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Abstract
SIRT6 is an NAD+ dependent deacetylase that belongs to the mammalian sirtuin family. SIRT6 is mainly located in the 
nucleus and regulates chromatin remodeling, genome stability, and gene transcription. SIRT6 extensively participates in 
various physiological activities such as DNA repair, energy metabolism, oxidative stress, inflammation, and fibrosis. In 
recent years, the role of epigenetics such as acetylation modification in renal disease has gradually received widespread atten-
tion. SIRT6 reduces oxidative stress, inflammation, and renal fibrosis, which is of great importance in maintaining cellular 
homeostasis and delaying the chronic progression of kidney disease. Here, we review the structure and biological function 
of SIRT6 and summarize the regulatory mechanisms of SIRT6 in kidney disease. Moreover, the role of SIRT6 as a potential 
therapeutic target for the progression of kidney disease will be discussed.

Graphical abstract
SIRT6 plays an important role in kidney disease. SIRT6 regulates mitochondrial dynamics and mitochondrial biogenesis, 
induces G2/M cycle arrest, and plays an antioxidant role in nephrotoxicity, IR, obstructive nephropathy, and sepsis-induced 
AKI. SIRT6 prevents and delays progressive CKD induced by hyperglycemia, kidney senescence, hypertension, and lipid 
accumulation by regulating mitochondrial biogenesis, and has antioxidant, anti-inflammatory, and antifibrosis effects. Addi-
tionally, hypoxia, inflammation, and fibrosis are the main mechanisms of the AKI-to-CKD transition. SIRT6 plays a critical 
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role in the AKI-to-CKD transition and kidney repair through anti-inflammatory, antifibrotic, and mitochondrial quality 
control mechanisms. AKI Acute kidney injury, CKD Chronic kidney disease.

Keywords  SIRT6 · Chronic kidney disease · Acute kidney disease · Epigenetics · Energy metabolism · Oxidative stress · 
Cellular homeostasis

Introduction

The kidney is one of the main energy-consuming organs in 
the human body [1]. Persistent chronic inflammation and 
incomplete recovery of kidney function after acute kidney 
injury (AKI) accelerate the progression to chronic kidney 
disease (CKD), which ultimately leads to an increased 
incidence of end-stage renal disease (ESRD) [2]. Under 
conditions of oxidative stress and aging, the physiological 
stress response capacity is reduced. The decreased anti-
oxidant capacity exacerbates renal tubular epithelial cell 
(TEC) damage, vascular endothelial cell activation, and the 
inflammatory response, promoting abnormal kidney repair 
and ultimately resulting in irreversible kidney damage [3]. 
Identifying the key regulatory molecules and effective thera-
peutic targets is of vital importance in the prevention and 
treatment of kidney disease.

Mammalian sirtuins (SIRT1-7) are Class III histone 
deacetylases, which are a highly conserved protein family 
and are closely related to the development of diseases, 
including metabolic syndrome, diabetes, cancers, and 
aging [4, 5]. Among sirtuins, SIRT1, SIRT2, and SIRT3 

belong to Class I based on sequence-based phylogenetic 
analysis, while SIRT4 belongs to Class II, SIRT5 is in 
Class III, and SIRT6 and SIRT7 are in Class IV [6]. Sir-
tuins localize in different subcellular compartments and 
perform different functions. SIRT1, the most well-studied 
sirtuin, is mainly located in the nucleus. SIRT1 shows 
strong histone deacetylation activity and shuttles between 
the nucleus and the cytoplasm, playing a vital role in DNA 
repair and the stress response [7]. SIRT2 is located in the 
nucleoplasm and exhibits robust deacetylase activity. 
SIRT2 mainly regulates the cell cycle and tumorigenesis 
[8]. SIRT3 is located in mitochondrial matrix, and is a 
mitochondrial protein deacetylase that regulates mitochon-
drial dynamics and metabolism [9]. SIRT4 is located in 
mitochondria, mainly functions as an ADP-ribosyltrans-
ferase and has weak substrate-specific deacetylase activity. 
SIRT4 plays a vital role in metabolism regulation [10]. 
SIRT5 primarily resides in mitochondria and exerts dem-
alonylase, lysine desuccinylase, and deglutarylase activity, 
participating in the urea cycle and regulating metabolism 
[11]. SIRT6 is mainly located in the nucleus, is involved in 
DNA repair and energy metabolism, and plays a regulatory 
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role in lifespan [12]. SIRT7 localizes in the nucleus and 
interacts with RNA polymerase I to regulate DNA repair 
and the aging process [13, 14]. Recently, SIRT6, which is 
a potential therapeutic target, has gradually drawn atten-
tion in maintaining kidney function and has been proven to 
participate in renal disease by regulating oxidative stress, 
inflammation, fibrosis, and mitochondrial biosynthesis 
[15–17]. In this review, we first summarize the structure 
and main biological functions of SIRT6 and then describe 
the regulatory mechanisms and potential role of SIRT6 as 
a target in kidney disease.

Structural features and biological functions 
of SIRT6

SIRT6 is composed of an N-terminal, a C-terminal, and a 
conserved central domain. The C terminus is a structural 
region related to nuclear localization that regulates the posi-
tioning of SIRT6. Central domain maintains catalytic activ-
ity. The N terminus of SIRT6 binds to the chromosome and 
contributes to intrinsic catalytic activity, such as regulating 
H3K9 and H3K56 deacetylation [18]. In contrast to other 
sirtuin family members, SIRT6 lacks a cofactor-binding 
loop and has a single helix instead. The crystal structure 
of SIRT6 contains two globular domains: a splayed zinc-
binding domain and a stable single helix for NAD+ bind-
ing. Although SIRT6 lacks a conserved and highly flexible 

NAD+-binding loop, it can bind tightly to NAD+ in the 
absence of acetylated substrates [19]. SIRT6 possesses both 
NAD+-dependent protein deacetylase activity and ADP ribo-
syl transferase activity, participating in gene transcription, 
metabolism, telomere integrity, and DNA repair [20]. SIRT6 
also exerts defatty acylase activity and plays an important 
role in protein secretion [21]. The unique structure and enzy-
matic activity of SIRT6 exerts a variety of unique biological 
effects. SIRT6 is actively recruited to target gene promoters 
and deacetylates H3K9, H3K18, and H3K56 to maintain 
cellular homeostasis [22–24]. The ADP ribosylation activ-
ity of SIRT6 is involved in DNA double-strand break (DSB) 
repair [25] (Fig. 1).

SIRT6 in cellular homeostasis

As an upstream nucleoprotein, SIRT6 can regulate cell func-
tion and survival. SIRT6 plays a critical role in maintaining 
cellular homeostasis in multiple ways, including telomere 
maintenance, DNA repair, energy metabolism, oxidative 
stress, the inflammatory response, and fibrosis [26] (Fig. 1).

Telomere maintenance and DNA repair

Telomeres are specialized DNA protein structures at the 
end of chromosomal DNA that protect chromosome ends 
from degradation and the DNA damage response (DDR). 

Fig. 1   Structural features and biological functions of SIRT6. A Bio-
logical functions of SIRT6. SIRT6 can regulate telomere mainte-
nance, DNA repair, energy metabolism, oxidative stress, the inflam-
matory response, and fibrosis to maintain cellular homeostasis. B 
Structural features of SIRT6. SIRT6 is composed of an N terminus 
(1–24), a C terminus (269–355), and a conserved central domain 
(25–274) and has a total length of 355 amino acids (aa). The con-

served central domain is the main catalytic core, which includes the 
NAD+-binding Rossmann fold domain (RFD) (25–132 and 195–268) 
and a zinc-binding domain. Cysteine residues that bind to Zn2+ ions 
are located at positions 141, 144, 166, and 177. The C terminus is a 
disordered region that is proline-rich. The main phosphorylation and 
ubiquitylation sites are highlighted
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Telomeres exhibit structural abnormalities and random loss 
of telomere sequences when SIRT6 is deficient [27]. SIRT6-
deficient cells show base excision repair defects and genomic 
instability. Upregulation of SIRT6 may improve the ability 
of base excision repair to combat DNA damage and rescue 
genome instability [28]. The main types of DNA damage 
include base deletion, mismatch, DNA cross-linking, and 
DNA strand breaks that consist of DNA single-strand breaks 
(SSBs) and DSBs. SSBs occur more frequently in cells, but 
DSBs are the most toxic form of DNA damage that lead to 
impaired gene integrity and the subsequent partial loss of 
the genome [29, 30]. The repair of both SSBs and DSBs is 
closely related to SIRT6 [31, 32]. SIRT6 directly binds to 
DSBs and recruits key factors associated with DDR [33]. 
Upon DSB damage, H2AX is rapidly phosphorylated by 
ataxia-telangiectasia mutated (ATM) kinase. The phospho-
rylated histone H2A variant γH2AX anchors to SIRT6 and 
binds with DNA DSB sites to initiate the cellular DDR [30, 
34]. Oxidative stress results in severe DNA damage, espe-
cially DSBs [35]. Under oxidative stress conditions, SIRT6 
mono-ADP-ribosylates poly (ADP-ribose) polymerase 1 
(PARP1) on lysine 521 to stimulate PARP1 activity, which 
enhances DSB repair [36]. c-Jun N-terminal kinases (JNKs) 
phosphorylate SIRT6 on serine 10, stimulating SIRT6 
mono-ADP-ribosylation of PARP1 and promoting PARP1 
recruitment to DNA breaks [37]. SIRT6 can also facilitate 
the recruitment of DNA repair factors, including Rad51 
and NBS1 [38]. Telomere repeat binding factor 2 (TRF2) is 
involved in telomere maintenance and DDR. SIRT6 interacts 
with TRF2 and deacetylates the TRFH domain of TRF2, 
which is then ubiquitylated, activating ubiquitin-dependent 
proteolysis to regulate its stability [39]. SIRT6 responds to 
damaged telomeres in the early stage and then recruits MutY 
homolog (MYH) and Rad9-Rad1-Hus1 (9-1-1) to form the 
MYH/SIRT6/9-1-1 complex, which is important in DNA 
repair and maintaining telomere integrity [40]. In response 
to UV irradiation, SIRT6 binds with and deacetylates dam-
age-specific DNA-binding protein 2 (DDB2) at the lysine 
residues K35 and K77 and then promotes DDB2 ubiquit-
ination and segregation from chromatin, thereby facilitating 
nucleotide excision repair signal transduction [41]. SIRT6 
mono-ADP ribosylates the lysine demethylase JHDM1A/
histone demethylase 2A (KDM2A), which results in rapid 
displacement of KDM2A from chromatin and increased lev-
els of H3K36me2, which recruits heterochromatin protein 
1-alpha (HP1α) and promotes deposition of the H3K9me3 
mark, leading to local chromatin compaction [42]. Chromo-
domain helicase DNA-binding protein 4 (CHD4) is a core 
subunit of mammalian nucleosome remodeling and the his-
tone deacetylase (NuRD) complex, and is recruited to DNA 
damage sites. SIRT6 interacts with CHD4 and is required 
for the recruitment of CHD4 to mediate the DDR [28]. We 
also verified that SIRT6 alleviates DNA DSBs through the 

nuclear factor erythroid-related factor 2 (Nrf2)/heme oxy-
genase 1 (HO-1) pathway [43]. This evidence suggests that 
SIRT6 plays an important role in telomere maintenance and 
DNA repair.

Mitochondrial homeostasis

SIRT3 is highly expressed in mitochondria and is the most 
thoroughly studied mitochondrial sirtuin [44]. SIRT3 regu-
lates mitochondrial energy metabolism by adjusting mito-
chondrial dynamics through fusion and fission, clearing 
damaged mitochondria through autophagy and generating 
new mitochondria through biosynthesis. SIRT3 overexpres-
sion activates peroxisome proliferator-activated receptor 
gamma coactivator 1-alpha (PGC-1α)-related mitochondrial 
protection mechanisms and blocks caspase 9-related apopto-
sis pathways, thus alleviating high glucose-induced endothe-
lial cell injury [45]. In addition, renal ischemia–reperfusion 
(IR) leads to SIRT3 deficiency. SIRT3 enhances mitochon-
drial fusion triggered by optical atrophy 1 (OPA1) and thus 
maintains mitochondrial homeostasis and protects renal 
TECs from IR injury [46]. This evidence shows that SIRT3 
maintains cellular mitochondrial homeostasis. Interestingly, 
SIRT6 overexpression may regulate mitochondrial homeo-
stasis by cooperating with SIRT3. Under stress conditions, 
the lack of SIRT3 causes mitochondrial dysfunction and pro-
motes mitochondrial reactive oxygen species (ROS) over-
production accompanied by the downregulation of SIRT6. 
SIRT3 overexpression significantly upregulates SIRT6 and 
reverses oxidative stress damage [47]. SIRT3 is an Nrf2-
dependent gene, and it has also been proven that SIRT6 can 
activate Nrf2 to regulate downstream gene expression [48, 
49]. SIRT6 promotes the recruitment and activation of RNA 
polymerase II to Nrf2-regulated antioxidant genes and then 
exerts antioxidant effects. In addition, SIRT6 inhibits the 
binding of Kelch-like ECH-associated protein 1 (Keap1) and 
Nrf2, stabilizes Nrf2 and activates the transcription of the 
Nrf2-dependent gene SIRT3, further maintaining mitochon-
drial homeostasis [50]. In addition, SIRT6 plasmid transfec-
tion significantly alleviated high glucose-induced mitochon-
drial defects by activating the AMP-activated protein kinase 
(AMPK) pathway [51]. In summary, SIRT6 participates in 
the regulation of mitochondrial function and is critical to 
mitochondrial homeostasis (Fig. 2).

Energy metabolism

As one of the most basic characteristics of life, energy 
metabolism has been examined in various research fields, 
including kidney disease research. Multiple studies have 
confirmed that SIRT6 acts as a regulator of glucose and lipid 
metabolism [52, 53]. SIRT6-knockout mice showed gradu-
ally increased blood glucose levels and fat mass, indicating 
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the potential role of SIRT6 in regulating metabolism [54]. 
Next, we will summarize the role of SIRT6 in adjusting 
energy metabolism, including glucose metabolism and lipid 
metabolism.

Glucose metabolism

Glucose metabolism is crucial for tissue and organ energy 
supply. SIRT6 can directly regulate glycometabolism by 
inhibiting glucose metabolism genes. SIRT6 interacts with 
hypoxia inducible factor-1α (HIF-1α), deacetylates H3K9 
at the HIF-1α promoter, regulates glucose metabolic genes 
such as phosphofructokinase-1 (PFK1), lactate dehydroge-
nase (LDH), and pyruvate dehydrogenase kinase (PDK), 
promotes glycolysis, and regulates mitochondrial respira-
tion [55]. SIRT6 increases the liver gluconeogenic gene 
and NAD+ from de novo synthesis, and enhances glycerol 
release from adipose tissue to delay aging [56]. A lack 
of SIRT6 enhances the membrane association of glucose 
transporter 1 (GLUT1) and GLUT4, promoting glucose 
uptake. Simultaneously, SIRT6 regulates AKT signaling, 
which is negatively correlated with the effects of insulin 
[57]. Forkhead box protein O1 (FoxO1) and PGC-1α are 
transcriptional components of the insulin signaling path-
way, and play crucial roles in gluconeogenesis. FoxO1, the 
first identified transcription factor for gluconeogenesis, is 
activated by PGC-1α. The interaction between FoxO1 and 
PGC-1α regulates gluconeogenesis [58]. Evidence suggests 
that statins increase the expression of the SIRT6 inhibitor 
microRNA (miR)-495 and then acetylate FoxO1, leading to 
increased gluconeogenesis and hyperglycemia [59]. In addi-
tion, SIRT6 controls gluconeogenesis by uniquely upregulat-
ing the acetylation of PGC-1α by activating and modifying 
general control nonrepressed 5 (GCN5) [60].

Lipid metabolism

SIRT6 is also a regulator of lipid metabolism [61]. SIRT6 
deficiency results in the upregulation of triglycerides (TGs), 
cholesterol, and long-chain fatty acid uptake genes, but 
inhibits β-oxidation [62]. SIRT6 modulates lipid homeosta-
sis by regulating peroxisome proliferator-activated receptor 
(PPAR) γ-related genes [63]. SIRT6 deficiency enhances 
the binding rate of the transcription factor PPARγ, thereby 
promoting fatty acid transporter expression, leading to lipid 
accumulation and fatty acid uptake [64]. Rosiglitazone 
(RGZ) is an agonist of PPARγ that can ameliorate hepatic 
lipid accumulation and increase SIRT6 expression [65, 
66]. SIRT6 regulates cholesterol levels by repressing sterol 
regulatory element-binding proteins 1/2 (SREBP-1/2) and 
activating AMPK by increasing the AMP/ATP ratio [67]. 
The proprotein convertase subtilisin/kexin type 9 (PCSK9) 
gene plays a vital role in regulating LDL cholesterol metabo-
lism. PCSK9 can be regulated by SIRT6 and FoxO3. FoxO3 
recruits SIRT6 to the promoter of PCSK9 and deacetylates 
H3K9 and H3K56 to suppress PCSK9 expression, thus 
maintaining LDL cholesterol homeostasis [68]. Ubiquitin-
specific peptidase 10 (USP10) deficiency induces metabolic 
dysfunction in high-fat diet (HFD)-treated mice, which can 
be ameliorated by SIRT6 [69]. SIRT6 can also modulate 
cholesterol efflux by regulating ATP-binding cassette trans-
porter G1 (ABCG1) expression [70].

Oxidative stress

Under oxidative stress conditions stimulated by pathologi-
cal factors, excessive ROS are generated. A disruption in 
the dynamic balance of oxidation and antioxidant capacity 
causes lipid, protein, and nucleic acid turbulences. Excessive 

Fig. 2   The role of SIRT6 in 
the regulation of mitochondrial 
homeostasis. Under stress con-
ditions, SIRT6 coordinates with 
SIRT3 to regulate mitochon-
drial dynamics through fission 
and fusion. In addition, SIRT6 
activates AMPK signaling to 
promote autophagy and main-
tain mitochondrial homeostasis. 
AMPK AMP-activated protein 
kinase, LC3 Microtubule-asso-
ciated protein 1 light chain 3, 
P62/SQSTM1 sequestosome-1, 
Mfn1/2 Mitofusin 1/2, Fis1 
Mitochondrial fission protein 1, 
Drp1 Dynamin-related protein 1
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ROS production directly damages tissues and organs, and 
acts as a second messenger to induce an immune inflam-
matory response [71]. Excessive ROS also lead to cellular 
phenotype transformation and induces apoptosis and necro-
sis [72–74]. Nrf2 is a crucial redox-sensitive transcription 
factor that belongs to the Cap-n-Collar (CNC) protein fam-
ily, and is widely present in the liver, kidney, lung, and other 
organs. Nrf2 regulates redox homeostasis by interacting with 
antioxidant response elements (AREs) [75]. SIRT6 is known 
to attenuate apoptosis and oxidative stress by activating the 
Nrf2/ARE signaling pathway [76]. SIRT6 can act as a posi-
tive regulator of Nrf2. Studies have shown that SIRT6 acti-
vates the Nrf2 signaling pathway, mediates the expression of 
catalase, HO-1, and other downstream antioxidant proteins, 
and protects proximal renal TECs from oxidative stress [77]. 
Low SIRT6 expression is related to oxidative stress in dia-
betes, and patients with type 2 diabetes who are treated with 
sodium-dependent glucose transporter 2 (SGLT2) inhibitors 
have increased SIRT6 expression and reduced oxidative 
stress [78]. USP10 protects against a variety of environmen-
tal stresses, including oxidative stress [79]. USP10 promotes 
activation of the Nrf2/HO-1 pathway through SIRT6 to 
reduce oxidative stress and attenuate cell injury [80]. SIRT6 
directly interacts with and deacetylates PGC‑1α through the 
AMPK pathway to maintain mitochondrial homeostasis and 
oxidative stress [81]. SIRT6 can also reduce oxidative stress 
by regulating the AKT signaling pathway. SIRT6 directly 
controls AKT signaling at the chromatin level through H3K9 
and H3K56 deacetylation, negatively regulates the level of 
phosphorylated AKT, and induces autophagy, thus exerting 
an antioxidant effect [82–84]. Moreover, SIRT6 overexpres-
sion activates the phosphorylation of AMPKα, increases the 
levels of FoxO3α, decreases the phosphorylation activity of 
the protein kinase AKT, and further increases the expres-
sion of the downstream antioxidant proteins MnSOD and 
Catalase [85]. This evidence indicates that SIRT6 can inhibit 
oxidative stress through multiple pathways and exert a pro-
tective effect (Fig. 3).

Inflammation

SIRT6 also plays a unique regulatory role in the immune 
inflammatory response. SIRT6 deficiency increases pro-
inflammatory cytokine production and adhesion molecule 
expression, leading to chronic inflammation and fibro-
sis [86]. SIRT6 deficiency promotes the expression of 
nuclear factor kappa-B (NF-κB) which is a well-known 
inflammatory factor that is widely expressed in cells 
[87]. The NF-κB transcription factor family can regulate 
inflammation-related gene expression and affect cellular 
activities that are closely related to various biological 
processes [88]. NF-κB activation induces an inflamma-
tory response by promoting the release of inflammatory 

mediators from monocytes. NF-κB enables downstream 
pyrin domain containing protein 3 (NLRP3) signaling and 
tumor necrosis factor alpha (TNF-α) expression, further 
promoting the release of pro-interleukin-18 (pro-IL-18) 
and pro-IL-1β and the downstream inflammatory factors 
IL-1β and IL-18. SIRT6 can act as a negative regulator of 
NF-κB to regulate inflammation through histone H3K9 
deacetylation [89, 90]. Mechanistically, SIRT6 binds to 
p65/RelA in the NF-κB promoter region, deacetylates 
histone H3K9, stabilizes RelA on chromatin, and inhibits 
transcriptional activity to terminate NF-κB signaling [91]. 
Additionally, SIRT6 plays an anti-inflammatory role by 
inhibiting the expression of c-JUN-dependent proinflam-
matory genes monocyte chemotactic protein 1 (MCP1) 
and IL-6 [92]. Notch signaling exacerbates cell damage 
by mediating the inflammatory response, apoptosis, and 
autophagy inhibition, which can be regulated by epigenetic 
modifications and is a potential target of SIRT6 [93]. A 
reduction in SIRT6 leads to increased H3K9 acetylation 
in the Notch1 and Notch4 promoters, and the activation 
of Notch signaling further exacerbates cell damage [94]. 
Multiple studies have shown the protective role of SIRT6 
in alleviating inflammation, as mentioned previously, and 
SIRT6 increases TNF-α secretion by removing the fatty 
acyl modification on K19 and K20 of TNFα [95]. The 
precise modulatory effect of SIRT6 on inflammation needs 
further elucidation (Fig. 4).

Fig. 3   The role of SIRT6 in the regulation of oxidative stress. ROS 
overproduction activates JNK, phosphorylates Ser10 on SIRT6, 
recruits SIRT6 to DNA damage sites, and regulates DNA repair. 
USP10 promotes activation of the Nrf2/HO-1 pathway through 
SIRT6, and further alleviates oxidative stress. SIRT6 inhibits AKT 
signaling and activates AMPK to regulate mitochondrial biogenesis 
and has an antioxidative effect. JNK Jun-N-terminal kinase, USP10 
Ubiquitin-specific peptidase 10, AMPK AMP-activated protein 
kinase, Nrf2 Nuclear factor erythroid-related factor 2, HO-1 heme 
oxygenase 1, ROS Reactive oxygen species, FoxO3α Forkhead box 
O3α, PGC1α Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha
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Fibrosis

Fibrosis is driven by inflammation and is the main patho-
logical process of various chronic diseases that progress to 
an end stage [96]. TGF-β is the main factor involved in the 
phenotypic transformation of fibroblasts. While participat-
ing in cell growth and differentiation, TGF-β also plays an 
important role in regulating intercellular substance produc-
tion, apoptosis, and the inflammatory response [97, 98]. 
TGF-β type II receptor (TGF-βR II) is activated through the 
autophosphorylation of Ser213 and Ser409, and then acti-
vated TGF-βR II interacts with TGF-βR I and enhances the 
enzymatic activity of TGF-βR I. Activated TGF-βR I further 
recruits and activates downstream Smad proteins to accumu-
late in the nucleus and acts as a transcription factor to regu-
late transcription [99]. In addition, TGF-β can also activate 
MAPK, PI3K–AKT, and PAK2 signaling molecules through 
nonclassical pathways to regulate fibrosis [100–102]. Wnt 
is a crucial pathway for regulating epithelial–mesenchy-
mal transition (EMT). Wnt/β-catenin signaling regulates 

cell differentiation and regeneration and cross-linking with 
TGF-β and Notch signals [103]. TGF-β can activate the clas-
sic Wnt signaling pathway by downregulating the expres-
sion of the Wnt signaling pathway antagonist Dickkopf 1 
(DKK1). On one hand, SIRT6 negatively regulates TGF-β, 
reduces the activation of downstream Smad signaling, and 
alleviates fibrosis [104]. On the other hand, SIRT6 interacts 
with β-catenin to regulate TGF-β, binds to the β-catenin 
promoter, and causes the deacetylation of histone H3K56, 
thereby preventing the transcription of genes related to fibro-
sis [16]. Some studies have proven that SIRT6 can directly or 
indirectly influence Notch signaling factor expression [105, 
106]. The activation of Notch signaling induces TEC dedif-
ferentiation and renal fibroblast proliferation, thus promoting 
renal fibrosis [107]. The interaction between Wnt and Notch 
signaling is critical for maintaining cellular function. Inhib-
iting the Wnt signaling pathway can restore the phenotype 
induced by the blockade of Notch signaling [108]. Collec-
tively, SIRT6 can serve as a therapeutic target for fibrosis 
(Fig. 4).

Fig. 4   The role of SIRT6 in the regulation of inflammation and fibro-
sis. SIRT6 plays a unique role in regulating inflammation and fibro-
sis. SIRT6 can act as a negative regulator of NF-κB to inhibit NLRP3 
and TNF-α expression, and further reduce the release of pro-interleu-
kin-18 (pro-IL-18) and pro-IL-1β and the downstream inflammatory 
factors IL-1β and IL-18. Additionally, SIRT6 plays an anti-inflam-
matory role by inhibiting the expression of the c-JUN-dependent pro-
inflammatory genes MCP1 and IL-6. Notch signaling also promotes 

inflammation and can be negatively regulated by SIRT6. Fibrosis is 
the main pathological process of various chronic diseases at the end 
stage and can be driven by inflammation. SIRT6 negatively regulates 
TGF-β and reduces the activation of downstream Smad signaling. 
SIRT6 can also negatively regulate Wnt/β-catenin, thus alleviating 
fibrosis. c-JUN c-Jun-N-terminal kinase, TNF-α Tumor necrosis fac-
tor alpha, NF-κB Nuclear factor kappa-B, ECM Extracellular matrix, 
MCP1 Monocyte chemotactic protein 1
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SIRT6 in kidney disease

The high incidence of kidney disease remains a challenge 
worldwide in public health management. Exploring the 
pathogenesis and preventive mechanisms will help us to 
find better ways to treat kidney disease. SIRT6 has been 
proven to be involved in the progression of kidney disease. 
The potential role of SIRT6 in kidney disease needs to be 
further studied.

CKD

Diabetic kidney disease (DKD)

DKD is a common microvascular disease and one of the 
most serious chronic complications of diabetes [109]. 
With the increasing incidence of diabetes, DKD has 
become the main cause of ESRD [110]. The pathogenesis 
of DKD is complex. It is currently believed that genetic 
factors, hemodynamic changes, oxidative stress, inflam-
mation, and mitochondrial damage jointly participate in 
the occurrence and development of DKD [111–113]. High 
glucose induces mitochondrial superoxide production in 
podocytes, further promoting mitochondrial dysfunction 
associated with mitochondrial morphological alterations 
and decreased mitochondrial membrane potential [114]. 
SIRT6 upregulation by plasmid transfection can protect 
mitochondrial function and alleviate oxidative stress by 
increasing AMPK phosphorylation, indicating that SIRT6 
protects mitochondria and exerts antiapoptotic effects by 
activating the AMPK pathway [51]. Inflammation is also 
one of the main pathological features of DKD [115]. The 
mRNA levels of the inflammation-related factors IL-1β, 
IL-6, and TNF-α in podocytes were reduced by SIRT6. 
High glucose can activate the Notch signaling pathway 
in podocytes, and podocyte-specific overexpression of 
the intracellular domain of Notch1 (ICN1) induces pro-
teinuria and glomerulosclerosis [116]. Activation of the 
Notch signaling pathway leads to endocytosis of nephrin 
and podocin, thereby destroying the structure of the podo-
cyte split membrane and inducing proteinuria [117, 118]. 
SIRT6 protects against podocyte inflammation through 
epigenetic regulation of the Notch signaling pathway, 
suggesting that SIRT6 is a potential therapeutic target to 
protect podocytes from high glucose-induced injury. In 
brief, SIRT6 regulates the action of H3K9 deacetylation 
and binds to the promoter regions of Notch1 and Notch4 
to inhibit transcription and activation of the downstream 
PTEN signaling pathway, further increasing autophagic 
flux and alleviating apoptosis and inflammation in podo-
cytes [93]. In addition, SIRT6 protects podocytes against 

DKD by activating M2 macrophage transformation and 
acts as an immune regulator in inflammatory injury [119]. 
In addition, the NMN-producing enzyme nicotinamide 
phosphoribosyl-transferase (Nampt) has been proven to 
have a protective role in DKD. Proximal tubule Nampt-
specific knockout mice showed SIRT6 downregulation, 
resulting in collagen deposition and a fibrotic phenotype, 
suggesting the protective role of Nampt-SIRT6 signaling 
in DKD [120]. This evidence shows that SIRT6 plays a 
protective role in high glucose-induced renal injury by 
reducing oxidative stress, mitochondrial damage, and 
inflammation, suggesting that SIRT6 could be a potential 
therapeutic target for preventing and delaying the progres-
sion of DKD.

Hypertensive kidney lesion

Hypertension is a chronic disease characterized by elevated 
systemic blood pressure and is considered to be a vital risk 
factor for coronary heart disease and CKD [121]. Endothe-
lial dysfunction is associated with the occurrence of hyper-
tension and is the main cause of hypertension-induced injury 
[122]. Although multiple pathogenic factors in hyperten-
sion have been revealed, the precise pathogenesis remains 
unclear. Previous studies have showed that hypertension 
reduces the level of the endothelium-dependent vasodilator 
nitric oxide, changes the permeability of endothelial cells, 
promotes the production of endothelin 1 (ET-1) and angio-
tensin II (Ang II), and then exacerbates target organ damage, 
including renal and cardiovascular injury [123]. The sirtuin 
family is involved in pathological processes associated with 
regulating blood pressure, fibrotic remodeling, and cell 
apoptosis [70, 124, 125]. As recently revealed, SIRT6 delays 
vascular aging and prevents hypertension by maintaining 
endothelial homeostatic functions [126]. MiR-122, acting as 
a risk biomarker of vascular fibrosis, has been confirmed to 
participate in the development of hypertension by inducing 
endothelial dysfunction [127]. SIRT6 is directly targeted by 
miR-122. Activation of the SIRT6-ELA pathway inhibits 
miR-122 and alleviates vascular oxidative injury and subse-
quent inflammation, negatively regulating Ang II-induced 
hypertension [128]. Additionally, SIRT6 overexpression 
weakens Ang II-induced apoptosis and oxidative stress in 
vascular cells by promoting Nrf2 signaling pathway activa-
tion [76]. SIRT6 also induces the expression of the blood 
pressure-related gene GATA5 by inhibiting the transcription 
of Nkx3.2, which is essential for endothelial homeostasis 
and protects vascular endothelial cells against hypertension 
and related organ injury [124]. Ang II induces cholesterol 
accumulation in podocytes and promotes CKD progression. 
Specific deletion of SIRT6 in podocytes exacerbates Ang 
II-induced kidney injury and affects cholesterol efflux by 
regulating the expression of ABCG1, suggesting that SIRT6 
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plays a protective role in the regulation of cholesterol metab-
olism in podocytes [70]. These studies indicate the unique 
role of SIRT6 signaling in the regulation of blood pressure 
and kidney injury.

Kidney senescence

Aging is an irreversible process and an important risk factor 
for multiple diseases [129]. Cellular senescence occurs in all 
renal cells, including TECs, mesangial cells, and podocytes. 
Age-related disruptions in kidney disease are associated with 
cellular senescence [130]. In kidney disease, age-related 
disruptions induce renal fibrosis and diminish glomerular 
filtration, decreasing kidney function. The reduction in reno-
protective factors exacerbates cellular senescence. Mito-
chondrial ROS (mtROS) production drives stress-induced 
senescence and further leads to chronic inflammation and 
renal dysfunction, particularly in renal tubular cells [131]. 
Among the sirtuin members, SIRT6 has been implicated in 
regulating cellular senescence by attenuating inflammation, 
maintaining telomere integrity, and participating in DNA 
repair [132, 133]. SIRT6 knockdown results in activation of 
the NF-κB signaling pathway and accelerates cellular senes-
cence. Caloric restriction (CR) significantly enhances SIRT6 
expression and reverses age-dependent renal insufficiency 
[134]. In addition, SIRT6 maintains podocyte homeostasis 
and plays an important role in aging-associated glomerular 
function. SIRT6-deficient aging mice exhibit chronic inflam-
mation and fibrosis and the loss of glomerular function 
[135]. This evidence supports the protective role of SIRT6 
in renal cellular senescence.

Renal cancer

As a specific type of longevity gene, SIRT6 is considered 
as a tumor suppressor in renal cell carcinoma (RCC) [136]. 
SIRT6 is upregulated in RCC. Silencing SIRT6 expression 
promotes G1/S phase arrest and suppresses tumor growth 
[137]. The expression level of SIRT6 depends on tumor 
stage and histological grade and further corelates with 
prognosis in clear cell renal cell carcinoma (ccRCC) [138]. 
SIRT6 inhibition increases the sensitivity of ccRCC to cis-
platin, which is strongly associated with Bcl-2 and BAX 
expression, and further initiates apoptosis-related processes 
[139].

AKI

Unilateral ureteral obstruction (UUO)

Obstructive nephropathy is a severe health problem and 
a critical factor in the development of CKD worldwide 

[140]. Persistent obstruction leads to renal pelvic effusion 
and irreversible kidney damage. UUO is characterized by 
progressive fibrosis [141, 142]. After UUO, tubular and 
interstitial cells release damage-associated molecular pat-
terns (DAMPs), which are recognized by pattern recogni-
tion receptors (PRRs) and mediate the immune response, 
leading to inflammatory cell infiltration, increased levels 
of profibrotic factors, and matrix deposition [143]. SIRT6 
deficiency specifically increases H3K56 acetylation at the 
promoter region of β-catenin, amplifies fibrosis-related 
protein expression, and exacerbates UUO-induced renal 
injury and fibrosis. The interaction between SIRT6 and 
TGF-β weakens the expression of β-catenin target genes 
and plays an antifibrotic role [16]. In addition, SIRT6 
reduces inflammation by negatively regulating the NF-κB 
signaling pathway and synergistically regulates chronic 
renal fibrosis in ureteral obstruction [144]. In addition, 
accumulating evidence has confirmed that inflamma-
tion and fibrosis induced by UUO are closely related to 
mitochondrial dysfunction [145]. However, there is still 
no clear evidence indicating that SIRT6 alleviates UUO-
induced AKI by regulating mitochondrial function. Based 
on this evidence, we conclude that SIRT6 ameliorates 
inflammation and fibrosis, and may be a therapeutic tar-
get for UUO.

Cisplatin‑induced kidney damage

Cisplatin is an effective chemotherapeutic drug and is 
widely used to treat solid tumors, but severe side effects 
limit its applications [146]. Consecutive cisplatin admin-
istration results in irreversible nephrotoxicity [147]. Tubu-
lointerstitial injury is the main pathological characteristic 
of cisplatin-induced renal injury. The accumulation of 
cisplatin in proximal tubular cells results in apoptosis and 
necrosis [148]. Nrf2 has been proven to play a significant 
role in cisplatin-induced renal injury by eliminating oxi-
dative stress and subsequent inflammation mediated by 
NF-κB signaling [149]. SIRT6 is a positive regulator of the 
Nrf2 signaling pathway and acts as an antioxidative agent 
in cisplatin-induced renal injury [77]. Daphnetin, a natu-
ral coumarin, acts as an antioxidant in cisplatin-induced 
kidney damage through SIRT1/SIRT6-Nrf2 activation 
[77]. SIRT6 deficiency worsens cisplatin-mediated proxi-
mal tubular cell apoptosis, while SIRT6 overexpression 
inhibits extracellular signal-regulated kinase 1 (ERK1) and 
ERK2 expression, further inhibiting NF-κB signaling, sug-
gesting that SIRT6 acts as an inhibitor of cisplatin-induced 
nephrotoxicity [151]. Taken together, this evidence hints 
at the protective role of SIRT6 in cisplatin-induced kidney 
damage, and SIRT6 may be a therapeutic target for nephro-
toxic drug-induced kidney injury.
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Other AKI models

In addition to kidney injury models, as mentioned previ-
ously, SIRT6 also plays a vital role in sepsis-induced AKI 
and cadmium-induced kidney toxicity. Sepsis caused by 
infection is a life-threatening condition and a crucial cause 
of AKI [152]. In the lipopolysaccharide (LPS)-induced sep-
sis AKI model, SIRT6 overexpression alleviated the LPS-
induced inflammatory response and apoptosis in epithelial 
cells by promoting autophagy [153]. Cadmium exposure is 
a high-risk factor for kidney disease. Continuous exposure 
to cadmium increases the incidence of apoptosis and necro-
sis in proximal tubular cells [154]. SIRT6 has been shown 
to regulate cell apoptosis induced by cadmium through the 
polyubiquitinated (polyUb)-p62/SIRT6 signaling path-
way [155]. These findings confirm that SIRT6 promotes 
autophagy and alleviates apoptosis and inflammation under 
stress conditions [156, 157].

SIRT6 in the AKI‑to‑CKD transition and kidney repair

AKI is a common complication among hospitalized patients 
and has become a growing public health problem associ-
ated with a high risk of developing CKD. Although the 
kidney has a strong compensatory ability, studies have 
shown that AKI causes irreversible microvasculature dam-
age and impairs kidney structure and function [158, 159]. 
The incomplete recovery of renal function after AKI causes 
persistent chronic inflammation and fibrosis, which even-
tually progresses to ESRD [160]. The molecular mecha-
nisms of the conversion of AKI to CKD are complicated. 
It is currently recognized that proximal tubular cell injury 
is the main pathological feature of chronic progression of 
AKI due to high energy demands [161, 162]. Proximal 
tubular cells are rich in mitochondria, which are sensitive to 
hypoxia and easily perceive changes in energy metabolism 
[163]. Persistent renal tubular injury caused by ischemia 
and hypoxia, mitochondrial dysfunction, and inflammation 
contribute to metabolic constraints and induce cytoskeletal 
rearrangement, extracellular matrix (ECM), and EMT in 
TECs. ECM accumulation and EMT account for tubuloint-
erstitial fibrosis (TIF), leading to the development of CKD, 
and are considered to be the common pathway to ESRD [95, 
164, 165]. SIRT6 has been shown to have a regulatory role 
in the progression of kidney disease. However, the current 
understanding of the pathological process, mechanisms of 
action, and clinical applications of SIRT6 in kidney disease, 
especially chronic progression, is still limited. SIRT6 may 
serve as a therapeutic target, and finding suitable treatments 
to prevent the chronic progression of kidney disease is criti-
cal. Here, we summarize the potential role of SIRT6 in the 
AKI-to-CKD transition and kidney repair.

Hypoperfusion after AKI causes persistent tissue 
ischemia and hypoxia, further leading to vascular endothelial 
cell damage, microvascular reductions, and proximal tubular 
cell injury [166]. Hypoxia leads to insufficient energy supply 
and inflammatory factor production in renal tubule epithe-
lial cells. After renal tubule injury, the remaining epithe-
lial cells enter the cell cycle and participate in regeneration 
through dedifferentiation and proliferation under the action 
of growth factors and chemokines [167]. However, in severe 
ischemia, hypoxia, persistent exposure to nephrotoxic drugs 
and inflammation, cell cycle arrest, and TGF-β activate 
profibrotic factor release, resulting in the accumulation of 
ECM [168, 169]. In addition, inflammatory factors initiate 
EMT, which promotes renal interstitial fibrosis [170, 171]. 
Hypoxia reduces the expression of SIRT6 in renal TECs. 
SIRT6 deficiency exacerbates hypoxia-induced inflamma-
tion and G2/M cycle arrest in renal TECs, which can be 
reversed by upregulating SIRT6, suggesting that SIRT6 pro-
tects renal TECs from hypoxia-induced tubular interstitial 
injury [172].

Mitochondria are central hubs that maintain cellular and 
redox homeostasis. The loss of mitochondrial quality control 
is the main mediator of incomplete repair after AKI [173]. 
ROS overproduction induces renal tubular cell injury and 
nephron dropout, further impairing mitochondrial structural 
integrity. Nrf2, acting as an antioxidant, has been proven 
to regulate mitochondrial quality control by binding to the 
promoter region of PINK1 [174]. SIRT6 activates Nrf2 and 
prevents Keap1 proteasomal degradation, increasing mito-
chondrial biogenesis, mitophagy, and the mitochondrial anti-
oxidant response [49]. Additionally, the activation of AMPK 
stimulates downstream AKT signaling, phosphorylates 
FoxO3α, and further attenuates mitochondrial dysfunction 
[175]. SIRT6 promotes autophagy-related protein expression 
and maintains mitochondrial function by AMPK signaling 
pathway activation under oxidative stress conditions [176]. 
Collectively, mitochondrial quality control shows a protec-
tive role in kidney repair after AKI. SIRT6 increases the 
ROS-scavenging capacity and maintains mitochondrial qual-
ity, which is critical in AKI and kidney repair.

Lipid accumulation is involved in the progression of kid-
ney disease [177]. The enzymes associated with fatty acid 
oxidation (FAO) are reduced in kidney fibrosis models, and 
restoring FAO through genetics may prevent the progression 
of CKD [178]. CK2 activity is regulated by SIRT6 and plays 
an important role in adipogenesis [179]. SIRT6 expression is 
decreased in obese pre-DM subjects, while the expression of 
NF-κB, PPAR-γ and SREBP-1 is increased. Of note, these 
effects can be reversed by metformin treatment [180].

Fibrosis is the common pathway associated with irrevers-
ible and progressive processes causing chronic development 
of kidney disease. TIF is mainly triggered by persistent 
chronic inflammation and fibrillary collagen accumulation. 
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Increased proinflammatory cytokines interfere with intra-
renal microcirculation and perfusion, contributing to EMT 
[181]. Activation of the inflammatory response-associated 
transcription factors NF-κB and STAT promotes tubuloint-
erstitial inflammation and kidney fibrosis, and inhibiting 
these factors can ameliorate kidney fibrosis [182]. The 
TGF-β signaling pathway is the central mediator of renal 
fibrosis in progressive CKD. TGF-β promotes EMT and 
inhibits ECM degradation in renal tubular cells during the 
progression of CKD [183]. Wnt/β-catenin signaling regu-
lates fibrosis and participates in the progression of CKD. 
β-Catenin overexpression in tubular cells induces epithelial 
dedifferentiation and EMT in mice [184]. The Notch signal-
ing pathway also plays an important role in orchestrating the 
development of kidney disease. Notch expression in podo-
cytes promotes glomerulosclerosis and albuminuria. Addi-
tionally, Notch expression in TECs promotes EMT-related 
snail1 and snail2 expression, thus contributing to TIF [185]. 
It is worth noting that the inflammatory response is also 
regulated by epigenetics. SIRT6 depletion induces chronic 
inflammation and fibrosis in the kidney and eventually leads 
to podocyte depletion, proteinuria, and the loss of kidney 
function. Studies have confirmed that SIRT6 negatively 
regulates the TGF-β and Wnt/β-catenin signaling pathways 
and plays an antifibrotic role [16]. In addition, high mobil-
ity group box 1 (HMGB1) exacerbates CKD progression 
by promoting vascular calcification. Bone marrow mesen-
chymal stem cell (BMSC)-derived exosomes downregulate 

HMGB1 expression through the SIRT6–HMGB1 pathway 
and ameliorate CKD-related fibrosis [17].

Overall, in-depth investigation of energy metabolism, 
inflammatory response, and fibrosis inhibition in kidney 
disease is essential in identifying specific and efficacious 
approaches for disease transition.

Conclusion and prospects

As a member of the sirtuin family, SIRT6 maintains intra-
cellular homeostasis and is considered to be a powerful 
regulator of disease occurrence and development. In this 
review, we summarize the structure and biological function 
of SIRT6. We further summarize the regulatory mechanisms 
and potential roles of SIRT6 in multiple kidney diseases 
(Table 1). SIRT6 has shown a powerful regulatory effect 
on DNA repair, energy metabolism, oxidative stress, mito-
chondrial homeostasis, inflammation, fibrosis, and aging. 
Mechanistically, SIRT6 regulates transcription factors by 
deacetylating of histone H3K9, H3K56, and H3K18 on tar-
get gene promoters and controls downstream gene expres-
sion, thus maintaining cellular homeostasis. In kidney dis-
ease, SIRT6 regulates oxidative stress under hypoxia and 
stress conditions by regulating the Nrf2, AMPK, and AKT 
signaling pathways. SIRT6 participates in the pathogenesis 
of chronic inflammation and renal fibrosis by regulating 
the TGF-β1/Smad3, Wnt/β-catenin, NF-κB, β-catenin, and 

Table 1   The regulatory roles of SIRT6 in kidney disease

DKD Diabetic kidney disease, UUO Unilateral ureteral obstruction, AMPK AMP-activated protein kinase, ERK1/2 extracellular signal-regulated 
kinase 1/2, AKI Acute kidney injury, polyUb polyubiquitinated

Kidney disease SIRT6 intervention and molecular signal-
ing

Biological effects References

CKD DKD M2 macrophage transformation Attenuated podocyte injury [119]
Notch signaling pathway Attenuated podocyte injury [94, 116–118]
Nampt/SIRT6 signaling pathway Attenuated fibrotic extracellular matrix 

remodeling
[120]

AMPK signaling pathway Attenuated podocyte injury [51]
Hypertensive kidney lesion ABCG1 Attenuated podocyte injury [70]
Kidney senescence NF-κB signaling pathway Attenuated chronic inflammation and 

fibrosis
[134]

Renal cancer G1/S phase arrest suppresses tumor growth [137]
Bcl-2 inhibiting mitochondrial apoptotic [139]

AKI UUO TGF-β/Smad3 and NF-κB signaling 
pathway

Attenuated renal inflammation and 
fibrosis

[144]

β-Catenin signaling pathway Anti-fibrosis [16]
Cisplatin-induced kidney damage Nrf2 signaling pathway Antioxidation [77, 150]

ERK1 and ERK2 pathway Regulated inflammation and apoptosis [151]
Sepsis-induced AKI Autophagy Alleviated renal epithelial cell apoptosis [153]
Cadmium-induced kidney toxicity polyUb-p62/SIRT6 signaling Alleviated cell apoptosis and inflamma-

tion
[155]



	 X. Yang et al.

1 3

53  Page 12 of 19

Notch signaling pathways. Moreover, SIRT6 synergistically 
maintains the content and integrity of mitochondria. These 
regulatory mechanisms are closely related to renal repair 
and survival. In-depth study of the regulatory mechanism 
of SIRT6 will help to identify new targets for kidney dis-
ease. Further exploration of the characteristics of SIRT6 
has potential value and provides new ideas for the treatment 
of the chronic progression of kidney disease. In summary, 
focusing on SIRT6 as a target has important clinical signifi-
cance for the prevention and treatment of kidney disease.
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