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Abstract
Heparanase is the predominant enzyme that cleaves heparan sulfate, the main polysaccharide in the extracellular matrix. 
While the role of heparanase in sustaining the pathology of autoimmune diabetes is well documented, its association with 
metabolic syndrome/type 2 diabetes attracted less attention. Our research was undertaken to elucidate the significance of 
heparanase in impaired glucose metabolism in metabolic syndrome and early type 2 diabetes. Here, we report that heparanase 
exerts opposite effects in insulin-producing (i.e., islets) vs. insulin-target (i.e., skeletal muscle) compartments, sustaining or 
hampering proper regulation of glucose homeostasis depending on the site of action. We observed that the enzyme promotes 
macrophage infiltration into islets in a murine model of metabolic syndrome, and fosters β-cell-damaging properties of 
macrophages activated in vitro by components of diabetogenic/obese milieu (i.e., fatty acids). On the other hand, in skeletal 
muscle (prototypic insulin-target tissue), heparanase is essential to ensure insulin sensitivity. Thus, despite a deleterious 
effect of heparanase on macrophage infiltration in islets, the enzyme appears to have beneficial role in glucose homeostasis 
in metabolic syndrome. The dichotomic action of the enzyme in the maintenance of glycemic control should be taken into 
account when considering heparanase-targeting strategies for the treatment of diabetes.
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Abbreviations
ECM	� Extracellular matrix
HS	� Heparan sulfate
AGE	� Advanced glycation end products
HFD	� High-fat diet
CD	� Control diet
Hpse-KO	� Heparanase-deficient mice

sFA	� Saturated fatty acids
uFA	� Unsaturated fatty acids

Introduction

Extracellular matrix (ECM) and its remodeling emerged as 
essential determinants in the regulation of metabolic status 
[1–5]. The role of the ECM-degrading enzyme heparanase 
in diabetes and its complications has been actively investi-
gated during the last decade [6–14]. Heparanase enzyme is 
the sole mammalian endoglycosidase degrading heparan sul-
fate (HS), the main polysaccharide component of the ECM, 
which is ubiquitously found in basement membranes and at 
the cell surface. HS and its enzymatic cleavage by hepara-
nase was previously shown to be implicated in autoimmune 
diabetes [10–14] and diabetic complications [6–9]; and 
heparanase induction by several components of the diabetic 
milieu [i.e., high glucose, advanced glycation end products 
(AGE), free fatty acids [8, 15–20]] was described. In the set-
ting of autoimmune diabetes, elevated levels of heparanase 
were detected in pancreas, and multiple roles for heparanase 
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in insulitis and beta cell damage were identified, including 
promotion of leukocyte migration/passage across the islet 
basement membrane, as well as depletion of HS, essential 
component of beta cell survival [10–12, 14, 21]. Several 
studies attested heparanase targeting as novel therapeutic 
approach for autoimmune diabetes [10–12].

Importantly, insulitis, in addition to its key role in the 
pathogenesis of autoimmune diabetes, contributes to pro-
gression of metabolic syndrome/type 2 diabetes [22, 23]. 
Metabolic syndrome is a cluster of conditions that includes 
insulin resistance, hyperglycemia, excess adiposity and 
dyslipidemia. In a significant fraction of patients, combined 
effects of the aforementioned conditions precipitate into type 
2 diabetes. However, the clinical onset of type 2 diabetes 
does not occur until beta cells fail to secrete sufficient insulin 
to maintain normoglycemia in the face of insulin resistance. 
Thus, along with insulin resistance, beta cell dysfunction is 
a major component of type 2 diabetes pathology.

Islet inflammation acts as a key mechanism of beta cell 
damage [22, 24–27]. Obesity/metabolic syndrome represent 
low-grade inflammatory state characterized by chronic acti-
vation/recruitment of macrophages (among other factors—
due to increased levels of free fatty acid that trigger TLR-4 
signaling). Moreover, macrophages are the dominant immu-
nocyte type that cause inflammation in type 2 diabetes islets 
[reviewed in [22, 23]]. Macrophages infiltrate islets in clini-
cal and experimental type 2 diabetes [28–30] and are caus-
ally involved in beta cell dysfunction [22, 23, 25, 29, 31].

Notably, heparanase was recently shown to sustain mac-
rophage reactivity in several obesity/diabetes-related [7, 9, 
18, 32, 33] and non-related [34–36] inflammatory disorders.

Given the causal involvement of islet macrophages in the 
pathogenesis of type 2 diabetes [22, 23] and identification 
of heparanase as a mechanistic determinant of macrophage 
activation in obesity [32] we hypothesized that heparanase 
mediates the diabetogenic effect of excess adiposity by 
directing beta cell damaging action of macrophages in the 
setting of type 2 diabetes. However, our findings revealed a 
more complex mode of action of the enzyme in the mainte-
nance of glycemic control, depending on the site of action 
(i.e., insulin-producing vs. insulin-target compartments).

Materials and methods

Mouse model of obesity

Sixteen-week-old male C57BL/6J mice and heparanase 
knock-out (Hpse-KO) mice on C57BL/6J background [37] 
were fed high-fat diet (HFD) (Teklad TD.06414, 60% of 
total calories from fat), or control diet (CD) (Teklad 2018S) 
for 12 consecutive weeks. Animals were then killed and tis-
sue samples collected. All experiments were performed in 

accordance with the Hebrew University Institutional Animal 
Care and Use Committee.

Metabolic studies

Weight and fasting (5 h) blood glucose levels were moni-
tored at indicated time points. For glucose tolerance tests, 
mice were fasted overnight before i.p. injection of 2 g/kg 
glucose. For insulin tolerance tests, mice were fasted for 2 h 
before injection of 0.75 units/kg recombinant human insu-
lin i.p. (Humalog, Lilly). Glucose levels were measured in 
blood drawn from the tail vein with a portable glucometer 
(Accucheck) at the indicated time points.

Assessment of insulin sensitivity in vivo

Mice were intraperitoneally injected with human insulin 
(Novo Nordisk, Princeton, NJ, USA; 5 U/kg body weight) 
or saline (Control). Lysates of skeletal muscle (soleus and 
gastrocnemius), isolated 10 min after insulin administration, 
were analyzed by immunoblotting with antibodies directed 
against phospho-Akt, total Akt, phospho-insulin receptor 
and total insulin receptor.

Immunohistochemistry

Paraffin-embedded slides were deparaffinized and incubated 
in 3% H2O2. Antigen unmasking was carried out by treat-
ment (5 min) with Pronase (for anti-F4/80 (AbD Serotec) 
staining). Slides were incubated with primary antibodies 
diluted in CAS-Block (Invitrogen) or with CAS-Block alone, 
as a control. Appropriate secondary antibodies (Nichirei) 
were then added and slides incubated at room temperature 
for 30 min. Color was developed using the DAB substrate 
kit (Thermo Scientific), followed by counterstaining with 
Mayer’s hematoxylin. Staining with control IgG or with-
out addition of primary antibody showed low or no back-
ground staining in all cases. Slides were visualized with a 
Zeiss axioscope microscope and number of F4/80-positive 
macrophages per islet was quantified in a blinded fashion 
(≥ 3mice per group).

Macrophage isolation and treatment

Primary mouse macrophages were isolated as previously 
[34]. After adherence, macrophages were incubated 2 h 
in standard culture conditions [34]; then the medium was 
replaced by serum free RPMI-1640 medium and mac-
rophages were incubated (37 °C, 24 h) with 200 µM of fatty 
acids, [palmitic, stearic, and oleic acids (Sigma-Aldrich), 
diluted in 95% ethanol, and conjugated with fatty acid-free 
BSA at a 2:1 molar ratio, or with BSA (vehicle) alone]. 
Where indicated, macrophages were pre-treated with 
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recombinant heparanase (0.8 µg/ml) 2 h prior to addition 
of fatty acids/vehicle. In some experiments heat-inactivated 
heparanase [34, 35] was used as a control. Conditioned 
medium was collected after 24 h, filtered (0.2-µm filter, 
Sartorius Stedim Biotech) and used in further experiments, 
as indicated in the “Results” section.

Glucose‑stimulated insulin secretion (GSIS)

After 1-h preincubation in glucose-free Krebs–Ringer buffer 
(KRB), MIN6 cells (1 × 105 cells/24 well) were incubated for 
1 h in KRB (130-mM NaCl, 4.7-mM KCl, 1.2-mM KH2PO4, 
1.2-mM MgSO4, 2-mM CaCl2, 5-mM NaHCO3, 10-mM 
Hepes and 0.5% BSA) containing glucose (0.5 or 20 mM). 
Insulin secreted into KRB, and insulin contents were meas-
ured with insulin ELISA (Mercodia, Inc., Winston-Salem, 
NC). GSIS is expressed per 1 × 105 MIN6 cells.

Quantitative real‑time PCR (qRT‑PCR)

Total RNA was isolated from 1 × 106 cells using TRIzol (Inv-
itrogen), according to the manufacturer’s instructions, and 
quantified by spectrophotometry. After oligo (dT)-primed 
reverse transcription of 1 μg of total RNA, the resulting 
cDNA was amplified using the primers listed below. Real-
time quantitative PCR (qRT-PCR) analysis was performed 
with an automated rotor gene system RG-3000A (Corbett 
Research). The PCR reaction mix (20 μl) was composed of 
10-μl PerfeCTa SYBR Green FastMix (Quantabio), 5 μl of 
diluted cDNA (each sample in triplicate) and a final con-
centration of 0.3 μM of each primer. Hypoxanthine guanine 
phosphoribosyl transferase (HPRT) primers were used as 
an internal standard. The following primers were utilized: 
mouse HPRT sense: 5′-GTC GTG ATT AGC GAT GAA-3′, 
antisense: 5′-CTC CCA TCT CCT TCA TGA CAT C-3′; 
mIL-1b sense: 5′-CAA CCA ACA AGT GAT ATT CTC 
CAT G-3′; mIL-1b antisense: 5′-GAT CCA CAC TCT CCA 
GCT GCA-3′.

Immunoblotting

Pancreatic tissue lysates were processed for western blot 
analysis as previously (33). Briefly, equally loaded sam-
ples were subjected to SDS-PAGE (8% acrylamide) under 
reducing conditions and proteins were transferred to a poly-
vinylidene difluoride membrane (Millipore). Membranes 
were blocked with 3% BSA (1 h, room temperature) and 
probed (overnight, 4 °C) with anti-phospho-insulin recep-
tor Tyr1150/1151, anti-phospho-AKT Ser 473, anti-total 
insulin receptor or anti-total AKT (Cell Signaling), fol-
lowed by horseradish peroxidase-conjugated secondary 
antibody (KPL) and chemiluminescent substrate (Biological 

Industries). Band intensities were measured on the captured 
images using ImageJ.

Statistical analysis

Statistical analysis was assessed by unpaired two-tailed 
Student’s t test. p values ≤ 0.05 were considered statistically 
significant.

Results

Heparanase deficiency prevents high fat 
diet‑induced hyperglycemia and islet macrophage 
infiltration

First, we applied the model of metabolic syndrome, based 
on male C57/BL6 mice fed for 12 weeks with high-fat diet 
(HFD) [38, 39], utilizing wild-type (wt) and heparanase-
deficient (Hpse-KO) mice on C57BL6 background. HFD-fed 
C57BL6 mice represent one of the best-studied models of 
obesity/type 2 diabetes and related metabolic abnormalities, 
including hyperglycemia and insulin resistance. Consistent 
with previous reports [38], following 12 weeks on HFD, the 
wt mice displayed significantly increased body weight and 
elevated levels of 5-h fasting glucose, as compared to control 
diet (CD)-fed mice (Fig. 1a, c). The levels of non-fasting 
glucose were also significantly increased in HFD-fed wt 
mice (217.3 mg/dl vs. 119.7 mg/dl, two-sided Student’s t test 
p < 0.001), in agreement with the published data [39]. Simi-
lar to the wt animals, Hpse-KO mice displayed increased 
body weight following 12 weeks of HFD (Fig. 1b). However, 
there was no difference in fasting (Fig. 1d) and non-fasting 
(153.9 mg/dl vs. 144.16 mg/dl) glucose levels between HFD-
fed vs. CD-fed Hpse-KO mice. It should be noted that even 
prior to initiation of HFD, blood glucose levels in Hpse-KO 
mice were higher than in wt animals (Fig. 1c, d, experimen-
tal week 0). However, elevated glucose in Hpse-KO mice 
appears not to be due to dysfunction of beta cells, since 
plasma insulin levels were actually higher in Hpse-KO, as 
compared to wt animals on experimental week 0 (0.47 ng/
ml vs. 1.3 ng/ml, two-sided Student’s t test p = 9.2 × 10–5).

Given the role of macrophage-driven beta cell damage 
in type 2 diabetes pathogenesis [22, 23], and involvement 
of heparanase in abnormal activation/pathologic effects of 
macrophages in diabetic complications, obesity and pan-
creatic tumors [7, 9, 32–34], we next set out to determine 
whether the enzyme influences mobilization/activation of 
macrophages in the islets (and, therefore, beta cell injury) 
in our model. To this end, we compared the number of mac-
rophages localized to the islet compartment by IHC in wt vs. 
Hpse-KO mice fed with HFD or CD. As shown in Fig. 2a 
markedly increased number of macrophages was detected 
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in HFD-fed wt mice, as compared to wt mice fed with con-
trol diet, in line with the previously reported data [22, 23]. 
Importantly, there was no increase in the number of mac-
rophages in HFD-fed vs. CD-fed Hpse-KO mice (Fig. 2a), 
indicating that the enzyme deficiency prevents increase in 
mobilization of islet-associated macrophages under meta-
bolic syndrome.

Heparanase augments beta cell damaging effect 
of macrophages in vitro

Based on these observations, along with the ability of hep-
aranase to foster macrophage activation by diabetogenic 
substances, including fatty acids [9, 32, 40], we hypoth-
esized that in the Hpse-KO HFD-fed animals lack of hep-
aranase prevents adverse activation/mobilization of mac-
rophages and, thus, macrophage-mediated beta cell damage. 
To validate this hypothesis in vitro, we compared the beta 

cell damaging effect of mouse macrophages, stimulated by 
saturated fatty acids (sFA, i.e., palmitate/stearate) in the 
absence or presence of heparanase enzyme. It was previ-
ously reported that sFA represent one of the key triggers 
of TLR4-mediated macrophage activation in the setting of 
obesity/type 2 diabetes. Moreover, experiments utilizing 
mouse beta cell line MIN6 (a reliable in vitro model of 
glucose-stimulated insulin secretion and beta cell function 
[22, 28]), confirmed that FA-activated macrophages, but 
not beta cells per se, produce inflammatory mediators that 
promote beta cell dysfunction [22, 28]. Thus, we isolated 
primary wt mouse macrophages (as in [34]), activated them 
by sFA (i.e., palmitate, stearate) in the absence or presence 
of recombinant active heparanase, and compared their abil-
ity to impair glucose-stimulated insulin secretion (GSIS) 
by MIN6 cells. As shown in Fig. 2b, MIN6 cells incubated 
with medium conditioned by wt macrophages activated by 
sFA in the presence of heparanase secreted significantly 
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Fig. 1   HFD leads to hyperglycemia in wild-type but not in Hpse-
KO mice. Wild-type (wt, gray lines) and Hpse-KO (dashed black 
lines) mice were fed HFD (thick lines) or control diet (thin lines) 
for 12 consecutive weeks. a, b Body weight of wt (a) and Hpse-KO 
(b) mice fed with HFD or control diet was monitored. Data are the 
mean ± SD. c, d Fasting blood glucose levels detected in wt mice (c) 

and Hpse-KO mice (d) following 12 weeks of HFD (thick lines) or 
control diet (thin lines). Data are the mean ± SD. Two-sided Student’s 
t test *p = 0.0005, n ≥ 5 mice per condition; n.s not statistically signif-
icant. The experiment was performed three times and similar results 
were obtained
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less insulin than in the absence of heparanase, following 
glucose challenge, corroborating the contribution of hep-
aranase to macrophage-mediated beta cell injury. Consistent 
with these observations, we detected augmented expres-
sion of IL-1β (key cytokine implicated in islet inflammation 
and beta cell dysfunction in type 2 diabetes [22, 23, 28] 
in wt macrophages stimulated by sFA in the presence of 
recombinant active heparanase (Fig. 2c). Notably, this effect 
was dependent on heparanase enzymatic activity, since no 
increase in IL-1β expression levels was detected in the pres-
ence of heat-inactivated heparanase.

Unlike sFA, unsaturated fatty acids (uFA) were previ-
ously reported to display only modest macrophage-stimu-
lating ability [41]. In agreement with this notion, stimula-
tion of wt macrophages with uFA (i.e., oleate) alone failed 
to induce an increase in IL-1β expression (Fig. 2c, white 
bars) and ability to impair GSIS of MIN6 cells (Fig. 2b, 
white bars). Notably, following addition of recombinant 
heparanase, wt macrophage stimulation with uFA resulted 
in increased IL-1β expression (Fig. 2c, gray bars). Addition-
ally, medium conditioned by wt macrophages stimulated by 
uFA in the presence of heparanase decreased GSIS of MIN6 
cells (Fig. 2b, gray bars), although the decrease did not reach 
statistical significance.

On the other hand, medium conditioned by sFA-stimu-
lated heparanase-deficient macrophages (derived from Hpse-
KO mice) had no effect on insulin secretion by MIN6 cells 
in response to glucose challenge (Fig. 2d). In agreement, fol-
lowing sFA stimulation, heparanase-deficient macrophages 
expressed significantly lower levels of IL-1β, as compared 
to wt macrophages (Fig. 2e).

In line with these findings, we detected higher insulin 
levels in the circulation of HFD-fed Hpse-KO mice, as com-
pared to HFD-fed wt mice (15.3 ng/ml vs. 9.7 ng/ml, two-
sided Student’s t test *p = 0.024). Altogether, these observa-
tions support the proposed role of heparanase in fostering 
beta cell damaging effect of islet macrophages. In contrast, 
heparanase deficiency prevents macrophage-mediated islet 
damage, thereby preserving beta cell function.

Heparanase deficiency impairs insulin sensitivity 
in vivo

We next compared glucose tolerance in wt vs. Hpse-KO 
mice following 12 weeks of HFD/CD. Age-matched con-
trol diet-fed mice were used as controls. Despite the pro-
tective effects of heparanase deficiency on beta cell func-
tion observed in vitro (Fig. 2d, e), glucose tolerance test 
(GTT) revealed a higher degree of glucose intolerance in 
Hpse-KO mice as compared to wt mice (in both HFD-fed 

and CD-fed animals, Fig. 3a). Moreover, insulin tolerance 
test revealed that Hpse-KO mice (both HFD and CD fed) 
are less sensitive to exogenous insulin (Fig. 3b). These 
observations, along with the recent reports on contribu-
tion of heparanase to insulin receptor (InsR) triggering 
in malignant tumors of various origins (i.e., myeloma, 
breast carcinoma, synovial sarcoma) [42–44], led us to 
hypothesize that lack of heparanase in Hpse-KO mice did 
not allow for adequate InsR activation in diabetes-rele-
vant insulin-target tissues (i.e., muscle), thus rendering 
Hpse-KO mice insulin resistant. To test this hypothesis, 
we assessed in vivo insulin response in wt and Hpse-KO 
mice, by analyzing activation of InsR signaling cascade in 
lysates of soleus skeletal muscle samples harvested 10 min 
after i.p. insulin administration (Fig. 4). We found that 
heparanase deficiency rendered skeletal muscle resistant 
to insulin: impaired insulin signaling (evidenced by the 
lack of insulin-stimulated phosphorylation of InsR and 
Akt) was observed in soleus skeletal muscle derived from 
Hpse-KO, but not wt mice (Fig. 4).

Altogether, these findings reveal a dichotomic action 
of heparanase in type 2 diabetes: while in islet compart-
ment, the enzyme facilitates macrophage infiltration in vivo 
and fosters beta cell damaging properties of macrophages 
in vitro, in insulin-target tissue (i.e., muscle) heparanase is 
essential to ensure insulin sensitivity.

Discussion

Significant fraction of obese individuals with metabolic 
syndrome eventually develops type 2 diabetes. Progression 
to type 2 diabetes involves, along with insulin resistance, 
occurrence of an additional metabolic event—beta cell dys-
function. As a result, beta cells are unable to secrete exces-
sive amounts of insulin to compensate for the insulin resist-
ance, leading to hyperglycemia and onset of type 2 diabetes. 
Islet inflammation appears to contribute prominently to the 
beta cell dysfunction and adversely activated macrophages 
infiltrating pancreatic islets are key players in the beta cell 
damage [22, 23, 25, 29, 31].

Heparanase enzyme powers inflammation and mac-
rophage reactivity in several pathological conditions trig-
gered by obesogenic/diabetogenic milieu components [7, 
9, 32]. Therefore, in the present study, we investigated 
involvement of the enzyme in pathogenesis of metabolic 
syndrome/type 2 diabetes, assuming that the enzyme (pro-
duced by islet-associated macrophages or islet cells [10, 
11, 14, 47]) fosters macrophage-mediated islet damage, 
thus contributing to dysregulated glucose metabolism. 
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Indeed, our findings (Figs. 1and 2) initially suggested 
that in metabolic syndrome/type 2 diabetes the enzyme 
acts primarily in the islet compartment and exerts pro-
diabetic effects via facilitation of beta cell injury by 
macrophages. Additional heparanase-driven phenomena 

initially reported in the setting of T1D (i.e., facilitation of 
leukocyte migration across the islet basement membrane 
and depletion of intra-islet HS) [10–12, 14, 21] can also 
contribute to beta cell damage in type 2 diabetes. How-
ever, further experiments (Figs. 3 and 4) revealed a more 
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complex picture: heparanase may either sustain or hamper 
proper regulation of glucose metabolism, depending on 
the site of action. While in islets heparanase appears to 
foster mobilization of beta cell damaging macrophages, in 
skeletal muscle (the prototypic insulin-target tissue), the 
presence of heparanase is a prerequisite for proper InsR 
signaling. The precise molecular mechanism underlying 
the action of heparanase in ensuring insulin sensitivity has 
not been fully elucidated, (clear limitation of the present 
study); nevertheless, emerging involvement of HS, enzy-
matic substrate of heparanase, in modulation of insulin 
responses in the target tissues offers possible explanation. 

Indeed, perlecan (the main HS proteoglycan in extracel-
lular space) appears to regulate responsiveness to insulin, 
and perlecan-deficient mouse model demonstrated that 
loss of perlecan led to augmented insulin sensitivity in 
muscle [3]. Since heparanase activity reduces the amount 
of extracellular HS [35, 45], lack of enzymatic remodeling 
of perlecan in Hpse-KO mice can explain insulin resist-
ance in Hpse-KO muscle tissue (Fig. 4).

Additionally, glypican-4 (cell surface HS proteoglycan) 
was shown to interact with and enhance InsR signaling [2]. 
This effect on InsR signaling appears to involve release of 
glypican from the cell surface by an enzymatically regu-
lated process and its direct interaction with InsR [2], likely 
through HS chains. Of note, heparanase enzymatic activ-
ity drives shedding of cell surface HS proteoglycans, and 
releases cell surface-derived bioactive HS fragments that 
potentiate growth factor-receptor signaling [46].

Causal contribution of the enzyme to insulin sensitivity 
is further supported by the series of findings reported in 
pathologies other than metabolic dysregulation that involve 
activation of InsR (i.e., malignant tumor cells of both epithe-
lial and mesenchymal origin (breast carcinoma, myeloma, 
sarcoma) [42–44]. In all of the aforementioned malignant 
cell types, heparanase promotes insulin–InsR signaling, 
while inhibition of the enzyme repressed InsR signaling 
cascade [42–44].

While further studies are warranted to fully elucidate the 
mechanism(s) of heparanase action in facilitation of InsR 
signaling, as well as regulation of the enzyme expression in 
insulin-target tissues (which is much less investigated then 
in islets [47]), our findings reveal the dichotomic role of 
heparanase in the maintenance of glucose homeostasis. We 
suggest that this dichotomy of the enzyme function is due 
to multiple mechanistic possibilities and diverse biological 
roles ascribed to HS, in the pancreas vs. peripheral insu-
lin-target tissues. Our study implies that while considering 
heparanase-targeting strategies for treatment of diabetes or 
its complications [8–12, 47], one has to take into account 
its possible beneficial effect on insulin resistance. Thus, our 
results may offer rational and mechanistically informed basis 
to improve design of clinical testing of heparanase inhibitors 
in diabetic patients.

Fig. 2   Effect of heparanase on islets damaging properties of mac-
rophages. a Pancreata from CD- and HFD-fed wt and Hpse-KO mice 
were processed for immunostaining with F4/80 antibody (left panel). 
Blind assessment of the number of F4/80-positive cells per islet in 
each group was then performed. Bar graph (right panel) represents 
statistics of the number of F4/80 + cells per islet (mean ± SD, n ≥ 3 
mice per condition, two-sided Student’s t test *p = 0.00026, n.s not 
statistically significant). b, c Primary wt mouse macrophages were 
stimulated by 200  µM of saturated (palmitate/stearate) or unsatu-
rated (oleate) fatty acids (sFA or uFA, in accordance,) in the absence 
(white bars) or presence (gray bars) of recombinant heparanase 
enzyme (Hpa). As control, macrophages were treated with vehicle 
(BSA) alone. b Medium conditioned by the macrophages was then 
added to MIN6 cells (diluted at ratio 1:5) and glucose-stimulated 
insulin secretion (GSIS) was assessed 24 h later. Note that presence 
of heparanase significantly augmented beta cell-damaging proper-
ties of saturated FA-activated macrophages (Two-sided Student’s 
t test *p = 0.04; n.s not statistically significant). Beta cell-damaging 
properties of uFA-activated macrophages were also increased in the 
presence of heparanase, but did not reach statistical significance. Note 
that when medium conditioned by vehicle-stimulated macrophages 
was used, presence of heparanase per se had no effect on GSIS, ruling 
out possible effect of carry-over of the enzyme via the conditioned 
medium. Also note the lack of statistically significant differences 
on GSIS exerted by medium conditioned by sFA-treated vs vehicle-
treated macrophages, ruling out possible effect of carry-over of sFA 
via the conditioned medium. c Expression of IL-1β in macrophages 
stimulated by sFA or uFA in the absence or presence of active recom-
binant heparanase was assessed by qRT-PCR. d, e In a similar man-
ner, primary macrophages derived from wt (empty bars) or Hpse-KO 
(black bars) mice were stimulated by sFA or uFA. Some macrophages 
were treated by vehicle (BSA) alone. d Medium conditioned by the 
macrophages was then added to MIN6 cells and their glucose-stimu-
lated insulin secretion was assessed 24 h later. e Expression of IL-1β 
in wt (empty bars) or Hpse-KO (black bars) macrophages stimulated 
with sFA or uFA was assessed by qRT-PCR
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Fig. 3   Glucose and insulin tolerance in wt and Hpse-KO mice. a Glu-
cose tolerance test was performed on wt (left panel) and Hpse-KO 
(middle panel) mice fed with HFD [thick lines] or control diet [thin 
lines]. Following an overnight fast (16 h), mice were given an intra-
peritoneal injection of glucose (2 g/kg body weight). At the indicated 
time points, blood glucose was measured as indicated in Methods. 
Results are mean ± SE; n ≥ 6 per condition; Two-sided Student’s t test 
*p ≤ 0.022. Areas under the curves were compared and the respec-
tive bar graphs represent mean ± SE (right panel), two-sided Stu-

dent’s t test *p ≤ 6.8 × 10–5, **p ≤ 0.007. b Insulin tolerance test was 
performed on 2 h fasted wt (left panel) and Hpse-KO (middle panel) 
mice fed with HFD [thick lines] or control diet [thin lines], applying 
an i.p. injection of 0.75 units/kg body weight, human insulin. Blood 
glucose was measured as described in Methods. Data are mean ± SE; 
n ≥ 6 per condition; Two-sided Student’s t test *p ≤ 0.022. Areas 
under the curve were calculated and bar graph represent mean ± SE 
(right panel); Two-sided Student’s t test *p = 0.012, **p = 4.16 × 10–6, 
***p ≤ 1.16 × 10–5, n.s not statistically significant
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Fig. 4   Heparanase deficiency impairs insulin sensitivity in skeletal 
muscle. a Wild-type and Hpse-KO mice were injected (i.p.) with 
human insulin (Novo Nordisk, Princeton, NJ, USA; 5  U/kg body 
weight) or saline (Control). Lysates of skeletal muscle, isolated from 
the mice ten min after insulin administration, were analyzed by immu-
noblotting with antibodies directed against phospho-Akt (P-Akt), 

total Akt, phospho-InsR (P-InsR) and total InsR InsR. b, c The band 
intensity was quantified using ImageJ software; intensity ratios for 
P-Akt/total Akt (b) and P-InsR/total InsR (c) are shown. Data are 
the mean ± SD. Two-sided Student’s t test *p = 0.0007, **p = 0.003, 
***p = 0.03; n.s not statistically significant, n = 3 mice per condition
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