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Abstract
The traditional functions of cytoskeletal-associated proteins (CAPs) in line with polymerization and stabilization of the 
cytoskeleton have evolved and are currently underrated in oncology. Although therapeutic drugs have been developed to 
target the cytoskeletal components directly in cancer treatment, several recently established therapeutic agents designed for 
new targets block the proliferation of cancer cells and suppress resistance to existing target agents. It would seem like these 
targets only work toward inhibiting the polymerization of cytoskeletal components or hindering mitotic spindle formation 
in cancer cells, but a large body of literature points to CAPs and their culpability in cell signaling, molecular conformation, 
organelle trafficking, cellular metabolism, and genomic modifications. Here, we review those underappreciated functions of 
CAPs, and we delineate the implications of cellular signaling instigated by evasive properties induced by aberrant expression 
of CAPs in response to stress or failure to exert normal functions. We present an analogy establishing CAPs as vulnerable 
targets for cancer systems and credible oncotargets. This review establishes a paradigm in which the cancer machinery may 
commandeer the conventional functions of CAPs for survival, drug resistance, and energy generation; an interesting feature 
overdue for attention.

Keywords CAPs-Cytoskeltal-associated proteins · Metabolism · MAPs-Microtubule-associated proteins · IFAPs-
Intermediate filament-associated proteins · Cell signaling

Introduction

We have come a long way in understanding the complexities 
and the control of the cytoskeleton in cellular dynamics and 
some roles of the cytoskeletal component (actin filaments, 
microtubule, and intermediate filaments) in metastasis. 

Nevertheless, important questions about the roles of the 
cytoskeleton and its components in major signaling under-
lying cancer progression remain exclusive. The cytoskel-
eton is a dynamic multiplex set of networks controlling cell 
shape, migration, stiffness, adhesion, and response to cell 
stress [1]. These functions and dynamics of the cytoskel-
eton are dependent on regulations by cytoskeletal-associated 
proteins (CAPs) and post-translational modifications [2]. 
CAPs are proteins involved in the regulation of cytoskeletal 
components individually or capable of synergistic regula-
tion of two or all cytoskeletal components. These include 
microtubule (MT)-associated proteins (MAPs), actin-related 
proteins (ARPs), and intermediate filament (IF)-associated 
proteins (IFAPs) [3]. However, the traditional functions 
of CAPs in stabilizing and polymerizing the cytoskeleton 
may be regarded as a downplay of the absolute potentials 
these molecules harbor, which is currently unexplored or 
understudied.

Our growing knowledge of CAPs helped pave the way 
for new insights in cancer development. Several CAPs 
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have multiple functions that emerged based on subcel-
lular localization, such as modulation of growth fac-
tor receptors, regulation of cell signaling pathways, and 
mitotic spindle assembly [4, 5]. Their increased expression 
also possesses significant roles in tumorigenesis and can 
induce genomic instability and cancer progression, includ-
ing aberrant proliferation and migration [6–11]. Hence, 
it is imperative to understand these molecules’ underly-
ing functions and full potentials, and their mechanism of 
action. In context; How are CAPs related to cancer pro-
gression? Are they naturally pro-oncogenic in nature, or 
do cancer machinery easily take over their functions faster 
than other types of molecules? These questions remain 
unanswered and are begging to be understood.

It is important to state that even though we are not writ-
ing specifically about the cytoskeletal components (IF, 
MT, and Actin), our thoughts may sometimes shift toward 
those unusual functions of these components, a fraction 
of which are summarized herein to make specific points 
along with our understanding and hypothesis. Ergo, this 
review is not about the functions of the cytoskeleton in 
migration or cell shape. Rather, it details the implications 
of specific CAPs capable of regulating multiple cytoskel-
etal components in cancer progression, with regard to their 
traditional functions and their corresponding roles in drug 
resistance and cancer metabolism, which is presumed to 
be easily commandeered by those factors driving cancer 
initiation and progression.

CAPs are easy targets for cancer treatment

Upregulation of CAPs is related to the high invasiveness of 
cancer cells [12–14]. Despite the high level of conserva-
tion, the cytoskeleton adapts to different control mecha-
nisms either by constant modification of their biophysical 
properties or by the dynamic association with associated 
proteins that convey specific signals responsible for cel-
lular functions [12, 15]. CAPs are simultaneously engaged 
in survival, recurrence, or drug resistance. Hence, CAPs 
assume a more prominent role in malignancy. However, 
these proteins are not only subjective to the cytoskel-
etal components but are also involved in cell signaling 
processes that lead to cell survival, drug resistance, and 
recurrence [3, 16]. Indeed, drugs that target the cytoskel-
eton also effectively attenuate crucial signaling pathways 
directed at major cellular events. Consequently, it becomes 
inherently of note to understand the intricacies of these 
unpopular conjectures and draw a firm conclusion to give 
prominence to this interesting concern and to identify the 
limitations as certain trends are being revealed to project 
CAPs in part, a holy grail of oncology.

Targeting the MTs and MAPs in cancer

The MT is an established chemotherapeutic target in cancer 
therapy

Some MT-destabilizing drugs are current standard chemo-
therapeutics in some cancers. MT-active substances cur-
rently referred to as spindle poisons have recorded tre-
mendous clinical success in the treatment of malignancies. 
As such, taxanes are termed “stabilizers” and vincas are 
called “destabilizers”. In fact, most, if not all MT-binding 
agents destabilize MT dynamics at low concentrations, 
and this potency also affects spindle development, hence, 
the arrest of cell division. There are currently several 
anticancer drugs designed to alter the mitotic spindle at 
different stages of development, while several others are 
now at developmental stages. A typical example is that 
exerted by taxol, the first MT-stabilizing drug described 
in literature, and an antitumor drug effective for cancer 
treatment (reviewed in [17]). However, cancer cells easily 
circumvent drug potency by reorganizing the cytoskeleton 
to adapt to the drug’s effect (Fig. 1). For instance, βIII-
tubulin is one of seven isoforms of human β-tubulin iso-
forms (out of nine in mammals), and it is mainly involved 
in cellular response to oxidative stress [18]. It has recently 
been regarded as a marker of taxane resistance in cytoskel-
etal-targeted therapy in cancer cells as a consequence 
of unstable polymer assembly of heterodimers evading 
the stabilizing effects exerted by taxol on MTs [19, 20] 
(Fig. 1). In glioblastoma, βIII-tubulin is expressed across 
different morphologic phenotypes as well as in hypoxic 
neoplastic tumors bordering palisading necrosis. Expres-
sion of βIII-tubulin has also been reported in poorly differ-
entiated cells and stem cells responsible for neurogenesis 
[21]. βIII-tubulin is also aberrantly expressed in prostate 
cancer and is associated with PTEN deletion [22]. How-
ever, there are competing opinions disputing the adoption 
of the above analogy (βIII-tubulin as a marker of taxane 
resistance), citing that these functions may have been 
exaggerated, and explaining that although βIII-tubulin 
may serve as a prognostic marker of certain neoplasms, 
current evidence are inadequate to adopt βIII-tubulin as a 
predictive marker of taxane resistance [23–25]. Therefore, 
elucidation of βIII-tubulin’s response to taxane treatments 
merits further studies.

So far, there are varying reports of resistance to spindle 
poisons because of the evasive properties conferred on 
tumor cells via the actions of CAPs. This has led to dis-
coveries of new drugs, such as IMB5046 and epothilones, 
which confer significant antitumor effects on cells resist-
ant to colchicine, vincristine, and paclitaxel [26, 27]. 
IMB5046 is a newly developed MT-depolymerizing agent 
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that exhibits potent cytotoxicity against multi-drug-resist-
ant cell lines and in mice at well-tolerated doses. IMB5046 
possesses a unique chemical structure and does not bind 
to P-glycoprotein (P-gp) unlike most MT-binding agents; 
hence, IMB5046 can circumvent P-gp-mediated multidrug 
resistance in cancers. Moreover, this feature distinguishes 
it in its mechanism of action as it functions by binding to 
the colchicine pockets on tubulins to inhibit MT polym-
erization in cancer cells [26].

Epothilones inhibit the cell cycle by binding to tubulins 
in cancer cells to promote polymerization and ultimately 
induce apoptosis. Compared with paclitaxel, epothilones 

have a simpler structure, higher water solubility, and can be 
effective in a lower dosage to curb drug resistance and have 
a better prospect of development [28]. However, it may be 
that the polymerization effect of these drugs competes with 
the binding and polymerization of MAPs, hence rendering 
tubulin monomers responsive to apoptotic signals (Fig. 1). 
Thus, the expression of CAPs and in part, other components 
of the cytoskeleton (and their isotypes) in malignancies and 
their involvement in those signaling downstream and along 
the maintenance of undefined functions adds another layer 
of functional complexities to the cytoskeleton and may be 
relevant to finding a cure to specific neoplasms. Hence, it is 

A B

Fig. 1  CAPs confer therapeutic resistance on cancer cells. A MAPs 
stabilize and polymerize MTs for effective and maximal functional 
capacity of cellular functions. In normal physiology, moderate phos-
phorylation of MAPs stabilizes and polymerizes the MT to regulate 
numerous cellular functions and positive control of the cell cycle. B 
MAPs clip αβ-heterodimers of tubulins together and failure to exert 
these functions due to hyperphosphorylation in cancer cells either 

leads to, (1) distortion of MT polymerization and stabilization leading 
to mitotic-slippage and misregulation of the cell cycle, or (2) evasion 
of apoptosis in response to targeted therapy by virtue of unstable MT 
polymers and high expression of MAPs in response to MT destabili-
zation-rescue, and successful rescue leads to heterogeneity in the cell 
population, giving rise to more aggressive and drug-resistant clones
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imperative to explore more on these findings as it may be of 
significance in the diagnosis of treatment resistance in some 
malignancies, while it may not be the same in other malig-
nancies because of the unique properties and the relatively 
available binding proteins in some cancers that are absent or 
not as highly expressed in other cancers.

Exploitation of MAPs in cancer

In oncology, a migrating cell is deemed a proliferating 
cell, and the emergence of more cells sets off metastases. 
CAPs are involved in these processes underlying cytoskel-
etal remodeling, mislocalization, and aberrant expression. 
However, these functions are mostly classical features of 
CAPs that regulate normal functions of cellular physiology 
that can be hijacked to become targets of cancer machinery 
because of the susceptibilities in their roles in cytoskeletal 
regulation (Table 1).

Known neuronal MAPs, like Tau and MAP2, are also 
expressed in non-neuronal neoplasm. While the expression 
of MAP2 correlates with taxane resistance in metastatic 
melanoma, Tau protein is associated with poor progno-
sis and can indicate taxane sensitivity [29]. Tau is a MAP 
primarily localized in axons. It regulates the proper func-
tioning of MTs in normal neuronal activities based on its 
phosphorylation state [30]. Tau stabilizes the MTs to main-
tain a straight protofilament conformation by binding to a 
hydrophobic pocket at the interface between tubulin heter-
odimers [31]. Under normal physiological conditions, tau 
regulates cellular migration and axonal MT functions via 
regular phosphorylation. Interestingly, recent findings have 
revealed a relationship between tau pathology and glioblas-
toma, as CD44 could be responsible for the phosphorylation 
and aggregation of tau in both pathologies [32]. Tau regu-
lates MTs and actin remodeling in a RHO/ROCK-dependent 
manner for migrative purposes in glioblastoma cells [33]. 
Moreover, tau exerts nearly similar functions and structure in 
normal neurons with increased activity in several malignan-
cies (including prostate, breast, pancreatic, and colorectal 
carcinomas) [34].

Doublecortin (DCX) is also a MAP first discovered with 
regard to its role in X-linked lissencephaly and subcorti-
cal band heterotopia; two neurodevelopmental disorders 
involved in the abnormal migration of the cerebral cortical 
neurons. In normal physiological conditions, cells originat-
ing from neurogenic zones, traveling through the rostral 
migratory stream (RMS) toward the olfactory bulb and 
functional sites express DCX. Hence, DCX is utilized as a 
gold standard marker of adult neurogenesis. Interestingly, it 
has recently been proposed as a prognostic marker of glio-
blastoma survival [6, 35, 36]. Like tau, DCX binds between 
protofilaments from which MTs are built, and its phospho-
rylation on different serine and threonine residues regulates 

its physiological functions in normal cells and promotes MT 
stabilization and migration [6, 36]. Although DCX is tra-
ditionally known as a cytoplasmic protein, recent findings 
in our laboratory have revealed that a significant amount 
of DCX translocate to the nucleus of glioblastoma cells in 
response to MARK’s phosphorylation on its ser 47 residue, 
and the cells expressing a higher level of nuclear DCX are 
located at the edge of the invasive front of glioma tissues 
[37]. More importantly, the traditional function of DCX in 
adult neurogenesis and migration of newborn neurons has 
been implicated in metastasis of brain tumors to the prostate 
region and prostate cancer initiation [38].

Reelin-Disabled-1 (Dab1) is another MAP that regulates 
neuronal migration during neurogenesis. Dab1 is involved 
in the inverted lamination of the neocortex. When phospho-
rylated on its tyrosine residues, Dab1 recruits SH2 domain-
molecules to initiate a series of signaling cascades that 
results in cytoskeletal remodeling [39]. To exert its migra-
tive functions during neurogenesis, Dab1 actively utilizes 
the Notch signaling synergistically. More importantly, Ree-
lin-deficient mice are characterized by reduced Notch ICD 
(a cleaved form of its intracellular domain), and it protects 
Notch ICD degradation via Dab1 [40], an interesting event 
that can be adopted by cancer cells for metastatic progres-
sion. As such, genetic depletion of Dab1 in mice engineered 
for Notch signaling activation results in the suppression of 
invasive and metastatic capabilities of cancer cells. Phos-
phorylation of Dab1 on its tyrosine residues by ABL kinase 
reciprocally activates ABL. This chain of events subse-
quently initiates RAC/RHOGEF protein TRIO's phospho-
rylation at Tyr residue 2681 (pY2681) in favor of metastasis 
in colorectal cancer [41].

Consequently, the aforementioned reversible reactions 
underscore weaknesses in some CAPs and set precedence 
for cancer networks utilizing a predetermined function in 
cancer progression. Although direct inhibition of specific 
MAPs may be detrimental to signaling cascades responsible 
for cellular survival, the overexpression of those oncogenes 
related to the cytoskeleton are vulnerabilities through which 
targeting downstream effectors may render cancer cells sus-
ceptible to chemotherapy.

Targeting Actin and ARPs in Cancer

While MT-targeting drugs are well-established, drugs capa-
ble of targeting actin have been more elusive. Like spindle 
poisons, several promising actin-targeting chemothera-
peutics either function as stabilizers, or as depolymerizing 
agents and inhibitors of actin cross-linking to abrogate 
polymerization. A large number of actin-targeting chemo-
therapies have been developed including latrunculins, jas-
plakinolide, miuraenamide, cytochalasin, chaetoglobosins, 
and MKT-077 [42–45]. However, advances in molecular 
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biology have revealed that the complex nature of actin biol-
ogy exceeds regulation for the polymerization and depo-
lymerization of the actin polymers. Rather, actin-binding 
proteins regularly compete with each other for the interac-
tion with actin or interactions on actin-binding sites (typi-
cal examples include MRTF-G-actin [46], and thymosin 
beta4-profilin [47]), hence regulating the “actin interactome” 
and corresponding cellular functions. As such latrunculins 
and cytochalasins are actin destabilizers. Latrunculin is the 
most widely used actin-depolymerizing agent, and it binds 
actin monomers near nucleotide-binding cleft. Latrunculin 
induces disassembly of actin filaments by sequestering mon-
omeric G-actin and disrupting actin bundling and association 
with associated proteins [48]. Conversely, cytochalasin tends 
to bind to F-actin, and consequently blocks actin polymeri-
zation [49]. Alternatively, jasplakinolide and miuraenamide 
act as actin stabilizing compounds that nucleate and polym-
erize the F-actin. Unlike jasplakinolide which competes 
with gelsolin or Arp2/3 for F-actin-binding, miuraenamide 
competes with cofilin [50]. Due to its crucial roles in RhoA/
ROCK-mediated migration of cancer cells during metastasis, 
actin employs ARPs to mediate response to stress induced 
by some of these drugs. For instance, high expression of the 
actin-modulating cytoskeletal protein, gelsolin correlates 
with aggressive phenotype and drug resistance in specific 
tumors, and it is highly expressed at tumor borders infiltrat-
ing adjacent organs. In addition, gelsolin mediates colorectal 
cancer invasion via the uPA/uPAR cascade modulation at 
metastatic sites [51]. Gelsolin can also interact with PI3K-
Akt signaling to mediate HGF-mediated cell scattering and 
E-cadherin transcriptional repression through Snail, Twist, 
and Zeb2 in diffuse gastric cancers [52]. Unfortunately, 
targeting actin in tumor therapy has been marred with dif-
ficulties because of the universal effects of actin-targeting 
drugs on all actin filament systems, consequently rendering 
them highly toxic to humans, particularly cardiotoxicity. The 
complex nature of actin biology prompts investigation into 
whether ARPs or other actin-related proteins might be tar-
geted to inhibit cancer cell proliferation.

Tropomyosin is also an ARP that regulates many key cel-
lular processes. Tpm3.1 is a major isoform of tropomyosin 
in most cancer cells, and it regulates cellular migration, glu-
cose uptake, and can mediate the ERK signaling. Isoforms 
like Tpm2.1 regulate anoikis, while others are involved in 
endoplasmic reticulum (ER) stress, actin polymerization, 
and focal adhesion formation [53]. Newer classes of drugs 
have been developed to target cancer cells based on their 
tropomyosin isoforms composition. Interestingly, TR100 
effectively inhibits Tpm3.1, resulting in diminished neuro-
blastoma cell proliferation and melanoma progression both 
in vivo and in vitro without compromising cardiac structure 
and function [54], as opposed to the adverse effects of other 
drugs targeting actin filaments. This led to the development 

of more anti-tropomyosin analogs. Combination of newly 
developed anti-tropomyosin analog like ATM-3507 with 
spindle poisons presented enhanced inhibition of tumor 
growth and proliferation in mice models [55].

Hence, for subsequent drug designs to qualify for trials 
and approval, they must selectively target specific structures 
involved in cellular motility and division, while maintaining 
the contractility of the heart and the diaphragm. Hence, fur-
ther studies on drug composition, side effects, and specificity 
could present advanced knowledge required for the initiation 
of trials which may subsequently lead to approval of anti-
actin therapeutics.

Targeting IFs and IFAPs in cancers

Although not all forms of cases are associated with IF’s 
induction, numerous IF family proteins are involved in dif-
ferent cellular processes. Unlike MTs, there is currently no 
routinely utilized IF-targeting drug [56]. Hence, the scarcity 
of depolymerizing drugs targeting IFs has highly been deci-
sive in the shortage of distinctive researches on the IF net-
work. Therefore, the suppression of several IFAPs is often 
required for the IF network targeting for extensive studies 
on the IF. Alternatively, constructing truncated proteins that 
can act as dominant-negative constructs has proven effective 
in the complete disorganization of the IF network [57, 58]. 
Nonetheless, there is still a large gap in understanding IF-
complex functions and the potentials in cellular activities. 
Thus, IF commands more attention not only because of its 
involvement in support and tissue integrity but also for its 
vast potential. Post-translational modifications like phos-
phorylation, glycosylation, sumoylation, farnesylation, and 
acetylation contribute to the heterogeneity of the IF. These 
factors endow IF with metabolic functions and signaling 
amplification [58, 59]. The expression of IFs like vimentin 
correlates with invasive and metastatic tendencies in cancer 
cells [60]. Its downregulation has been proven to decrease 
tumor invasion as it can promote migration and invasion 
of epithelial carcinoma cells independently of E-cadherin, 
forcing cells into hyperplastic forms without undergoing epi-
thelial-mesenchymal transition (EMT) [58, 61]. Several new 
compounds have recently been developed to target vimentin 
via the TGF-β1 pathway to suppress EMT in cancer cells, 
including Dioscin, Ginsenoside 20(R)-Rg3, Resveratrol, and 
Volasertib [62–65]. While several others like Aojene, Sim-
vastatin, and withaferin A induces vimentin destabilization 
[66–68]. However, only FiVe1, a vimenting binding small 
molecule inhibitor shows an actual prospect in targeting IFs 
in cancers. It induces vimentin collapse through the phos-
phorylation on ser56 during metaphase, leading to mitotic 
catastrophe and loss of stemness in cancer cells [69].

IFAPs are just as important in driving cancer progres-
sion. Emerging evidence shows that proteins interacting 
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with the elaborate network of IFs (extension connecting 
the actomyosin cortex to intracellular organelles) not only 
contribute to the biophysical properties of cancer cells for 
diagnosis but also serve as drivers of cancer progression 
and are sometimes regarded as markers of cancer survival 
or recurrence [58]. Newer evidence indicates that knock-
down of IFAP molecules either reduced cancer invasion, 
increased proliferation, or promote survival [56]. In con-
trast, opposite phenotypes have been recorded in studies 
overexpressing some of these IF proteins. Furthermore, 
IFAPs like plectin and desmoplakin possess caspase 
cleavage sites and the activation of corresponding cas-
pases can destabilize the entire IF network [70]. Plectin is 
a cytolinker that binds all three cytoskeletal components, 
and it has been touted as a pro-tumorigenic regulator of 
cancer progression [71]. Targeting plectin may be promis-
ing in cancer therapy thanks to its localization on the cell 
surface in some cancers [72]. As an IF regulator, plectin 
interacts with RACK1 to regulate PKC and MAPK/ERK 
signaling pathways for the proliferation of some cancer 
cells [73]. Hence, some studies have utilized plectin-tar-
geted drug delivery to enhance targeted therapy. Plectin’s 
unique mislocalization to the cell surface and subsequent 
proliferating effects renders it an ideal therapeutic target. 
As such plectin-targeted peptides (KTLLPTPC) have been 
utilized to guide the delivery of Quinazolinedione-based 
compounds such as QD242-encapsulated polymeric nan-
oparticles in PDAC cells [74]. Furthermore, in ovarian 
cancer cells, plectin-targeted liposome selectively binds 
to neoplastic cells in vitro and in vivo [75], and this was 
effective in increasing the drug payload of PARP inhibitor, 
AZ7379 both in vitro and in vivo [76].

Mrj is a DnaJ/Hsp40 family protein recognized as an 
IFAP because of its binding affinity for K18. It binds to 
K18 through its C-terminal and can simultaneously bind to 
Hsp/c70 which is an established K8/K18 binding protein at 
its N-terminal region. Via this interaction, Mrj may confer 
stability to K8/K18 filaments as a chaperone with Hsp/c70, 
an interaction which may explain the protective roles con-
ferred on cells by interactions between IFs and heat shock 
proteins (HSPs) [77]. Through its central rod domain, K18 
can also bind with tumor necrosis factor (TNF) receptor 
(TNFR) 1-associated death domain protein (TRADD), a cru-
cial TNFR signaling adaptor molecule and an adaptor IFAP 
[78]. High activity of this interaction or aberrant expression 
of the TRADD-bound K18 fragment confers tumor resist-
ance to TNF-induced apoptosis, and direct targeting of this 
interaction may initiate apoptosis in a TNFR-dependent 
manner [79].

Although there is a large gap in the development of high-
specificity ligand targeting IF functions in cancers, more 
promising candidate peptides are in development. However, 
further research is required to fully identify and develop 

better therapeutics to regulate more vulnerable targets in 
IF-targeted therapy in cancers.

Role of keratins in oncogenic signaling

Keratins are IF-forming proteins of epithelial cells and are 
reliable diagnostic markers of malignancies and cancer cell 
signaling regulators. Keratins are involved in tumorigenesis 
and metastasis of numerous cancers including lungs [80] 
and colorectal cancers [81]. Moreover, some keratins par-
ticipate in cell survival and apoptosis in cancer cells. Deplet-
ing the Keratin isoform Keratin 8 and 18 (K8/18) increases 
cisplatin-induced apoptosis via the extrinsic pathway involv-
ing Fas receptor membrane targeting regulated by the tight 
junction protein, claudin1 [82]. Furthermore, loss of K8/18 
induces nuclear translocation of claudin1, and knockdown 
of K8/18 stimulates transcriptional activity and expression 
of NF-ΚBp65 and MMP2/MMP9, respectively, albeit also 
moderating TNF-α mediated NF-ΚB activity to aid or pro-
vide resistance to the apoptotic effects of TNF-α [82, 83]. 
K8/18 also interacts/binds with TNF receptor-2 (a recep-
tor IFAP), highlighting keratins' interactive abilities with 
other signaling molecules [83]. This particular interaction 
alters TNF-dependent activation of downstream effectors, 
such as c-jun-NH2-kinase (an enzymatic IFAP) and NF-ΚB, 
to modify apoptotic and cell survival processes [84]. It is 
important to note that most type-I keratins possess caspase 
cleavage sites directly responsible for their involvement in 
apoptotic signaling. In contrast, type-II keratins do not pos-
sess cleavage sites and are, therefore, resistant to proteolysis 
by caspase cleavage [70, 85]. However, these keratins are 
not necessarily redundant during apoptosis because they are 
frequently associated with other keratins [86]. For exam-
ple, cleaving K18 cleavage by caspase 9 sets up a series of 
apoptotic events that leads to DNA fragmentation and the 
activation of other caspases [87]. In a slightly similar pro-
cess, Desmin, a type III IF, can also be cleaved by caspase6 
in cells undergoing apoptosis [88].

K17 indicates susceptibility to IF‑targeted therapy

Escobar-Hoyos et al. explored an exciting feature for K17 in 
tumor biology. They explained that K17 functions specially 
among keratins as an oncoprotein by controlling the ability 
of tumor suppressor p27KIP1 to influence cervical cancer 
pathogenesis [89]; their report revealed the promotion of 
p27KIP1’s nuclear export by K17, and the resulting deg-
radation of p27KIP1, thus, stimulating tumor proliferation 
by regulating G1–S checkpoint in cancer cells [89]. It is 
important to note that p27KIP1 regulates effective G1 timing 
due to improved nuclear export of p27KIP1 and degrada-
tion, which triggers required tumor growth, increased muta-
tion, and defective DNA replication [90]. In the case of K17 
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deficiency, cancer cells undergoing early G1 arrest comple-
mented with p27KIP1 nuclear accumulation and stabiliza-
tion results in decreased phosphorylation of pRb, consistent 
with inhibition of G1 cyclin-dependent kinases by elevated 
p27KIP1 [89]. In cervical cancer specimens, K17 expres-
sion inversely correlates with p27KIP1 nuclear levels and 
reduced cell proliferation in basal cell carcinoma. However, 
this reduction is not linked to cell cycle events, suggesting 
that K17 deregulates critical tumor suppressor programs in 
G1, promoting p27KIP1 nuclear export, sustained prolifera-
tion, and tumor growth [89]. K17 acts as a linker between 
CRM1 and p27KIP1, as point mutations in the nuclear 
export signals (NES) of K17, and CRM1’s inhibition with 
CRM1 specific inhibitor (LMB) instigated nuclear accumu-
lation of both p27KIP1 and K17. Hence, K17-NES is the pri-
mary mediator of p27KIP1 nuclear export in K17-expressing 
cancer cells [91]. Although p27KIP1 nuclear export may be 
mediated via various mechanisms, it is now popular knowl-
edge that K17 promotes p27KIP1 nuclear export in different 
malignancies. K17-positive cancer cells undergo rapid pro-
liferation and are relatively chemoresistant, and diminished 
cell death by sequestering the death adaptor TRADD [92] or 
minimizing apoptotic effects [93]. Furthermore, K17 expres-
sion is associated with poor prognosis, and silencing K17 
results in a twofold increase in cisplatin sensitivity [89]. In 
fact, within both low- and high-grade cervical cancers, high 
K17 status identifies patients at the greatest risk of mortality 
who could be most likely to benefit from the more aggres-
sive therapeutic intervention in tumors characterized with 
high K17 expression [89, 94–97]. Besides, K17 status is 
understood to be a better negative prognostic marker than 
p27KIP1 and tumor stage. Notably, K17 expression provides 
information beyond classical clinicopathologic parameters 
currently used to guide patient management decisions.

Keratin fusion in cancer progression

Technological advances in gene sequencing have improved 
our abilities to identify oncogenes for specific druggable 
targets. Hence, gene fusion which was previously attributed 
to hematologic malignancies has now been recognized in 
heterogeneous solid tumors [98]. Keratins as members of 
the IF protein family has recently been attributed extended 
roles in cell growth, apoptosis, as well as stress sensing and 
response [99, 100]. Keratins have also been identified as a 
critical player in stem cell differentiation since this process is 
highly mechanosensitive [101, 102]. In fact, keratin expres-
sion changes influence EMT and cancer stem cell develop-
ment, which forms a major step in tumor progression and 
metastasis [103–107]. Furthermore, K6 [108], K14 [103, 
104], K15 [109], and K19 overexpressions are implicated in 
cancer progression [110, 111], while K8/K18 downregula-
tion are faulted for cancer progression [82]. Tsai et al. have 

also recently reported novel keratin fusions while study-
ing the global keratin fusion arrangement, among which 
K6-K14/V3, V5, and V7 were shown to have significant 
clinical relevance, which can potentially be considered as 
prognostic markers in the prediction of clinical outcomes. 
Higher expression of this particular fusion was found to 
improve oral squamous cell carcinoma stemness by promot-
ing TGF-β and G-CSF activities, then subsequently acti-
vated downstream EMT transcription factors and rendered 
the cells drug-resistant and more aggressive [112]. Similar 
results were reported by some researchers and the TCGA 
group in their cancer genomics project in head and neck 
cancer (HNSCC), where they characterized several novel 
gene fusions, including those involving Keratins [113, 114]. 
Furthermore, Guo et al. also reported distinct gene fusion 
profiles specific to HPV-positive HNSCC, including certain 
KRT fusions like APAF1-K14 and EFTUD2-K24 [115]. 
Their findings may support the notion that keratin fusion 
functions as one possible early event during cancer initia-
tion and development. These keratin fusions take up active 
roles as driver of oncogenesis, but not as passengers. How-
ever, Keratin does not get enough research focus it deserves 
and the potentials of several IFAPs in these processes are 
not fully understood. Like gene fusion and miRNAs, kera-
tin fusion is a significant study that can unbox the complex 
intricacies underlying known mechanisms evading success-
ful targeting in cancer therapy. The IF has somewhat been 
underrated in its functional capacity in cancer progression. 
In fact, drugs targeted at MAPs for therapeutic interven-
tion against cancer cells have been in use, and more drugs 
are currently in the production stage. However, because the 
IFAPs are understudied, their potential in cancer progres-
sion is fairly known. This underscores the massive potential 
therapeutic intervention that can be developed to facilitate 
drug delivery or weaken resistance to those conventional 
anticancer drugs currently being used in cancer therapeutics.

Traditional functions of CAPs as stress 
proteins have evolved into metabolic stress 
regulation

The cytoskeleton orchestrates cellular signaling via CAPs 
in response to stress. Cellular stress induced by exposure to 
toxic microenvironment may be characterized by hypoxia, 
nutrient deprivation, and increased metabolic switch [116]. 
The cytoskeleton responds to many of these stress signals 
and actively participates in specific metabolic processes as 
a pro-survival reaction from aggressive cancers [24, 117]. 
These cancers possess abundant regions creating niches for 
stem cells resistant to conventional therapies and are capable 
of tumor recurrence and re-initiation [118].
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MAPs regulate microtubule function in cellular 
metabolism

Metabolic stress is a product of aberrant cell proliferation in 
nutrient-deficient conditions. In response to specific stress-
ors, the MT stimulates metabolic processes via MAPs to 
regulate and maintain cellular energy levels, and may serve 
as a sensor of energy levels in the cells [119]. The measure 
of energy levels can be translated by the stability in detyrosi-
nation of the MT plus end, which may be affected by ATP 
levels in the cell [120]. Modulation of MT dynamics and 
post-translational modifications of tubulins in response to 
stress allows metabolic programs in cells. A typical example 
is the epigenetic modification of tubulins via hypermeth-
ylation in nutrient-deficient conditions for the initiation of 
autophagy as a part of AMPK signaling triggered by the 
loss of ATP [121]. The MT via tubulins and MAPs actively 
modulates mitochondria metabolism by virtue of the revers-
ible interactions between tubulins and VDAC to regulate 
ATP production and energy generation in hypoxic conditions 
via the Warburg effects in proliferating cells [122, 123]. In 
particular, βIII-tubulin associates with the TCA cycle and 
glycolytic intermediates [20]. However, specific mechanisms 
of modulation are still not clearly understood. The inter-
action between tubulins and specific MAPs with GAPDH 
promotes cellular trafficking and ATP generation, which 
may fuel the energy consumption of motor proteins in favor 
of MT dynamics [124]. This interaction further extends to 
membrane fusion for the regulation of vesicular trafficking 
through the membrane during glycolytic stress [125], and 
the recruitment of Rab2 protein to maintain and regulate the 
shuttle between ER and the Golgi apparatus [126], which 
may be crucial to protein synthesis during metabolism. It 
should also be noted that GAPDH also binds to the neu-
ronal MAP1B; however, subsequent translocation occurs 
in response to oxidative stress [127]. These interactions 
between metabolic intermediates and CAPs are mostly cru-
cial for cancer progression and evasion of apoptotic signals. 
Interactions with pyruvate kinase stimulate the depolymeri-
zation of the MTs [128]. While interactions between βIII-
tubulin and PKM2 in the mitochondria favorably regulates 
the metabolic flux and influences the Warburg effect [129].

MAPs orchestrate MT’s response to hypoxia

The MT undergoes conformational changes in response to 
oxygen deprivation, which may arise from uncontrolled pro-
liferation. Furthermore, there is a sudden drop in polymeri-
zation in anoxic conditions, while hypoxia positively regu-
lates MT polymerization [130, 131]. In hypoxic conditions, 
polymerization is accompanied by detyrosination of tubulins 
and modification of specific metabolic reactions via GSK3β 
inhibition [130]. Simultaneously, rapid phosphorylation of 

MAPs like MAP4, tau, and DCX depolymerizes the MT 
due to hypoxia-induced p38/MAPK pathway [6, 130]. Thus, 
remodeling of the MT in response to hypoxic conditions 
may influence different signaling in the cell, including all 
implicating pathways associated with hypoxic response in 
cancer cells, which subsequently influences the metastatic 
progression of invasive cancer cells (Fig. 2).

Moreover, dynein light chain tctex-type1 (DYNLT1) is 
also a phosphorylation target that results in MT's depolym-
erization in response to hypoxia [130]. When unphospho-
rylated, DYNLT1 protects against the permeabilization of 
the mitochondria by stabilizing the MT to maintain ATP 
production in hypoxic conditions [132]. In addition, βIII-
tubulin directly binds to HIF-1 and HIF-2 via the E-box(50-
RCGTG-3) located at its flanking region [116]. Also, Sox9 
and HIF-2α mediate regulation of βIII-tubulin expression as 
a pro-survival reaction in ovarian cancer. Similarly, invasive 
glioblastoma also responds to hypoxia with the overexpres-
sion of βIII-tubulin stimulated by HIF-2α [118]. Interest-
ingly, a possible mode of regulation can be explained with 
the stabilization of HIF-1α by HuR because this molecule 
also regulates the expression of βIII-tubulin [133]. This may 
explain a complex mechanism in the hypoxia-induced cancer 
cell proliferation via MAPs. Given the relative correlation 
between increased expression of CAPs and HIF stimulation 
initiated by hypoxia, silencing CAPs with targeted genetic 
screening or specific pharmacologic inhibition of their 
downstream effectors can amount to an effective strategy in 
the treatment of specific cancers.

CAPs regulate actin remodeling in response to stress

Hypoxia renders detrimental effects in several pathological 
conditions involving the dysregulation of the actin cytoskel-
eton [134]. For example, MAP-1 light chain 3 (LC3) expres-
sion can be induced by hypoxic stress, and this is charac-
teristic of epithelial ovarian cancer migration and invasion. 
Disruption in LC3 expression affects the actin cytoskeleton 
organization and increases RhoA expression, and it has been 
hyped as a marker of hypoxia-induced metastasis in ovarian 
cancers [135]. Also, disruption in cell to cell contact under 
hypoxic conditions may rely on the formation of polarized 
actin mediating paracellular gaps in the monolayer [136]. 
Reported increase in parallel gap in chick vascular bed, insti-
gated by hypoxia revealed induction of F-actin polymeriza-
tion, which indicated possible causes of leakiness induced 
by hypoxia in epithelial cells [137].

Conversely, ARPs are also susceptible to oxidative stress. 
ARPs like gelsolin impact VDAC and the redox balance 
in cancer cells. Gelsolin’s interaction with Cu/ZnSOD lim-
its the catalytic activities of Cu/ZnSOD and consequently 
elevates superoxide levels, and this disequilibrium can con-
tribute to invasiveness and survival in cancer cells [138]. 
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Studies have reported that hypoxia can induce cytoskeletal 
injury or remodeling via HIF-1α stimulation of the RhoA/
ROCK signaling pathway [139]. Hence, it is safe to assume 

that since the essence of EMT is mainly for cytoskeletal 
remodeling, as hypoxia is capable of inducing EMT via 
RhoA/ROCK signaling pathway [140]. Moreover, the 

Fig. 2  CAPs orchestrate the modification of the cytoskeletal com-
ponents in response to stress to regulate homeostasis and cancer 
progression. 1 Cancer cells respond to different types of stress, in 
the form of genetic, oxidative, mechanical, protein misfolding, and 
radiation, stemming from the environment or targeted therapy. 2 Cells 
respond to these stressors via cytoskeletal remodeling and upregulat-
ing CAPs with respective response signals that initiate a rapid post-
translational modification of CAPs, and subsequent activation of sev-
eral downstream signaling and interactions with specific metabolic 
intermediates, which trigger secondary functions for CAPs leading 
to relative metabolic processes. 3 Aberrant energy generation leads to 

more uncontrolled proliferation and an unstable microtubule results 
in abnormal cell division. 4 The aberrant energy generation in cancer 
cells prompts hyperactivity, and maintenance of each process requires 
homeostasis, another secondary function of specific CAPs; here, 
MAP1 binds to tubulin to promote autophagosome formation, while 
its homolog MAP1S is involved in chaperone-mediated autophagy. 5. 
Failure to effectively regulate the constant demand for energy or cel-
lular response to therapy initiates apoptotic signals which are inter-
cepted by other CAPs via interactions with anti-apoptotic genes lead-
ing to survival
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capping actin protein of muscle Z-line (CapZ) is an actin-
binding protein capable of binding to the barbed end of 
F-actin. The α subunit of CapZ, CapZA1 promotes EMT 
in HCC cells as it regulates F-actin's remodeling [141]. 
Through the RhoA/ROCK signaling pathway in response to 
stress, specific undefined mechanisms are associated with 
the accumulation of thin filaments in support of hypertro-
phy attributed to phosphatidylinositol (4,5) bisphosphate 
(PIP2) expression [142]. Under hypoxic conditions, PIP2 
combines with CapZA1 (via HIF-1α/RhoA/ROCK1 path-
way) to facilitate its release from the F-actin barbed ends 
to mediate actin cytoskeleton remodeling (Fig. 2), which 
propagates EMT in HCC cells [140]. Also, F-actin-capping/
severing proteins including CAPZ and other ARPs like cofi-
lin and gelsolin can influence gene transcription and cell 
proliferation in response to mechanical stress regulated by 
YAP/TAZ activity and localization in cancer cells [143]. In 
essence, CAPZA1 is a potential therapeutic target to inhibit 
the invasion and migration driven by hypoxia in HCC and a 
potential clinical biomarker to predict the outcome of HCC 
patients. Regulating the level of PIP2 in HCC cells may be 
a new method to inhibit HCC invasion and metastasis, and 
this can be replicated in specific tumor types sharing similar 
heterogeneity.

IFs regulate cytoskeletal in response to hypoxia

Regulation of the cytoskeleton in response to hypoxia is not 
limited to ARPs and MAPs. In endothelial cells, hypoxic 
stress triggers several IF-mediated signals via IFAPs as can-
cer cells aggressively remodel the cytoskeleton for exces-
sive energy requirements. As such, vimentin is regulated by 
hypoxia. Exposure of endothelial cells to hypoxic conditions 
initially redistributes vimentin perinuclearly, and this is fol-
lowed by subsequent reformation and prolonged appearance 
than in normoxic conditions. Vimentin phosphorylation is 
also affected under hypoxic conditions by PAK1 activation 
[144]. This may promote adhesive properties and endothelial 
barrier stabilization. Hypoxia also induces keratin IF altera-
tions in the alveolar epithelial-type cells of rats. Na et al. 
reported a time-dependent degradation of keratin 8 and 18 
proteins under hypoxic conditions accompanied by elevated 
ROS generated from the mitochondria, rendering the keratin 
disassembly and subsequent migration, thus, progressing to 
the invasion of neoplastic cells [145].

IFAPs modulate stress response by regulating cellular 
metabolism

Aberrant protein synthesis is also the hallmark of cancer 
survival and an escape route for cancer cells in response 
to stress. During cellular development, cells undergo con-
tinuous modifications of the intracellular milieu, resulting 

in injury or damages to the DNA or RNA synthesis prod-
ucts. Although the consequential damages are manifold, 
ranging from biological stressors, chemical, or mechani-
cally induced stress, the response is however conserved 
and may either be in the form of stress response–gene 
activation or alteration of housekeeping genes [146]. 
Conversely, CAPs are implicated in cellular metabolism 
[147, 148]. With respect to the universal nature and pattern 
of stress response and the protective effects that ensue, 
exposure to a specific form of stress renders a cross-pro-
tective response to other forms of stress [149]. It is safe to 
assume that CAPs may be involved in processes like these 
since key fundamental and emerging concepts indicate that 
modulation of post-translational modifications is a poten-
tial target or mechanism that can be targeted at metabolic 
dysfunctions in cancer cells driven by defective IF proteins 
[59]. Similar features exhibited by IF proteins suggest that 
they should be considered as stress proteins.

IFAPs have been associated with metabolic activities in 
response to cellular stress, and this is a major ammunition 
for cancer progression. Some cytoskeletal protein’s expres-
sion triples in response to specific stress conditions, while 
some CAPs are responsive to both intrinsic and extrinsic 
stresses, which may either be of genetic and endoplasmic 
reticulum stress, mechanical, wound, or metabolic stress 
[150]. IFAPs are implicated in chemokine stimulation, 
oxidative stress, infection, ischemia, electroporation, and 
regeneration of astrocytes, muscle, and skin fibroblasts 
[151, 152]. Failure to successfully aid astrocytes regen-
eration is a current research interest expected to explain 
astrocytes' transformation to glioma cells, as aberrant 
expression of those protective proteins and stress response 
molecules become concentrated and instigates malignancy. 
For instance, KRT17 upregulates protein synthesis and 
cell growth through its binding to adaptor IFAP 14-3-3σ 
by activating the Akt/mTOR pathway incisively without 
affecting other kinases’ activity [153], a process which is 
crucial for glutamine-dependent survival of cancer cells 
[154, 155]. KRT17 also utilizes two amino acid residues 
located at its amino-terminal head domain for serum-
dependent nucleocytoplasmic translocation of 14-3-3σ, 
which concomitantly stimulates mTOR activity (Fig. 2). 
Thus, cell growth and proliferation ensue [153]. Interest-
ingly, phosphorylation of K18 on ser33 also stimulates 
its binding to 14-3-3σ protein, whereas a mutation of this 
ser residue distorts the nucleocytoplasmic distribution of 
the 14-3-3σ, which results in aberrant cytokinesis due to 
imbalanced G2/M phase (a dais for aberrant protein syn-
thesis ensuing from metabolic activities) [156, 157]. It 
is also important to note that the loss of K8/18 leads to 
a reduction in protein synthesis and affects cell size in 
hepatic cells [158].
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CAPs can regulate apoptosis independently 
of mitotic spindle modulation

Interactions between tubulins and apoptotic genes either 
directly or via MAPs further validate the involvement of 
CAPs in apoptosis. These interactions facilitate the final 
stages of cell death in cancer cells. Most drugs designed to 
target the cytoskeleton are mostly attenuators of apoptotic 
signaling. Some cancer cells upregulate the expression of 
bcl2 without the G2/M arrest in resistance to apoptotic sig-
nals transmitted by MT-binding agents targeting the apop-
totic networks in cancer cells [159, 160]. In response, the 
TBAs can phosphorylate bcl2 to render its upregulation 
useless to its effects on apoptosis [161]. Interactions of 
TBAs with CAPs are also implicated in pro-apoptotic sign-
aling. Semaphorin 6A is downregulated in several cancer 
cells, but its interaction with βIII-tubulin in ovarian can-
cer cells initiates resistance to different chemotherapeutics 
[162]. Bim (Bcl-2 interacting mediator of cell death) also 
prevents apoptosis by tacit interaction with MTs via the 
dynein light chain interactions [163]. Its translocation may 
follow bim’s release from this interaction into the mito-
chondria, where it interacts with bcl family members to 
initiate apoptosis [164].

Cellular stress often results in apoptosis induced by 
caspase-mediated degradation of proteins, including IF 
proteins which are substrates for caspases [165, 166]. K8/
K18 are anti-apoptotic in action. Their binding capabili-
ties with TNF-receptor-associated death domain (TRADD) 
are deemed the rationale for the vast multifactorial effects 
in blocking apoptosis [83]. Moreover, post-translational 
modifications like the phosphorylation of Keratins are cru-
cial for liver injury management and prevention of apop-
tosis [150], which is a prerequisite for oncogenesis. Kera-
tin 8 has also been linked to important signaling effects 
in the immune system. Dong et al. recently reported that 
downregulating keratin 8 in mice results in uncontrollable 
innate inflammatory response rendering them susceptible 
to bacterial infection, tissue damage, increased death rate, 
and reduced survival [167]. The ability to limit inflam-
matory response is synonymous with cancer cells’ abil-
ity to co-opt some of the relevant signaling molecules of 
the innate immune system, which triggers the fostering of 
novel anti-inflammatory therapeutic intervention. How-
ever, translating these effects on inflammation goes both 
ways. On the one hand, reduced expression of Keratin 8 
may be toxic for a normal body, while on the other hand, 
we could deduce that the same effect can fuel oncogenesis 
and/or maintain cancer cells development; this is feasi-
ble because of the resulting uncontrollable inflammatory 
immune response (cancer nature) resulting from Keratin’s 
downregulation.

Conclusion

Cellular dynamics is a multistep process that relies on 
cytoskeletal network coordination in space and time [58]. 
Studies directed toward the cytoskeletal components and 
interacting molecules unraveled key signaling pathway 
effectors activated via CAPs to mediate cancer cell migra-
tion, invasion, and subsequent metastasis [168]. Similarly, 
there is existing evidence progressively pointing toward 
the cytoskeleton and the changes in the composition of its 
components and associated proteins as important parame-
ters regulating intricate signaling during cell development 
and tumor invasion. This has also led to vast discoveries 
on the crosstalk between these cytoskeletal components in 
some cancer cells to initiate cancer invasion and division 
[169]. The cancer machinery hijacks several typical signal-
ing cascades in normal tissues and subverts these functions 
to their advantage, first for oncogenesis and then for prolif-
eration and survival. Recent works have revealed that sev-
eral CAPs involved in intricate signaling in non-neoplastic 
tissues are implicated in cancer cells and are easily sub-
vertible by the cancer machinery to promote oncogenesis, 
invasion, apoptosis, metastasis, or drug resistance. Further 
studies also revealed that the normal processes coordinated 
by CAPs are implicated in these malignancies either as 
a result of aberrant expression of these molecules or by 
failure to exert their protective or traditional functions, 
leading to uncontrollable signaling boost that stimulates 
those critical processes promoting proliferation, migration, 
and relative metabolic events that trigger multiple adaptive 
responses (like glycolysis, hypoxia, glutaminolysis, and 
ATP generation) (Fig. 2).

Tissues and cells are constantly subjected to stress-
ful conditions, meaning that cell components, including 
proteins, organelles, and DNA, can be damaged. These 
stresses are both intrinsic (e.g., genetic and endoplas-
mic reticulum stress) and extrinsic/environmental [e.g., 
heat, toxin or radiation, mechanical, wound and regenera-
tive, infection, metabolic (e.g., hypoxia and autophagy), 
osmotic and oxidative] [77], resulting in abnormal cell 
growth. These malignancies require abundant energy to 
maintain those uncontrollable events. Hence, cancer cells' 
constant demand for energy prompts extended metabolic 
activities toward unusual energy sources, including those 
controlled by CAPs. In some cases, these metabolic func-
tions are natural, and in other cases, aberrant expression 
of those signaling products of stress response associated 
with the cytoskeleton casts additional roles for CAPs. 
Hence, the initiation of more comprehensive signaling 
events linked with different subcellular compartments 
ensues. Most especially those factors that are implicated 
in evasive abilities and drug-resistant features of cancer 
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cells. Therefore, our collection of extensive studies pro-
jects secondary roles for CAPs beyond the cytoskeleton's 
polymerization and stabilization.
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