular cartilage 
and subchondral bone [173]. Targeting pro-inflammatory 
cytokines, several biological agents, including tozumab, 
infliximab, etanercept, adalimumab, and rituximab, have 
been approved for marketing in the current treatment of RA 
and achieved some efficacy [174, 175]. However, biological 
agents are not effective for all patients with RA, so there is 
a need to develop new treatment.

MDSCs play a double-edged role in RA and CIA. 
MDSCs exert proinflammatory effects mainly through the 
following aspects: (1) MDSCs could directly differentiate 
into osteoclasts through NF-κB signaling or regulate other 
immune cells, including Th17 cells, Treg cells and so on, 
to promote osteoclastogenesis; (2) MDSCs enhance Th17 
cells function by IL-1β, thereby aggravating cartilage dam-
age and synovitis. The anti-inflammatory effects of MDSCs 
include: (1) MDSCs could inhibit Th17 cells responses; (2) 
MDSCs could promote Treg cells proliferation and enhance 
the anti-inflammatory effect of Treg cells; (3) MDSCs could 
reduce the number of macrophages, thereby reducing the 
pro-inflammatory factors secreted by macrophages, such as 
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TNF-α, IL-1b, IL-6, IL-23, and GM-CSF. The greatest fea-
ture of MDSCs over single target biological agents is their 
role as double-edged sword, which also dictates that MDSCs 
will be diverse for use as therapeutics. Zhang et al. found 
that the adoptive transfer of MDSCs ameliorated arthritis by 
reducing the amount of Th17 cells and macrophages in the 
joint tissue of CIA and the level of inflammatory cytokines 
[97]. And the adoptive transfer of MDSCs therapy exerts 
an anti-inflammatory effect by the Arg-1 pathway [176]. 
Besides, Sun et al. found that piperlonguminine (PL) could 
enhance the expansion of MDSCs to alleviate RA [177]. 
Hence, PL may be a candidate therapeutic agent for RA 
based on its effect on MDSCs. Intriguingly, MDSCs-derived 
exosomes also have potential value for the treatment of RA. 
Zhu et al. found that G-MDSC-derived exosomes attenuated 
CIA by decreasing the number of Th17 cells and Th1 cells 
in vivo and in vitro [178]. As critical for MDSCs generation, 
IRF-8 deficiency similarly promotes RANKL-mediated oste-
oclastogenesis in RA [179]. Thus, promoting the expression 
of IRF-8 may not only inhibit osteoclastogenesis, but also 
hinder the generation of MDSCs and subsequently inhibit 
the destructive role of MDSCs in RA. All in all, further 
understanding the role of MDSCs in RA is required, which 
will facilitate the application of MDSCs-based therapies to 
RA (Table 2).

Osteoarthritis (OA)

OA is a common joint disease characterized by articular 
cartilage degeneration, mainly involving the knee joint, hip 
joint, and distal fingertip joint. The traditional view is that 
OA is a non-inflammatory disease, but an increasing num-
ber of studies have shown that OA pathogenesis is closely 
related to synovial inflammation. Currently, studies show 
that T cells, B cells, macrophages, and NK cells infiltrate the 
joint synovium of OA patients and contribute to the disease 
process [180]. In addition, MDSCs infiltration is also present 
in synovial fluid of OA patients, although the degree of infil-
tration is not as high as in RA [34]. Therefore, MDSCs may 
play an immunoregulatory role in the pathogenesis of OA, 
but the mechanism responsible for how MDSCs regulate the 
disease progression of OA is unknown. Here, we summarize 
the potential role of MDSCs in OA pathogenesis and the 
related research progress, aiming to provide direction for 
the in-depth study of OA pathogenesis as well as the devel-
opment of intervention drugs targeting MDSCs (Table 2).

Synovitis is presented in both OA and RA patients, and 
MDSCs have been shown to be elevated within the joint 
microenvironment. Therefore, based on the method of anal-
ogy, we speculate that MDSCs might also be making inter-
action with immune or stromal cells in the joint microenvi-
ronment of OA patients. Our first conjecture is that MDSCs 
are equally likely to reduce the number of macrophages. 

Macrophages play a vital role in inducing or aggravating 
OA by altering the metabolism of chondrocyte or promot-
ing the release of MMPs and growth factors [115, 116]. In 
summary, MDSCs may alleviate OA via inhibitory effects 
on macrophages. The second conjecture is that MDSCs may 
also increase the number of Treg cells and in turn promote 
the chondrogenesis and the synthesis of proteoglycan and 
type II collagen. However, it has been reported that there 
is a large reduction in the number of Treg cells in OA 
[110]. Therefore, the exact interaction between Treg cells 
and MDSCs requires further study. Finally, we speculate 
that MDSCs may also play a pro-inflammatory role in OA, 
because of the potential relationship between MDSCs and 
Th17 cells. This potential relationship is that MDSCs may 
similarly promote the differentiation of human Th17 cells 
and Th17 responses, as both Th17 cells and MDSCs are 
found to be elevated in the synovial fluid of OA patients 
like RA patients [34]. Th17 cells could inhibit chondrogen-
esis proteoglycans, secret inflammatory factor, and promote 
MMP synthesis, thereby contributing the progression of OA 
[107]. Therefore, MDSCs may damage cartilage by regulat-
ing Th17 cells. According to the above hypothesis, it is not 
difficult to conclude that MDSCs may also play a double-
edged sword role in OA disease progression.

In addition, another major pathogenesis of OA is that the 
abnormal bone resorption in subchondral bone is able to 
change the normal mechanical environment of articular car-
tilage, thereby inducing articular cartilage to undergo degen-
erative pathologies, ultimately leading to OA [181]. And 
whether MDSCs participate in this process is not known. No 
studies have reported MDSCs levels in the subchondral bone 
or peripheral blood of OA patients, and if further studies 
show an increase, the role played by MDSCs in subchondral 
bone destruction would be well worth exploring and may 
provide a novel therapeutic modality for clinical treatment 
of OA. Overall, the above speculation requires further study 
and may provide feasible ideas for clinical treatment.

Orthopedic trauma

Orthopedic trauma is manifested by varying degrees of 
trauma, to a lesser extent by minor fractures and to a greater 
extent by extensive bone loss. Regardless of the degree of 
trauma, MDSCs have influence on orthopedic trauma, which 
also determines their potentially great value for orthopedic 
trauma treatment (Table 2).

Since tissue repair after minor trauma is often limited, 
preventing the excessive inflammatory response is critical 
for minor trauma. The immunosuppressive effect of MDSCs 
is just to restrain excessive inflammatory response and main-
tain immune homeostasis [22]. Besides, Arg-1-derived 
MDSCs could also metabolize arginine to ornithine, which 
stimulates the proliferation of fibroblasts and the production 
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of collagen to heal wound effectively [182]. Taken together, 
MDSCs contribute to minor trauma healing. However, the 
role of MDSCs is quite opposite upon extensive orthopedic 
trauma. Post traumatic infections such as extensive bone 
fractures are a significant cause of delayed wound heal-
ing and even death. And the occurrence of infection may 
be associated with MDSCs. Ochoa et al. have found that 
Arg-1 expression is increased in MDSCs after trauma [125]. 
The mechanism of Arg-1 overexpression by MDSCs is the 
secretion of anti-inflammatory factors by increased Th12 
cells after trauma [183]. As mentioned earlier, Arg-1 will 
cause an arginine deficiency state, which in turn will inhibit 
the number and function of T cells. Therefore, inhibiting 
MDSCs to express Arg-1 or applicating Arg-1 inhibitors 
appropriately after trauma may become novel therapies to 
avoid the occurrence of infections. Extensive orthopedic 
trauma is often accompanied by the absence of the perios-
teum, which plays an important role in bone formation and 
defect reconstruction [184]. Clinically, the PMMA cement 
is often used to induce the organism to form periosteum, and 
the PMMA-induced membrane establishes a blood supply 
for the large bone defect repair [185]. Wang et al. demon-
strated that MDSCs played an important role in the forma-
tion and angiogenesis processes of the PMMA-induced 
membrane. Interestingly, MDSCs express VEGF-A, Ang2, 
and HIF-1α to promote the angiogenesis of endothelial cells 
via STAT3 signaling, which is different from the mecha-
nism of enhancing tumor angiogenesis [127]. It suggests that 
MDSCs derived from PMMA-induced membrane may serve 
as a stimulating angiogenesis target in bone repair. Alloge-
neic bone grafts are often required for patients with large 
bone defects after injection of cement to form periosteum, 
and the role of MDSCs in allogeneic bone grafts is currently 
unknown. But based on the functional studies of MDSCs 
in other organs or tissues allografts, we could roughly 
speculate about the function of MDSCs in bone grafts. The 
common complication of allografts is immune rejection, 
and bone grafts are no exception. Fortunately, numerous 
studies have shown that MDSCs participate in maintaining 
immune tolerance in allograft transplantation [186]. And 
MDSCs could inhibit allograft rejection of various organ 
by secreting iNOS, IDO, Arg-1 as well as interacting with 
other immune cells, including Treg cells, CD8+T cells, and 
NKT cells [187]. Therefore, we speculate that MDSCs may 
also maintain bone transplantation immune tolerance. If fur-
ther studies validate this speculation, using drugs that induce 
MDSCs generation or adoptive transfer MDSCs is maybe a 
potential therapeutic strategy to reduce the immune rejection 
of bone grafts. Taken together, MDSCs play an important 
role in orthopedic trauma, indicating their potential clinical 
therapeutic value. But considering that MDSCs act vari-
ously on different degrees of trauma and different timing 
of trauma healing process, thus we should pay attention to 

the application of MDSCs timing when using MDSCs as 
therapeutic strategy.

Conclusion and future prospective

MDSCs are heterogeneous in morphology, phenotype, and 
function, therefore, targeting MDSCs has high specificity 
and efficacy, which may have great prospect in the treatment 
of bone-related diseases. Meanwhile, MDSCs are mainly 
produced in large quantities under pathological conditions 
in peripheral blood, tumor sites, inflammatory sites, and 
bone marrow, while they are less under physiological con-
ditions. Targeting MDSCs in many ways mimics classical 
immunotherapy methods (such as immune checkpoint, cel-
lular immunotherapy, etc.) and may cause fewer side effects. 
However, due to technology limitation and lack of highly 
specific markers, it is still difficult to identify complex phe-
notypes of MDSCs accurately and reliably, which limits the 
clinical application of MDSCs. The regulation of MDSCs in 
bone-related diseases is complex and serves double-edged 
sword role. MDSCs function in the bone and joint micro-
environment, where MDSCs make interaction with osteo-
clasts, osteoblasts, chondrocytes, and other stromal cells to 
build a complex network. Therefore, drugs without precise 
function and targets may cause unwanted side effects such 
as aggravating disease progression, which demonstrates the 
need to find methods to identify the specificity of MDSCs. 
In addition, MDSCs may also serve as disease marker to 
predict prognosis of bone-related diseases.

The mechanisms of the immunosuppressive action of 
MDSCs still need more studies; the process of MDSCs 
accumulation and interaction with other immune cells are 
unclear. Meanwhile, current studies on MDSCs are limited 
to immune aspect and ignore interaction between MDSCs 
and bone cells including osteoclasts and osteoblasts. 
MDSCs, other immune cells, osteoclasts, osteoblasts, and 
chondrocytes exist in the same microenvironment, therefore 
paying more attention to the association between MDSCs 
and other stromal cells may provide a new intervention tar-
get for MDSCs-based therapy. In addition, studies related 
to the other functions of MDSCs such as angiogenesis and 
transplantation immune tolerance induction also perform 
significant value.

Taken together, the clinical significance of MDSCs in 
bone-related diseases has been established. The further key 
research is to determine whether targeting MDSCs could 
provide tangible clinical benefits and how to identify com-
plex phenotypes of MDSCs accurately and reliably. Mean-
while, cross-talk among MDSCs, osteoclasts, and osteo-
blasts make the association between skeletal system and 
immune system. It is strongly believed that more mecha-
nisms of osteoimmunology will be clarified and more drug 
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targeting MDSCs in bone-related disease will be detected 
in further studies.
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