
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2023) 80:102 
https://doi.org/10.1007/s00018-023-04755-2

REVIEW

Cellular and Molecular Life Sciences

The forkhead box O3 (FOXO3): a key player in the regulation 
of ischemia and reperfusion injury

Moussa Omorou1 · Yiwei Huang1 · Meng Gao1 · Chenxi Mu1 · Weijing Xu2 · Yuchun Han1 · Hui Xu1,3 

Received: 18 September 2022 / Revised: 10 February 2023 / Accepted: 9 March 2023 / Published online: 20 March 2023 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Forkhead box O3 is a protein encoded by the FOXO3 gene expressed throughout the body. FOXO3 could play a crucial role in 
longevity and many other pathologies, such as Alzheimer's disease, glioblastoma, and stroke. This study is a comprehensive 
review of the expression of FOXO3 under ischemia and reperfusion (IR) and the molecular mechanisms of its regulation and 
function. We found that the expression level of FOXO3 under ischemia and IR is tissue-specific. Specifically, the expression 
level of FOXO3 is increased in the lung and intestinal epithelial cells after IR. However, FOXO3 is downregulated in the 
kidney after IR and in the skeletal muscles following ischemia. Interestingly, both increased and decreased FOXO3 expres-
sion have been reported in the brain, liver, and heart following IR. Nevertheless, these contribute to stimulating ischemia and 
reperfusion injury via the induction of inflammatory response, apoptosis, autophagy, mitophagy, pyroptosis, and oxidative 
damage. These results suggest that FOXO3 could play protective effects in some organs and detrimental effects in others 
against IR injury. Most importantly, these findings indicate that controlling FOXO3 expression, genetically or pharmacologi-
cally, could contribute to preventing or treating ischemia and reperfusion damage.
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Introduction

Ischemia is defined as a condition in which oxygen deliv-
ery to tissues or organs is compromised due to vascular 
obstruction or blood flow disruption [1]. Depending on the 
duration of ischemia and the location of affected tissue, the 
pathophysiological consequences can vary significantly. 
During ischemia, ATP production is reduced, leading to 
increased production of reactive oxygen species (ROS) and 
inflammation. This can further cause damage to cytoskeletal 

proteins, cell membranes, organelles, and mitochondria, 
contributing to cell death. Ischemia–Reperfusion (IR), on 
the other hand, is a pathological condition resulting from 
the recovery of oxygen supply to the ischemic tissue or 
organ. This can cause a burst of ROS production induced 
by both inflammatory and metabolic processes, leading to 
tissue damage and cell death. Additionally, immune cells in 
ischemic tissue can further exacerbate inflammation. The 
main difference between ischemia and IR is the presence 
of reperfusion in the latter and its associated exaggerated 
inflammatory response—due to the increased permeability 
of the blood–brain barrier (BBB)—which can amplify tissue 
damage [1–3].

The FoxO (forkhead box, class O) proteins are a member 
of the FOX (forkhead box) transcription factors family that 
contains a conserved DNA-binding motif of ~ 100 amino 
acids [4–8]. The FoxO proteins are expressed in most tis-
sues; however, their expression level, function, and targets 
are tissue-dependent [9]. Four FoxO transcription factors 
have been identified, including FoxO1, FOXO3 (FOXO3a or 
FKHRL1), FoxO4, and FoxO6 [10]. They regulate a plethora 
of biological processes, including inflammation, apoptosis, 
stress resistance, autophagy, aging, longevity, metabolism, 
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stem cell production, DNA repair, bone structure, immunity, 
and cancer [11–20].

FOXO3 is expressed throughout the body [21]. It is phos-
phorylated and inactivated by the PI3K/AKT3 pathway [22]. 
The phosphorylated and inactive form of FOXO3 is local-
ized in the cytoplasm, but it is translocated into the nucleus 
after dephosphorylation and activation, where it exerts its 
transcription function [5, 23–30]. Besides its pivotal role 
in longevity, FOXO3 has been found to be involved in a 
plethora of biological disorders and diseases, such as Alz-
heimer's disease [31], myocardial infarction [32], glioblas-
toma [33, 34], and stroke [35]; during which it regulates the 
expression of numerous genes involved in various cellular 
processes, including metabolism, survival, differentiation, 
proliferation, aging, autophagy, apoptosis, oxidative stress, 
and inflammatory response [36–40].

Several studies have reported dynamic changes in the 
expression levels of FOXO3 in various organs of rats and 
mice and cells subjected to IR. These variations in FOXO3 
levels contribute to IR injury. FOXO3 could play as an 
inducer or an alleviator of IR injury in different organs 
[41–49]. Therefore, the present study aimed to summarize 
the expression level of FOXO3 in various organs and to 
provide more understanding of the molecular mechanisms 
underlying its role and regulation to contribute to the strate-
gies to prevent or treat IR injury.

Cerebral ischemia and reperfusion

The brain is the most vulnerable organ to blood flow; it 
accounts for approximately 25% of total body oxygen 
consumption. Therefore, the risk of low blood flow―
Ischemic stroke―is high [2]. Ischemic stroke is the 
second leading cause of death worldwide [3]. The damage 
caused in the brain after ischemia directly depends on the 
duration of the ischemic period, but it can also be aggravated 
after reperfusion [1]. Many pathways involved in patholog-
ical changes, such as inflammation and neural cell death, 
are significantly deregulated after cerebral IR [3, 50, 51]. 
Several studies established FOXO3 as a key player in the 
pathophysiological mechanisms of cerebral IR.

An extensive number of studies indicate that a large 
spectrum of biomolecules, including Long non-coding 
RNAs(lncRNAs), microRNAs (miRNAs), transcription 
factors, and inflammatory cytokines, are involved in the 
pathophysiological mechanisms of Cerebral IR [35, 41, 42, 
52–57]. In both in vivo and in vitro models of cerebral IR, 
FOXO3 has been associated with pathological changes. 
During cerebral ischemia, FOXO3 is downregulated [58], 
but after reperfusion, its protein expression is increased, 
which induces its nuclear translocation and increases its 
transcription activity [35, 41, 42, 52–57, 59]. Deregulation 

in the expression of many molecules has been suggested 
to contribute to this upregulation in FOXO3 transcription 
activity. Evidence shows that lncRNAs could play cru-
cial roles in the pathogenesis of cerebral IR by boosting 
FOXO3 expression and activity by regulating miRNAs or 
protein expression. LncRNAs GAS5, TUG1, and XIST 
respectively inhibit miR-9, miR-410, and miR-27a-3p 
expression, three miRNAs that play as upstream targets 
of the FOXO3 pathway, activating FOXO3 activity [52, 53, 
56, 57]. This could aggravate the injury after IR through 
activation of the inflammatory cytokines such as IL-1β, 
IL-6, and TNF-α, and the apoptotic pathway by increasing 
Bax/Bcl2 ratio and cleaved-caspase-3 expression as well 
as ROS production [52, 53, 56, 57]. Meanwhile, overex-
pression of the lncRNA SNHG12 inhibits the expression 
of SIRT1 to activate FOXO3 activity, which induces LC3 
II expression and reduces that of LC3 I to cause autophagy 
and increase MDA content and decrease SOD activity to 
exacerbate oxidative stress in the brain tissue [60].

Other miRNAs involved in the regulation of FOXO3 
in the brain after IR are miR-122, miR-200a, and miR-
19a/b-3p. Potassium voltage-gated channel subfamily Q 
member 1 opposite strand 1 (KCNQ10T1)-induced inhi-
bition of miR-200a and downregulation of miR-122 as 
well as upregulation of miR-19a/b-3p and its inhibition of 
SIRT1, contribute to increasing FOXO3 activity [41, 42, 
55] after cerebral IR. Nevertheless, the effects remain det-
rimental as this conduces to an increase in the expression 
of autophagic proteins [55]. Besides, FOXO3 could down-
regulate Heat Shock Protein 70 (HSP70) expression but 
upregulate SPHK1, both of which conduce to the upregu-
lation of NF-kB expression. The latter evoke apoptosis by 
inducing caspase-3 and ROS expression and decrease Bcl2 
expression and inflammation by increasing the expression 
of IL-1β, IL-6, and TNF-α [41, 42].

Many events have been shown to converge on the dephos-
phorylation and deactivation of AKT―a well-known 
FOXO3 upstream target―in the brain tissue after IR; 
these include the hypoxia-inducible factor 1 alpha (HIF-1α)-
mediated upregulation of the CXC motif chemokine ligand 
6 (CXCL6) expression [61], AMPK-mediated inhibition 
of mTOR expression [62], overexpression of the FK506 
binding protein 5 (FKBP5) [63], and downregulation of 
PTEN [43] and SIRT2 [35]. The inhibition of AKT activity 
releases FOXO3 expression and activity to exacerbate the 
brain damage via activation of apoptotic proteins Bim, Bad, 
and caspase-3 as well as Bax/Bcl2 ratio [35, 43, 59, 62, 64], 
inflammatory response by inducing NF-kBp65, IL-β, IL-6, 
and TNF-α [59][59], cell permeability by inhibiting SIRT3 
expression [61], oxidative stress by increasing MDA content 
and decreasing SOD and GSH activity [59], and autophagy 
by increasing Beclin-1 and LC3 II expression and reducing 
sequestosome-1 (SQSTM1) expression [63, 64, 66].
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The overexpression of FOXO3 and increase in its activity 
are also attributed to the overexpression of general control 
nonderepressible 2 (GCN2) and SRY-box transcription fac-
tor 9 (SOX9) and downregulation of Methyl CpG binding 
protein 2 (MeCP2) in the brain after IR [54, 67, 68]. Fol-
lowing its activation by SOX9, FOXO3 increases the tran-
scription of Cbp/p300-interacting transactivator with Glu/
Asp-rich carboxy-terminal domain 2 (CITED2) and IKKα 
expression, both of which are involved in the inflammatory 
response and the programmed cell death [54]. On the other 
hand, after its activation by SOX9 expression and MeCP2 
inhibition, FOXO3 promotes the expression of proapop-
totic proteins such as SPRY2, ZEB1, caspase-3, and Bax/
Bcl2 ratio, and inflammatory cytokines such as IL-β, IL-6, 
and TNF-α [54, 68]. GCN2-mediated activation of FOXO3 
could also induce ROS expression to promote Endoplasmic 
reticulum stress (ERS) [67]. These studies confer FOXO3 
a detrimental role in the brain after cerebral IR, suggest-
ing its participation in many pathological processes, such as 
apoptosis, inflammation, autophagy, ERS, and cell perme-
ability (Fig. 1). This was confirmed as inhibition of FOXO3, 
genetically or using pharmacological treatments such as glu-
tathione (GSH), Syringin, rosuvastatin, or Coenzyme Q10 

(CoQ10) significantly reduced brain damage after cerebral 
IR [42, 52, 53, 55, 57, 59, 60, 62, 65, 66, 69].

However, according to the findings of recent studies, 
FOXO3 expression and its activity could be decreased in 
the brain after cerebral IR, probably due to the overexpres-
sion of IFN-γ and the phosphorylated JNK (p-JNK) [70, 
71]. But intriguingly, the deactivation of FOXO3 has been 
associated with the elevations in NF-kB expression as well 
as its downstream targets, including caspase-3, Bim, Bax/
Bcl2 in the apoptotic pathway, the inflammatory cytokines 
IL-1β, IL-6, and TNF-α, and oxidative biomarkers MDA 
and ROS with a decreased SOD activity [70]. In this line, 
deactivated FOXO3 was found to release ROS, caspase-1, 
IL-1β, and IL-18 expression to induce pyroptosis via inhibi-
tion of mitophagy [71]. These studies attributed a beneficial 
function to FOXO3, as its overexpression through pharma-
cological treatment with melatonin [70] or mesenchymal 
stem cell-derived exosomes (MSC-exos) [71] contributed 
to a decrease in the damage previously caused by IR. How-
ever, the mechanism leading to FOXO3 decrease is unclear; 
ultimately, as more research is conducted, the exact role 
of FOXO3 in the brain after stroke will hopefully become 
clearer.

Fig. 1  The expression level of FOXO3 is stimulated by variations 
in the expression of its several upstream genes in the brain after IR, 
including SIRT2, GAS5, SOX9, AMPK, PTEN, mTOR, FKBP5, 
GCN2, KCNQ10T1, XIST, TUG1, AKT, SIRT1, miR-19a/b-3p, 
miR-200a, miR-27a-3p, miR-122, miR-9, and miR-410 to induce 

autophagy, apoptosis, oxidative stress, and inflammation-related 
genes. FKBP5 FK506-binding protein 51, GCN2 general control 
nonderepressible 2, TUG1 taurine up-regulated 1, CITED2 Cbp/p300 
interacting transactivator with Glu/Asp rich carboxy-terminal domain 
2, HSP70 Heat Shock Protein 70
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Myocardial ischemia and reperfusion

Myocardial ischemia and reperfusion (MIR) is a common 
medical concern worldwide [72]. It is a medical condition 
that occurs when the heart muscle is deprived of oxygen 
due to either a reduced (ischemia) or completely blocked 
(infarction) blood supply, usually caused by a clot or 
plaque [73]. This causes damage to the heart muscle and 
leads to a risk of serious complications, including death. It 
is believed that timely restoring adequate blood flow to the 
affected area is the effective way to relieve the myocardial 
damage induced by ischemia; however, reperfusion could 
induce supplementary damage—reperfusion injury [74]. 
Accumulating evidence revealed that FOXO3 could play 
a crucial role in the development of ischemia and reperfu-
sion injury in the myocardium [44, 45, 75].

It is well known that FOXO3 promotes cardiomyocyte 
survival by modulating calcium homeostasis and inducing 
the expression of antiapoptotic molecules such as CITED2 
and PTEN-induced kinase 1 (PINK1) after IR [76, 77]. 
Therefore, the downregulation of FOXO3 in the myocar-
dium after IR could contribute to harmful consequences, 
including apoptosis, pyroptosis, and mitophagy [78, 79]. 
This mechanism involves non-coding RNAs (ncRNAs) 
such as lncRNAs and miRNAs that have been shown to 
play a potentially pivotal role in the development of MIR 
injury. Investigators suggested that overexpression of miR-
149, miR-200c, miR-302a-3p, and miR-29b could directly 
contribute to the inhibition of FOXO3 expression in car-
diomyocytes after MIR [78, 80–82]. On the other hand, 
the inhibition of FOXO3 could drive the downregulation 
of lncRNA-LINC00261, which in turn could release the 
expression of miR-23b-3p to inhibit NRF2 [83], an antiox-
idant transcription factor known to protect cardiomyocytes 
against IR injury [84]. In line with this, FOXO3 down-
regulation could provoke cardiomyocyte death through 
the release of caspase-3 and p53 expression and increase 
in Bax/Bcl2 ratio, mitophagy by increasing LC3 II, p62, 
Parkin, Beclin-1, and BCL2-interacting protein 3-like 
(BNIP3L, commonly called NIX) expression, and pyrop-
tosis by inducing the overexpression of pyroptotic markers 
caspase-1, IL-1β, and IL-18 [78–82, 85, 86]. Besides the 
role of ncRNAs, other mechanisms have been identified 
as a possible cause of FOXO3 inhibition after MIR; these 
include the downregulation of SITR3 and hyperphos-
phorylation of AMPK [79, 85, 87]. Furthermore, apart 
from apoptosis, mitophagy, and pyroptosis, the inhibition 
of FOXO3 also contributes to exacerbating the oxidative 
stress resulting from MIR by remarkably inducing the ROS 
and MDA production, and reducing SOD, catalase (CAT), 
and GSH activities [75, 79, 85, 86]. Additionally, these 
studies reported that forced overexpression of FOXO3, 

whether genetically or pharmacologically, markedly con-
tributed to alleviating the MIR-induced injury [75, 78–83, 
86]. It has also been found that FOXO3 could mediate the 
potential SIRT6-induced cardio-protection after MIR [88]. 
These results indicate that FOXO3 may play a beneficial 
role in the heart tissue after IR.

However, recent evidence revealed an enhanced increase 
in FOXO3 expression in both in vitro and in vivo models of 
MIR [44, 45, 89–92]. This suggests a controversial role of 
FOXO3 in the pathophysiological process of MIR. Several 
mechanisms involving the AKT pathway contribute to the 
overexpression of FOXO3 in the MIR models. In males, it 
has been shown that testosterone could reduce the phospho-
rylation of AKT, inducing its deactivation [93]. Besides, the 
reduction in mTORC2 in the myocardium after IR contrib-
uted to decreased AKT expression and activity [89]. Fol-
lowing these events, the deactivation of AKT caused the 
dephosphorylation and inhibition of GSK-3β activity [89]. 
Inhibition of AKT and GSK-3β facilitates the upregulation 
of FOXO3 expression and activity. Subsequently, FOXO3, 
per se or through activation of HIF-1α and Bnip3, could 
exacerbate the MIR injury by increasing the expression of 
proapoptotic proteins caspase-3, Bad, Bim,  p27kip1, and Bax 
and reducing Bcl2 expression, autophagic protein LC3 II, 
and oxidative stress-related ROS and MDA in the infarct 
area [45, 89, 91, 93, 94]. On the other hand, inhibition of 
miR-221 induced by circPAN3 overexpression, inhibition 
of miR-23a, and downregulation of SIRT1 after MIR could 
also contribute to the overexpression of FOXO3 to play the 
same role mentioned above, inducing cardiomyocyte death 
through Bim, caspase-3, Bax activation, and autophagy 
via Beclin-1, ATG7, p62, and LC3 II expression [44, 90, 
95]. Evidence shows that FOXO3 could also mediate the 
IL-18-induced cardiac inflammation and dysfunctions by 
promoting CXCL16 expression [96]. Further investiga-
tions found that genetical or pharmacological inhibition of 
FOXO3 could contribute to relieve the MIR injury [89, 91, 
92, 94, 95, 97–99]. These results indicate that FOXO3 may 
play a detrimental role in the cardiomyocytes after MIR. The 
mechanisms explaining this controversial role of FOXO3 
in the heart after IR are still not well understood; this may 
provide good insights for future studies to clarify the role of 
FOXO3 in this injury. (See Fig. 2).

Renal ischemia and reperfusion

Acute kidney injury (AKI), also known as acute renal 
failure (ARF), is a disorder in which the kidneys become 
acutely and rapidly damaged and stop working. Renal IR 
constitutes one of the major causes of AKI in many clini-
cal settings [100]. It is believed that IR could cause vari-
ous pathophysiological changes in the kidney by promoting 



The forkhead box O3 (FOXO3): a key player in the regulation of ischemia and reperfusion injury  

1 3

Page 5 of 14 102

tubular apoptosis and inflammation [101]. In recent years, 
investigators suggested that FOXO3 could play a pivotal 
role in the pathophysiological mechanisms underlying renal 
after IR injury. In both in vivo and in vitro models of renal 
IR injury, it has been found that upregulation of miR-182 
[102], miR-155 [46], PI3K/AKT pathway [103], IL-6-in-
duced DNMT1-mediated hypermethylation of FOXO3 pro-
moter [104], and downregulation of the cytochrome P4502J2 
(CYP2J2)/ epoxyeicosatrienoic acids (EETs)/SIRT1 cas-
cade [105] could contribute to reduce the expression level 
and the activity of FOXO3. Down-expressed FOXO3 may 
release the expression level of cardiotrophin-like cytokine 
factor 1 (CLCF1) [106]―a member of the IL-6 family 
of cytokines suggested to play an important role in focal 
segmental glomerulosclerosis (FSGS) [107]. Meanwhile, 
the inhibition of FOXO3 expression and activity could pro-
voke diverse harmful consequences leading to autophagy 
through upregulation of Belclin-1 and LC3 II/LC3 I ratio 
[105], apoptosis via upregulation of caspase-3 activity and 
Bax/Bcl2 ratio [102, 105], pyroptosis via upregulation of 
caspase-1, caspase-11, IL-1β, and IL-18 [46], and renal 
fibrosis via activation of EMT and Wnt/β-catenin pathway 

[103, 104] Fig. 3). These results indicate that FOXO3 might 
play a protective role against IR-induced injury in the kid-
neys, as it was found that forced overexpression of FOXO3 
by treatment with β-hydroxybutyrate (β-OHB) or through 
genetical processes could reverse the IR-related apoptosis, 
pyroptosis, autophagy, and fibrosis [46, 103, 105, 108].

However, a study performed by Wang et  al. (2017) 
revealed that FOXO3 might be deacetylated, and its activ-
ity increased by the overexpression of SIRT2 after renal IR 
injury [109]. The study showed that FOXO3 could induce 
the expression of FasL as well as the activity of caspase-3 
and caspase-8 to promote renal cell death after IR. This sug-
gests that FOXO3 could also play deleterious effects on renal 
cells after IR, indicating a controversial role of FOXO3 after 
renal IR, which could be clarified by future studies.

Hepatic ischemia and reperfusion

Hepatic IR injury is a pathophysiological process that can 
occur in a variety of clinical settings, such as resection sur-
gery, transplantation, and trauma. When the blood supply to 

Fig. 2  The expression level of FOXO3 is downregulated by SIRT3, 
AMPK, miR-149, miR200c, miR-29b, and miR-302a-p in the myo-
cardium after IR. In contrast, downregulation of mTORC2/AKT/
GSK3β pathway and circPAN3 stimulate the expression of FOXO3 
in the myocardium after IR to contribute to the resulting injury. These 
contributed to autophagic effects, oxidative stress, apoptosis, inflam-

mation, and pyroptosis by regulating their related respective pro-
teins. Black straight lines indicate pathways with decreased FOXO3. 
Black dashed lines indicate pathways with increased FOXO3. Red 
straight lines indicate common pathways between both decreased and 
increased FOXO3
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the liver is reduced, followed by reperfusion, the tissue can 
suffer from acute liver failure, graft rejection, and chronic 
hepatic dysfunction [110, 111]. These issues increase the 
rate of morbidity and mortality in those affected by hepatic 
IR injury. Common effects of hepatic IR injury include 
elevated levels of liver enzymes, inflammatory cytokines, 
oxidative stress, autophagy, and apoptosis. Findings of many 
researches show that FOXO3 may play an important role 
in these adverse effects [47, 112, 113]. Some studies have 
suggested that upregulation of SIRT1 [114] and TGR5/
SIRT3 axis [115] and downregulation of Wnt3a/β-catenin 
and AKT pathways [113] contribute to increasing FOXO3 
expression. Thereafter, FOXO3 contributed to aggravating 
the IR-induced damage in the liver by inducing hepatocel-
lular inflammation, autophagy, oxidative stress, and apop-
tosis (Fig. 4) [113–115]. These studies indicate that FOXO3 
might play a detrimental role in the liver after IR, as forced 
FOXO3 inhibition contributed to alleviating the damage 
caused by FOXO3 expression.

Controversially, studies showed that FOXO3 could play 
beneficial effects on the liver after IR. The overexpression of 
the AKT pathway and downregulation of SIRT1 and Nrf-2 
contribute to reducing FOXO3 expression and activity. This 
significantly induced hepatocellular apoptosis, autophagy, 
and oxidative stress (Fig. 5) [47, 116, 117]. Further investi-
gations show that stimulation of FOXO3 expression could 

contribute to attenuating the IR-induced damage in the liver. 
These studies indicate that FOXO3 could play beneficial 
effects after hepatic IR. Future studies will be required to 
elucidate FOXO3 function after hepatic IR.

Intestinal ischemia and reperfusion

Intestinal IR injury is a common clinical condition caused 
by interruption of normal blood supply to the intestine, fol-
lowed by reperfusion. It is associated with a variety of path-
ologic changes, including cellular damage and inflammatory 
responses [118, 119]. Clinically, it is often characterized by 
abdominal pain, nausea, vomiting, and diarrhea; and it can 
lead to multi-organ dysfunction, infections due to the release 
of pro-inflammatory molecules, and high mortality and mor-
tality rates [120, 121]. The exact mechanisms underlying 
intestinal IR injury are not well-understood. However, it is 
known to be associated with ischemia-induced cellular dam-
age and inflammatory response as well as acute lung injury 
(ALI) resulting from intestinal IR [122]. Upon reperfusion, 
it has been shown that FOXO3 expression and activity could 
be increased, possibly due to the inhibition of its upstream 
SIRT1[48, 123] and overexpression of TNF-α and JNK 
[124]. Once active, FOXO3 can cause lung cell death and 
trigger an inflammatory response in the intestinal epithelial 

Fig. 3  The expression of FOXO3 is reduced in the kidney following 
IR. This may be caused by the downregulation of CYP2J2/EETs and 
SIRT1. The increase in FOXO3 levels leads to the regulation of many 

genes involved in fibrosis, autophagy, apoptosis, inflammation, pyrop-
tosis, oxidative stress, and delayed graft function
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cells by inducing the expression of pro-inflammatory mol-
ecules such as cytokines, which can lead to cellular injury, 
edema, and organ failure [48, 123, 124]. In addition, FOXO3 
could mediate the IR-induced influx of neutrophils into the 
intestine to further contribute to tissue damage by releasing 
inflammatory and apoptotic mediators [124] (Fig. 6). These 
indicate that FOXO3 may play a detrimental function in the 
intestinal epithelial cells and lung tissue after intestinal IR.

Hind limb ischemia

Hind Limb Ischemia (HLI) is the most common and severe 
form of peripheral vascular disease that can cause severe 
symptoms such as pain and disability, leading to limb 
amputation and even death [125–127]. In addition, this 
condition significantly contributes to mobility loss, likely 
due to impairments in skeletal muscle homeostasis, such 
as impaired contractility, altered innervation, increased fat 
infiltration, fiber wasting, and disruptions in mitochondrial 
energy production [128–130]. However, the molecular 
mechanisms underlying this decrease in muscle function are 
not yet fully understood. A recent study by Yan et al. (2020) 
has suggested the involvement of FOXO3 in this process 
[49]. It was suggested that circHIPK3 downregulation could 

release the expression of miR-421, which inhibits the expres-
sion and activity of FOXO3, leading to aberrant expression 
of pyroptotic proteins. This indicates that FOXO3 could con-
tribute to hind limb ischemic injury by inducing pyroptosis 
in the ischemic muscle (Fig. 7). In-depth studies are required 
to elucidate the exact role of FOXO3 in the ischemic muscle.

Conclusion

The expression levels of FOXO3 show dynamic changes 
in different organs following ischemia and reperfusion. 
These changes in FOXO3 expression influenced the expres-
sion levels of various proteins related to various damages, 
such as oxidative stress, inflammation, autophagy, pyropto-
sis, mitophagy, and apoptosis. The present study revealed 
that FOXO3 is markedly upregulated in the lung tissue and 
intestinal epithelial cells following ischemia and reperfusion, 
where it substantially contributes to ischemia and reperfu-
sion injury. In contrast, FOXO3 is significantly downregu-
lated in the renal tissue after ischemia and reperfusion and 
in the ischemic hindlimb muscle; nevertheless, the low level 
of FOXO3 was associated with the ischemic and reperfu-
sion injury, suggesting that FOXO3 could also contribute to 
the alleviation of the ischemic and reperfusion injury in the 

Fig. 4  The expression level of FOXO3 is released following Wnt3a/β-Catenin/AKT reduction and SIRT1 and IFNγ induction in the liver after 
IR. This conduces to activating the apoptotic, autophagic, inflammatory, and oxidative stress pathways
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Fig. 5  FOXO3 expression in the liver is decreased after IR. FOXO3 
decrease followed JAK1/STAT3, RARα, GSK3β/β-Catenin, IFNγ, 
TNFα, and Nrf-2 activation and PI3K/AKT/mTOR and SIRT1 deac-

tivation. This activates the anti-autophagic FOXO1 and p62 and the 
expression of oxidative stress-related MDA, inflammatory IL-1β and 
IL-6, and apoptotic Bax, PUMA, and caspase-3

Fig. 6  The expression of FOXO3 is increased in the lung tissue and 
the intestinal epithelial cells after intestinal IR. The upregulation of 
FOXO3 is induced by the overexpression of TNFα and JNK and the 

downregulation of SIRT1. This conduced to overexpressing IL-1β 
and IL-6 in the inflammatory pathway, Bim in the apoptotic pathway, 
and MDA in the oxidative stress pathway
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kidney and hind limb muscle. Intriguingly, studies reported 
upregulation and downregulation of FOXO3 expression in 
the brain, myocardium, and liver following ischemia and 
reperfusion, where it could play both stimulation or inhibi-
tion effects on the induced injury. Therefore, in-depth studies 
are required to elucidate the role of FOXO3 in the brain, 
cardiac, and liver tissues after ischemia and reperfusion. 
FOXO3 deserves to be considered in diagnosing ischemia 
and reperfusion injury. Ultimately, as studies showed, main-
taining FOXO3 expression level, whether genetically or 
through the administration of exogenous molecules, could 
be a great approach to control or treat the ischemia and rep-
erfusion-induced damages.
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