
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2022) 79:218 
https://doi.org/10.1007/s00018-022-04200-w

REVIEW

Molecular regulation of hematopoietic stem cell quiescence

Zhe Chen1,2 · Qian Guo1,2 · Guanbin Song3 · Yu Hou1,2

Received: 13 October 2021 / Revised: 7 February 2022 / Accepted: 7 February 2022 / Published online: 31 March 2022 
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capac-
ity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence 
causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow 
failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks 
and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and 
niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven 
by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex 
regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. 
Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, 
providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.
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Introduction

Hematopoietic stem cells (HSCs) are a population of blood 
stem cells that primarily originate from endothelial cells 
during the embryonic period [1, 2]. Postnatal HSCs pre-
dominantly reside in the bone marrow (BM) and are het-
erogeneous, containing two well-recognized subpopula-
tions: long-term HSCs (LT-HSCs) and short-term HSCs 
(ST-HSCs). LT-HSCs are largely cell-cycle-quiescent (G0 

phase) with low biosynthetic activity, while ST-HSCs are 
broadly considered as activated stem cells. LT-HSCs and 
ST-HSCs can both respond to stimulation and stress, under-
going proliferation and differentiation into hematopoietic 
stem/progenitor cells (HSPCs), which further differentiate 
and produce all lineages of blood cells [3, 4]. A fraction 
of activated HSCs regenerates fully potent, non-committed 
HSCs via asymmetric cell division, a process called self-
renewal [5, 6]. Although ST-HSCs respond faster to acti-
vation, LT-HSCs exhibit the highest self-renewal capacity 
and are responsible for life-long hematopoiesis [7, 8]. The 
long-term maintenance of HSCs requires a quiescent state 
against multiple cytotoxic and exhausted stresses, such as 
DNA damage and reactive oxygen stress (ROS) [5, 9, 10]. 
Dysregulated transitions between quiescence and activation 
impair HSC self-renewal and result in HSC dysfunction and 
eventual hematopoietic disorders [10, 11]. For instance, 
myeloproliferative neoplasm (MPN) has been reported to 
be associated with the increased proliferation and cell cycle 
entry of HSCs, leading to splenomegaly, leukocytosis, and 
myeloid hypercellularity [12]. Growth suppression of HSCs 
accelerates their exhaustion, which is a part of the cause of 
bone marrow failure diseases, such as Fanconi anemia (FA) 
[13, 14]. Thus, quiescence maintenance is pivotal for HSCs 
to preserve their function.
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Emerging evidence indicates that the quiescence state 
of HSCs is regulated by a tightly coordinated molecu-
lar network, including both intracellular and extracellular 
molecules. It has been revealed that cell cycle regulators, 
transcription factors, epigenetic molecules, niche factors, 
and even physical factors govern HSC quiescence [6, 15]. 
Moreover, accumulating evidence suggests that intracellu-
lar metabolism drives HSC transitions between quiescence 
and activation [16–18]. This review aims to summarize and 
discuss the complicated regulatory networks of HSC qui-
escence, providing deep insight into HSC hemostasis and 
hematopoiesis.

Assessment of HSC quiescence

Quiescent HSCs are dormant cells in the cell cycle G0 phase. 
Based on the fundamental and associated characteristics of 
quiescent HSCs, several methods have been developed to 
assess the quiescence of HSCs. In general, these methods 
determine the cell cycle state based on nucleic acid content, 
proliferative markers, cell-surface markers, and other indi-
rect markers (Table 1).

(1)	 Cells in G0 and G1 stages have 2 N DNA content, while 
cells in S and G2–M stage have 2–4 N and 4 N DNA 
content, respectively. Moreover, G0-stage cells have 
lower RNA content than cells in the G1 stage. Thus, 
the cell cycle phase of HSCs can be detected using 
DNA-binding dyes (e.g., propidium iodide, DRAQ-5, 
DAPI, 7-AAD, and Hoechst 33,342) with RNA-binding 
dyes (Pyronin Y and SYTO) [5, 19, 20]. It has been 
demonstrated that most LT-HSCs are in the G0 phase 
(~ 70%) and G1 phase (~ 20%) by Hoechst 33,342 and 
Pyronin Y staining [20, 21]. Goodell et al. reported a 
small subset of Hoechst 33,342-stained BM cells that 
were separated from other cells and named them Hoe-

chst-stained side population cells. These cells have cell 
surface markers of HSCs and the highest reconstitution 
capacity; moreover, only 1–3% of these HSCs are in 
the S–G2–M phase, indicating that the Hoechst-stained 
side population can be used for the enrichment or puri-
fication of quiescent HSCs [19]. Moreover, label incor-
poration-based assays can precisely monitor prolifera-
tive HSCs, as the nucleotide analogs, EdU and BrdU 
can be incorporated and detected in the newly synthe-
sized DNA in HSCs [22, 23]. For instance, through 
the combination of DNA content staining and BrdU 
incorporation assays, the cell cycle stage of HSCs can 
be detected, G0–G1 stage (2 N DNA content without 
BrdU incorporation) and S stage (2–4 N DNA content 
with BrdU incorporation) [24, 25].

(2)	 Several intracellular proteins have been revealed 
to exhibit cell-cycle stage dependence, with Ki-67 
expression in G1 and S–G2–M phase, proliferating 
cell nuclear antigen (PCNA) expression in S phase, 
minichromosome maintenance-2 (MCM-2) expres-
sion in S phase, and phosphohistone H3 expression in 
M phase [26, 27]. Ki-67 and DNA staining can clearly 
distinguish HSCs in G0, G1, and S–G2–M phases [28, 
29]. Furthermore, Ki-67RFP knock-in mice have been 
constructed and provide an effective method to trace 
the division history of HSCs in vivo [30].

(3)	 Detection of DNA and intracellular protein in 
HSCs requires a process of cell fixation, which 
results in cell death and hinders the further use of 
HSCs. Quiescent HSCs reportedly have unique 
cell surface markers. CD41− cells in LT-HSCs 
(Lin−c-Kit+Sca-1+CD48−CD150+) are nearly all 
quiescent (~ 96%); thus, CD41 is an effective can-
didate to mark quiescent HSCs [31]. Moreover, 
CD229 and CD244 can sub-fractionate LT-HSCs, as 
CD229−/lowCD244− cells in LT-HSCs are quiescent 
with almost undetectable Ki-67 expression [32]. CD63 

Table 1   Current methods to 
determine HSC quiescence

Label Labeling Reference

Content of DNA and RNA Hoechst + Pyronin Y [20, 21]
DAPI/7AAD + BrdU [23]
DAPI/7AAD + EdU [24, 25]

Proliferative markers and content of DNA Ki-67 + DAPI/Hoechst [28, 29]
Cell surface markers CD41 [31]

CD229 + CD244 [32]
CD63 [33]
CD82 [34]

Content of nucleosomes H2B-GFP [36, 37]
Mitochondrial membrane potential Tetramethylrhodamine ethyl ester [37]
Reactive oxygen stress DCFH-DA [38]
Transcriptional dynamics Single-cell-RNA-sequence [39, 40]
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and CD82 are also quiescent markers of HSCs, which 
sustain transforming growth factor β (TGFβ) signaling 
activity [33, 34]. Interestingly, a recent study reported 
that CD93 designates HSCs that are at the edge of qui-
escence and prime to activation [35].

(4)	 Several new methods have been developed for assessing 
the cell cycle of HSCs using multiple indirect mark-
ers. Similar to BrdU incorporation, the histone H2B-
GFP protein can be incorporated into nucleosomes; 
thus, H2B-GFP transgenic mice provide a model for 
analyzing HSC quiescence in vivo [36, 37]. Further-
more, it has been revealed that mitochondrial mem-
brane potential (MMP)-low HSCs are quiescent (~ 85% 
in G0 phase), while MMP-high HSCs are activated 
(~ 40% in G0 phase), indicating that MMP represents a 
potential marker for distinguishing between quiescent 
and activated HSCs [37]. Similarly, quiescent HSCs 
exhibit relatively low ROS levels than activated HSCs 
[38]. Recently, the advanced single-cell-RNA-sequence 
(scRNA-seq) method has been applied to distinguish 
HSCs in different cell cycle phases based on functional 
annotations [39, 40].

In brief, the above-mentioned methods provide a variety 
of strategies for assessing HSC quiescence; however, more 
methods for labeling quiescent HSCs are required, especially 
for unique cell-surface markers.

Intracellular molecular networks of HSC 
quiescence

In addition to metabolism-regulating HSC quiescence that 
is process-driven, many intracellular factors have been dem-
onstrated to play a vital role in the cell cycle of HSCs. These 
factors form molecular networks that govern HSC quies-
cence and self-renewal; chiefly, these molecular networks 
include cell cycle regulators, transcription factors, kinase 
factors, and epigenetic factors.

Cell cycle regulators

The cell cycle process is directly governed by several mas-
ter regulators, cyclins, cyclin-dependent kinases (CDKs), 
and cyclin-dependent kinase inhibitors (CKIs) [6]. Cyc-
lins are synthesized during the cell cycle at specific times, 
bind to the CDKs and form CDK–cyclin complexes that 
drive a series of events in order, such as DNA synthesis 
and mitosis [41]. The activity of CDK–cyclin complexes is 
tightly regulated by CKIs, which interact with CDKs and can 
impede cell cycle progression [41, 42]. The well-recognized 

regulators involved in the cell cycle include cyclin classes 
(cyclin A, cyclin B, cyclin C, and cyclin D), CDK classes 
(CDK1, CDK2, CDK4, CDK6), and CKI classes (p21, p27, 
and p57) [41, 42]. Abundant evidence has demonstrated that 
the above-mentioned regulators play direct roles in HSC 
maintenance via regulation of cell division or quiescence. 
Loss of cyclin A inhibits proliferation of HSCs and results 
in an acute reduction of the HSC pool, suggesting that HSCs 
rely on cyclin A to sustain cell division [43]. Moreover, dele-
tion of cyclin D1/2/3 leads to decreased HSPC numbers and 
severe anemia [44]. Cyclin D binds and activates CDK4 and 
CDK6, and overexpression of the cyclin D1–CDK4 com-
plex promotes HSC exit from the G0 phase (quiescence) and 
shortens the G1 phase. This results in increased reconstitu-
tion capacity of HSCs, suggesting a direct role of cyclin A 
in HSC quiescence [45]. Consistently, deficiency of CDK4 
and CDK6 impedes the quiescence exit of HSCs, resulting 
in severe anemia in mice [46]. Notably, ST-HSCs exhibit 
higher CDK6 protein levels than LT-HSCs, and enforcing 
CDK6 expression in LT-HSCs promotes quiescence exist 
without impairing self-renewal [8]. It seems that enforcing 
the expression of CDK4 or CDK6 is an effective strategy to 
promote HSC proliferation and subsequent hematopoiesis 
without the expense of impaired HSC maintenance.

The members of the CKI family, including p21, p27, and 
p57, primarily interact with and inhibit CDK2 and CDK4. 
It has been demonstrated that CKIs have predominant roles 
in quiescence maintenance in HSCs, especially p21 and p57. 
Deficiency of p21 or p57 promotes quiescence HSC entry 
into the cell cycle and results in HSC exhaustion [47, 48]. 
Interestingly, loss of p18 remarkably rescues loss of the HSC 
pool in p21-deficient mice, suggesting diverse functions of 
CKIs [49]. Loss of p27 in mice has no obvious effect on cell 
cycling of HSCs, but it has been revealed that p27 cooperates 
with p57 to maintain quiescence of HSCs by regulating the 
localization of heat shock cognate protein 70 (Hsc70)–cyc-
lin D complex [50]. In brief, the above-mentioned evidence 
reveals that cyclin–CDK complexes are essential for HSC 
proliferation, and HSCs rely on CKIs to restrict activity of 
cyclin–CDK complexes to preserve quiescence. In addition 
to the above-mentioned cell cycle regulators, G(0)/G(1) 
switch gene 2 (G0S2) has been shown to be enriched in 
LT-HSCs and to preserve HSC quiescence by sequestering 
nucleolin in the cytosol [51].

Transcription factors

HSC quiescence is intrinsically governed by the expression 
of a series of genes associated with metabolism and the 
cell cycle. Transcription factors are a type of proteins that 
directly bind DNA, promoting gene expression [52]. Sev-
eral transcription factors have been revealed to play pivotal 
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roles in quiescence maintenance in HSCs by regulating 
gene expression [6, 53]. Tumor suppressor p53 regulates 
cell proliferation and apoptosis via its multiple transcrip-
tional targets [54]. Loss of p53 substantially promotes HSC 
proliferation, shown by 30% to 60% BrdU+ HSCs, sug-
gesting that p53 is essential for quiescence maintenance in 
HSCs [55]. Mechanistically, p53 preserves quiescence of 
HSCs primarily by transcriptionally promoting expression 
of growth factor independent-1 (Gfi-1) and Necdin, which 
are inhibitors of HSC proliferation [55–58]. The Myc onco-
genes (c-Myc, N-Myc, and L-Myc) transcriptionally regulate 
multiple genes required for cell survival and proliferation 
[59]. Double-deficiency of c-Myc and N-Myc inhibits pro-
liferation of myelomonocytic populations but promotes cell 
cycling of HSCs and results in depleted HSC pool [60]. In 
contrast, deletion of c-Myb transcription factor substantially 
reduces proliferation but promotes differentiation of HSCs 
[61]. Similarly, it has been revealed that several transcription 
factors or repressors are essential for quiescence mainte-
nance in HSCs, including HLF, Pbx1, Evi-1, Nurr1, Nrf2, 
C/EBPα, PU.1, YY1, Gfi-1, Fhl2, and Tcf15 [29, 40, 56, 
62–70]. Deletion of several transcription factors, such as 
MEF (ELF4) and Id1, preserves quiescence in HSCs [71, 
72]. Moreover, several transcriptional families have been 
demonstrated to govern the quiescence of HSCs. Hox genes 
encode a family of transcriptional regulators, and deletion of 
Hoxb3 and Hoxb4 impairs the proliferation of HSCs, while 
overexpression of Hoxb4 or Hoxb7 substantially enhances 
the expansion capacity of HSCs [73–76]. Importantly, 
Hoxb5 marks long-term HSCs, and these quiescent HSCs 
are almost attached to VE-cadherin-positive cells, suggest-
ing a vital role of Hoxb5 in quiescence maintenance in HSCs 
[77]. Notably, GATA transcriptional family member Gata2 
inhibits proliferation and increases quiescence in HSCs by 
repressing gene expression of CCND1, CDK4, and CDK6, 
while Gata3 is essential for HSC entry into the cell cycle 
[78, 79]. Forkhead box (Fox) genes encode several tran-
scription factors that are categorized into subclasses FoxA 
to FoxS; it has been demonstrated that FoxM1 is essential 
for quiescence maintenance in HSCs by inducing expression 
of Nurr1, which preserves quiescence of HSCs via inducing 
expression of p21 and p27 [65, 80, 81].

Deletion of FoxO1, FoxO3, and FoxO4 increases cell 
cycling and apoptosis in quiescent HSCs via alteration of the 
expression of their target genes, including cyclin G2, cyclin 
D, p21, and p27 [82, 83]. In addition to the above-men-
tioned mechanisms, several transcription factors regulate 
quiescence via cell metabolism. Also, increased ROS has 
been shown to contribute to quiescence loss in FoxO1/3/4-
deficient HSCs [82, 83]. Moreover, FoxO3 is reported to 
direct autophagy in HSCs by maintaining the expression of 
autophagy-related genes, suggesting that autophagy sub-
stantially mediates the effect of FoxO transcription factors 

on HSC quiescence [84]. Similarly, Runx1 transcription-
ally induces the expression of multiple ribosome protein 
genes and controls ribosome biogenesis, suggesting that 
metabolism is one of the main processes involved in the 
regulation of HSC quiescence by transcription factors [85]. 
In summary, multiple transcription factors play a vital role 
in quiescence maintenance in HSC primarily by regulat-
ing the expression of genes related to cell metabolism and 
cell cycling, and this regulatory network requires further 
investigation.

Epigenetic factors

Emerging evidence for cell-intrinsic regulators of HSC 
quiescence includes epigenetic factors, such as DNA meth-
yltransferases, RNA methylases and demethylases, histone 
modification regulators, and non-coding RNA. Gene expres-
sion is tightly associated with DNA methylation that is cata-
lyzed by DNA methyltransferases; it has been revealed that 
loss of Dnmt3a promotes HSC self-renewal at the expense of 
differentiation, as well as reducing the percentage of Ki-67+ 
HSCs [86]. N6-methyladenosine (m6A) is the most preva-
lent type of RNA modification and is involved in splicing 
regulation, RNA stability, translocation, and translation [87]. 
Recent evidence suggests that m6A plays a crucial role in 
quiescence maintenance in HSCs; for instance, deletion of 
the m6A methyltransferase Mettl3 decreases quiescence in 
HSCs primarily via modulating Myc mRNA [88]. DNA and 
histones (H2A, H2B, H3, and H4) form condensed chroma-
tin and the structure of chromatin controls gene expression 
[89]. It has been reported that HSC quiescence is governed 
by 3D genome reorganization, and CCCTC-binding factor 
(CTCF) is a key factor mediating chromatin interactions 
[90]. More precisely, histone modifications tightly regu-
late chromatin structure and gene expression, including 
acetylation, methylation, phosphorylation, and others [91]. 
Deficiency of SET domain containing 2 (Setd2), a histone 
methyltransferase, promotes dormant HSC entry into the cell 
cycle, suggesting a critical role of histone methylation in 
HSC quiescence maintenance [92]. Similarly, loss of his-
tone methyltransferase mixed-lineage leukemia (MLL) or 
absent, small, or homeotic 1-like (Ash1l) reduces quiescence 
in HSCs by decreasing gene expression of CKI [93, 94]. 
Nuclear receptor corepressor 1 (NCoR1) binds its partner 
histone deacetylase 3 (HDAC3) and modulates H3 lysine 
27 acetylation (H3K27ac), while deletion of NCoR1 sub-
stantially promotes quiescent HSC proliferation by regulat-
ing the expression of myeloid-differentiation genes [95]. 
The latest evidence has revealed that deletion of histone 
acetyltransferase MOF, a regulator of H4 lysine 16 acetyla-
tion (H4K16ac), promotes CD93 expression in HSCs and 
results in HSCs having quiescent transcriptional features 
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but elevated proliferative capacity, suggesting that H4K16ac 
sustains a balance of HSCs between quiescence and activa-
tion [35, 96].

Non‑coding RNAs

In addition to the above-mentioned epigenetic factors, mul-
tiple pieces of evidence has revealed that non-coding RNAs 
also regulate quiescence in HSCs. An imprinted gene at 
the H19-Igf2 locus is essential for quiescence maintenance 
in HSCs by transcribing microRNA-675 (miR-675) [97]. 
Similarly, the imprinted Dlk1-Glt2 locus preserves quies-
cence state of HSCs by producing a miRNA cluster that 
targets the PI3K-Akt pathway [98]. MicroRNAs are ubiqui-
tously expressed in cells and function as post-transcriptional 
regulators of gene expression by targeting transcripts [99]. 
miR-675 targets insulin-like growth factor 1 receptor (Igfr1) 
and restricts Igf2-Igfr1, preserving quiescence in HSCs [97, 
100]. Moreover, inhibited miR-126 expression increases 
HSCs proliferation without exhaustion by targeting multi-
ple transcripts associated with the PI3K-Akt pathway [101]. 
Loss of miR-21 impairs quiescence maintenance in HSCs by 
targeting programmed cell death 4 (PDCD4) [102]. Interest-
ingly, miR-29a has been reported to be essential for quies-
cence maintenance partially by regulating Dnmt3a [103]. In 
summary, epigenetic factors can be considered one hub of 
quiescence regulatory networks within HSCs, primarily by 
governing gene expression.

Intracellular signaling pathways

In addition to the above-mentioned intracellular regulators 
of HSC quiescence, several factors control cell cycling in 
HSCs via unique pathways. For instance, ubiquitination is 
a critical process for inducing protein degradation [104]. 
It has been demonstrated that COP9 signalosome subunit 
5 (CSN5), F-box and WD-40 domain protein 7 (Fbxw7), 
and Huwe1 control HSC quiescence by mediating ubiquitin-
dependent degradation of proteins associated with cell cycle 
regulation [105–108]. S-phase kinase-associated protein-2 
(Skp2) forms an Skp2 complex with its partners that induces 
ubiquitination and degradation of cell cycle inhibitors; how-
ever, loss of Skp2 triggers quiescent HSC entry into the cell 
cycle by promoting gene expression of cyclin D1 [109]. 
Moreover, multiple kinase-related pathways play a vital role 
in sensing intracellular and extracellular signaling and regu-
lating cellular behaviors, such as proliferation, differentia-
tion, migration, and apoptosis. Among these kinases, several 
kinase-related signaling transduction pathways have been 
demonstrated to govern HSC quiescence. The Janus kinases 
(JAKs) are critical factors responding to cytokines, while 

deletion of JAK1 increases HSC quiescence and impedes 
proliferation, thus impairing HSC self-renewal [110]. The 
ataxia telangiectasia mutated (ATM) kinase is a key factor 
responding to replication stress and DNA damage; it has 
been demonstrated that ATM is essential for quiescence 
maintenance in HSCs by restricting oxidative stress [111, 
112]. Loss of Ptpn21, a protein tyrosine phosphatase, results 
in reduced quiescence in HSCs partially by decreasing HSC 
stiffness and increasing HSC motility, suggesting that cel-
lular deformability is a critical regulator of HSC quiescence 
[113].

Moreover, a wide variety of kinases-related pathways 
synergistically maintain the balance of HSCs between qui-
escence and activation, to preserve HSC homeostasis and 
hematopoiesis. The phosphoinositide 3-kinase (PI3K)-
protein kinase B (Akt)-mammalian target of rapamycin 
(mTOR) pathway is a universal enzyme-related signaling 
pathway, and mTOR functions as a key effector that regu-
lates protein synthesis, mitochondrial metabolism, and 
autophagy via multiple targets, such as ribosome S6 kinase 
(S6K1), eukaryotic translation initiation factor 4E-binding 
protein (4E-BP1), YY1, Atg1, and Atg3 [114, 115]. It has 
been revealed that activation of Akt or mTOR substantially 
induces quiescent HSCs to exit dormancy, while inhibi-
tion of Akt causes HSCs to persist in G0 phase, a process 
largely dependent on mitochondrial metabolism [116–119]. 
PTEN restricts activity of Akt-mTOR signaling by inhibit-
ing phosphorylation of PI3K, and loss of PTEN promotes 
quiescent HSC proliferation [120–122]. AMP-activated pro-
tein kinase (AMPK) inhibits mTOR activity by phosphoryla-
tion of tuberous sclerosis complex (TSC); moreover, AMPK 
promotes FOX transcription factors [123]. Deficiency of 
AMPK and its upstream-regulator Lkb1 increases the divi-
sion of quiescent HSC and results in a depleted HSC pool 
[124]. The mitogen-activated protein kinase (MAPK) path-
way regulates multiple cellular processes and senses stress, 
primarily including three kinases, MAPK kinase kinase, 
MAPK kinase, and MAPK [125]. It has been revealed that 
p38MAPK is essential for quiescent HSC entry into the cell 
cycle in response to stress primarily by promoting purine 
metabolism [126]. Similarly, deletion of another MAPK 
family member, extracellular signal-regulated kinase 1/2 
(ERK1/2), inhibits HSC proliferation [127]. Interestingly, 
ERK reportedly mediates activated HSCs returning to qui-
escence by phosphorylation of its upstream-regulator MEK 
and limiting the activation of Akt-mTOR pathway, which 
further regulates mitochondrial metabolism and protein syn-
thesis [128]. Collectively, cell cycle regulators, transcription 
factors, epigenetic factors, non-coding RNAs, and kinase-
related factors all have been revealed as critical regulators of 
HSC quiescence. Notably, these factors are interrelated. Cell 
cycle regulators directly drive cell cycle progression; moreo-
ver, metabolism, which we will discuss in the next section, 
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is also a hub of HSC quiescence regulation. Transcription 
factors, epigenetic factors, and non-coding RNAs govern 
HSC quiescence mainly via indirect pathways that affect the 
expression of their targets. For instance, transcription fac-
tor Gata2 regulates the expression of cell cycle regulators 
CCND1, CDK4, and CDK6 to preserve HSC quiescence 
[78, 79]. In brief, the above-mentioned intracellular factors 
synergistically form an intrinsic regulator network that gov-
erns HSC equilibrium between quiescence and activation; 
however, this network has not been entirely elucidated and 
requires further exploration.

Intracellular molecular networks of HSC 
quiescence, especially for metabolism

It has been revealed that the transition of HSCs between 
quiescence and activation is a continuous developmental 
path associated with altered cellular metabolism rather than 
a stepwise progression [129]. Emerging evidence indicates 
that intracellular metabolism plays a pivotal role in quies-
cence maintenance in HSCs, especially energy metabolism, 
protein synthesis, and autophagy [6, 130].

Glycolysis and mitochondrial metabolism

Adenosine triphosphate (ATP) is the basic substance that 
provides energy for cellular processes. There are two meta-
bolic pathways to synthesize ATP in cells, glycolysis, and 
oxidative phosphorylation (OXPHOS) [131]. Glycolysis 
is involved in the breakdown of glucose to pyruvate via 
sequential enzyme-catalyzed reactions, which occurs in 
the cytosol in an oxygen-independent manner [131–133]. 
In mitochondria, pyruvate or other oxidative fuels can be 
further oxidized to generate acetyl-coenzyme A (acetyl-
CoA), which leads to ATP production via the tricarboxylic 
acid (TCA) cycle and the electron transport chain (ETC). 
The OXPHOS process requires oxygen and produces more 
ATP than glycolysis with higher efficiency but also generates 
ROS that may damage cells [132, 134, 135].

HSCs primarily localize in a hypoxic BM environment, 
and quiescent HSCs primarily utilize anaerobic glycolysis 
to synthesize ATP [136–138]. It has been revealed that qui-
escent LT-HSCs have higher glycolytic capacity than other 
cells in the BM [139, 140]. Pyruvate dehydrogenase (PDH) 
is a key enzyme that converts pyruvate to acetyl-CoA; HSCs 
exhibit activated PDH kinases (PDKs) that inhibit PDH by 
phosphorylation to maintain glycolysis [141, 142]. Deletion 
of Pdk2 and Pdk4 in mice suppresses glycolysis but pro-
motes OXPHOS in HSCs, leading to impaired quiescence 
maintenance and exhaustion of HSCs and demonstrating 
that HSCs rely on glycolysis to sustain quiescence [142]. 

Hypoxia-inducible factor 1α (HIF-1α) is a transcription fac-
tor that is activated by hypoxia and promotes the expression 
of glycolytic genes, such as PDKs and lactate dehydrogenase 
(LDA) [143]. It has been revealed that the location of HSCs 
in the BM is uneven but that they prefer hypoxic regions; 
accordingly, LT-HSCs exhibit high expression of HIF-1α 
[140, 144]. HIF-1α and its up-regulator, Meis1, are both 
enriched in LT-HSCs and preserve HSC glycolysis [145]. 
Knock-out of HIF-1α in mice results in loss of quiescence 
in HSCs (G0 phase ~ 83% to ~ 65%) and impairs HSC main-
tenance [146]. The unique energy metabolism in HSCs is 
tightly associated with cell cycle quiescence in HSCs, sug-
gesting that glycolysis preserves HSC quiescence [140, 145].

Glycolysis meets the demand of ATP synthesis and main-
tains HSC quiescence; upon activation, HSCs switch their 
metabolism to utilize mitochondrial OXPHOS to synthesize 
more ATP, meeting the robust energy demand [147]. Previ-
ous studies have revealed reduced mitochondria levels in 
HSCs compared to other hematopoietic cells by MitoTracker 
Green staining; however, dye efflux affects the accuracy of 
MitoTracker Green staining. Thus, the results of recent stud-
ies using mtDNA quantification, an artificial mitochondrial 
reporter, and enumeration of mitochondrial nucleoids indi-
cate higher mitochondrial mass in HSCs than in lineage-
committed progenitors and mature cells [16, 148–150]. 
The ETC generates the mitochondrial membrane potential 
(MMP) across the mitochondrial membrane, which reflects 
the polarization of mitochondria and promotes dye intake; 
thus, researchers proposed that HSCs have highest the MMP 
but relatively low mitochondrial volumes and amount than 
that in multipotent progenitors [151]. Despite the above-
mentioned controversy, it has been demonstrated that low 
mitochondrial activity or MMP marks quiescent HSCs and 
these MMPlow HSCs exhibit higher potency than MMPhigh 
HSCs, suggesting that mitochondrial activity governs HSC 
quiescence and self-renewal [37, 149]. Furthermore, it has 
been demonstrated that increased mitochondrial Ca2+ flux 
drives elevated MMP levels and subsequent HSC division 
[152]. Indeed, deficiency of mitochondrial carrier homo-
logue 2 induces increased mitochondrial size and OXPHOS, 
subsequently promoting HSCs proliferation [153]. Mito-
chondrial metabolism triggers HSC entry into the cell cycle 
primarily through generating ROS, which has been demon-
strated to induce damage and cell-cycling in quiescent HSCs 
[16, 116, 154, 155]. Like MMP, ROS also distinguishes qui-
escent from activated HSCs, and these ROSlow HSCs are 
more quiescent and have higher self-renewal capacity than 
that in ROShigh HSCs [38]. Moreover, metabolites derived 
from glycolysis and mitochondrial metabolism affect epi-
genetic modifications, such as histone acetylation and DNA 
methylation [136, 147]. For instance, acetyl-CoA is primar-
ily generated by glycolysis-derived pyruvate and functions 
as a substrate of histone acetyltransferases (HATs). It has 
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been demonstrated that acetylation of H4K16 and H3K27 
plays a pivotal role in HSC transition between quiescence 
and activation [35, 147, 156, 157]. Further establishment 
of how metabolism and epigenetic modifications synergis-
tically control HSC quiescence will greatly improve our 
understanding of this process.

Quiescent HSCs rely on glycolysis to generate ATP and 
require restricted mitochondrial metabolism to preserve 
quiescence; consistently, inhibition of mitochondrial activ-
ity using trifluoromethoxyphenylhydrazone to uncouple the 
ETC induces quiescence in HSCs and benefits HSC main-
tenance [149]. More directly, deletion of Rieske iron sul-
fur protein (RISP), a subunit of mitochondrial complex III, 
results in aberrant HSC entry into the cell cycle and eventual 
HSC exhaustion [148]. Similarly, deficiency of PTPMT1, a 
PTEN-like mitochondrial phosphatase localized at the mito-
chondrial membrane, impairs mitochondrial aerobic metabo-
lism and considerably reduces quiescence in HSCs by ~ 80% 
to ~ 50%, leading to HSC exhaustion and BM failure in mice 
[158]. In summary, HSCs require balanced mitochondrial 
activity to preserve quiescence, and both excessively acti-
vated and inhibited mitochondrial metabolism impair qui-
escence maintenance in HSCs.

Protein synthesis at ribosomes 
and the endoplasmic reticulum

Like energy production, protein synthesis is one of the most 
fundamental forms of metabolism in cells. Emerging evi-
dence has revealed that HSC quiescence is tightly regulated 
by protein synthesis that primarily occurs at the ribosome 
and endoplasmic reticulum (ER). Ribosomes consist of ribo-
somal RNA and ribosomal proteins (RPs) and are responsi-
ble for mRNA translation into proteins [159]. Mutations in 
several ribosomal proteins lead to hematopoietic diseases, 
such as Diamond Blackfan anemia [159–161]. Using an 
O-propargyl-puromycin (OP-Puro) incorporation assay, it 
has been found that HSCs exhibit the lowest rate of protein 
synthesis compared to other BM cells, while inhibition of 
ribosome function by haploinsufficiency of large ribosomal 
subunit protein 24 (Rpl24) results in fewer HSCs being in S/
G2/M phases, suggesting that the reduced ribosome function 
inhibits proliferation of HSCs [162]. Unexpectedly, haplo-
insufficiency of small ribosomal subunit protein 14 (Rps14) 
remarkably reduces the quiescence in HSCs (~ 70% to ~ 42%) 
[163]. Moreover, deletion of Notchless impairs maturation of 
the ribosomal pre-60S subunit, resulting in quiescent HSC 
entry into the cell cycle, suggesting that ribosome functions 
are necessary for quiescence maintenance in HSCs [164]. 
Nevertheless, existing evidence suggests that increased 
ribosome biogenesis may also impair quiescence mainte-
nance in HSCs. For instance, deficiency of phosphatase 

and tension homolog (PTEN) increases protein synthesis 
and promotes HSC cell cycling, while blocking ribosome 
biogenesis largely restores the function of PTEN-deficient 
HSCs [162]. It seems that both increased and inhibited ribo-
some biogenesis impairs quiescence maintenance in HSCs; 
however, more direct and convincing evidence is required 
to confirm these findings.

Abundant ribosomes are found attached to the ER, com-
prising 60% of the cell membrane and playing critical roles 
in protein synthesis, folding, and modification, as well as 
calcium storage and lipid metabolism [165, 166]. The ER 
senses the quantity and quality of synthesized proteins and 
assists protein folding into native structures, while the accu-
mulation of misfolded/unfolded proteins induces ER stress 
[167]. Emerging evidence has revealed the critical roles of 
the ER in quiescence maintenance in HSCs. Knock-out of 
glucose-regulated protein 94 (Grp94), an ER chaperone 
regulating protein folding, assembly, and secretion, sub-
stantially reduces HSC quiescence [168]. The Sel1L/Hrd1/
ER-associated degradation (ERAD) complex localizes to the 
ER membrane, and assists in recognizing and subsequent 
degradation of misfolded proteins, thus reducing ER stress. 
Increased ER protein folding or reduced ER stress promotes 
the self-renewal and reconstituted capacity of HSCs [169, 
170]. It has been revealed that quiescent HSCs exhibit rela-
tively higher expression of ERAD genes. Deletion of Sel1L 
remarkably induces proliferation of quiescent HSCs via 
mammalian target of rapamycin (mTOR) pathway and niche 
interaction, suggesting that ER stress drives HSCs to exist 
quiescence [171, 172]. In summary, ribosome biogenesis 
and ER stress are key regulators of HSC quiescence.

Autophagy and lysosomal metabolism

Like materials synthesis, degradation of pre-existing materi-
als is also vital for cell renovation [173]. There are two pri-
mary cellular degradation systems, the proteasome, and the 
lysosome; the former exhibits high selectivity recognizing 
ubiquitinated substrates, while the latter has broader substrate 
selection [173]. Autophagy is a pathway by which cytoplas-
mic materials are delivered to lysosomes for degradation; 
furthermore, the degraded products can be reutilized [174]. 
Autophagy is governed by a series of autophagy-related genes 
(Atg) and is divided into three categories: macroautophagy, 
microautophagy, and chaperone-mediated autophagy [173, 
174]. It has been demonstrated that autophagy is essential for 
cellular longevity and plays a critical role in hematopoiesis 
[175]. Importantly, loss of autophagy substantially promotes 
quiescent HSC entry into the cell cycle, resulting in exces-
sive HSC activation and subsequent exhaustion through dele-
tion of FIP200, Atg5, Atg7, or Atg12 [175–179]. It has been 
revealed that loss of autophagy largely increased mitochondrial 
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metabolism and ROS level in HSCs; the activated metabolism 
leads to stepwise epigenetic remodeling (DNA methylation) 
and impairs HSC self-renewal [175–177, 179]. It has been 
revealed that mitophagy, a process of quality control in mito-
chondria, is essential for the self-renewal of Tie2+ HSCs [180]. 
Loss of O-linked N-acetylglucosamine transferase impairs 
quiescence maintenance of HSCs due to inhibited mitophagy 
[181]. HSCs require autophagy to clear excess active, healthy 
mitochondria; thus, restricted mitochondrial metabolism 
maintains quiescence [179]. Chaperone-mediated autophagy 
(CMA) has been consistently reported to be upregulated in 
activated HSCs, promoting activated HSC self-renewal and 
preserving HSC pool [182]. Moreover, HSC aging is associ-
ated with decreased autophagy, while activation of autophagy 
enhances HSC function, including quiescence reentry [179, 
182]. Lysosomes are major mediators of endocytic and 
autophagic pathways [183]. A recent study has revealed that 
inhibition of lysosomal activity by concanamycin A (ConA) 
decreases MMP and promotes quiescence in HSCs, suggest-
ing that HSC quiescence requires restrained lysosomal activity 
[37].

In addition to the above-mentioned metabolic regulators of 
HSC quiescence, the metabolism of fatty acids, amino acids, 
and nucleic acids has been reported to affect HSC prolifera-
tion [126, 184, 185]. For instance, it has been demonstrated 
that hematopoietic stem and progenitor cells have a higher 
level of fatty acid oxidation (FAO) compared with differenti-
ated hematopoietic cells. Inhibition of the PML-PPAR-δ-FAO 
pathway impairs asymmetric division of HSCs and results in 
their exhaustion [186]. In summary, emerging evidence sug-
gests that unique metabolic status can be used as a hallmark of 
quiescent HSCs. Glycolysis, OXPHOS, and protein synthesis 
directly drive the cell cycle progression of HSCs, suggesting 
that metabolism is a determinant of HSC quiescence, similar 
to cell cycle regulators. Certainly, metabolism is also interre-
lated and hierarchical; for instance, mitophagy maintains HSC 
quiescence largely via the regulation of mitochondrial metab-
olism [180, 181]. However, many questions regarding HSC 
quiescence and activation remain unanswered. What is the 
integrated change of cell metabolism during HSC transition 
between quiescence and activation? How do energy produc-
tion, protein synthesis, autophagy, and fatty acid metabolism 
synergistically preserve HSC quiescence? Thus, it is necessary 
to further explore these areas to provide a more integrated 
landscape of metabolism governing HSC quiescence.

Extracellular regulatory networks regulating 
HSC quiescence

Adult HSCs primarily reside in the BM throughout life, 
and this niche is extremely complicated and provides a 
supportive microenvironment for HSCs [9, 187]. It is 

well-recognized that the maintenance of stem cells relies on 
the surrounding microenvironment defined as the stem cell 
niche [188, 189]. Dormant HSCs rapidly lose quiescence 
and are activated upon exiting the BM niche, suggesting 
a critical role for the microenvironment in governing HSC 
quiescence [190]. Current evidence indicates that multiple 
niche factors regulate HSC quiescence, such as extracellular 
matrix (ECM), niche-secreted factors, and cell–cell interac-
tions [6, 190].

Cell‑ECM interactions

The ECM is a three-dimensional macromolecular structure 
that provides a basic scaffold for cells and is composed of up 
to 300 components, primarily including collagens, laminin, 
fibronectin, and proteoglycans [191, 192]. The composition 
and structure of the ECM exhibit tissue specificity; moreo-
ver, it has been demonstrated that the ECM plays critical 
roles in cellular behaviors, such as proliferation, differentia-
tion, and migration, primarily through its physical properties 
and chemical factors [191, 192]. It has been revealed that 
physical properties, such as stiffness and elasticity, regu-
late HSC function in vivo; for instance, quiescent HSCs 
require a stiffer endosteal niche while softer vascular niches 
promote HSC activation [193–196]. The increased spatial 
confinement of 3D scaffold benefits preserving quiescence 
in HSCs in vivo, suggesting that biophysical cues of ECM 
play critical roles in quiescence maintenance in HSC [197]. 
In addition to physical properties, components of the ECM 
can directly interact with adhesion receptors to regulate HSC 
quiescence, and disruption of ECM remodeling by dele-
tion of metalloproteinase-1 (TIMP-1) impairs quiescence 
maintenance and self-renewal of HSCs [196, 198–200]. For 
instance, the ECM protein Matrilin-4 is highly expressed in 
LT-HSCs and represses proliferation under stress, while the 
ECM protein Del-1 promotes LT-HSC proliferation [201, 
202]. Integrins, cadherins, CD44, and selectins are the main 
adhesion receptors of HSCs; it has been demonstrated that 
disruption of ECM-adhesion receptor interactions impairs 
quiescence maintenance in HSCs [6, 196]. CD44 interacts 
with hyaluronic acid and drives HSC homing to the BM, sus-
taining their quiescence state [203]. The periostin-integrin-
αv interaction preserves the quiescence state in HSCs by 
inhibiting the FAK-PI3K-Akt pathway [204]. Consistently, 
inhibition of N-cadherin impairs the self-renewal of HSCs, 
while overexpression of N-cadherin substantially increases 
quiescence in HSCs [205]. In contrast, loss of E-selectin 
markedly increases quiescence in HSCs, suggesting the 
diverse functions of adhesion receptors in regulating HSC 
quiescence [206]. Besides the above-mentioned physical and 
chemical properties, the ECM may also regulate HSC cell 
cycling by retaining niche-secreted factors, such as TGF-β 
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[6]. In summary, the present evidence suggests the critical 
roles of the ECM in HSC quiescence; considering the com-
plicated composition and structure of the ECM, the exact 
function of the ECM requires further investigation.

Niche cells and niche‑secreted factors

At present, the most well-recognized extracellular regula-
tory factors of HSC quiescence are niche-secreted [6]. Adult 
HSCs localize in the BM niche, where factors produced by 
other cells (e.g., osteoblasts, endothelial cells, adipocytes, 
and megakaryocytes) and niche cell-HSC interactions, as 
well as factors secreted by distal tissues, substantially reg-
ulate HSC quiescence [6, 190]. It has been demonstrated 
that niche-produced factors, such as CXC motif chemokine 
ligand 4 (CXCL4), CXCL12, TGF-β, thrombopoietin 
(THPO), osteopontin (OPN), angiopoietin-1 (Ang-1), and 
prostaglandin E2 (PGE2), are essential for quiescence main-
tenance in HSCs (Table 2). Chemokines are transmembrane 
cytokines that interact with chemokine receptors on cells to 
regulate multiple cellular behaviors; several CXCL genes 
are relatively highly expressed in quiescence human HSCs 
compared to activated HSCs [207]. Deficiency of CXCL12 
secreted by leptin receptor positive (LepR+) stromal cells 
compromises quiescence maintenance in HSCs; moreo-
ver, inhibition of CXCR4 (the CXCL12 receptor) induces 
excessive proliferation of HSCs [208, 209]. Deletion of 
CXCL4 or its receptor CXCR2 both promotes HSC pro-
liferation and impairs HSC self-renewal, while injection of 
CXCL4 increases HSC quiescence [207, 210]. Megakaryo-
cytes are one of the main producers of CXCL4 and have 
been demonstrated to maintain HSC quiescence by CXCL4 
secretion [210]. Although other research reported that dele-
tion of megakaryocytes results in quiescent HSC entry in 
cell cycle, they propose different mechanisms in which 
megakaryocytes secrete TGF-β and maintain HSC quies-
cence via the TGF-β-Smad pathway [211]. In addition to 

megakaryocytes, Schwann cells in the BM also sustain HSC 
quiescence by producing TGF-β, which further regulates the 
expression of genes involved in cell cycling via the TGF-
β-Smad pathway [212]. THPO is also a critical cytokine 
for quiescence maintenance in HSCs, and HSCs are closely 
associated with THPO-secreted osteoblasts where THPO 
interacts with its receptor MPL to activate β-integrin and 
CKIs signaling [213, 214]. Moreover, osteoblasts produce 
OPN and angiopoietin-1, which both sustain a quiescence 
state in HSCs [215, 216]. Among the multiple BM stro-
mal cells, macrophages have been demonstrated to produce 
cyclooxygenase, a precursor of PGE2, which preserves HSC 
quiescence by inhibiting Akt signaling and repressing ROS 
production in HSCs [217].

Recently, emerging evidence has uncovered several unre-
ported niche factors that participate in preserving HSC qui-
escence. Vitamin A and its metabolite, retinoic acid have 
been found to sustain HSC quiescence by restricting protein 
synthesis and ROS production [129]. Angiogenin (ANG), a 
niche-produced ribonuclease, represses HSC proliferation 
primarily by inducing the generation of tiRNA and restrict-
ing protein synthesis [218]. Niche histamine, produced by 
a subpopulation of myeloid cells, preserves quiescence and 
self-renewal in myeloid-biased HSCs by activation the H2 
receptor [219]. Extracellular vesicles (EVs) are membrane 
bound and transfer bioactive molecules that regulate the 
cell cycle of HSPCs. Mesenchymal stromal cells release 
EVs and the MyD88 adapter protein in EVs reduces quies-
cence of HSPCs [220]. Recently, it has been reported that 
EVs produced by osteoblastic cells promote proliferation 
of hematopoietic progenitor cells via processed tiRNA in 
EVs, suggesting the critical role of EVs and tiRNA in HSPC 
quiescence [221]. Notably, several immune factors have been 
to impact HSC quiescence, including interleukin-1 (IL-1), 
IL-3, and interferon gamma (INFγ) [222–224]. HSC hemo-
stasis requires an equilibrium between quiescence and acti-
vation and several niche factors have been reported to induce 
cell cycling of HSCs. For instance, adipocyte-secreted 

Table 2   Niche-secreted factors 
regulating HSC quiescence

Factor Source Effect on HSC quiescence Reference

CXCL4 Megakaryocytes and plateles Preserving quiescence [207, 210]
CXCL12 LepR+ stromal cells Preserving quiescence [208, 209]
TGF-β Megakaryocytes and Schwann cells Preserving quiescence [211, 212]
Thrombopoietin Osteoblasts Preserving quiescence [213, 214]
Osteopontin Osteoblasts Preserving quiescence [215]
Angiopoietin-1 Osteoblasts Preserving quiescence [216]
Prostaglandin E2 Macrophages Preserving quiescence [217]
Histamine Myeloid cells Preserving quiescence [219]
Adiponectin Adipocytes Inducing quiescence exit [225]
Leptin Adipocytes Inducing quiescence exit [227]
IGF1 Hepatocytes and osteoblasts Inducing quiescence exit [228]
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adiponectin induces quiescence exit of HSCs by activating 
mTOR signaling [225]. Niche fibroblast growth factor 2 
(FGF2) promotes the proliferation of HSCs predominantly 
by activation of the c-kit receptor and phosphorylation of 
STAT5 [226]. Leptin, primarily secreted by adipose tissue, 
promotes the proliferation of HSCs by regulating niche cells 
to secrete other niche factors, such as CXCL12 [227]. IGF1 
is mainly produced by the liver and osteoblasts, which has 
been demonstrated to selectively promote the proliferation of 
a subset of HSCs by activating Akt signaling and restoring 
mitochondrial metabolism [228].

In addition to the above-mentioned factors secreted by 
niche cells, physical interaction between HSCs and niche 
cells may also regulate HSC cell cycling. It has been 
reported that multiple stromal cells physically interact with 
HSCs, including osteoblasts, BM mesenchymal stem cells 
(BMSCs), megakaryocytes, and macrophages [34, 212, 229]. 
The direct interaction between macrophages and HSCs pro-
motes stabilization of CD82 on HSCs, and CD82 preserves 
HSC quiescence, implying a critical role of physical inter-
action in HSC homeostasis [34]. Collectively, ECM, niche 
factors, and niche cells all have critical roles in preserving 
HSC quiescence. Notably, these extracellular regulatory net-
works regulate HSC quiescence via intracellular signaling 
transduction, indicating a signaling axis from extracellular to 
intracellular. Nevertheless, how these extracellular signaling 
pathways synergistically function and whether certain path-
ways are more critical to HSC quiescence remains poorly 
understood. Moreover, identifying novel niche factors and 
developing strategies for utilizing cytokines to preserve qui-
escence and self-renewal in HSCs will benefit the clinical 
application of HSCs.

Conclusion and future perspectives

In this review, we summarized the definition, assessment 
methods, and regulatory networks of HSC quiescence.

Quiescent HSCs are dormant cells in the G0 phase, which 
can be precisely detected using multiple direct and indirect 
markers. HSC quiescence is regulated by multiple factors, 
and intrinsically, cell cycle-associated factors directly gov-
ern HSC quiescence. Moreover, emerging evidence indicates 
that HSC transition between quiescence and activation is 
driven by cell metabolism, including mitochondrial metabo-
lism, protein synthesis, and autophagy. The expression of 
cell cycle-associated factors and mitochondrial metabolism 
are governed by multiple intracellular molecules, such as 
transcription factors, kinase-related factors, and epigenetic 
factors that synergistically comprise a regulatory network 
of HSC quiescence. In addition to intracellular factors, the 
ECM, niche cells, and niche factors have been reported to 
affect HSC proliferation, depending on receptors on the 
HSCs and downstream signal transduction. Overall, cell 
cycle regulators and cell metabolism can be considered the 
hubs of the quiescence regulatory network of HSCs, and 
other intracellular and extracellular factors sustain HSC qui-
escence primarily through the basic cell cycling and metabo-
lism pathways. Thus, the above-mentioned factors form a 
multilevel regulatory network of HSC quiescence (Fig. 1).

Quiescence maintenance is a pivotal property for HSC 
self-renewal, and dysregulated quiescence impairs HSC 
homeostasis and subsequent hematopoiesis. Specifically, 
several hematopoietic diseases are tightly associated with 
abnormal cell cycling in HSCs, such as myeloproliferative 
disease and Fanconi anemia [12–14]. Moreover, HSCs lose 
quiescence and self-renewal capacity upon exiting their 
niche, which impede HSC culture in vitro and further clini-
cal utilization. Thus, several questions and directions should 
be considered in future research. First, the metabolic and 
molecular regulatory network of HSC quiescence still needs 
to be completely illustrated. Second, the exact effects and 
underlying mechanisms of dysregulated HSC quiescence on 
hematopoiesis require further clarification. Third, attention 
should be paid to developing efficient strategies to preserve 
HSC quiescence and potential in vivo and in vitro, such as 
by leveraging cytokines.
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