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Abstract
Helicobacter pylori-mediated gastric carcinogenesis involves upregulation of the E3 ubiquitin ligase Siah2 and its phospho-
rylation-mediated stabilization. This study elucidates a novel mechanism of oxidative stress regulation by phosphorylated 
Siah2 in H. pylori-infected gastric epithelial cancer cells (GECs). We identify that H. pylori-mediated Siah2 phosphorylation 
at the 6th serine residue (P-S6-Siah2) enhances proteasomal degradation of the 78-kDa glucose-regulated protein (GRP78) 
possessing antioxidant functions.  S6 phosphorylation stabilizes Siah2 and P-S6-Siah2 potentiates H. pylori-mediated reactive 
oxygen species (ROS) generation. However, infected S6A phospho-null Siah2-expressing cells have decreased cellular GRP78 
level as surprisingly these cells release GRP78 to a higher extent and accumulate significantly higher ROS than the wild type 
(WT) Siah2 construct-expressing cells. Ectopic expression of GRP78 prevents the loss of mitochondrial membrane potential 
and cellular ROS accumulation caused by H. pylori. H. pylori-induced mitochondrial damage and mitochondrial membrane 
potential loss are potentiated in Siah2-overexpressing cells but these effects are further enhanced in S6A-expressing cells. 
This study also confirms that while phosphorylation-mediated Siah2 stabilization optimally upregulates aggresome accu-
mulation, it suppresses autophagosome formation, thus decreasing the dependency on the latter mechanism in regulating 
cellular protein abundance. Disruption of the phospho-Siah2-mediated aggresome formation impairs proliferation of infected 
GECs. Thus, Siah2 phosphorylation has diagnostic and therapeutic significance in H. pylori-mediated gastric cancer (GC).

Keywords Aggresome · Autophagosome · BiP/GRP78 · E3 ubiquitin ligase · Siah · Oxidative stress

Abbreviations
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Introduction

One of the major factors responsible for human gastric 
cancer (GC) is colonization of the stomach by Helicobac-
ter pylori, a microaerophilic, Gram-negative spiral bac-
terium which has been classified as a class I carcinogen 
[1]. H. pylori infection induces oxidative stress [2, 3]. 
Oxidative stress is associated with increased ROS pro-
duction. Increased generation of ROS is the host cell’s 
primary attempt to eliminate the bacterium from the sys-
tem. Although moderate level of ROS is essential for nor-
mal functioning of cells, excessive ROS may lead to many 
pathological conditions. Continuous generation of ROS 
increases DNA damage, impairs DNA repair processes 
and induces apoptosis. If a host cell with damaged DNA 
manages to evade apoptosis, that cell is more prone to 
become cancerous. Thus, ROS are key contributors in the 
progression of GC [4].

E3 ubiquitin ligases regulate ROS generation [5]. For 
example, HECT-type E3 ubiquitin ligase ITCH degrades 
thioredoxin-interacting protein, an inhibitor of the anti-
oxidant thioredoxin and helps ameliorate ROS level in rat 
cardiomyocytes [6]. The E6AP E3 ubiquitin ligase controls 
ROS levels by regulating the expression of Prx1 in mouse 
embryo fibroblasts [5]. Knockdown of the E3 ubiquitin 
ligase c-CBL leads to ROS generation in cutaneous T-cell 
lymphoma [7]. The RING-type E3 ubiquitin ligase seven 
in absentia homolog 2 (Siah2) is also involved in ROS gen-
eration under hypoxia [8] and hypoglycaemia [9]. Siah2 
promotes GC and several other cancers, such as breast, 
colon and stomach cancer [10]. Phosphorylated Siah2 
enhances invasion and migration of cancer cells [11, 12]. 
However, Siah2 and its phosphorylation-mediated ROS 
regulation during H. pylori infection remain unexplored. 
ROS regulates multiple cellular processes [13, 14]. ROS-
mediated protein modifications lead to the generation of 
protein aggregates in the cell that agglomerate and form 
perinuclear inclusion bodies—aggresomes [15, 16]. 
Aggresomes are induced in oxidative stress [17] and are 
substrates for macroautophagy [18, 19]. The connection 
of aggresome formation with ROS regulation makes it an 
interesting event to study in Helicobacter-mediated GC.

Suppression of GRP78 has been implicated in the 
upregulation of ROS in pancreatic cancer cells [20]. In 
addition, GRP78 protein promotes aggresome delivery to 
autophagosomes in multiple myeloma cells and protea-
some blocking results in GRP78 upregulation [21]. This 
study unravels a novel mechanism wherein H. pylori-
mediated Siah2 phosphorylation is found to downregu-
late GRP78, increase ROS generation, enhance aggresome 
formation as well as proliferation of H. pylori-infected 
GECs. Our results consistently present GRP78 decrease 

and P-S6-Siah2 increase as prominent features of Helico-
bacter-infected human and mouse GC tissues. These find-
ings point to the importance of P-S6-Siah2 as a potential 
diagnostic and therapeutic target in H. pylori-mediated 
gastric carcinogenesis.

Materials and methods

Reagents, bacteria and cell culture

GECs (MKN45 and AGS), H. pylori (strains 26695 and 
8-1) and H. felis (ATCC; VA, USA) were maintained as 
described previously [10, 22]. For infection, bacteria were 
inoculated in Brucella broth (BD Biosciences, NJ, USA; Cat. 
No. 211088) supplemented with 10% fetal bovine serum 
(HiMedia, Nashik, India; Cat. No. RM9970). Cells were 
infected with 200 multiplicity of infection (MOI) for 12 h, if 
not specified otherwise. Proteasomal degradation was inhib-
ited using MG132 (Millipore-Sigma, MO, USA; Cat. No. 
M7449-200UL). Catalase (Sigma-Aldrich, MO, USA; Cat. 
No. C1345) and N-acetyl-l-cysteine (NAC; Sigma-Aldrich; 
Cat. No. A7250-50G) were used in assays to examine ROS. 
Autophagy inhibitor Bafilomycin A1 (Cell Signaling Tech-
nology, MA, USA; Cat. No. 54645) and microtubule polym-
erization inhibitor nocodazole (Sigma-Aldrich; Cat. No. 
M1404) were also used in this study.

Expression plasmids and site‑directed mutagenesis

Eukaryotic expression vector pcDNA3.1+ (Thermo Fisher 
Scientific, IL, USA), the WT human siah2 (gene ID: 
6478) construct (by Origene Technologies, MD, USA) and 
pDsRed2-Mito (Clontech, CA, USA; Cat. No. 632421) were 
purchased. siah2 phospho-null mutants S6A and T279A 
were generated by site-directed mutagenesis from the WT 
siah2 construct using specific primers as described earlier 
[12]. pcDNA3.1(+)-GRP78/BiP (grp78) was a gift from Dr. 
Richard C. Austin (Addgene plasmid #32701) [23].

Transfection and generation of stable cells

Lipofectamine 3000 and P3000 reagents (Invitrogen, CA, 
USA; Cat. No. L3000015) were used for transfection and 
generation of stable cells following standard protocols [10, 
12, 22]. To select stably transfected clones, G418 solution 
(Millipore-Sigma; Cat. No. G8168-10ML) was used. Cells 
were transfected with human control siRNA (Santa Cruz 
Biotechnology, TX, USA; Cat. No. sc-37007), human grp78 
siRNA (Santa Cruz Biotechnology; Cat. No. sc-29338), 
human control siRNA (Origene Technologies; Cat. No. 
SR30004) and human siah2 siRNA (Origene Technologies; 
Cat. No. SR304370) using Lipofectamine 3000.
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Immunoblotting and co‑immunoprecipitation 
assays

Whole cell lysates were subjected to SDS-PAGE followed by 
transfer onto the PVDF membrane. P-Ser (Sigma-Aldrich; 
Cat. No. P5747), P-Thr (Cell Signaling Technology; Cat. 
No. 9386S), CoxIV (Cell Signaling Technology; Cat. No. 
4850S), custom-prepared human P-S6-Siah2 (Bioklone Bio-
tech Pvt. Ltd., Chennai, India), GAPDH (Abgenex, Bhu-
baneswar, India; Cat. No. 10-10011), GRP78 (Abcam, MA, 
USA; Cat. No. ab21685), Siah2 (Santa Cruz Biotechnology; 
Cat. No. sc-5507), ubiquitin (Cell Signaling Technology; 
Cat. No. 3936P) and LC3B (Cell Signaling Technology; Cat. 
No. 3868) primary antibodies were used. The specificity of 
the custom-prepared P-S6-Siah2 antibody was assessed by 
performing western blotting of cell lysates of uninfected 
and infected pcDNA3.1+, Siah2 WT, S6A and T279A 
stably-expressing MKN45 cells. All blots were detected as 
described earlier [10, 12]. ImageLab software (Bio-Rad Lab-
oratories; CA, USA; Cat. No. CCK003-1000) was used for 
densitometric analysis. Co-immunoprecipitation of whole 
cell lysates was performed using Siah2 antibody and goat 
IgG (Santa Cruz Biotechnology; Cat. No. sc-2755) was used 
to determine specificity.

Cytoplasmic and mitochondrial fractionation

Cytoplasmic and mitochondrial fractions of MKN45 cells 
were isolated following previously-described protocol [24].

ROS detection

0.166 ×  106 AGS or MKN45 cells were either left uninfected 
or infected with H. pylori. Cells were then washed with 1X 
PBS and incubated with 1 µM 2, 7-dichlorodihydrofluores-
cein diacetate (DCFDA; Sigma-Aldrich; Cat. No. D6883) for 
1 h or with 5 µM CellROX Deep Red reagent (Invitrogen, 
USA; Cat. no. C10422) for 30 min at 37 °C in the dark. Cells 
were fixed using 4% paraformaldehyde (PFA) for 10 min 
followed by nuclear counterstaining with 4′,6-diamidino-
2-phenylindoledihydrochloride (DAPI; Invitrogen; Cat. No. 
D3571). ROS levels were detected by fluorescence micros-
copy (Nikon, Tokyo, Japan). Images were taken from three 
different fields for each biological repeat and the mean fluo-
rescence intensity indicative of ROS levels were calculated.

Fluorescence microscopy and image analysis

Uninfected or infected 0.166 ×  106 AGS or MKN45 cells 
were fixed using 4% PFA. Cells were permeabilized with 
0.1% Triton X-100 in 1X PBS followed by blocking with 
5% bovine serum albumin solution for 1 h at RT followed by 
incubation with the desired primary antibodies for overnight 

at 4 ºC. Incubation with specific Alexa Fluor-tagged second-
ary antibodies (Invitrogen) followed by counterstaining with 
DAPI was performed. Images were captured using either 
Nikon Eclipse TiU/Eeclipse Ni-E fluorescence microscopes 
(Nikon) or Leica DMi8 confocal microscope (Leica, Ger-
many). Images were processed and analyzed using either 
the NIS Advanced Research software (Nikon) or Fiji [25].

Human gastric biopsy and murine tissue collection

Human and mouse gastric tissues were collected according 
to previously-established protocols [12, 26] and were ethi-
cally approved by NISER. Tissues were fixed with 4% PFA 
and cryosectioned at 5 µm thickness.

Enzyme‑linked immunosorbent assay (ELISA)

Supernatants from uninfected or infected 0.166 ×  106 empty 
vector, WT or S6A siah2-expressing MKN45 stable cells 
were collected and were used for assays. ELISA was per-
formed using GRP78/BiP ELISA kit (Enzo Life Sciences, 
NY, USA; Cat. No. ADI-900-214) and results were analyzed 
using a four parameter logistic curve fitting program [27].

Aggresome formation

Empty vector, WT or S6A siah2-expressing MKN45 sta-
ble cells were plated and processed as described under the 
microscopy section. Cells were stained using aggresome 
detection kit (Abcam; Cat. No. ab139486) following the 
manufacturer-recommended protocol and were imaged using 
Leica DMi8 confocal microscope (Leica, Germany).

MTT assay

Uninfected or infected 1 ×  104 empty vector, WT or S6A 
siah2-expressing MKN45 stable cells were quantified for 
cellular proliferation using EZcount MTT cell assay kit 
(HiMedia; Cat. No. CCK003-1000).

Mitochondrial membrane potential (Δψm) analysis

1 ×  106 pcDNA3.1+, siah2 WT and siah2 S6A stably-
expressing MKN45 cells were either left uninfected or were 
infected with H. pylori. Post infection, cells were loaded with 
100 μM of tetramethylrhodamine, methyl ester (TMRM; 
Invitrogen, Cat. No. T668) and incubated for 30 min in  CO2 
incubator. Fluorescence from live cells was observed under 
Olympus FluoView FV300 confocal microscope (Olympus, 
Japan) and images were processed using Fiji [25].
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Statistical analysis

Statistical significance was determined using unpaired two-
tailed t test, one-way, two-way or three-way ANOVA followed 
by Tukey’s post hoc analysis. P < 0.05 was considered sta-
tistically significant. Statistical analysis was performed using 
GraphPad Prism software (Version 7; GraphPad Software Inc., 
CA, USA).

Results

Siah2 and its phosphorylation regulate ROS 
generation

S6 and  T279 phosphorylation of Siah2 increases its stabil-
ity and promotes GC [12]. To elucidate the role of Siah2 
and its phosphorylation in H. pylori-mediated ROS gen-
eration, MKN45 cells stably-expressing the empty vector 
(pcDNA3.1+), siah2 WT, siah2 phospho-null mutants S6A 
and T279A were used. Cells were left uninfected or were 
infected with 200 MOI of H. pylori for 12 h followed by 
ROS detection. This MOI and time point were used for all 
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following experiments, if not stated otherwise. Widefield 
fluorescence microscopy followed by quantification showed 
that siah2 significantly enhanced H. pylori-mediated ROS 
generation as compared to the empty vector-expressing 
stable cells. Interestingly, ROS generation was further 
increased in siah2 phospho-null mutant S6A-expressing 
cells than siah2 WT and siah2 T279A stable cells (Fig. 1A). 
These data established the importance of Siah2 and its phos-
phorylation at  S6 in regulating ROS generation. Paired west-
ern blot data depicted P-Ser, P-Thr and total Siah2 levels 
in pcDNA3.1+, siah2 WT, siah2 S6A and siah2 T279A 
MKN45 stable cells from the same batch of the cells that 
were used to generate the micrographs (Fig. 1B). The west-
ern blot result also reaffirmed one of our previous findings 
that identified phosphorylation at Ser residue to be important 
in stabilizing Siah2 [12]. Due to the observed importance 
of Siah2 Ser phosphorylation in ROS regulation, only this 
phospho-null mutant was considered for further study.

To identify the factor(s) responsible for the altered ROS 
production under the influence of Siah2, MKN45 cells were 

transfected with the empty vector or siah2 overexpression 
plasmid for 36 h and infected with H. pylori. Whole cell 
lysates were immuno-precipitated using Siah2 antibody. 
Lysates were subjected to SDS-PAGE followed by staining 
with Coomassie brilliant blue R-250. Bands were excised 
and analyzed by LC–MS/MS. GRP78, a cellular redox regu-
lator [20, 28], was identified as the most prominent Siah2-
interacting protein (Fig. S1A). GRP78 protein contains 
multiple “Siah degron motifs” which is also suggestive of 
possible GRP78-Siah2 interaction (Fig. S1B). Co-immuno-
precipitation assay of whole cell lysates using Siah2 anti-
body from uninfected and infected MKN45 cells followed 
by western blotting confirmed of GRP78-Siah2 interaction 
and increased GRP78 downregulation in H. pylori-infected 
MKN45 cells (Fig. 1C).

H. pylori infection decreases GRP78

To investigate the status of GRP78 in H. pylori-infected 
GECs, MKN45 cells were challenged with H. pylori 26695 
(MOI 200) for various durations. Representative western 
blot result (n = 3) showed that GRP78 decrease was opti-
mal at 12 h post-infection (Fig. 1D). Further, to determine 
the optimal MOI to decrease GRP78, MKN45 cells were 
infected with various MOIs of H. pylori for 12 h. 200 MOI 
was optimal for GRP78 protein decrease as shown by a rep-
resentative (n = 3) western blot (Fig. 1E). The presence or 
the absence of H. pylori cytotoxin-associated gene patho-
genicity island (cag PAI) is associated with the degree of 
GC pathogenesis [10]. To unravel the effect of cag PAI on 
GRP78 protein, MKN45 cells were infected with a reference 
cag PAI (+) strain 26695 and cag PAI (−) strain 8–1 at 200 
MOI for 12 h. Representative western blot (n = 3) confirmed 
that GRP78 decrease was independent of the cag PAI status 
of H. pylori (Fig. 1F). To elucidate the status of GRP78 in 
adenocarcinoma and metastatic GC, human gastric antral 
biopsy tissues were immuno-stained using GRP78 anti-
body. In comparison with their paired control tissues, both 
adenocarcinoma and metastatic tissues exhibited decreased 
GRP78 protein which were indicative of sustained GRP78 
decrease in H. pylori-mediated GC (Fig. S1C).

GRP78 is marked for proteasomal degradation 
by Siah2

Siah2 is known to modulate the abundance of its interact-
ing partners [29, 30]. Therefore, we were keen to investi-
gate whether GRP78 decrease was in effect Siah2-mediated 
or not. For this, pcDNA3.1+ and siah2 WT MKN45 sta-
ble cells were infected. Confocal microscopy showed that 
GRP78 significantly decreased after H. pylori infection and 
was further decreased in siah2 WT-expressing infected cells 
(Fig. 2A). To examine proteasomal involvement in GRP78 

Fig. 1  Siah2 modulates ROS and interacts with GRP78 in H. pylori-
infected GECs. A Micrographs depicting ROS generation in unin-
fected or H. pylori-infected MKN45 pcDNA3.1+, siah2 WT, siah2 
phospho-null mutant S6A and T279A stably-expressed cells. Scale 
bars = 10 μm. The graph represents fold changes in ROS and depicts 
mean ± sem values. n = 3. Statistical significance is determined by 
two-way ANOVA followed by Tukey’s post hoc analysis. **P < 0.01, 
***P < 0.001. B Above, representative western blots showing the 
level of P-Ser and P-Thr in uninfected or H. pylori-infected MKN45 
pcDNA3.1+, siah2 WT, siah2 phospho-null mutant S6A and T279A 
stably-expressed cells. Below, Bar graphs represent level of P-Ser, 
P-Thr and Siah2 in these cells. Graphs = mean ± sem. Statistical sig-
nificance is determined by two-way ANOVA followed by Tukey’s 
post hoc analysis (n = 3). *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001. Western blot showing the status of P-Ser, P-Thr and 
total Siah2 in uninfected and H. pylori-infected MKN45 pcDNA3.1+, 
siah2 WT, siah2 S6A and siah2 T279A stable cells. GAPDH is used 
as a loading control. C Western blot of the immuno-complexes rep-
resenting the interaction of Siah2-GRP78 in uninfected and infected 
MKN45 cell whole cell lysates co-immuno-precipitated using Siah2 
antibody. Non-specific band is used as the loading control. The input 
lanes are shown alongside to ascertain different protein expression 
level. D Western blot of the whole cell lysates from uninfected and 
infected (200 MOI) MKN45 cells showing GRP78 protein level at 
the indicated time points. GAPDH is used as a loading control (left). 
Bar graphs represent the change in GRP78 protein levels after vari-
ous time intervals of infection (right). Graphs = mean ± sem. Sta-
tistical significance is determined by two-way ANOVA followed 
by Tukey’s post hoc analysis (n = 3). *P < 0.05. E Immunoblot rep-
resenting GRP78 protein in whole cell lysates of MKN45 infected 
with 100, 200 and 300 MOIs for 12  h. GAPDH = loading control 
(left). Bar graphs represent GRP78 protein status at various MOIs 
(right). Graphs = mean ± sem. Statistical significance is  determined 
by one-way ANOVA (n = 3). *P < 0.05; ***P < 0.001. F West-
ern blots depicting GRP78 status in MKN45 cells infected with H. 
pylori cag PAI ( +) 26,695 and cag PAI (-) 8–1 strains (left). Bar 
graphs showing the cag PAI-independent decrease of GRP78 (right). 
Graphs = mean ± sem. Statistical significance is determined by one-
way ANOVA (n = 3). ***P < 0.001

◂
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Fig. 2  Proteasomal degradation of GRP78 is Siah2-mediated in H. 
pylori-infected GECs. A Confocal micrographs illustrating the lev-
els of GRP78 protein in uninfected and infected pcDNA3.1+ and 
siah2 WT MKN45 stable cells. Scale bars represent 5 μm (left). Bar 
graphs represent fold change in the immunofluorescence of GRP78 
(right). Graphs = mean ± sem. n = 3. Statistical significance is deter-
mined by two-way ANOVA followed by Tukey’s post hoc analysis. 
****P < 0.0001. B Micrographs representing GRP78 protein lev-
els in untreated, DMSO-treated and MG132-treated uninfected or 
infected pcDNA3.1+ and siah2 WT stably expressing MKN45 cells. 
Scale bars represent 5  μm. Graphs represent fold change in GRP78 
levels. Graphs = mean ± sem. n = 3. Statistical significance is deter-
mined by three-way ANOVA followed by Tukey’s post hoc analysis. 
****P < 0.0001. C Western blot representing ubiquitin aggregates in 
H. pylori-infected and MG132-treated MKN45 cells. Arrow indicates 
the position of ubiquitinated-GRP78 (left). Re-probed blots showing 

GRP78 status in H. pylori-infected and MG132-treated MKN45 cells 
(right). GAPDH = loading control. Bar graph represents GRP78 pro-
tein rescue in MG132-treated and H. pylori-infected MKN45 cells. 
Statistical significance is determined by one-way ANOVA (right). 
Graphs = mean ± sem. n = 3. **P < 0.01. D Western blot depict-
ing autophagy-independent GRP78 decrease and Siah2 increase as 
assessed by infecting MKN45 cells in the presence or the absence of 
10  nM autophagy inhibitor bafilomycin A1. GAPDH is used as the 
loading control. E Western blot of the whole cell lysates from unin-
fected and infected control or siah2 siRNA-transfected MKN45 cells 
depicting the levels of GRP78 and Siah2. GAPDH = loading con-
trol. Bar graphs represent GRP78 protein in the similar setup. Sta-
tistical significance is determined by two-way ANOVA followed by 
Tukey’s post hoc analysis. Graphs = mean ± sem. n = 3. **P < 0.01, 
***P < 0.001
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downregulation, empty vector and siah2 WT MKN45 sta-
ble cells were treated with 50 µM MG132 in the presence 
or the absence of H. pylori infection. Confocal microscopy 
showed that GRP78 was significantly downregulated in WT 
Siah2-expressing H. pylori-infected cells and MG132-treat-
ment could significantly rescue GRP78 from degradation 
(Fig. 2B). These results confirmed that GRP78 decrease in 
H. pylori-infected GECs was Siah2-dependent and proteas-
ome-mediated. As polyubiquitination leads to proteasomal 
degradation, we further assessed the polyubiquitination sta-
tus of GRP78. For this, MKN45 cells were infected with H. 
pylori in the presence or absence of 50 µM MG132. Western 
blots probed using anti-ubiquitin antibody found ubiquitin 
accumulation in H. pylori-infected and MG132-treated cells. 
This result indicated that the protein abundance of GRP78 
was not mediated by ubiquitination-mediated proteasomal 
degradation. Membranes were then re-probed for GRP78 
and GAPDH, revealing GRP78 rescue in MG132-treated H. 
pylori-infected cells (n = 3). This reversal of downregulation 
was statistically significant (Fig. 2C). As cellular protein 
abundance is regulated majorly by two pathways: autophago-
some formation and proteasomal degradation [31–33], we 
wanted to examine the involvement of autophagy in GRP78 
decrease. MKN45 cells were treated with 10 nM bafilomycin 
A1, a well-known inhibitor of lysosomal acidification, along 
with H. pylori infection for 12 h. A representative western 
blot (n = 3) showed that H. pylori-mediated GRP78 decrease 
was macroautophagy-independent (Fig. 2D). Interestingly, 
bafilomycin A1 treatment potentiated GRP78 degradation 
in both H. pylori-infected and uninfected cells. This result 
could be explained by enhanced Siah2 level in the presence 
of bafilomycin A1.

To identify the role of siah2 suppression on GRP78 pro-
tein level, MKN45 cells were transfected with siah2 siRNA 
for 36 h followed by H. pylori infection. A representative 
western blot (n = 3) and an accompanying graph showed 
that H. pylori-mediated proteasomal degradation of GRP78 
was significantly hampered in siah2 siRNA-transfected and 
H. pylori-infected GEC (Fig. 2E). Taken together, these 
results confirmed that GRP78 proteasomal degradation is 
Siah2-mediated.

GRP78 decrease is associated with human 
and mouse Helicobacter‑induced GC

Phosphorylation of Siah2 at  S6 is a prominent feature of Hel-
icobacter-infected human and mouse gastric epithelia [12]. 
In this context, we were interested to find out the correlation 
of GRP78 with Siah2 and its phosphorylation. Human GC 
biopsy samples from the gastric antrum (urease test-positive) 
were obtained from consenting patients (n = 9). For animal 
samples, uninfected (n = 16) or H. felis-infected (n = 16) 
C57BL/6 mouse were euthanized after 18 months and their 

gastric tissues were collected. Tissues were immuno-stained 
for Siah2, P-S6-Siah2 and GRP78. Fluorescence microscopy 
revealed prominent decrease in GRP78 protein level paired 
with enhanced Siah2 and P-S6-Siah2 in human metastatic 
GC samples (Fig. 3A). Similar results were also observed 
in uninfected and H. felis-infected murine gastric tissues 
(Fig. 3B). These findings further asserted the association of 
GRP78 decrease with P-S6-Siah2 increase in Helicobacter-
infected GC.
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Fig. 3  Decreased GRP78 and increased Siah2 are  features of Heli-
cobacter-infected gastric epithelia. A Human antral metastatic GC 
biopsy tissues depicting the status of GRP78, P-Ser6-Siah2 and Siah2. 
B Uninfected and H. felis-infected mouse gastric tissue sections rep-
resenting GRP78 decrease and P-Ser6-Siah2 or Siah2 increase. Scale 
bars = 100 μm
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GRP78 downregulates H. pylori‑induced ROS 
generation in GECs

GRP78 regulates cellular ROS level [20]. However, the role 
of GRP78 in the regulation of ROS in H. pylori-infected 
GECs remains unknown. Since one of the major ROS gen-
erated by H. pylori is hydrogen peroxide  (H2O2) [2], we 
aimed to identify the contribution of  H2O2 in the H. pylori-
mediated pool of ROS. For this, empty vector or grp78-
expressing stable AGS cells were pre-treated with 350 units/
ml of catalase, a  H2O2 scavenger, 1 h prior to H. pylori infec-
tion and cells were incubated with DCFDA, a ROS-detecting 
fluorogenic dye. H. pylori-induced ROS was significantly 
lowered by GRP78 which was further potentiated by cata-
lase confirming the formation of  H2O2 in H. pylori-infected 
GECs (Fig. 4A). The accompanying western blot showed 
the level of GRP78 in transfected cells with or without infec-
tion. The role of grp78 in H. pylori-induced ROS regulation 
was further assessed by suppressing grp78. For this, one set 
of AGS cells were transfected with either control siRNA 
or grp78 siRNA followed by infection and another set was 
treated with catalase followed by ROS detection. ROS gen-
eration was significantly upregulated in grp78-suppressed 
cells as compared to the control siRNA-transfected cells. 
Catalase treatment could suppress the ROS upregulated by 
H. pylori in grp78-suppressed cells (Fig. 4B). Paired western 
blot confirmed the status of GRP78 suppression after siRNA 
transfection and infection. As we already found that suppres-
sion of siah2 could rescue GRP78 (Fig. 2E), next we wanted 
to understand the effect of siah2 suppression on ROS gen-
eration in H. pylori-infected GECs. For this, AGS cells were 
transfected with the control and human siah2 siRNA for 36 h 
followed by H. pylori infection. A similar setup of cells was 
treated with catalase. Micrographs showed that ROS level 
decreased in siah2 siRNA-transfected cells as compared with 
the control siRNA-transfected cells and catalase-treated cells 
exhibited significantly decreased ROS level (Fig. 4C). The 
accompanying western blot showed the status of Siah2 after 
siRNA transfection followed by infection. Taken together, 
these findings confirmed that Siah2-mediated GRP78 down-
regulation was crucial in the regulation of ROS generation 
in H. pylori-infected GECs. Significant suppression of ROS 
after catalase treatment also confirmed that  H2O2 generation 
was predominant in H. pylori-infected cells.

GRP78 and Siah2 localize to mitochondria in H. 
pylori‑infected GECs

ROS generation takes place during oxidative metabolism 
in mitochondria [34]. GRP78 gets localized in mitochon-
dria and regulates ROS under various conditions [35, 36]. 
Mitochondrial function and homeostasis are also regulated 
by Siah2 [37–39], but its mitochondrial localization in H. 

pylori-infected GECs remains unknown. To explore this, 
uninfected or infected pDsRed2-Mito-expressing AGS stable 
cells were used to enable consistent visualization of mito-
chondria. Fluorescence micrographs showed that P-S6-Siah2 
and Siah2 increased in mitochondria of infected cells but 
mitochondrial GRP78 was downregulated in infected cells 
as compared to uninfected cells (Fig. 5A). Further, MKN45 
cells were infected with H. pylori followed by the mitochon-
drial and cytoplasmic fractionation. Representative western 
blots (n = 3) of mitochondrial and cytoplasmic fractions 
exhibited that P-S6-Siah2 or Siah2 significantly increased 
and GRP78 significantly decreased in both the subcellular 
fractions after H. pylori infection (Fig. 5B). Collectively, 
these results confirmed mitochondrial localization of P-S6-
Siah2, Siah2 and GRP78 in H. pylori-infected GECs. Speci-
ficity of the custom-made P-S6-Siah2 antibody was assessed 
(n = 3) by performing western blot using whole cell lysates 
prepared from the uninfected and infected MKN45 stably-
expressing pcDNA3.1+, siah2 WT, siah2 S6A and siah2 
T279A cells. Results indicated decreased level of P-S6-Siah2 
in case of siah2 S6A cells as compared to siah2 WT lanes 
(Fig. 5C).

P‑Siah2 regulates mitochondrial morphology 
and GRP78 secretion

ROS imbalance alters mitochondrial morphology [40, 41]. 
We were eager to investigate whether Siah2 phosphorylation, 
which regulates ROS generation, affects the tubulo-reticu-
lar morphology of mitochondria. To examine this further, 
pDsRed2-Mito-expressing AGS stable cells were transfected 
with empty vector, siah2 WT and siah2 S6A overexpres-
sion plasmids followed by infection with H. pylori. Confocal 
micrographs (n = 3) showed that the tubulo-reticular mor-
phology of mitochondria was disturbed and became smaller 
after H. pylori infection. Cells transfected with siah2 S6A 
exhibited the most damaged mitochondria after H. pylori 
infection. Mitochondrial stress, assessed by increased mito-
chondrial roundness and circularity, was also maximum in 
siah2 S6A-transfected cells after infection (Fig. 6A). These 
results confirmed that abrogation of Siah2  S6 phosphoryla-
tion significantly disrupted mitochondrial morphology. 
ROS is strongly correlated with changes in the Δψm [42]. 
To assess changes in the Δψm of uninfected and infected 
pcDNA3.1+, siah2 WT and siah2 phospho-null mutant S6A 
cells, these cells were treated with TMRM and image acqui-
sition was done. Confocal microscopy followed by quantita-
tion revealed that siah2 stable cells maximally retained the 
Δψm which was indicative of active/healthy mitochondria. 
(Fig. S2). The level of ROS in these cells were consistent 
with these findings (Fig. S3).

The effect of Siah2 S6A mutant on mitochondrial stress 
noted in Fig. 6A necessitated the evaluation of GRP78 in 
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Fig. 4  GRP78 is crucial in the regulation of ROS in H. pylori-
infected GECs. A Micrographs depicting ROS generation in unin-
fected or H. pylori-infected (200 MOI, 12 h) empty vector and grp78 
stably-expressing AGS cells. Cat+/Cat− refer to catalase-treated/cat-
alase-untreated cells, respectively. Western blots represent the status 
of GRP78 in uninfected or infected empty vector and grp78 stably-
expressing AGS cells. GAPDH = loading control. Graphs represent 
fold change in ROS generation. B Fluorescence microscopy images 
representing ROS generation in AGS cells transfected with control 
and grp78 siRNA for 36 h followed by 12 h of H. pylori infection. 
Cat+/Cat− refer to catalase-treated/catalase-untreated cells, respec-
tively. Western blots represent the status of GRP78 protein expression 

after grp78 suppression and H. pylori infection. GAPDH = loading 
control. Fold change in ROS generation is represented by bar graphs. 
C Micrographs depicting ROS generation in uninfected or infected 
control and siah2 suppressed AGS cells. Cat+/Cat− refer to catalase-
treated/catalase-untreated cells, respectively. Western blots represent 
the status of Siah2 protein expression in the same experimental setup. 
GAPDH = loading control. Graphs represent fold change in ROS gen-
eration. For all images, scale bars = 10  μm. Graphs = mean ± sem. 
n = 3. Statistical significance is  determined by three-way ANOVA 
followed by Tukey’s post hoc analysis. **P < 0.01, ***P < 0.001, 
****P < 0.0001
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S6A-expressing cells. For this, empty vector, siah2 WT 
and siah2 phospho-null mutant-expressing stable MKN45 
cells were infected with H. pylori. Western blot analy-
sis of the whole cell lysates showed that GRP78 protein 
decreased with siah2 WT overexpression. Surprisingly, 
despite the low level of Siah2 and P-S6-Siah2 in S6A 
cells, GRP78 remained significantly low in Siah2 S6A 
cells (Fig. 6B). This result explained the reason behind 
the upregulation of ROS in Siah2 S6A stable cells but 
opened a new question- whether Siah2 WT and Siah2 
S6A differently interact with GRP78. To assess GRP78-
Siah2 interaction, MG132-treated or untreated H. pylori-
infected pcDNA3.1+, siah2 WT and siah2 S6A-express-
ing MKN45 stable cells were immunoprecipitated with 
Siah2 antibody. Western blot depicted that both Siah2 and 
GRP78 were less in S6A cells as compared to the WT cells 

(Fig. 6C). As reports suggestive of GRP78 secretion from 
cells exist [43, 44], we next evaluated the status of GRP78 
secretion from H. pylori-infected pcDNA3.1+, siah2 WT 
and siah2 S6A-expressing MKN45 stable cells’ superna-
tant by ELISA. GRP78 secretion decreased after infection 
in empty vector-expressing cells (Fig. S4). GRP78 secre-
tion further decreased after siah2 WT overexpression and 
infection. However, significantly increased GRP78 protein 
release was detected from both infected and uninfected 
siah2 S6A-expressing cells as compared to the other two 
transfection groups. These results reiterated the impor-
tance of P-S6-Siah2 in regulating the cellular abundance of 
GRP78 and explained why, in spite of low Siah2 level, the 
cellular level of GRP78 decreased in S6A cells. In sum-
mary, Siah2  S6 phosphorylation was found to be crucial for 
maintaining the cellular abundance of GRP78.

Fig. 5  Mitochondrial locali-
zation of GRP78 and Siah2. 
A Confocal microscopy 
images from uninfected and 
infected (200 MOI, 12 h) 
pDsRed2-Mito-expressing 
AGS stable cells depicting the 
mitochondrial expression of 
GRP78, P-S6-Siah2 and Siah2. 
Scale bars represent 50 μm. B 
Western blots from the cyto-
plasmic and the mitochondrial 
fractions of uninfected and 
infected MKN45 cells depict-
ing the expression of GRP78, 
P-S6-Siah2 and Siah2. CoxIV 
is used as a loading control 
for the mitochondrial fraction 
and GAPDH for the cytoplas-
mic fraction, respectively. Bar 
graphs represent changes in the 
expression of GRP78, P-S6-
Siah2 and Siah2 in the cytoplas-
mic and mitochondrial cellular 
fractions. Graphs = mean ± sem. 
n = 3. Statistical significance 
is determined by two-tailed 
unpaired t-test. *P < 0.05, 
**P < 0.01, ***P < 0.001. C 
Western blots form the whole 
cell lysates of uninfected and 
infected pcDNA3.1+, siah2 
WT, siah2 S6A and siah2 
T279A MKN45 stable cells 
representing specificity of the 
P-S6-Siah2 antibody indicated 
by the lowest level in S6A cells
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ROS leads to aggresome formation in H. 
pylori‑infected GECs

ROS production leads to aggresome formation [17, 45]. As 
Siah2 and its phosphorylation altered cellular ROS level, 
we were interested to find out its role in aggresome forma-
tion in H. pylori-infected GECs. For this, pcDNA3.1+, 
siah2 WT and siah2 S6A-expressing MKN45 stable cells 
were infected with H. pylori. Cells were stained to detect 
Siah2 and aggresome. Confocal microscopy confirmed 
that aggresome formation was induced by H. pylori in all 
transfected groups. However, among the three transfected 

groups, siah2 WT stable cells showed the most aggresome 
formation which were further increased after infection. 
Aggresome formation was disrupted in siah2 S6A stable 
cells (Fig. 7A). To identify whether ROS were responsi-
ble for aggresome formation, pcDNA3.1+, siah2 WT and 
siah2 S6A MKN45 stable cells were treated with 10 mM 
of a ROS scavenger N-acteyl-l-cysteine (NAC) for 1 h 
followed by H. pylori infection. Confocal microscopy 
showed that NAC decreased aggresome formation in H. 
pylori-infected GECs (Fig. S5). These results confirmed 
the importance of ROS and Siah2  S6 phosphorylation in 
regulating aggresome formation. Aggresome formation is 

Fig. 6  Siah2 phospho-null 
mutant S6A disrupts mitochon-
drial morphology and GRP78 
abundance in H. pylori-infected 
GECs. A Confocal micro-
graphs showing alteration of 
tubulo-reticular mitochondrial 
morphology in uninfected and 
infected pcDNA3.1+, siah2 
WT and siah2 S6A-transfected 
pDsRed2-Mito AGS stable 
cells. Graphs represent mito-
chondrial length, circularity 
and roundness calculated using 
Fiji software from the above 
mentioned cells. Statistical 
significance is determined by 
two-way ANOVA followed 
by Tukey’s post hoc analysis. 
Graphs represent mean ± sem. 
n = 3. ****P < 0.0001. B 
Western blot of the whole cell 
lysates from uninfected or 
infected pcDNA3.1+, siah2 WT 
and siah2 S6A MKN45 stably 
expressed cells depicting the 
status of GRP78, P-S6-Siah2 
and Siah2. GAPDH = loading 
control. Bar graphs represent 
densitometric analysis of 
GRP78 status in these cells. 
Statistical significance is 
determined by using two-way 
ANOVA followed by Tukey’s 
post hoc analysis. Graphs 
represent mean ± sem. n = 3. 
**P < 0.01. C Immunoblot of 
the Siah2 immuno-complexes 
obtained from untreated and 
MG132-treated H. pylori-
infected pcDNA3.1+, siah2 WT 
and siah2 S6A MKN45 stable 
cells showing Siah2-GRP78 
interaction. Non-specific 
band = loading control

0

5

15

10

Le
ng

th
 (µ

m
) ****

****

****
****

****

**** ****

************

0
0.2
0.4
0.6
0.8
1.0

R
ou

nd
ne

ss
(a

.u
.)

****

0
0.2
0.4
0.6
0.8
1.0

C
irc

ul
ar

ity
 (a

. u
.)

****

****
********

G
R

P7
8/

G
AP

D
H

0

0.5

1.0

1.5

**

****
**

H. pylori
Uninfected

A

pc
D

N
A

3.
1+

Uninfected H. pylori

si
ah

2
W

T
si

ah
2

S6
A

B C

- +

GAPDH

H. pylori

P-S6-Siah2
GRP78

Siah2

- + - +

H. pylori
Uninfected

Non-
specific

Siah2
GRP78

H. pylori++++++
MG132- - - + + +

Whole cell lys.



 P. Dixit et al.

1 3

414 Page 12 of 16

often coupled with macroautophagy [18, 19]. To elucidate 
the effect of aggresome formation on macroautophagy, 
pcDNA3.1+, siah2 WT and siah2 S6A stably-expressing 
MKN45 cells were infected with H. pylori. Western blot-
ting (n = 3) confirmed that siah2 suppressed LC3B II accu-
mulation which was indicative of disrupted autophago-
some formation in both infected and uninfected cells when 
compared with the other transfection groups (Fig. 7B). To 
ascertain the correlation of autophagy with aggresome for-
mation, pcDNA3.1+, siah2 WT and siah2 S6A MKN45 

stable cells were infected with H. pylori in the presence 
or the absence of 10 nM bafilomycin A1. Confocal micro-
graph confirmed that aggresome formation was enhanced 
by bafilomycin A1 treatment (Fig. S6).

Aggresome formation is cytoprotective and is depend-
ent on microtubule retrograde transport [46–49]. Since 
Siah2 increased proliferative potential of GECs [10, 12, 
26] and also enhanced aggresome formation as observed 
in this study, we next assessed the effect of aggresome dis-
ruption by nocodazole on the proliferative potential of H. 

Fig. 7  Siah2  S6 phospho-
rylation reciprocally regulates 
aggresome formation and 
autophagosome formation in 
H. pylori-infected GECs. A 
Confocal micrographs depict-
ing the status of aggresome 
formation in uninfected and 
infected pcDNA3.1+, siah2 
WT and siah2 S6A stably 
expressed MKN45 cells. 3D 
representation of the images, 
created using NIS software 
(Nikon), is shown to depict the 
disrupted aggresome formation 
in siah2 S6A MKN45 stable 
cells. Scale bars = 10 μm. B 
Immunoblots from the whole 
cell lysates of uninfected or 
infected pcDNA3.1+, siah2 WT 
and siah2 S6A stably expressing 
MKN45 cells showing the status 
of Siah2 and LC3B II. GAPDH 
is used as the loading control. C 
Graphical representation of the 
fold change in cellular prolifera-
tion after nocodazole treatment 
in uninfected and infected **** 
pcDNA3.1+, siah2 WT and 
siah2 S6A MKN45 stable cells. 
Statistical significance is deter-
mined by three-way ANOVA 
followed by Tukey’s post hoc 
analysis. n = 3. Graphs represent 
mean ± sem. ****P < 0.0001
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pylori-infected cells. For this, MKN45 pcDNA3.1+, siah2 
WT and siah2 S6A stable cells were either left uninfected 
or were infected and treated with 2 μM nocodazole for 12 h. 
MTT assay showed that disruption of aggresome formation 
decreased cellular proliferation. Empty vector and siah2 
WT stable cells were more sensitive to the disruption of 
microtubule than siah2 S6A cells (Fig. 7C). These results 
confirmed that P-S6-Siah2-mediated aggresome formation 
imparted proliferative advantage to H. pylori-infected GECs.

Discussion

H. pylori-mediated Siah2  S6 phosphorylation increases 
its stability and thereby potentiates its function as an E3 
ubiquitin ligase [12]. In the present study we identify that 
the increased level of Siah2 and P-Siah2 are accompanied 
by GRP78 decrease and increased ROS generation in H. 
pylori-infected GECs. Further, we establish that P-S6-
Siah2 promotes aggresome formation in the infected cells. 
Thus, in spite of losing the intracellular antioxidant protein 
GRP78 and increased ROS generation, H. pylori-infected 
cells employ ROS in forming aggresomes which gives GECs 
survival advantage.

H. pylori colonization in the human stomach leads to 
severe inflammation, causing gastritis and initiating the 
Correa’s cascade of tumorigenic events leading to GC [1]. 
Chronic inflammation induces ROS generation. ROS pro-
mote mutations and initiate several carcinogenic events 
in the infected host cells [2]. Studies have shown that H. 
pylori infection promotes  H2O2 generation [2] and induces 
DNA damage [50, 51]. We discover that H. pylori-medi-
ated ROS generation is induced by Siah2. However, the 
phosphorylation null mutant-expressing Siah2 cells show 
significantly higher ROS generation than the WT Siah2-
overexpressing cells. These observations strongly suggest 
that without the phosphorylation-mediated increased Siah2 
stabilization in H. pylori-infected GECs, excessive ROS 
might affect the viability of GECs. In fact, we observe that 
H. pylori-induced cell proliferation is promoted with siah2 
WT construct overexpression but the phosphorylation null 
S6A mutant of siah2 significantly hampers cell proliferation. 
Although it is known that ROS is regulated by Siah2 under 
various physiological conditions [52], this is the first report 
of Siah2-mediated ROS modulation in H. pylori-infected 
GECs. Therefore, controlling phosphorylation-dephospho-
rylation of Siah2 has a lot of potential in regulating oxidative 
stress.

GRP78 ubiquitination by Siah2 ensures the tight regula-
tion of ROS in H. pylori-infected cells. Although enhanced 
GRP78 expression has been correlated with GC [53], H. 
pylori infection is associated with the downregulation of 
GRP78 [54]. Baird et al. have shown that GRP78 level 

decreases in H. pylori-induced gastritis but increases in 
mucous metaplasia [55]. The same study also reports that 
H. pylori suppresses GRP78 in AGS cells. A recent study 
by Wang et al. has identified that Nod-like receptor pyrin 
domain-containing protein 6 (NLRP6)-mediated ubiqui-
tination of GRP78 suppresses GC but the study has not 
investigated H. pylori-induced GC [56]. Multiplexed mass 
spectrometry analysis also reveals GRP78 ubiquitination 
in bortezomib-treated colon cancer cells [57]. GRP78 is 
known for its role as an antioxidant. Silencing of grp78 in 
prostate cancer cells leads to ROS accumulation [58]. In 
line with these findings, we observe that grp78 expression 
decreases H. pylori-induced ROS. These results confirm 
that P-S6-Siah2-mediated GRP78 downregulation impacts 
the ROS-scavenging ability of H. pylori-infected GECs. 
Mitochondrial localization of GRP78 and Siah2 are reported 
in various pathological conditions [38, 39, 59]. Siah2 [60] 
and H. pylori [61, 62] are known for their ability to induce 
mitochondrial stress. We show for the first time that mito-
chondrial localization of P-S6-Siah2 decreases mitochon-
drial GRP78 in H. pylori-infected GECs. In the absence of 
Siah2 phosphorylation, GRP78 is not detected in the whole 
cell lysate but its release from the cell is promoted. This 
result explains why siah2 S6A-expressing cells have more 
ROS than siah2 WT-expressing cells. Secretion of GRP78 is 
induced by cellular stresses [44, 63, 64]. It would be interest-
ing to find out the exact mechanism behind this heightened 
GRP78 decrease in Siah2 S6A-expressing cells.

We show for the first time that changes in the Δψm of H. 
pylori-infected GECs are strongly influenced by Siah2 and 
its phosphorylation at  S6. Δψm has strong correlations with 
ROS, mitochondrial ATP generation and metabolic status. 
Generally, increased ROS generation is associated with a 
fall in Δψm. However, expression of oncogenes hyperpolar-
izes the Δψm [65]. Cancer cells with more aggressive nature 
have higher Δψm than their benign counterparts [66]. The 
enhancement in Δψm in Siah2 WT cells as compared to the 
other transfected cells indicates toward the enhanced inva-
sive nature of the Siah2 WT cells which is already reported 
by our group [12]. It needs to be verified in future how 
exactly the mitochondrial membrane permeability transi-
tion, Δψm, mitochondrial metabolism and mitophagy are 
impacted by S6A Siah2 in H. pylori-infected GECs.

H. pylori infection [67] as well as ROS [16, 18] induce 
aggresome formation. GRP78 is involved in ROS regula-
tion and is a known endoplasmic reticulum chaperone. Due 
to these attributes, it is not surprising that siah2 WT cells, 
which have less intracellularly available GRP78, show the 
highest aggresome formation. However, aggresomes are 
abrogated in the Siah2 phospho-null mutant-expressing 
cells which have the least intracellularly available GRP78. 
These results point to the importance of P-S6-Siah2 in 
aggresome formation in H. pylori-infected GECs. This 
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is the first report showing that the availability of Siah2 
suppresses macroautophagy. This is in agreement with 
studies confirming the reciprocal regulation of the ubiq-
uitin–proteasome system and the macroautophagy [31]. 
Enhanced ROS level in S6A mutant-expressing cells can 
be associated with the formation of diffuse protein aggre-
gates which are the major elicitors of ROS [68]. Since 
aggresome formation is cytoprotective and promotes cell 
proliferation [49, 69–72], the disruption of aggresome for-
mation in S6A cells decreases the proliferative potential of 
infected GECs. This finding is also in agreement with the 
studies which suggest that disruption of aggresome forma-
tion might have a therapeutic potential in treating cancer 
[71, 73]. Further studies should be carried out to explore 
the efficacy of aggresome disruption in the prevention of 
H. pylori-mediated disease pathogenesis.

In summary, this study shows that Siah2 regulates the 
cellular abundance of antioxidant protein GRP78 and thus, 
the cellular redox status during H. pylori infection. Our 
study identifies that Helicobacter-mediated GRP78 down-
regulation is consistently tied with enhanced phospho-
Siah2 in vitro as well as in vivo and finds their potential 
as diagnostic and therapeutic targets in H. pylori infection-
induced GC.
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