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Abstract
Fli-1, a member of the ETS family of transcription factors, was discovered in 1991 through retroviral insertional mutagenesis 
as a driver of mouse erythroleukemias. In the past 30 years, nearly 2000 papers have defined its biology and impact on nor-
mal development and cancer. In the hematopoietic system, Fli-1 controls self-renewal of stem cells and their differentiation 
into diverse mature blood cells. Fli-1 also controls endothelial survival and vasculogenesis, and high and low levels of Fli-1 
are implicated in the auto-immune diseases systemic lupus erythematosus and systemic sclerosis, respectively. In addition, 
aberrant Fli-1 expression is observed in, and is essential for, the growth of multiple hematological malignancies and solid 
cancers. Here, we review the historical context and latest research on Fli-1, focusing on its role in hematopoiesis, immune 
response, and malignant transformation. The importance of identifying Fli-1 modulators (both agonists and antagonists) and 
their potential clinical applications is discussed.
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Abbreviations
F-MuLV	� Friend murine leukemia virus
SFFV	� Spleen focus forming virus
FV	� Friend virus
Fli-1	� Friend virus leukemia integration 1
TF	� Transcription factor
ETS	� E26 transformation-specific

ATA​	� Amino-terminal transactivation
CTA​	� Carboxy-terminal transactivation
HSCs	� Hematopoietic stem cells
TME	� Tumor microenvironment
hESCs	� Human embryonic stem cells
TCGA​	� The cancer genome atlas
MEP	� Megakaryocyte erythroid progenitors
TPO	� Thrombopoietin
EPO	� Erythropoietin
TPA	� Tetradecanoylphorbol-13-acetate
LDBI	� LIM domain-binding protein 1
ChIp	� Chromatin immunoprecipitation
WAS	� Wiscott Aldrich syndrome
KLF1	� Kruppel-like factor 1
DN	� Double-negative
DP	� Double-positive (DP)
Treg	� Regulatory T
Teff	� Effector T
CTA​	� Carboxy-terminal activation
SLE	� Systemic lupus erythematous
NKs	� Natural killer cells
PKCδ	� Protein kinase C-delta
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Introduction

The Friend murine leukemia virus (F-MuLV) is a type C 
retrovirus discovered by Charlotte Friend in 1957, acting 
as a helper virus to complement the defective spleen focus 
forming virus (SFFV) within the Friend virus (FV) com-
plex [1]. While FV leads to erythroleukemia, F-MuLV alone 
induces erythroleukemia when injected into newborn sen-
sitive murine strains [2]. In 1990, Ben-David et al. [3, 4] 
showed that leukemia is induced by insertion of the F-MuLV 
provirus into a gene, designated Friend virus leukemia inte-
gration 1 (fli-1), in erythroid progenitors in mice. Fli-1 is a 
transcription factor (TF) of the E26 transformation-specific 
(ETS) gene family [4] with defined genomic structure and 
functional domains including amino-terminal transactivation 
(ATA), DNA binding, and carboxy-terminal transactivation 
(CTA) domains [5]. Fli-1 activation is observed in 75% of 
F-MuLV-induced erythroleukemias [4, 6]. Mice with late-
stage erythroleukemia succumb to the disease 2–3 months 
after viral infection, mainly due to inhibition of erythroid 
differentiation, leading to severe anemia, and spreading of 
leukemic cells to other organs. These Fli-1 induced late-
stage primary erythroleukemias, following 2–3 sequential 
rounds of transplantation [2], allowed the establishment of 
cell lines that had acquired TP53 inactivation mutations in 
almost all cases [6].

Since the initial discovery of Fli-1 in 1990, the PubMed 
database (National Center for Biotechnology Information 
at the National Library of Medicine, US) has recorded 
nearly 2000 publications related to its function in various 
contexts and diseases. In 1992, human FLI1 was identi-
fied as part of a chromosomal rearrangements in Ewing 
Sarcoma, in which 85% of these patients bear the (11;22)
(q24;q12) translocation [7]. This translocation yields a 
powerful fusion protein (EWS-FLI1), in which the strong 
transactivation domain of EWS is fused to the DNA-
binding domain of FLI1, leading to induction of FLI1-
regulated genes in sarcoma cells [8]. Interestingly, the 
FLI1 homologue, avian erythroblastosis virus E-26 (v-ets) 
oncogene-related (ERG), is also translocated in Ewing sar-
coma to the same Ewing gene, but at a lower frequency 
[9]. Subsequently, FLI1 and ERG activation was observed 
in other types of cancer, including human hematological 
malignancies and prostate cancer [10], further confirming 
the oncogenic roles of these related ETS TFs.

In addition to malignancies, Fli-1 plays a critical role 
in various normal cellular functions, including hemat-
opoiesis, angiogenesis, and vasculogenesis [10]. The 
importance of Fli-1 during normal hematopoiesis and its 
role during malignant transformation are both discussed 
in this review.

Fli‑1 role in hematopoietic stem 
cell maintenance, self‑renewal, 
and differentiation

Hematopoietic stem cells (HSCs) through a process of 
self-renewal, proliferation, and differentiation are respon-
sible for the steady production of progenitors/mature blood 
cells, maintenance of the HSC pool, and generation of 
all mature blood cells [11]. Self-renewal and differenti-
ation are governed by a set of critical regulatory genes 
and factors within the bone marrow niche [11]. Fli-1 is 
expressed in most hematopoietic multi-potential, restricted 
progenitors, and all types of mature blood cells (Fig. 1A) 
[12, 13]. Indeed, Fli-1 expression in hematopoietic cells 
is essential for maintenance of HSCs and for the differ-
entiation of progenitor cells [14]. In this study, Badwe 
et al. [14], demonstrated that global ablation of Fli-1 leads 
to embryonic lethality due to complete peripheral blood 
failure and the production of aberrant vasculature. Fli-1 
is recruited to the regulatory region of most essential 
hematopoietic genes. These results are consistent with the 
original study by Hart et al. [15], in which Fli-1 knock-out 
embryos die at embryonic day E11.5–12.5, mainly due 
to failure of hematopoiesis and vascular development. A 
recent study using human embryonic stem cells (hESCs) 
further revealed that FLI1 over-expression alone induces 
HSC expansion [16]. Moreover, when FLI1 is activated in 
conjunction with PKC, hESCs undergo differentiation to 
endothelial like cells [16]. Interestingly, PKC activation 
by phorbol esters leads to phosphorylation and activation 
of FLI-1, resulting in megakaryocytic differentiation [17]. 
This observation raises the interesting possibility that a 
phosphorylated form of FLI1 may control endothelial ver-
sus ESC development.

Fli-1 and Erg are implicated in definitive and adult 
hematopoiesis [15, 18]. Both factors are derived from 
an ancestral ETS gene following genomic duplication 
and eventual chromosomal segregation. The requirement 
for both Fli-1 and Erg in hematopoiesis may be due to 
enormous evolutionary demand to preserve HSCs, as 
these genes appeared to have overlapped function [19]. In 
point of fact, double heterozygous mutations of both Fli-1 
and Erg in mice result in a significant megakaryopoiesis 
deficiency that is much stronger than defects observed in 
each individual single-gene knock-out. Moreover, a loss 
of HSCs in double Fli-1/erg knock-out mice is accom-
panied by reduced number of committed hematopoietic 
progenitors compared with the single heterozygous loss 
in each mutant mouse [18]. Interestingly, heterozygous 
ErgMld2 mutant allele mice, with a point mutation in the 
ETS domain, exhibit haploin sufficiency and develop 
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steady-state hematopoiesis; they display defects in stress 
hematopoiesis after bone marrow transplantation or dur-
ing recovery from myelotoxic stress [20]. This study is 
also suggesting similar role for Fli-1 like Erg in HSC self-
renewal during stress hematopoiesis.

A comparison between expression of Fli-1 and Erg 
shows that while steady Fli-1 expression is observed in 
multi-potential and restricted potential progenitors and in 
most lineages; Erg expression is not detectable in every 
lineage (Fig. 1B) [12, 13]. These data are supported by an 
analysis of the Cancer Genome Atlas (TCGA), comparing 
both Erg and Fli-1 expression in various hematopoietic 

cells (Fig. 2) [12, 13]. This result suggests that Fli-1 and 
Erg may have overlapped as well as distinct target genes 
[18]. Although, as described above, the overlapping and 
compensatory roles of Fli-1 and Erg in hematopoiesis are 
well established (18–20), whether these ETS genes also 
control unique target genes is yet to be determined. ERG 
activation via translocations was exclusively detected in 
prostate cancer. Indeed, drug-mediated activation of FLI1 
in prostate cancer inhibited tumor progression [21], further 
suggesting common as well as distinct target regulation by 
FLI1 versus ERG.

Fig. 1   Expression of murine Fli-1 and Erg in different hematopoietic 
cells. Taken with permission from Haemosphere. Data show wide 
spread Fli-1 expression in various hematopoietic lineages when com-
pared to Erg expression. Sites to visit (https://​www.​haemo​sphere.​org/​

expre​ssion/​show?​geneId=​ENSMU​SG000​00040​732) and (https://​
www.​haemo​sphere.​org/​expre​ssion/​show?​geneId=​ENSMU​SG000​
00016​087) [12, 13]

https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000040732
https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000040732
https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000016087
https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000016087
https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000016087
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Fli‑1 plays a critical role in megakaryopoiesis 
and platelet development

The earliest evidence linking Fli-1 to megakaryopoiesis 
originated from correlation studies in hematopoietic cells, 
which identified the promoters of the thrombopoietin recep-
tor (MPL/TPOR), GATA1, and glycoprotein IX (GpIIb/
CD42) as direct downstream targets [22–24]. This predic-
tion was later confirmed in Fli-1 knock-out mice, which 
develop early lethality and thrombocytopenia [15]. A simi-
lar phenotype is also observed in patients with Jacobsen or 
Paris-Trousseau Syndrome, who exhibit thrombocytopenia 
and platelet deficiency. Indeed, hemizygous mutation within 
the FLI1 gene has been identified in these patients, signify-
ing FLI1 deficiency as the cause of this disorder [25]. In 
addition to Jacobsen/Paris-Trousseau, a recent study identi-
fied hemizygous mutations in RUNX1 or FLI1 in 6 patients 
with excessive bleeding and platelet dense granule secretion 
defects [26]. Jacobsen's syndrome is also characterized by 
multiple congenital anomalies, cardiac defects, psychomotor 
retardation, and deletion of chromosome 11 at 11q23.3 [27]. 
While thrombocytopenia in Jacobson’s syndrome was attrib-
uted to FLI1 deficiency, loss of other genes surrounding this 
locus may also contribute to this or other abnormalities in 
these patients.

It is now well recognized that both erythroid cells and 
megakaryocytes originate from a common progenitor known 
as megakaryocyte erythroid progenitors (MEP) [28]. In the 
last decade, significant efforts were undertaken to uncover 
the genetic factors that instruct MEPs to differentiate into 
either erythroid or megakaryocyte cells. Fli-1 has become 
such a candidate factor due to the profound megakaryocytic 
phenotype in knock-out mice and mutations within this TF 
in diseases associated with platelet deficiency (as discussed 

earlier). Transfection of FLI-1 into the myelogenous leu-
kemia cell line K562, which lacks this TF, induced mega-
karyocytic differentiation associated with the activation of 
specific downstream megakaryocytic target genes [17, 23, 
24]. As the frequency of using therapeutic transfusion for 
various thrombotic disorders increases around the world, 
a simple technology has recently been developed to obtain 
platelets by forcing human bone marrow erythroid progeni-
tors to transdifferentiate into megakaryocytic cells following 
infection with lentivirus vectors carrying the FLI1 and ERG 
genes [29]. In this study, synergy between FLI1 and ERG 
was critical to produce higher numbers of megakaryocytes. 
In another approach, large production of megakaryocytes 
and erythrocytes was achieved through co-expression of 
FLI1, GATA1, and TAL1/SCL in human pluripotent stem 
cells (hPSC) and stimulation with thrombopoietin (TPO) or 
erythropoietin (EPO) [30, 31]. In early culture (day 9), these 
three TFs contributed to biopotential, erythroid and mega-
karyocytic populations regardless of cytokine stimulations. 
However, in late stage (day 20), while loss of FLI1 expres-
sion for an unknown reason was seen in mature erythroid 
cells, megakaryocytic populations were mostly enriched for 
FLI1 and TAL1 expression [31]. This result confirms the 
previous observations [28], highlighting FLI1 as a critical 
player in bifurcation of MEP to erythroid or megakaryocytic 
lineages.

FLI1 also interacts with RUNX1 during megakaryocytic 
differentiation and this interaction appears to be necessary 
for the induction of megakaryocytic genes [32]. Moreover, 
mutations in both genes were identified in patients with 
platelet deficiency [26]. Binding of FLI1 to RUNX1 strictly 
depends on loss of phosphorylation of serine 10 on the FLI1 
protein [32]. Interestingly, phorbol ester (TPA)-induced acti-
vation of FLI1 in K562 cells also coincided with reduced 

Fig. 2   Relative expression of murine Erg and Fli-1 in various hemat-
opoietic cells; 0.25 radio present the overall Pearson correlation 
between Erg and Fli-1. Data were taken with permission from Hae-

mosphere (https://​www.​haemo​sphere.​org/​expre​ssion/​show?​geneId=​
ENSMU​SG000​00040​732) [12, 13]

https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000040732
https://www.haemosphere.org/expression/show?geneId=ENSMUSG00000040732
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FLI1 phosphorylation during megakaryocytic differentia-
tion [17], indicating requirement for both FLI1 and RUNX1 
cooperation toward this maturation process.

In hematopoietic cells, it is now well established that 
lineage specific differentiation depends on combinational 
interactions between certain TFs. Accordingly, genome-wide 
binding site analysis identified complex interactions between 
FLI1, GATA1, GATA2, RUNX1, and SCL/TAL1 in primary 
human megakaryocytes [33]. As GATA1 is involved in both 
erythroid and megakaryocytic differentiation [17], the ratio 
of these five TFs in the complex may be critical to dictate 
the fate of multipotent MEPs, a notion that has recently 
been addressed using single-cell mass cytometry and abso-
lute quantitation by mass spectrometry [34]. In this study, a 
single change in the level of one TF could alter the extent of 
differentiation of progenitors toward the megakaryocyte fate.

The LIM domain-binding protein 1 (LDB1) was previ-
ously reported to play a critical role in erythropoiesis [35, 
36]. In a recent study, Giraud et al. [37], demonstrated inter-
action between Fli-1 and LDB1 on enhancer region of the 
megakaryocytic-specific genes. The Fli-1 and LDB1 com-
plex binds preferentially to the enhancer regions contain-
ing TAL1:GATA1 motif. This binding was demonstrated 
to modulate the 3D chromatin organization by promoting 
chromatin looping between enhancers and promoters. LDB1 
is likely another critical regulator of erythroid and megakar-
yocytic differentiation by interacting and modulating FLI1, 
GATA1, GATA2, RUNX1, and TAL1 complex.

Nfe2 is another Fli-1 interacting protein critical for mega-
karyocytic differentiation. Ablation of Nfe2 in mice causes 
embryonic lethality associated with bleeding and platelet 
deficiency [38]. In this study, A complex interaction between 
Nfe2, Fli-1, and Runx1 was detected by Chromatin Immu-
noprecipitation (ChIp) analysis at proximal sites within the 
promoter of megakaryocytic marker genes. These interac-
tions may be involved in late-stage differentiation of mega-
karyocytes to platelets. Interestingly, while Nfe2 function 
is critical in mammals, its function in Zebrafish appeared 
dispensable for young but required for adult thrombocyte 
formation [39].

In a recent development, our group identified the Wis-
cott Aldrich syndrome (WAS) gene WASP and its associ-
ated protein WIPF as direct targets of FLI1. WAS is a rare 
X-linked recessive disease that affects both cellular and 
humoral immunodeficiency, eczema, high susceptibility 
to infections, microthrombocytopenia (low platelet count), 
increased risk of auto-immune disorders, and lymphomas 
[40, 41]. Knockdown of both WASP and WIPF in the MEP 
like cell line, HEL, blocked megakaryocytic differentiation, 
indicating the involvement of FLI1 in WAS. Interestingly, 
WASP and WIPF knock-down upregulated GATA1, which 
positively regulates FLI1 expression. These data further 
emphasize the critical role FLI1 plays in megakaryocyte 

differentiation, implicating this transcription factor in regu-
lating microthrombocytopenia associated with Wiskott-
Aldrich syndrome [41].

Fli‑1 and erythroid development

As noted, Fli-1 was first discovered in erythroleukemia 
induced by F-MuLV [3, 4], suggesting a role for this TF in 
inhibiting erythropoiesis. Indeed, over-expression of Fli-1 
in hematopoietic progenitors inhibits erythroid differentia-
tion, emphasizing its critical role in erythropoiesis [42, 43]. 
Erythroid transformation is also seen in transgenic mice 
over-expressing the EWS–FLI1 fusion protein [44]. This 
erythroid differentiation suppression ability was later con-
firmed in several Fli-1-deficient animal models [15, 45–47]. 
Since EPO stimulation is required to promote erythroid dif-
ferentiation, Fli-1 appeared to suppress EPO-induced differ-
entiation in favor of EPO-induced proliferation of erythroid 
progenitors [47, 48].

As mentioned above, FLI1 operates in a multi-protein 
complex with at least five other TFs to induce or suppress 
gene expression and direct MEPs toward either erythroid 
or megakaryocytic differentiation [33]. The hematopoietic 
lineage-restricted gene GATA1 was the first to be impli-
cated in erythroid differentiation, and its expression nega-
tively correlates with FLI1 in erythroleukemia cell lines 
[49]. This study by Athanasiou et al. [49] demonstrates that 
FLI1 over-expression in erythroleukemic cells suppresses 
differentiation through downregulation of GATA1 and that 
the GATA1 promoter is negatively regulated by FLI1. In a 
yeast two-hybrid system with a cDNA library of a leuke-
mic cell line, FLI1 was found to bind to GATA1, leading to 
increased transcriptional activity of megakaryocytic-specific 
genes [50, 51]. Interestingly, binding of another ETS-related 
gene, Spi1, to GATA1 causes inactivation of GATA1 and 
inhibition of erythroid differentiation [50]. Since GATA1 
expression is only slightly downregulated during megakar-
yocytic differentiation [28, 51], it is possible that moderate 
expression following its interaction with FLI1 contributes to 
megakaryocytic differentiation, but overt expression is nec-
essary for erythroid differentiation. Indeed, while ablation 
of gata1 in mouse embryos resulted in a complete lack of 
erythroid cell precursor development and early lethality [52], 
a conditional knock-down of gata1 in adults led to a block 
at the late state red cell generation, trombocytopenia, and an 
excessive proliferation of megakaryocytes in the spleen [53]. 
The combined aforementioned data reveal a critical role for 
GATA-1 and Fli-1 interaction in both erythropoiesis and 
megakaryopoiesis.

The hematopoiesis restricted Kruppel-like factor 1 
(EKLF/KLF) represents another critical factor in eryth-
ropoiesis. Loss- and gain-of-function studies clearly 
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demonstrated a role for EKLF in the commitment of bi-
potential MEPs to erythroid differentiation at the expense of 
megakaryocytic differentiation [54]. Ablation of eklf in mice 
resulted in early lethality (E15.5) and was associated with 
severe aneia [54, 55]. In man, mutations within the promoter 
or coding sequence of EKLF resulted in the rare blood group 
In(Lu) phenotype [56]. In knock-out mice, ablation of eklf 
significantly increased the number of circulating platelets 
[57]. This result suggested that a lack of EKLF may block 
erythroid differentiation at the expense of megakaryocytic 
differentiation. These data further confirmed the presence of 
bi-potential—MEPs and the critical role these TFs in their 
commitment to lineage-restricted differentiation.

As EKLF is critical for erythroid differentiation, its 
ability to trans-activate the β-globin gene was repressed 
by FLI1. In this study, Starck et al. [58] showed that FLI1 
represses transcription of EKLF in erythroleukemia cell 

lines. This repression required the ETS domain as well 
as the N- and C-terminus of FLI1, which bind EKLF. 
Conversely, EKLF also blocked the trans-activating abil-
ity of FLI1 on megakaryocytic-specific promoters. These 
results demonstrate a negative cross-antagonist relation-
ship between FLI1 and EKLF. This conclusion was fur-
ther confirmed using conditional shRNA studies in which 
EKLF depletion resulted in suppression of erythroid dif-
ferentiation at the expense of megakaryocytic differentia-
tion, mediated through FLI1 downregulation [59].

In totality, these results point to a critical role played 
by FLI1 in the determination of MEP fate toward either an 
erythroid or megakaryocyte cell lineage. Figure 3 depicts 
how FLI1 in coordination with other TFs and growth fac-
tors regulate this process in multipotent MEBs, originated 
from HSCs.

Fig. 3   The role of TFs in derivation of erythroid and megakaryocytes 
lineages from the multipotent MEP cells. Differential expression of 5 
TFs EKLF, GATA1, GATA2, FLI1, and RUNX1 determines the fate 
of HSC-derived MEP cells to become either erythroid or megakaryo-
cytes. Lower FLI1 expression favors erythroid differentiation through 

negative regulation of GATA1 and EKLF, in coordination with eryth-
ropoietin (EPO). Higher and phosphorylated FLI1* promotes mega-
karyocytic differentiation through upregulation of RUNX, downregu-
lation of EKLF and GATA1, in coordination with thrombopoietin 
(TPO)
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Fli‑1 and T‑cell development

High expression level of Fli-1 is detected at various stages 
of T-cell development (Fig. 1A). In T lymphocytes, FLI1 
transcription is upregulated by other ETS proteins includ-
ing ETS1, ETS2, ELF1, and FLI1 itself, but suppressed 
by TEL [60]. While complete ablation of Fli-1 in mice 
resulted in early embryonic lethality [15], a subsequent 
engineered model by the same research group, in which 
N-terminal region is deleted (Fli-1ΔNT), resulted in a 
thymic hypo-cellularity phenotype [61]. Fli-1ΔNT mice are 
viable and express the truncated Fli-1 protein, indicating 
its role in T-cell development. In contrast, transgenic over-
expression of Fli-1 driven by the H2K promoter, which 
expected to express in various hematopoietic cells, leads 
to a higher number of T and B cells [62]. Recently, over-
expressing Fli-1 in hematopoietic progenitors by retrovirus 
transduction was shown to result in pronounced delay in 
the transition of T cells from a double-negative (DN) to 
a double-positive (DP) cell [63]. These progenitors also 
displayed inhibition of CD4 differentiation and enhanced 
CD8 development. Transplantation of these Fli-1 over-
expressing progenitors into lethally irradiated mice eventu-
ally resulted in development of a pre-T-cell lymphoblastic 
leukemia/lymphoma, associated with increased expression 
of NOTCH1 in tumors. In a recent study by this group, 
retroviral transduction Fli-1 over-expressing OP9‐DL1 
stroma-derived T cells delayed the transition of CD4(–)/
CD8(–) DN to CD4( +)/CD8( +) DP cells by deregulating 
normal DN thymocyte development [64]. Overall, these 
studies suggest a critical role for Fli-1 in both the DN2 to 
DN3 transition and αβ/γδ lineage commitment. Finally, 
in a CRISPR screening platform to identify transcription 
factors that control the regulatory T (Treg) cells suppress 
effector T (Teff), Fli-1 was identified as the top candidate 
[65]. Genetic deletion of Fli-1 improved TEFF differentia-
tion and enhanced protective immunity during viral and 
bacterial infection and cancer. Thus, Fli-1 is an essential 
regulator of T-cell development.

Fli‑1 and B‑cell development

In addition to T cells, high levels of Fli-1 are detected in 
various stages of B-cell development (Fig. 1A). A criti-
cal role of Fli-1 in B cells was first observed in an Fli-1 
knock-out mouse model engineered to delete the carboxy-
terminal activation (CTA) domain [designated Fli-1ΔCTA​], 
leading to expression of a truncated protein [46]. Unlike 
knock-out fli-1 mice, homozygous fli-1ΔCTA​ mice are via-
ble and have fewer splenic follicular B cells and higher 

transitional and marginal zone B cells. While the expres-
sion of genes implicated in B-cell development includ-
ing CD79, PAX5, E2A, and EGR1 is reduced in fli-1ΔCTA​ 
mice, the level of ID1 and ID2 is elevated. Additionally, 
diminished responsiveness to mitogens is seen in naive B 
cells isolated from fli-1ΔCTA​ mice. In contrast to knock-out 
mice, transgenic over-expression of Fli-1 in the thymus 
and spleen increases B-cell number and activity [62]. This 
was associated with increased incidence of a progressive 
immunological renal disease and ultimately renal failure. 
These transgenic fli-1 mice also exhibited hyper-gamma-
globulinemia, splenomegaly (enlargement of spleen), and 
B-cell hyperplasia accompanied with abnormal CD5+/
B220+-B and CD3+/ B220+-T lymphoid cells in peripheral 
lymphoid tissues. These characteristics, in addition to the 
detection of various autoantibodies in the sera, implicate 
fli-1 in B-cell proliferation and survival.

As Fli-1 modulation of gene expression impacts B-lym-
phocyte function, it was shown that over-expression of this 
TF plays an important role in the auto-immune disease, sys-
temic lupus erythematous (SLE) in mice [62]. Recent stud-
ies identified FLI1 as a critical regulator of inflammatory 
mediators including MCP-1, CCL5, IL-6, G-CSF, CXCL2, 
GM-CSF, and caspase-1 [66–72]. Remarkably, treatment 
of a mouse model of lupus with the anti-Fli-1 compounds 
camptothecin and topotecan significantly inhibited patho-
logical signs of the disease, further implicating this TF in 
this auto-immune disorder [73]. However, as camptothecin 
and topotecan may act independently of Fli-1, whether more 
specific inhibitors of this TF or genetic depletion of Fli-1 in 
B cells can rescue SLE in mice and human awaits further 
analysis. These studies highlight the need to develop better 
and more specific anti-Fli-1 compounds for various diseases 
that may be driven by FLI1, as discussed below.

Fli‑1 in the development of other blood cells

In addition to erythroid/megakaryocytes, Fli-1 expression 
affects the development of other myeloid cells. In fli-1ΔCTA​ 
mice, there is a significant decrease in the number of mature 
macrophages, monocytes, and dendritic cells [74]. Moreover, 
in Fli1–/–: Fli1 + / + chimeric mice generated through morula-
stage aggregation, a significant reduction in Fli1–/– neutrophil 
granulocyte and monocyte counts as well as an increase in 
natural killer (NK) cells were observed [75]. Interestingly, 
Fli-1 regulates Spi-1/PU.1, which is a known regulator of 
monocytes and granulocytes [76]. Whether FLI1 expres-
sion in myeloid progenitors controls myeloid differentiation 
through Spi-1/PU.1 or through other mechanisms remained 
to be demonstrated. A summary of the role of FLI1 in various 
hematopoietic lineages is depicted in Fig. 4.
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Fli‑1 and its role in the onset 
of hematopoiesis

During embryogenesis, blood cells arise from haemangio-
blasts, which give rise to both endothelial and hematopoietic 
cells [77, 78]. The commitment to become either blood or 
endothelial cells is controlled by sequence-specific DNA-
binding proteins. The combinatorial expression of a rela-
tively limited number of regulatory transcription factors is 
sufficient to promote cell fate identity through their action 
on the underlying gene regulatory networks (GRNs) [79]. 
Indeed, Fli-1 as well as Gata2, Runx1, Erg, Lmo2, Lyl1, 
and Tal1 were identified as critical regulators of cell fate 
decisions during hematopoietic stem/progenitor cell produc-
tion [80]. Accordingly, mice lacking Fli-1 are embryonically 
lethal due to defects in blood vessel formation and multiple 
hematopoietic abnormalities [15, 45], indicating that this 
ETS gene is involved in the regulation of endothelial and 
hematopoietic cell fate determination. In a recent study, sin-
gle-cell transcriptomic analysis demonstrated a new dynami-
cal function of GRNs during embryonic hematopoiesis. This 

study revealed that while Erg/Fli-1 expression promotes 
endothelial cell fate, Runx1/Gata2 promotes hematopoietic 
fate [81]. However, when Fli-1 is co-expressed together with 
Runx1, it also promotes hematopoietic fate. These observa-
tions highlight the complex regulatory networks that govern 
blood/endothelial cell fate, and a need for further investiga-
tion. Fli-1 is also critically important for angiogenesis and 
endothelial function through regulation of other genes, as 
was previously reviewed by us [10].

Fli‑1 and malignant transformation

In addition to its role in erythroleukemias, FLI1 is trans-
located in 75% of human Ewing sarcomas, generating the 
potent oncogenic fusion protein EWS-FLI1 [7]. In the past 
2 decades, work from our group and others revealed that 
Fli-1 transcriptional activation affects several hallmarks 
of cancer including proliferation, survival, differentiation, 
angiogenesis, genomic instability, and immune surveillance 
[10]. Higher protein translation by Fli-1 could accelerate 

Fig. 4   The role of FLI1 in hematopoiesis: FLI1, in combination with 
other transcription factors (TFs), maintains HSC survival, prolif-
eration, and differentiation. In cooperation with these additional TFs, 
FLI1 expression level (LowLo or HighHi) defines the fate of MEPs to 
become erythroid or megakaryocytic cells, respectively. Regulation 
of the ETS gene Spi-1/PU.1 by FLI1 promotes CMP differentiation 
to monocyte/macrophages or granulocytes/neutrophils. Finally, FLI1 
expression plays a critical role in differentiation of lymphoid pro-

genitors toward mature T and B cells. HSC (hematopoietic stem cell), 
MPP (multi-potential progenitor), MEP (megakaryocyte erythro-
cyte progenitor), LMPP (lymphoid multi-potential progenitor), CMP 
(common myeloid progenitor), LMPP (lymphoid primed multi-poten-
tial progenitor), CLP (common lymphoid progenitor), GMP (granu-
locyte monocyte progenitor), EP (erythroid progenitor), MP (mega-
karyocyte progenitor), BP (B-cell progenitor), TP (T-cell progenitor)
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cancer progression. Moreover, FLI1 and CD13/ANPEP 
over-expression drive resistance to BRAF inhibitors in mel-
anomas [82], suggesting a general role for this ETS TF in 
drug resistance. FLI1 is highly expressed in various human 
cancers including those of the, lung, melanoma, leukemia, 
and lymphoma. In breast cancer, FLI1 expression corre-
lates with tumorigenesis, invasion, and metastasis [10]. In a 
small proportion of prostate cancer patients, a translocation 
between FLI1 and TMPRSS2 generates the fusion oncogene 
TMPRSS2-FLI1, which is associated with tumor initiation 
[83]. Table 1 summarizes tissue expression and the list of 
malignancies induced by FLI1 relative to other ETS genes 
[84–101].

FLI1 targeted therapy for the treatment 
of various diseases

Based on its role on diverse biological processes from cancer 
initiation and progression to auto-immune diseases including 
SLE and Systemic sclerosis/scleroderma, FLI1 has been pro-
posed [102] to be an excellent target for drug development. 

In the past decade, several approaches have been undertaken 
to identify inhibitors for FLI1 or EWS-FLI1. These efforts 
led to the identification of small molecules/compounds tar-
geting the DNA or RNA-binding activity of FLI1 [44, 103, 
104]. Among these, trabectedin (ET-743) achieved approval 
by the US Food and Drug Administration (FDA) for the 
treatments of patients with ovarian cancer or soft-tissue 
sarcomas [103], and the YK-4–279 derivative TK-216 has 
recently shown clinical activity in Ewing sarcoma patients 
in phase I study [104]. Whether these compounds also 
affect FLI1 in hematological malignancies needs further 
investigation.

Using a different approach, our group used a luciferase-
based expression assay to identify FDA-approved drugs that 
antagonize FLI1 transcriptional activation. These drugs 
exhibit strong anti-cancer activity in in vitro and in vivo 
models of leukemia [105]. Among these are drugs that alter 
topoisomerase I function (Camptothecin), chemothera-
peutic agents (Etoposide), and calcium uptake inhibitors 
(A23187) that block protein kinase C-delta (PKCδ) activity. 
Mechanistically, these PKCδ inhibitors were shown to block 
phosphorylation of FLI1, a critical event that is necessary 

Table 1   The role of Fli-1 and 
other ETS gene subfamily in 
cancer progression. Tissue 
expression and mutation/
translocation of all subfamily of 
the ETS genes was highlighted. 
Tissue expression data were 
obtained from human protein 
atlas (www.​peore​inatl​as.​org)

Sub family ETS gene Tissue expression Cancer type mutation Ref

ERG ERG All tissues Leukemia, prostate cancer, sarcoma [85, 91, 98]
FLI1 All tissues Leukemia, lymphoma, sarcoma [7, 10, 89]
FEV Brain, intestine, 

pituitary gland, 
stomach

Mixed phenotype acute leukemia [100]

ELF ELF1 All tissues Prostate cancer [92, 96]
ELF2 (NERF) All tissues
ELF4 (MEF) All tissues Various sites [101]

ERF ERF (PE2) All tissues Prostate cancer [95]
ETV3 (PE1) All tissues Breast cancer [90]

ELG GABPα All tissues Many cancers [99]
ESE ELF3 (ESE1/ESX) Many tissues Epithelial cancers [96, 97]

[96]
[96]
[96]

ELF5 (ESE2) Many tissues Epithelial cancers
ESE3 (EHF) Many tissues Epithelial cancers

PDEF SPDEF (PDEF/PSE) Many tissues Epithelial cancers
PEA3 ETV4 (PEA3/E1AF) Many tissues Prostate cancer [86]

ETV5 (ERM) All tissues Prostate cancer [87]
ETV1 (ER81) Many tissues Prostate cancer [86]

SPI SPI1 (PU.1) Many tissues Leukemia [94]
SPIB Many tissues
SPIC Lymphoid tissues

ER71 ETV2 (ER71) Many tissues
TCF ELK1 All tissues

ELK4 (SAP1) All tissues Prostate cancer [88]
ELK3 (NET/SAP2) All tissues

TEL ETV6 (TEL) All tissues Leukemia [84, 93]
ETV7 (TEL2) Many tissues

http://www.peoreinatlas.org
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for its DNA-binding activity [17, 105]. Since these drugs 
interact with other target proteins in addition to PKCδ, there 
is a pressing need to isolate specific inhibitors of FLI1. 
Recently, we have identified two new classes of anti-FLI1 
compounds with potent anti-leukemia activity [106, 107]. 
One class of these compounds was shown to inhibit FLI1 
translation, thereby inhibiting leukemia [106]. The other 
class included two structurally related compounds (A661/
A665) that specifically interact with the DNA-binding-motif 
of FLI1, causing inhibition of FLI1’s downstream targets 
[107]. Remarkably, we have shown that inhibition of FLI1 
via these compounds induces erythroid-to-megakaryocytic 
differentiation and suppresses leukemogenesis both in vitro 
and in vivo. Mithramycin is another compound that similar 
to A661/A665 blocks FLI1 through DNA-binding interfer-
ence [108]. In another screen for anti-Fli-1 drugs, Rajes et al. 
[109] showed that the anti-malarial Lumefantrine binds FLI1 
and inhibits its activity, leading to growth suppression and 
apoptosis in culture and tumors in vivo. The aforementioned 
drugs could therefore be used in future studies for the treat-
ment of cancers driven by abundant expression of FLI1.

Interestingly, in addition to inhibitors, activators of 
Fli-1 were recently identified and shown to exhibit strong 
anti-leukemia activity. Among these are the PKC agonist 
12-O-tetradecanoylphorbol-13-acetate (TPA) and A75 [17]. 
Phosphorylation of PKCẟ by these compounds was shown 
to increase phosphorylation and activation of FLI1, leading 
to induction of megakaryocytic differentiation in erythroleu-
kemia cell lines. The anti-leukemic effect of these FLI1 ago-
nists significantly increased when combined with a proteo-
some inhibitor through inhibition of PKCẟ downregulation 
[110]. Fli-1 activation was also reported via stimulation of 
leukemic cells with G-CSF through increase protein stability 
[111]. A summary of drugs with anti-Fli-1 or agonist activ-
ity is shown in Table 2. Some of these compounds can be 

used for both research and treatment of disease associated 
with aberrant Fli-1 expression.

Conclusion and future perspectives

Data from over 2000 publications in the past 30 years have 
established FLI1 as a key factor in healthy development and 
malignant transformation. These studies have emphasized 
the essential role of FLI1 in hematopoietic stem cell mainte-
nance and differentiation. In humans, abnormalities in FLI1 
expression cause several diseases including auto-immune 
disorders such as systemic sclerosis and systemic lupus ery-
thematosus. Aberrant expression of FLI1 in various forms 
of cancer also revealed a critical role in neoplastic transfor-
mation. FLI1 has therefore emerged as a novel therapeutic 
target for certain auto-immune diseases and cancers. The 
development of clinically approved drugs targeting FLI1 
could profoundly impact the treatment of diseases and can-
cers driven by abnormal FLI1 expression, and bear the fruits 
of 30 years of extensive basic and translational research.
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