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Abstract
G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerg-
ing evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function 
in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising 
targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-
canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin. Subsequently, the functions of G4 DNA 
in physiological processes are discussed, especially their regulation of DNA replication, transcription of disease-related 
genes (c-MYC, BCL-2, KRAS, c-KIT et al.), telomere maintenance, and epigenetic regulation. Typical G4 ligands that target 
promoters and telomeres for drug design are also reviewed, including ellipticine derivatives, quinoxaline analogs, telomes-
tatin analogs, berberine derivatives, and CX-5461, which is currently in advanced phase I/II clinical trials for patients with 
hematologic cancer and BRCA1/2-deficient tumors. Furthermore, since the long-term stable existence of G4 DNA structures 
could result in genomic instability, we summarized the G4 unfolding mechanisms emerged recently by multiple G4-specific 
DNA helicases, such as Pif1, RecQ family helicases, FANCJ, and DHX36. This review aims to present a general overview 
of the field of G-quadruplex DNA that has progressed in recent years and provides potential strategies for drug design and 
disease treatment.
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Detection of G‑quadruplex DNA

Since the discovery of the right-handed B-type double helix 
DNA by Watson and Crick in 1953, many high-level DNA 
structures have been discovered, such as Z-DNA, Holliday 
junction DNA, and triplex DNA. In 1962, Gellert et al. first 
discovered that four guanosine 5′-monophosphate (GMP) 

molecules can form a planar helical unit, thus forming a 
relatively stable helical aggregate, which laid an important 
foundation for the subsequent discovery of G-quadruplex 
structures [1]. In 1988, Sen et al. found that DNA sequences 
similar to telomeres containing multiple guanine sequences 
could spontaneously fold to form a four-stranded DNA struc-
ture under certain conditions, which were called g-quadru-
plexes or g-tetraplexes [2]. Since then, increasing studies 
have discovered a series of specific DNA sequences that can 
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form G4 structures, especially sequences located in the regu-
latory regions of certain oncogenes and in the telomeres.

Potential G4 sequences (PGSs) in the genome can be ana-
lyzed and identified using bioinformatics methods. Algo-
rithms were developed to predict the putative G4 structures 
in the genome, with the typical G4 sequence motif being 
 G≥3NL1G≥3NL2G≥3NL3G≥3, where  NL1,  NL2, and  NL3 rep-
resent the loop sequences of G4, with lengths limited to 
1–7 nt [3, 4]. Through bioinformatics prediction, as many 
as 376,000 potential G4 sequences were found in the human 
genome [4]. Meanwhile, PGSs in Escherichia coli [5–7], 
Saccharomyces cerevisiae [8, 9], and other species have 
also been analyzed and located, and the potential functions 
of these sequences have also been speculated. Currently, 
depending on different strategies, multiple algorithms are 
available to determine and analyze PGSs in the indicated 
DNA sequences or genomes, such as the regular expres-
sion matching tools ImGQfinder [10] and AllQuads [11], 
the scoring and sliding window tools G4Hunter [12–14], 
pqsfinder [15] and QGRS Mapper [16], and the machine 
learning tool Quadron [17].

Apart from bioinformatics methods, next-generation 
sequencing has also been adopted to map the G4 structures 
in the genome. Currently, two strategies based on next-
generation sequencing are mainly exploited: G-quadruplex 
sequencing (G4-seq) and G4 chromatin immunoprecipita-
tion sequencing (ChIP-seq). G4-seq is a combination of 
the genome-wide DNA polymerase-stop assay and high-
throughput sequencing, and it has identified 716,310 G4 
DNA sequences in the human genome [18], nearly twice 
that predicted using bioinformatics methods. The G4s identi-
fied via G4-seq include many non-canonical G4 structures 
with long loops and/or bulges, which are difficult to predict 
using bioinformatics methods. Subsequently, whole-genome 
G4 maps of 12 important model organisms and pathogens 
of clinical relevance, including S. cerevisiae, Arabidopsis 
thaliana, Mus musculus, and Homo sapiens, were generated 
using an improved version of G4-seq, which provided the 
key sequence features that determine different patterns of 
G4 formation and the relevance of G4 localization across 
genomes [19]. It should be noted that some of the G4 sites 
mapped via G4-seq might not form G4 structures in vivo, as 
the technique was performed using cell-free systems, and the 
effect of proteins that may alter the stability of G4 structures 
cannot be excluded, especially for some long-loop G4s with 
low stability.

G4 ChIP-seq is dependent on chromatin immunoprecipi-
tation using G4-specific antibodies and high-throughput 
sequencing [20, 21]. Using the G4 structure-specific anti-
body BG4, it was found that G4 structures are enriched in 
the promoters and 5'-UTRs of highly transcribed genes, par-
ticularly in genes related to cancer, such as c-MYC [20]. In 
addition, some endogenous proteins, such as human XPB/

XPD1 [22], ATRX [23], yeast Rif [24], and Pif1 [25], which 
can bind to folded G4 structures, have also been mapped to 
G4 structures in the human genome via ChIP-seq. G4 sites 
mapped through G4 ChIP-seq can represent the actual G4 
structures in the cell; however, the number of G4 sites can 
be affected by antibody specificity and sample treatment.

Structure of G‑quadruplex DNA

G-quadruplexes are stabilized by Hoogsteen hydrogen 
bonding; four guanines form a G-tetrad (Fig. 1A), then, 
two or more G-tetrads stack on top of each other, forming 
a quadruple helical structure driven by cations. According 
to the number of DNA strands, folded G4 can be grouped 
into intermolecular G4 (two or four DNA strands, Fig. 1B, 
C) or intramolecular G4 (one DNA strand, Fig.  1D–F) 
[26, 27]. Intramolecular G4 can display diverse topologies 
depending on the sequence difference, loop length, and 
ionic environment [28]. According to the orientation of the 
sequence in the G4 spatial structure, it can be divided into 
parallel, antiparallel, or hybrid structures (Fig. 1D–F). The 
spatial configuration of G4 has been widely studied using 
biophysical methods, such as NMR, X-ray, and circular 
dichroism spectra. As for the human telomeric G4 sequence 
d(AGGG(TTA GGG )3), it exhibits a canonical antiparallel 
state in a  Na+ solution (Fig. 1E) [29]; however, in a  K+ solu-
tion, it presents a mixture of parallel, antiparallel, and hybrid 
structures (Figs. 1D–F) [30, 31], which indicates that the 
same G4 sequence may have multiple complex structures 
in different environments. However, the effect of different 
topologies on the function of G4 in cells requires further 
study.

In addition, an increasing number of studies regarding G4 
structures with unique features, such as a G-vacancy, a bulge, 
or a long loop with duplex, have surfaced recently, expand-
ing the repertoire of G-quadruplexes. The G-vacancy-bear-
ing G-quadruplex (GVBQ) was recently excavated, which 
is formed by one G2 and three G3 tracts [32] (Fig. 1G). 
By accepting a guanine derivative, such as dGMP, GMP, 
or GTP, the G-vacancy can be filled up to form an intact 
G-tetrad, thereby forming an enhanced G4 [33, 34]. Using 
the bioinformatics method, approximately 220,000 potential 
GVBQ-forming sequences emerged in the human genome, 
most of which are preferentially located at the 5′-end of 
genes and may potentially respond to the environment in 
specific cellular processes [32]. The formation of GVBQ 
in promoters can regulate gene expression and has emerged 
as a novel therapeutic target. One typical example of this 
is the GVBQ from the promoter of the platelet-derived 
growth factor receptor beta (PDGFR-β) gene, which is a cell 
surface receptor tyrosine kinase that is closely associated 
with various pathologies, including atherosclerosis, fibrotic 
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disorders, rheumatoid diseases, and cancers [35–37]. The 
G4 sequence in the nuclease hypersensitivity element (NHE) 
of the PDGFR-β promoter can form GVBQs. Intriguingly, 
3'- and 5'-end G-vacancies are both present in the PDGFR-β 
promoter G4 sequences; also, guanine metabolites and drugs 
showed a conserved selectivity for the 5'-vacancy, and 
cGMP preferred to bind both the 3'- and 5'-end vacancies 
and formed two fill-in G4s with similar populations [33, 38]. 
Recently, a bi-functional guanine-RHAU23 peptide conju-
gate composed of a guanine moiety and a 23-aa G4-binding 
domain from the RHAU helicase has been reported to target 
and stabilize the GVBQs in DNA with superior specificity, 
providing a novel and promising alternative targeting strat-
egy to a distinctive panel of G4s [39].

Meanwhile, bulge occurrence among G-tetrads in G4 has 
also been discovered in a series of G4 topologies (Fig. 1H). 
High-throughput sequencing of G4s in the human genome 
indicates that G4s with bulges are widespread, accounting 
for 21.6% and 30% of the total observed G4 sequences in 
solutions containing  K+ and the G4 ligand pyridostatin, 
respectively [18]. The bulge varies with the base identity, 
size, and number per structure [40–42]. In single projection 
G4, the pyrimidine bulge is more common and more stable 

than the adenine bulge [40–42], while the guanine bulge 
has not yet been reported. In polynucleotide projection G4, 
the size of the bulge can increase to 7 nt [43]. Recently, 
a G4 structure containing a duplex bulge of up to 33 nt 
was reported, and that G4 stability slightly increased with 
increasing duplex bulge size, broadening the diversity of 
G4 topologies [44]. G4s containing bulges are widespread 
in gene promoters; for example, a thymine bulge G4 has 
been reported in the NHE of the KRAS promoter and plays 
a critical role in regulating KRAS signaling [45], which is 
a driver of many cancers by activating multiple pathways 
[46], especially PI3K, MAPK, PLCe, and RalGDS signaling.

The loop size of canonical G4 in bioinformatics algo-
rithms has been defined as 1–7 nt. However, in the human 
genome, G4 sequences with long loops (> 7 nt) account for 
21.5% of the total observed G4 in  K+ and 24% in pyridosta-
tin solutions [18]. Increasing studies have revealed the exist-
ence of hairpins or duplexes in the long loop of G4s [47, 
48], forming quadruplex–duplex hybrids (Fig. 1I), which are 
also known as stem-loop-containing quadruplex sequences 
(SLQS) [49]. In the human genome, 80,307 SLQS embed-
ded within 60,172 unique clusters were identified, most of 
which were strand-specifically located in promoter regions 

Fig. 1  Structures and topolo-
gies of G-quadruplex DNA. A 
The chemical structure of the 
G-quartet. The G-quartet is 
formed by four guanines and is 
stabilized via Hoogsteen hydro-
gen bonding in the presence of a 
central cation. B, C Representa-
tive topologies of intermolecu-
lar G-quadruplex structures. 
D–F Schematic representation 
of canonical intramolecular 
G-quadruplex structures. 
According to the orientation of 
the G4 sequences, these can be 
divided into parallel, antiparal-
lel, and hybrid G4 structures. 
G–I Schematic representation 
of non-canonical intramolecular 
G-quadruplex structures
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and were closely related to hundreds of brain tissue-related 
and cancer-associated genes [49]. Usually, the loop size 
has a significant impact on the stability and formation of 
G4 both in cell-free and cellular systems [50], but a stem 
loop can reinforce the stability of SLQS compared to a non-
structured loop [51], thereby regulating the expression of 
key genes. Recently, an SLQS was reported and presented 
two distinct solution conformations that could co-exist in the 
human oncogene PIM1: form 1, containing a (3 + 1) G-tetrad 
core with a propeller loop, a co-axially stacked hairpin stem-
loop, and a lateral loop; and form 2, containing a chair-type 
G-tetrad core and an adjoining G · C · G · C tetrad, with 
two lateral loops and a co-axially stacked hairpin stem loop 
[52]. The existence of a long loop can diversify the spatial 
configuration of G4 and provide sequence-specific (duplex 
binding) and scaffold-specific (G4 binding) structural ele-
ments, which can be targeted and selectively modulate gene 
expression.

Intracellular functions of G‑quadruplex DNA

The general existence of G4s in specific regions of the 
genome, such as in DNA replication origins, chromosome 
ends, promoters, and gene transcriptional regulatory regions, 
determines their pivotal functions in various biological 
processes, including DNA replication, telomere mainte-
nance, transcription, homologous recombination (HR), and 
epigenetics.

G‑quadruplexes and DNA replication

G‑quadruplexes affect DNA replication and genome 
stability

G4 DNA plays a dual role in DNA replication, as a critical 
component of metazoan replication origins and as an obsta-
cle during DNA replication, leading to genome instability.

In mammalian genomes, ~ 100,000 potential DNA repli-
cation origins have been predicted, and 80%–90% of these 
origins contain GC-rich regions, forming origin G-rich 
repeated elements (OGRE), which can potentially form 
G-quadruplexes [53]. A previous experiment showed that 
G4 motifs in DNA replication origins are required for repli-
cation initiation and that affecting G4 stability also impairs 
the origin function (Fig. 2A) [54]. Furthermore, a recent 
study proclaimed that the deletion of G4 motifs in OGRE 
can strongly reduce the origin activity in mouse cells, and a 
G4 sequence from OGRE introduced into an ectopic origin-
free region can establish a new functional origin [55]. The 
mechanism of G4-induced replication initiation may be due 
to the recruitment of replication initiation factors to repli-
cation origin sites, such as the origin recognition complex 

[56], treslin–MTBP complex [57], and the replication timing 
regulation protein Rif1 [58], which were reported to bind 
to G4 specifically both in cell-free and in cellular systems.

After initiation, DNA replication proceeds in a semi-dis-
continuous manner, during which the lagging strand remains 
single-stranded for a while and is intrinsically more prone to 
G4 formation. There is mounting evidence that G4 formation 
can obstruct the DNA replication process in both cell-free 
and cellular systems (Fig. 2B). Mutation of the dog-1 heli-
case in C. elegans was first reported for deletions in genes 
containing G-rich regions [59], which indicates that a defi-
ciency in G4 unfolding may give rise to DNA synthesis dis-
orders and genome instability. Simultaneously, mutations or 
deficiencies in other G4 unfolding-related proteins in the cell 
were authenticated to obstruct the DNA replication process, 
such as the helicases FANCJ [60], BLM [61], WRN [62], 
Pif1 [63], and DDX11[64]. The effect of G4s on DNA rep-
lication was also detected directly using cell-free systems. 
In a DNA polymerase-stop assay, G4s from telomeres were 
reported to arrest Taq DNA polymerase [65, 66] and yeast 
polymerase δ [67], leading to replication blockage. Further-
more, the G4 replication process by E. coli Pol I depends on 
the stability of G4 and the concentration of Pol I [6]; when 
high-stability G4s, such as four-layer G4s, occur on the tem-
plate, E. coli Pol I will similarly be blocked.

Replication of G‑quadruplexes

There are several pathways that can resolve the process of 
impeded G4 replication. A major method by which this hap-
pens is mediated by polymerase and G4-specific helicase to 
collaboratively replicate G4. G4-specific helicases, includ-
ing FANCJ, BLM, WRN, Pif1, and RHAU, will be reviewed 
in the following sections. Some nucleases, such as DNA2 
[68] and EXO1 [69], also facilitate the replication of G4 
structures to avoid genome collapse and fork stagnation at 
G4 sites.

In addition, some polymerases that specifically recog-
nize and replicate G4 structures have been observed in both 
cell-free and cellular systems. In recent years, increasing 
evidence has demonstrated that some translesion DNA syn-
thesis (TLS) polymerases, such as Rev1, Pol κ, and Pol η, are 
implicated in G4 processing to promote DNA fork progres-
sion. A cell-free study showed that yeast Rev1 could repli-
cate G-tract DNA in a template-specific manner, indicating 
that Rev1 is a G template-specific DNA polymerase [70] 
and can incorporate dCMP into the 3' end of DNA primers 
and function as a scaffold for proteins during TLS or base 
excision repair. Interacting with FANCJ helicase, REV1 can 
be directly recruited to G4s or through interactions mediated 
by PCNA to remodel oxidatively damaged G4 DNA [71]. 
Furthermore, human Rev1 has been shown to specifically 
bind G4 DNA substrates, dislodge tetrad guanines to unfold 
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G4 DNA, and prevent G4 structures from refolding, thereby 
promoting fork progression [72]. It is worth noting that a 
loss of human Rev1 increased G4 mutation frequency > 200-
fold compared to a control sequence and that hRev1 exhib-
ited a strong affinity for parallel G4 rather than antiparallel 
or hybrid G4, whereas insert-2 in Rev1, a motif conserved 
in vertebrates but not yeast or plants, is responsible for the 
selective binding and accurate replication of G4 [73]. Apart 
from Rev1, other TLS polymerases, such as Pol κ, Pol η, and 
Dpo4, also participate in G4 replication [74–79]. Interest-
ingly, the C-terminal of Rev1 may interact with Pol κ or Pol 
η to collaboratively replicate G4s.

Meanwhile, a novel eukaryotic DNA primase and DNA-
directed polymerase, named PrimPol, has emerged in recent 
years and may be involved in G4 replication. PrimPol is a 
critical factor in DNA damage tolerance and mitochondrial 
DNA replication, particularly in invertebrate and human 
cells [80–82]. Recently, it was reported that PrimPol bound 
to and suppressed the formation of G4 structures, promoting 
the restart of DNA synthesis closely coupled to G4 replica-
tion impediments in DT40 cells [83]. PrimPol can also sup-
press R-loop formation in genes containing G4 and H-DNA 

motifs across the genome in both avian and human cells 
[84]. However, a recent study indicated that DNA replication 
by PrimPol is strongly blocked by representative stable G4 
structures from human mitochondrial DNA, and that it could 
be overcome by the presence of Pif1 helicase in an error-
prone DNA synthesis manner [85]. Therefore, cooperation 
between multiple proteins is indispensable for maintaining 
genome stability.

G‑quadruplexes and transcription

G‑quadruplexes affect gene transcription

The effect of G4 on DNA transcription depends on mul-
tiple factors, especially its orientation (on the template or 
non-template) and its location relative to the transcription 
start site (TSS). During DNA transcription, the presence of 
G4 on the DNA template strand blocks the movement of 
RNA polymerase (Fig. 2C), resulting in the arrest or even 
termination of transcription, directly decreasing the expres-
sion of the target genes [86, 87]. Also, G4 on the DNA 
non-template strand has also been reported to block the 

Fig. 2  The biological function of G-quadruplex DNA in DNA rep-
lication, transcription, and telomere maintenance. A G4 can initiate 
DNA replication via the recruitment of replication initiation factors, 
such as the origin recognition complex, treslin-MTBP complex, and 
Rif1. B G4 can stall DNA polymerase during the DNA replication 
process, causing DNA replication disorder and genome instabil-
ity. The replication of G4 can be resolved through the participation 
of G4-specific helicases such as Pif1, FANCJ, BLM and WRN, and 
TLS polymerases such as Rev1, Pol κ, Pol η, and Primpol. C G4 on 
the template strand can directly impede RNA polymerase during the 

transcription process. D G4 sequences on the non-template strand can 
form hybrid G4 with the newly synthesized RNA, inducing transcrip-
tion termination. E The formation of G4 upstream of the TSS will 
usually inhibit transcription. G4 can also recruit certain transcrip-
tion factors, which may either facilitate or restrain transcription. F A 
string of G-quadruplexes in the telomeric 3′-overhang involves tel-
omere metabolism and telomere integrity maintenance. The G-quad-
ruplex can protect telomeres from nuclease and interfere with telom-
erase activity
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transcription process, which forms an unusually stable RNA/
DNA hybrid between the G4 sequence on the non-template 
and the nascent RNA [88–90] (Fig. 2D). In contrast, recent 
studies discovered that G4 on the non-template strand can 
couple with and stabilize the R-loop [91], and the stabilized 
R-loop facilitates transcription through a mechanism involv-
ing successive rounds of R-loop formation [92]. It is worth 
noting that R-loop spreading caused by multiple stabilized 
G4 ligands can trigger the accumulation of DNA double-
strand breaks (DSBs) in human cancer cells, thereby causing 
genome instability and activating cell apoptosis [93].

G4s have been mapped using a machine learning 
approach and high-throughput sequencing and were found 
to be enriched in cancer breakpoints and the TSSs of highly 
transcribed genes in human cells, particularly in genes 
related to cancer, such as c-MYC, BCL-2, KRAS, c-KIT, and 
VEGF (Table 1), further verifying the correlation among 
G4, transcription initiation, and the emergence of certain 
diseases.

G4s in TSSs play diverse roles during gene transcription 
(Fig. 2E). One classical example is the G4 in the promoter 
of the BCL-2 gene, which encodes a mitochondrial mem-
brane protein and functions by inhibiting apoptosis. BCL-
2 is aberrantly overexpressed in a wide range of tumors 
and other diseases, including Alzheimer’s disease, Parkin-
son’s disease, and stroke [94]. Three promoters have been 
reported in BCL-2 [95]: P1, P2, and M. P1 is located 1489 
to 1451 bp upstream of the TSS and is responsible for most 
of the expression of BCL-2; P2 and M are located between 
P1 and the TSS, and mainly modulate P1 activity. As a 
TATA-less and GC-rich promoter, P1 and its vicinity have 
been reported to have four disparate G4 DNA sequences 
(Table 1), including Pu39, bcl2G4-2, P1G4, and P32. Pu39 
harbors six runs of guanine tracts and has the potential to 
form multiple overlapping quadruplexes with more than 15 
possible combinations [96]. Pu39 functions as a transcrip-
tional silencing element during BCL-2 expression, and the 
deletion or mutation of the Pu39 site in lymphoma DHL-4 
cells has been shown to increase P1 activity by 2.1-fold 
or 2.6-fold, respectively [97]. Multiple transcription fac-
tors can bind to Pu39 and relieve its inhibitory effect on 
BCL-2 expression, such as specificity protein 1 (SP1) [98], 
Wilms’ tumor 1 (WT1) [97], and E2F [99]. Bcl2G4-2 
was the second G4 sequence found near the P1 promoter, 
which is located 1653 to 1618 bp upstream of the TSS and 
can form a parallel G4 in the presence of  K+; however, 
the stability of bcl2G4-2 appears to be much lower than 
that of other BCL-2 G4s, as its Tm is approximately 60 °C 
[100]. The potential bcl2G4-2-targeting transcription fac-
tors and their relevance in terms of BCL-2 transcription 
are yet to be explored. Located 1439 to 1412 bp upstream 
of the TSS with five runs of guanine tracts, P1G4 also 
functions as a BCL-2 transcription repressor, whereas in 

the extended BCL-2 P1 promoter region containing Pu39 
and P1G4, P1G4 seems to play a more dominant role in 
inhibiting BCL-2 transcription in human breast cancer 
MCF-7 cell lines [101]. P32 is located 1906 to 1875 bp 
upstream of the TSS and occupies four runs of guanine 
tracts. Under physiological conditions with  K+, P32 was 
identified to have an intramolecular hybrid G4 topology 
with high thermal stability (Tm = 82 °C) [102]. However, 
the inhibition of P32 via base mutations or the induction of 
a conformational transition with a phenanthroline deriva-
tive could cause obvious downregulation of BCL-2 expres-
sion in human lung A549 cancer cells [102], indicating 
that P32 may play an activating role in regulating BCL-2 
expression in cellular systems. The regulation of G4s near 
the P1 promoter on BCL-2 expression mainly depends on 
the transcription factors recruited by G4, which is worthy 
of further study in vivo, especially for bcl2G4-2, P1G4, 
and P32. Also, whether there is cross talk between differ-
ent G4s also deserves exploration, especially for Pu39 and 
P1G4, which are only 11 nt apart.

Similarly, the NHE of the oncogene KRAS also con-
tains three putative G4 sequences, which are separated by 
12 and 17 nucleotides, respectively, and are designated as 
 G4far,  G4middle, and  G4near relative to the TSS (Table 1). 
 G4near, also known as KRAS 32R, was shown to form two 
topologies in the 100 mM KCl solution, a hybrid G4 with 
a Tm ~ 72 °C, and a parallel G4 with a thymidine bulge in 
one strand, with a Tm ~ 55 °C [103, 104]. Pull-down assays 
and LC–MS/MS identified three DNA protein complexes 
that have an affinity for the  G4near structure in human pan-
creatic cancer Panc-1 cells, including hnRNPA1, PARP-1, 
and Ku70 [103]. The hnRNPA1 was shown to bind to and 
destabilize the KRAS promoter G4, resulting in the upregu-
lation of KRAS expression [105]; the same phenotype was 
also discovered in CCHC-type zinc-finger nucleic acid-
binding protein (CNBP) [106] and myc-associated zinc 
finger (MAZ) [107] in later studies. In contrast, HMGB1, 
a ubiquitous non-histone protein involved in DNA repair, 
transcription, and telomere maintenance, was shown to 
bind to and stabilize  G4near to suppress KRAS expression in 
Panc-1 cells [108]. In addition, the KRAS promoter G4 was 
associated with epigenetic mechanisms, as guanine has the 
lowest redox potential and can be oxidized to 8-oxoguanine 
(8OG) upon interaction with reactive oxygen species (ROS), 
impairing DNA, which will be discussed in the following 
section. However, based on the luciferase assay, a previous 
study claimed that  G4middle might be a stronger repressor of 
promoter activity than  G4near in HEK-293 cells [109], but 
more evidence is needed to support that claim. Furthermore, 
it was reported that  G4far could not form an inducible and 
stable structure under a variety of buffer conditions in cell-
free systems, while  G4middle and  G4near formed strong G4 
structures [109], indicating that  G4far may be inactive during 
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KRAS transcription, but this needs further verification using 
in vivo experiments.

Another classical example is the G4 sequence in the pro-
moter of c-MYC, which is the dominant carcinogenic driver 
in many cancers [110]. Located upstream of the c-MYC P1 
promoter, the nuclease-hypersensitive element III1 (NHE 
III1) contributes to 80%–90% of c-MYC transcription and 
contains a 46-bp G4 sequence (named as Pu46), which occu-
pies six G-tracts (Table 1) and forms stable G4s with multi-
ple topologies in a cell-free system [110, 111]. Pu46 itself is 
critical for suppressing c-MYC expression; moreover, Pu46 
can also recruit other transcription factors to regulate c-MYC 
transcription, including nucleoside diphosphate kinase B 
(NM23-H2), nucleolin, SP1, and CNBP [112]. NM23-H2 
was found to maintain the single-stranded form of Pu46 to 
activate c-MYC transcription [113–115] and interact with 
CNBP, which can modulate the topological structure of G4 
and unfold it [106], thereby increasing the transcription of 
c-MYC [116]. In contrast, nucleolin can contribute to G4 
formation and stabilize Pu46 G4 to inhibit c-MYC expression 
[113, 117], as well as repress c-MYC transcription promoted 
by SP1 [118], which can recognize and bind both canoni-
cal dsDNA and G4s in the double-stranded NHE III1 [119, 
120]. However, nucleolin may also act as a transcription 
activator in other promoters, such as VEGF [121] and ZEB1 
[122]. The folding and structure of c-MYC G4 containing 
the G-tracts 1-2-4-5 [112], 1-2-3-4 [123], and 2-3-4-5 [124] 
have been reported in cell-free systems. However, the pre-
dominant G4 structure in living cells may be G4 involving 
G-tracts 2-3-4-5, which was verified in cells using multiple 
Pu22-specific small molecular probes, including a fluores-
cent probe named 9CI [125], a cyanine dye fluorescent probe 
named Cy-1 [126], and a self-assembled quinazoline–quina-
zolinone derivative named 4b [127]. The G-tracts 2-3-4-5 
of Pu46, also known as Pu22, can fold into a parallel struc-
ture with a 1:2:1 nt loop arrangement; at present, most of 
the small molecule ligands targeting G4 to suppress c-MYC 
expression are based on this Pu22 structure.

G4 ligands targeting promoters for drug design

The structural diversity and cross talk between protein–G4 
interactions originating from the G4s formed in the promot-
ers make them attractive targets for drug design. Currently, 
the G4-interacting proteins database is available, providing 
information about proteins interacting with G4 structures 
[128], where more than 1000 G4 ligands have been discov-
ered and shown in the G4 ligands database for drug dis-
covery [129], providing a platform for the discovery and 
development of novel anticancer therapeutics. G4 ligands 
have been discovered or designed to suppress the expression 
of oncogenes by stabilizing G4 structures in the promot-
ers, including porphyrin derivatives, acridine derivatives, Ta
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pyridine derivatives, fluoroquinolone derivatives, among 
others (Table 2). Further, some natural alkaloids have been 
found to also target G4s and can be potential antitumor 
drugs, such as berberine, cryptolepine, and ellipticines.

Taking c-MYC as an example, we have summarized 
potential G4 ligands with physiological effects as reported in 
recent years. The earliest reported c-MYC G4 ligands include 
TMPyP4, BRACO-19, and pyridostatin, which possess the 
ability to suppress the growth and proliferation of multiple 
tumor cells including breast cancer cells, retinoblastoma 
cells, and melanoma cells. However, they were unable to dis-
tinguish different G4 topologies; for example, TMPyP4 has a 
high affinity for multiple G4s and inhibits the expression of 
multiple oncogenes, such as KRAS [130] and BCL-2 [131].

Ellipticine analogs, including GQC-05, NSC311153, and 
EPED3, have been reported to target proto-oncogenes and 
decrease tumor cell viability. GQC-05 was first reported as a 
high affinity and selective stabilizer of the c-MYC G4 [132]. 
In Burkitt’s lymphoma cell line CA46, GQC-05 induced 
cytotoxicity by altering the process of protein binding to 
the NHE III region of c-MYC, resulting in a correspond-
ing decrease in c-MYC mRNA expression. Also, GQC-05 
could also reduce cell viability and result in increased DNA 
damage and apoptosis in the acute myeloid leukemia cell 
lines KG-1a, CMK, and TF-1 [133]. Furthermore, GQC-05 
has been shown to combine with navitoclax, a Bcl-2/Bcl-XL 
inhibitor, increasing its cytotoxic activity, which was more 
significant than either navitoclax or GQC-05 alone and more 
significant than navitoclax combined with cytarabine and 
adriamycin; however, its biological efficacy needs further 
verification in vivo. In addition to c-MYC G4, GQC-05 also 
targets the RNA G4 near the 5' splice site in Bcl-X pre-
mRNA to induce apoptosis in HeLa cells [134]. NSC311153 
incorporates a piperidine ring into ellipticine and achieves 
better G4 binding activity and stability than ellipticine [135]. 
In the medullary thyroid carcinoma (MTC)-derived TT cell 
line and a mouse MTC xenograft model, NSC311153 could 
target the promoter G4 and interfere with the transcription 
of the proto-oncogene rearranged during transfection (RET), 
which encodes a receptor tyrosine kinase and is related 
to MTC [135]. EPED3 is a highly stable and hydrophilic 
ellipticine analog, which initiates apoptosis at nanomolar 
concentrations in multiple myeloma cell lines while leaving 
stromal cells unharmed [136]. However, whether EPED3 tar-
gets G4s and the specific mechanism remains to be explored.

Recently, a difluorosubstituted quinoxaline analog, named 
QN-1, was designed and assessed for triple-negative breast 
cancer (TNBC) treatment [137]. QN-1 exhibited distinctive 
binding to the 5′-end G-tetrad of c-MYC G4, with weaker 
binding to other G4s (including G4s from the telomeres, 
BCL-2, VEGF, HRAS, and c-KIT1), which can be dis-
tinguished from most of the reported G4 ligands. In 4T1 
breast cancer cells, QN-1 selectively downregulated c-MYC 

transcription, resulting in cell cycle arrest and apoptosis. In 
a 4T1 tumor-bearing mouse model, QN-1 exhibited good 
in vivo anti-TNBC activity with fewer side effects [137]. 
Although QN-1 can target c-MYC G4 and show excellent 
efficacy in TNBC, it also has some inherent disadvantages, 
especially its high molecular weight and poor solubility in 
water. Therefore, depending on the properties of QN-1 and 
a benzothiazole-based derivative named 4I [138], another 
group designed a better drug-like imidazole-benzothiazole 
conjugate, named IZTZ-1 [139]. In a cell-free system, water-
soluble IZTZ-1 showed high affinity to c-MYC Pu22 G4 
(KD = 2.0 μM) by stacking on both terminal G-quartets of 
Pu22. IZTZ-1 exhibited the same specific stabilizing ability 
on c-MYC G4 as with QN-1. Intracellular assays showed that 
IZTZ-1 could induce cell cycle arrest, apoptosis, and inhibit 
cell proliferation, whereas in a melanoma mouse model, 
IZTZ-1 can effectively inhibit tumor growth by downregu-
lating c-MYC expression [139].

In addition, many other c-MYC G4 target ligands have 
been synthesized and assessed in vitro and in vivo, includ-
ing DC-34 for myeloma [140], the quindoline derivative 
SYUIO-05 for Ramos and CA46 lymphoma cells [141], the 
SYUIO-05 based quindoline derivative 7a4 for Burkitt’s 
lymphoma [142], and the aryl-substituted imidazole/carba-
zole conjugate IZCZ-3 for squamous cell carcinoma [143], 
which may provide many promising anticancer candidates 
in future clinical trials.

Currently, two G4 ligands have already entered human 
clinical trials: CX-3543 and CX-5461, both of which were 
derived from fluoroquinolones. CX-3543, also known as 
quarfloxin, can selectively disrupt nucleolin/G4 complexes 
in the nucleus, thereby suppressing the transcription of RNA 
polymerase I and inducing apoptosis in cancer cells [144, 
145]. CX-3543 was the first G-quadruplex target drug used 
in human clinical trials and has progressed to phase II clini-
cal trials for carcinoid/neuroendocrine tumors, but it was 
withdrawn from further trials because of bioavailability 
issues [146].

CX-5461, known as Pidnarulex, was reported to be highly 
selective for human telomeric, c-KIT1, and c-MYC G4s 
[147], and is a first-in-class selective rDNA transcription 
inhibitor [148]. CX-5461 can block replication forks and 
induce ssDNA gaps or breaks [149], and exerts cytotoxicity 
primarily via topoisomerase II poisoning [150] and the acti-
vation of the ubiquitination pathway [151]. An increasing 
number of studies have indicated that CX-5461 effectively 
targets multiple tumors. CX-5461 exhibited specific toxicity 
against BRCA deficiencies in cancer cells and polyclonal 
patient-derived xenograft models, including tumors resist-
ant to PARP inhibition [149]. Meanwhile, CX-5461 was 
also reported to effectively treat aggressive acute myeloid 
leukemia by targeting a leukemia-initiating cell population 
[152] and the specific inhibition of the translation of certain 
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metabolic regulators [153]. In combination with a single-
dose X-ray, CX-5461 can enhance tumor cell killing effects 
in ovarian cancer cells and the CaSki cervical cancer line 
[154]. Besides, recent studies reported that CX-5461 was 
a promising therapy in the treatment of high-grade serous 
ovarian cancer (HGSOC), and it was shown that CX-5461 
can arrest the G2/M cell cycle checkpoint in multiple HR-
proficient HGSOC cell lines in combination with the clini-
cally used TOP1 inhibitor topotecan [148], and activate the 
DNA damage response in combination with PARP inhibitors 
in HR-deficient HGSOC [155]. CX-5461 was also reported 
to significantly hamper the proliferation of TNBC cells 
and synergistically enhance the efficacy of the p53 activa-
tor APR-246 by cleaving PARP and caspase 3, while also 
maintaining Annexin V positivity [156]. In addition to can-
cers, a study corroborated that CX-5461 could prevent the 
development of pulmonary arterial remodeling, perivascular 
inflammation, pulmonary hypertension, and improved sur-
vival. CX-5461 could also partially reverse established pul-
monary hypertension by inducing cell cycle arrest in human 
pulmonary arterial smooth muscle cells and enhancing the 
activity of p53 [157], highlighting its potential applications 
in chronic diseases.

CX-5461 is currently in advanced phase I/II clini-
cal trials for patients with hematologic cancers (Trial ID: 
ACTRN12613001061729) and BRCA1/2-deficient tumors 
(Canadian Cancer Trials Group ID: NCT02719997) [149]. 
Meanwhile, the phase I dose-escalation clinical trial of 
CX-5461 in advanced hematologic cancers was completed 
in 2019, indicating that it is safe at doses associated with 
clinical benefit, and can attain prolonged partial response 
in patients with anaplastic large cell lymphoma and achieve 
stable disease as the best response in patients with myeloma 
and diffuse large B-cell lymphoma [158].

G‑quadruplexes in the telomeres

G‑quadruplexes affect telomere metabolism

Telomeric DNA are repetitive DNA sequences found at 
the ends of the chromosomes, and their lengths are closely 
related to cancers, aging-related diseases, type 2 diabetes, 
cardiovascular disease, and the human life span [159]. Telo-
meric DNA in humans usually contains a double-stranded 
repeat region 2–50 kb long that has approximately 300–8000 
precise CCC TAA /TTA GGG  repeats, as well as the 3′-tail 
single-stranded repeat region with 10–50 TTA GGG  repeats, 
which can form G4 structures under certain conditions, 
thereby regulating telomere metabolism [160]. G4s in tel-
omeres can perform multiple functions. First, G4s can act as 
a telomeric capping structure [161] and avoid the hydrolysis 
of the 3′-tail single-stranded region by nuclease (Fig. 2F), 
thereby guaranteeing the integrity of the telomere. However, Ta
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G4 is also a potential risk factor for telomere integrity, as 
large-scale G4s in the double-stranded repeat region of the 
telomere may hinder DNA replication by DNA polymerase. 
When G4-specific proteins such as helicase WRN [62], Pif1 
[63], and nuclease DNA2 [68], EXO1 [69] are deficient, the 
replication forks at telomeres may stagnate and ultimately 
collapse. Therefore, G4 has played a dual role in maintaining 
telomere integrity.

In addition, G4 affects the activity of telomerase 
(Fig. 2F). As a unique reverse transcriptase, telomerase con-
sists of the telomerase reverse transcriptase and telomerase 
RNA template and can catalyze telomeric DNA repeats onto 
the 3′-ends of the linear chromosome, generating new 3′-tail 
single-stranded repeat regions [162]. An early study reported 
that the folding of telomeric DNA into G4 impedes the elon-
gation of the ciliate Oxytricha nova telomere [163]. Multiple 
studies have indicated that parallel intermolecular G4 DNA 
can serve as a substrate for telomerases from ciliates [164] 
and humans [165, 166]; however, the antiparallel and hybrid 
G4 structures formed by telomeric overhangs impede tel-
omerase elongation [164–166]. It is worth mentioning that 
the POT1-TPP1 complex can bind to and unfold all telo-
meric G4 topologies (parallel, antiparallel, hybrid, or two 
contiguous quadruplexes) through an obligatory unfolding 
mechanism [167, 168]. Replication protein A (RPA), located 
at the telomere, acts as a telomere end-binding protein and 
mediates the unfolding of G4s [169, 170]. After the POT1-
TPP1 complex or RPA disrupts telomeric G4s, telomerase 
can achieve the proper elongation of the telomere.

In most normal cells, telomerase activity is almost 
silenced, except in some T cells or stem-like cells that need 
to activate reverse transcriptase activity transiently during 
cell proliferation. Telomerase upregulation and activation 
are the general characteristics of various cancers, indicating 
that strategies targeting telomerase activity by telomeric G4 
ligands could have significant anticancer effects [171].

G4 ligands targeting telomeres for drug design

Multiple telomeric G4-targeting ligands can inhibit tel-
omerase activity and block tumor growth and metastasis. 
Telomestatin is a natural macrocyclic compound isolated 
from Streptomyces anulatus [172] and has been reported 
to interact specifically with the human telomeric intramo-
lecular G4 in the absence of monovalent cations [173, 174]. 
Telomestatin was demonstrated to inhibit telomerase activ-
ity and shorten telomere length, exerting pro-apoptotic and 
antiproliferative effects in acute leukemia [175] and multi-
ple myeloma [176]. Telomestatin can also segregate the tel-
omere-capping protein TRF2 from the telomere, resulting in 
telomeric DNA damage and effectively activating the repli-
cation stress response pathway in glioma stem cells [177]. In 
addition to the disruption of telomeric G4, telomestatin also 

targets the promoter G4 of the proto-oncogene c-Myb and 
reduces c-Myb expression in glioma stem cells [178]. Based 
on the structure of telomestatin, a new series of macrocy-
clic hexaoxazole-type G4 ligands (6OTD) was synthesized. 
Ligands with the 6OTD structure caused DNA damage, G1 
cell cycle arrest, and apoptosis in human glioblastoma cells, 
GSC cell lines, and glioblastoma U251 mouse xenografts, 
and these DNA damage foci were co-localized with telom-
eres, indicating that 6OTD limited the growth of GSCs by 
targeting telomeres [179]. Compared with temozolomide, 
a clinical antiglioma DNA alkylating agent, 6OTD needs a 
lower concentration to exert its anticancer effects, preferen-
tially affecting GSCs and telomeres, verifying that 6OTD 
may be a potential therapeutic against glioblastoma [179]. 
Meanwhile, several other 6OTD derivatives have been syn-
thesized, including L2H2-6OTD (1a), which was reported to 
target RNA G4s and show cytotoxicity towards cancer cells 
[180], as well as the 6OTD analog 5b, which preferentially 
stabilizes telomeric G4s over the promoter G4s of c-KIT 
and KRAS [181], their effects in vivo remain to be further 
identified.

Berberine, a natural isoquinoline alkaloid isolated from 
the Chinese traditional herb Coptis chinensis and other berb-
eris plants, has shown antiinflammatory activity in a variety 
of chronic diseases and anticancer potential against various 
human cancer cells [182]. Berberine was reported to bind to 
telomeric G4 and was verified as a 2:1 ligand to the G-tetrad 
structure model, in which two berberines were in the two 
binding sites and directly interacted with each tetrad [183]. 
However, apart from telomeric G4s, berberine can also tar-
get other non-telomeric structures. In the medullary thyroid 
carcinoma TT cells, berberine inhibited RET expression by 
more than 90%, inhibiting cell proliferation via cell cycle 
arrest and apoptosis activation [184]. A recent study con-
firmed that berberine could target the promoter G4 of the 
DUX4 gene, reduce DUX4 expression, inhibit muscle fibro-
sis, and consequently rescue muscle function in facioscapu-
lohumeral muscular dystrophy [185]. To date, multiple 
berberine derivatives have been designed to have improved 
efficacy. Ber8, a 9-substituted berberine derivative, exhibited 
strong interaction with telomeric G4s and could effectively 
inhibit cell cycle arrest, cell senescence, and accelerate DNA 
damage at telomeric regions in multiple cancer cells [186]. 
A further study revealed that Ber8 could not only facilitate 
the formation of endogenous telomeric G4s in cancer cells 
but also disaggregate TRF1 and POT1 from the telomere and 
induce telomere uncapping [186]. Some berberine deriva-
tives have been shown to exhibit telomeric G4 specificity; 
for example, two berberine-bisquinolinium conjugates with 
fluorescence response, named Ber-360A and Ber-PDS, were 
able to distinguish telomere double G4s from other types of 
G4s and dsDNA, and displayed strong telomerase inhibi-
tion and anti-tumor activity, especially in HeLa and HepG2 
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cells [187]. In addition, a berberine derivative named epi-
berberine (EPI), was first reported to specifically bind to 
the hybrid-2 telomeric G4, which is the major form of G4 
in wild-type human telomeric DNA, and induce an unprec-
edented extensive four-layer binding pocket specific to the 
hybrid-2 G4 [188] Furthermore, EPI could convert other 
telomeric G4 forms, such as hybrid-1 and basket-type, to 
hybrid-2, which was the first such example reported [188]. 
However, EPI still binds weakly to dsDNA, and its antitumor 
activity remains to be identified in cellular systems.

In addition, several other G4 ligands which can target 
G4 in the promoters of oncogenes, also can stabilize telo-
meric G4 and exert antitumor activity, such as BRACO-19 
[189–191], TMPyP4 [192], CX-5461 [193], and RHPS4 
[194] (Table 2). The tight relationship between cancer, tel-
omerase, and telomeres makes antitumor therapeutic strate-
gies involving G4 ligands more attractive.

G‑quadruplexes affect epigenetic modifications

The relationship between G4 and epigenetic modifications 
is multifaceted. Under endogenous oxidative stress, reac-
tive oxygen species (ROS) in cells cause DNA damage 
and focus on G4 sites, and different feedback mechanisms 
can upregulate or downregulate the expression of a large 
number of redox genes, resulting in oxidative DNA dam-
age with epigenetic characteristics [195]. G4s, therefore, 
become epigenetic modification sites when the levels of 
oxidative stress become significantly increased during the 
inflammatory response and in cancer cells [196], as ROS 
can enhance the level of 7,8-dihydro-8-oxoguanine (8OG) 
more in G4 motifs than in non-G4 motif G-rich regions. The 
presence of 8OG in the G-quadruplex may lower the stabil-
ity of the G4 depending on where the damage is located on 
its structure. The  G4near of the KRAS promoter is a clas-
sical example of this. When 8OG occurs within the 11-nt 
loop of the  G4near structure, its Tm and stability are almost 
unaffected; however, when 8OG is situated in the G-tetrad, 
both Tm and stability are greatly reduced [197]. It has been 
reported that the presence of 8OG on promoter G4s leads to 
an approximately 300% increase in gene expression [198]. 
Moreover, oxidized G4s that have been suggested to form 
unique, looped structures could also stimulate PARP-1 activ-
ity [199]. Furthermore, 8OG could enhance the binding of 
PARP-1 to  G4near (Fig. 3A) and promote the recruitment of 
MAZ and hnRNPA1 to the promoter, thereby stimulating 
the transcription of KRAS in Panc-1 cells [200]. Certainly, 
8OG on G4 can be removed through the DNA base excision 
repair (BER) pathway, which is initiated by 8-oxoG DNA 
glycosylase (OGG1) and subsequently recruits AP endo-
nuclease 1 (APE1) to the G4 sequences and stabilize G4 
folding [201]. However, a recent study indicated that OGG1 
efficiently excised 8OG from oxidized  G4near near the duplex 

but not within the G4 conformation; instead, endonuclease 
VIII-like 1 (Neil1) showed higher 8OG-excising activity in 
the G4 than the duplex DNA in Panc-1 cells [202].

G4 stability, position, and chromatin accessibility are 
closely related to CpG island methylation, where low- or 
non-methylated CpG islands prefer to form highly stable G4 
[203]. The formation of G4 on CpG islands directly affects 
the activity of DNA methyltransferase (Fig. 3B) [204]. A 
typical example of this is DNA (cytosine-5)-methyltrans-
ferase (DNMT), which predominantly stalls and maintains 
cytosine methylation at CpG islands in mammals. It has been 
reported that human DNMT1, DNMT3A, and DNMT3B 
possess strong binding activity to G4 [205, 206]. It is vital 
to mention that the formation of the G4 structure can inhibit 
the methylation activity of DNMT1, thereby protecting cer-
tain CpG islands from methylation and suppressing local 
methylation [207].

G4 could also affect histone epigenetics by recruiting pro-
teins with histone-modifying activity. A classic example of 
this is the G4-dependent recruitment of the RE1-silencing 
transcription factor (REST)-lysine-specific histone dem-
ethylase 1A (LSD1) repressor complex (Fig. 3C), which 
can remove the gene-activating monomethylation and dem-
ethylation of histone H3K4 [204]. G4 is indispensable for 
the occupancy of non-metastatic 2 (NME2) at the hTERT 
promoter as the REST-LSD1 repressor complex maintains 
repressive chromatin at the hTERT promoter and is depend-
ent on NME2 [208]. In addition, telomere repeat-binding 
factor 2 (TRF2), which functions both inside and outside the 
telomere, was found to also interact with G4s in promoters 
[209, 210]. After recruitment in the promoter G4, TRF2 can 
promote the formation of the REST-coREST-LSD1-repres-
sor complex at the p21 promoter and alter histone marks, 
resulting in the downregulation of p21 transcription and 
a reduction in the DNA damage response activation upon 
treatment with doxorubicin and G4-ligand 360A in cancer 
cells [210]. In contrast, four G4 motifs are formed in the 
promoter of Zinc-finger E-box binding homeobox 1 (ZEB1), 
which is frequently associated with cancer aggressiveness. 
After binding to the P1 G4, nucleolin could remodel the 
local genomic region, facilitate the binding of SP1, recruit 
P300 acetyl transferase, and enrich acetyl-histone H3 at the 
promoter, thereby inducing transcription and oncogenic pro-
gression (Fig. 3D) [122].

G4 causes local epigenetic reprogramming after stall-
ing the replication fork [204, 211]. In REV1-deficient 
cells, DNA replication stagnation induced by G4 DNA 
can result in the uncoupling of DNA synthesis from his-
tone recycling, leading to the localized loss of repressive 
chromatin through the preferential incorporation of newly 
synthesized unmodified histones during gap filling [212, 
213] (Fig. 3E). G4 ligands can also hinder DNA replica-
tion and trigger local epigenetic plasticity via H3K4me3 
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loss and DNA cytosine methylation at the BU-1 locus of 
chicken DT40 cells [214]. Furthermore, a depletion of the 
nucleotide pool and a deficiency of G4-processing heli-
cases, such as FANCJ, WRN, and BLM, will also induce 
epigenetic reprogramming and change in gene expression 
[215, 216]. Therefore, the replication fork stalling caused 
by unresolved G4 not only affects genome stability and 
telomere length but also impacts histone recycling and 
epigenetic reprogramming.

G4‑interacting DNA helicases

Helicases are molecular motors that hydrolyze nucleoside 
triphosphates to execute critical functions in various DNA 
metabolic processes, including DNA replication, transcrip-
tion, HR, repair, and telomeric metabolism. As the forma-
tion of stable G4 during DNA replication and transcrip-
tion may cause genomic instability and gene expression 

Fig. 3  G-quadruplexes can affect epigenetic modifications. A G4 can 
become epigenetic modification sites when the levels of oxidative 
stress increase. The presence of 8-oxoguanine (8OG) on the G-tetrad 
decreases the stability of the promoter G4, leading to an increase in 
gene expression. Meanwhile, 8OG could stimulate the binding of 
PARP-1 to the promoter G4 and promote the recruitment of MAZ 
and hnRNPA1 to the promoter, thereby stimulating transcription. B 
The formation of G4 at CpG islands can directly inhibit the activity 
of DNA methyltransferase after G4-preferred methyltransferase bind-
ing to the G4 structure. A typical example of this involves the DNA 
(cytosine-5)-methyltransferase DNMT1, DNMT3A, and DNMT3B. 
C G4 can affect histone epigenetics through the recruitment of pro-

teins with histone-modifying activity, such as NME2 or TRF2, which 
can selectively bind to G4 and recruit the REST-LSD1 complex to 
remove the methylation of histone H3 Lys4 (H3K4) and inhibit gene 
expression. D In the promoter of ZEB1, nucleolin could bind to the 
G4 motif, remodel the local genomic region, facilitate the binding of 
SP1, and recruit P300 acetyltransferase, leading to enriched acetyl-
histone H3 at the promoter, inducing gene transcription and onco-
genic progression. E G4 can cause epigenetic reprogramming after 
the replication fork stalls at the G4 site in the presence of G4 ligands 
or the deficiency of G4-specific helicases. G4 structures may also 
impair histone recycling and lead to the localized loss of repressive 
chromatin, causing epigenetic reprogramming
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regulation, G4 structures must be disrupted or unfolded in 
a regulated manner. Therefore, G4-specific unwinding hel-
icases have been studied in-depth through various meth-
ods in recent years. The DNA G-quadruplex unwinding 
helicases are listed in Table 3, among which Pif1, RecQ 
family helicases, FANCJ, and DHX36 are known to be 
closely related to human diseases and have recently been 
studied in depth.

Pif1

As the founding member of superfamily 1 DNA helicase, 
Pif1 is evolutionarily conserved from bacteria to humans and 
plays a vital role in maintaining genome stability in both the 
nucleus and mitochondria [217, 218]. Pif1 was first found 
to affect the activity of telomerase by displacing telomerase 
from telomeric DNA in both cell-free and cellular systems 
[219] and promote the proliferation and suppress the apopto-
sis of cervical cancer cells [220]. It was then found that Pif1 
can remove telomerase from the telomere ends and acceler-
ate the cycling of telomerase for additional telomere length-
dependent extensions, thereby maintaining telomere length 
[221]. Furthermore, some proteins were found to contribute 

to telomere length homeostasis in cooperation with Pif1, 
such as Hrq1 [222] and RPA [223].

Pif1 directly promotes DNA replication through G4 
motifs. The G4 stabilizer PhenDC3 was found to cause 
single-strand DNA lesions and impede DNA replication at 
G4 sites in the cell, and this stalled DNA synthesis machin-
ery can be resolved by the members of the Pif1 family of 
helicases [224]. In Pif1-deficient cells, the DNA replica-
tion fork becomes stalled, inducing DNA breakage at the G4 
motif sites [25]. Furthermore, the absence of Pif1 can cause 
genomic instability when G4s occur at the leading strand 
template [225]; however, another study concluded that 
stalled DNA replication occurred at the lagging strand G4 
sites in Pif1-deficient cells, rather than on the leading strand 
[226]. The differences between the two studies may stem 
from the differences in the G4 sequences studies, assays 
for characterization, and genomic location. Meanwhile, it 
was affirmed that the coupling between Pif1 and PCNA is 
indispensable for the optimal progression of the replisome 
through G4 motifs [226].

Pif1 preferentially binds G4 DNA relative to ssDNA, 
dsDNA, and a partially single-stranded duplex DNA helicase 
substrate, highlighting its G4 interaction specificity [227]. In 

Table 3  Summary of G4 unfolding helicases

Superfamily Subfamily Name Polarity Function Genetic disease References

SF1 Pif1 5′–3′ Telomere maintenance, DNA replication, 
mitochondrial genome maintenance, DSB 
repair, epigenetic regulation

[229, 268]

DNA2 5′–3′ DNA replication, telomere maintenance [68, 269]
UvrD 3′–5′ Nucleotide excision repair, mismatch repair, 

HR
[270, 271]

Rep 3′–5′ DNA replication [272]
RecD 5′–3′ Double-strand-break repair [273]

SF2 Fe-S FANCJ 5′–3′ DNA replication, DNA crosslink repair, 
epigenetic regulation

Fanconi anemia, breast cancer [215, 232, 274]

XPD 5′–3′ Nucleotide excision repair, transcription 
regulation

Cockayne syndrome, COFS 
syndrome, Xeroderma Pig-
mentosum

[22]

DDX11 5′–3′ Sister chromatid cohesion, post-replicative 
repair, DNA replication

Warsaw Breakage Syndrome [64, 275, 276]

RTEL1 5′–3′ Telomere maintenance, DNA replication, 
DNA transcription

Dyskeratosis congenita [234, 277, 278]

RecQ RecQ 3′–5′ DNA repair, HR, DNA replication [243]
BLM 3′–5′ DNA repair, HR, DNA replication Bloom syndrome [238, 279]
WRN 3′–5′ DNA repair, HR, DNA replication, epige-

netic regulation
Werner syndrome [279, 280]

RecQ5 3′–5′ HR, DNA replication [244]
DEAH DHX9 3′–5′ R-loop generation, DNA replication [281]

SF3 SV40 T-ag 3′–5′ DNA replication, transcription [282, 283]
SF4 Twinkle 5′–3′ Mitochondrial DNA replication [284]
SF5 DHX36 5′–3′ Telomere maintenance, transcription regula-

tion
[250, 251]
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a cell-free system, simulated DNA replication of an ongoing 
synthesis of lagging strands stalled by G4 was established 
and detected using single-molecule fluorescence assays, ver-
ifying that Pif1 can unfold the G4 structure sequentially in 
two large steps, then halt at the ss/dsDNA junction, followed 
by a rapid reformation of G4 and the “acrobatic” re-initiation 
of G4 unfolding, exhibiting its periodic patrolling activity 
at the stalled DNA replication sites [228, 229]. In addition, 
G4 unfolding mediated by Pif1 is sensitive to G4 stability, 
and it was found that G4 structures with short loops can be 
barely unfolded by Pif1 and that Pif1 preferentially unfolded 
antiparallel G4 rather than parallel G4 of similar stability 
[230, 231]. Therefore, Pif1 is a G4-specific helicase with 
strong G4 unwinding activity, but cooperation with other 
helicases or proteins may be needed when interacting with 
highly stable G4s.

FANCJ

FANCJ was initially ascertained as a direct interaction part-
ner of breast cancer type 1 susceptibility protein (BRCA1); 
therefore, it was also termed BRCA1-associated C-termi-
nal helicase 1 (BACH1) or BRCA1-interacting protein 1 
(BRIP1) [232]. FANCJ functions in the Fanconi anemia 
(FA) pathway that promotes inter-strand crosslink (ICL) 
repair through the interplay of lesion excision, translesion 
synthesis, and HR; a FANCJ mutation was found to be a 
cause of the bone marrow failure syndrome FA. Currently, 
FANCJ mutations are associated with an increased risk of 
multiple cancers, such as breast cancer, ovarian cancer, mel-
anoma, prostate, and hereditary colon cancers [233].

In addition to ICL repair, FANCJ was reported to domi-
nate G4 unwinding activity in both cell-free and cellular sys-
tems, laying the foundation for its function in DNA replica-
tion stalling and epigenetic reprogramming caused by G4s. 
The combination of a fluorescent probe and fluorescence 
lifetime imaging microscopy confirmed that a decrease in 
FANCJ expression can increase the number of G4s in mam-
malian cells, implying that FANCJ plays a role in unfolding 
G4 structures in cells [234]. In C. elegans, a deficiency in the 
FANCJ ortholog dog-1 can cause exclusive deletions of G4 
DNA and eventual genome instability [235], and that deple-
tion of FANCJ caused persistent DNA replication stalling at 
G4 sites [60], demonstrating the vital role of FANCJ in G4 
replication. FANCJ was reported to coordinate two pathways 
for the efficient replication of G4s in the cell, in concert with 
either TLS polymerase REV1 or the WRN and BLM heli-
cases, to initiate G4 unfolding and replication [215]. FANCJ 
occupies an iron–sulfur (FeS) cluster, wherein mutations in 
this cluster have been associated with cancer predisposi-
tion. A recent study reported that FANCJ required an intact 
FeS cluster to unfold G4 structures on the DNA template 
as observed via a primer extension assay using the lagging 

strand DNA polymerase δ [232], and that FANCJ knockout 
cells expressing FeS cluster-deficient variants displayed a 
similar enhanced sensitivity to the G4 ligands pyridostatin 
and CX-5461 [232], highlighting the remarkable role of the 
FeS domain in G4 metabolism as executed by FANCJ. Sev-
eral other G4 ligands have also been reported to affect the 
G4 unfolding activity by FANCJ; telomestatin, Phen-DC3, 
and Phen-DC6 inhibited FANCJ helicase in unimolecular 
G4 and in bi- or tetramolecular G4 DNA [236].

RecQ family helicases

The RecQ family helicases, including E. coli RecQ, S. cer-
evisiae sgs1, H. sapiens RecQ1, BLM, WRN, RecQ4, and 
RecQ5, widely participate in various DNA metabolic pro-
cesses, including DNA repair, HE, and telomerase mainte-
nance. Importantly, mutations in H. sapiens BLM, WRN, 
and RecQ4 cause Bloom, Werner, and Rothmund–Thomp-
son syndromes, respectively, which are linked to prema-
ture aging, profound developmental abnormalities, and an 
increased risk of cancers [237]. RecQ family members E. 
coli RecQ, S. cerevisiae sgs1, and H. sapiens BLM, WRN, 
and RecQ5 were reported to dominate G4 unfolding activ-
ity (Table 3). As for BLM, three mechanisms have been 
authenticated to be involved in G4 unfolding [238]: (1) BLM 
unfolds G4 with a 3-ssDNA tail in three discontinuous steps 
via unidirectional translocation, (2) the unfolded G4 gets 
connected to dsDNA via ssDNA in a repetitive manner in 
which the same helicase remains anchored at the ss/dsDNA 
junction, and (3) the G4 unfolds by reeling in 5′-ssDNA. 
Mechanistically, the structure of a bacterial RecQ helicase 
bound to unfolded G4 DNA has been reported, revealing 
a guanine-flipping and sequestration mechanism for G4 
unfolding by RecQ helicases or other G4 unwinding heli-
cases [239].

The helicase and RNaseD C-terminal (HRDC) domain 
[240], which are connected to the RecQ core by a flexible 
linker and are unique to E. coli RecQ, S. cerevisiae sgs1, and 
H. sapiens BLM and WRN, have been reported to perform 
vital functions in G4 unfolding. Using a stopped-flow assay, 
the HRDC domain was reported to improve G4 unfolding 
in Neisseria gonorrhoeae RecQ [241]. The cooperation 
between the RecQ core and the HRDC domains of BLM 
was demonstrated during G4 binding and unfolding, where 
the RQC domain interaction with G4 can be stabilized via 
HRDC binding to ssDNA [242]. Recently, using single-mol-
ecule assays, the HRDC domain was reported to be essential 
for the unfolding of the G4 structure by E. coli RecQ, while 
another model different from BLM was proposed, in which 
HRDC can reinforce the association of RecQ on the DNA 
by interacting with the RecA core, leading to a complete and 
longer-lasting G4 unfolding [243]. Interestingly, H. sapiens 
RecQ1 and RecQ4, which do not occupy the HRDC domain 
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intrinsically, cannot unfold G4, and RecQ5, which does not 
possess the HRDC domain, had G4 unfolding activity that 
was an order of magnitude weaker than that of BLM or 
WRN [244]. Therefore, the HRDC of RecQ family helicases 
plays a unique role in the G4 unfolding process, but its func-
tion in cells requires further exploration.

DHX36

DHX36, also known as G4 resolvase (G4R1), MLE-like pro-
tein 1 (MLEL1), or RNA helicase associated with AU-rich 
element (RHAU), is involved in multiple cell differentiation 
processes, including spermatogenesis, heart development 
during embryogenesis, hematopoiesis, as well as the den-
dritic localization of neuronal precursor microRNA [245], 
and functions in the regulation of RNA structures. DHX36 
has extreme affinity and efficiency in binding and unfolding 
both RNA G4 and DNA G4 [246], regulating the expression 
of cancer-related genes, such as p53, PITX, YY1, VEGF, and 
ESR1 [247, 248], and function in breast cancer, lung cancer, 
and colon cancer, among others [249].

The G4 unfolding mechanism of DHX36 was revealed 
through its crystal structure. The G4 DNA-resolving model 
was proposed, stating that the negatively charged G4 DNA 
was tightly bound to and was partially destabilized by a posi-
tively charged structural pocket in the RecA2 and OB-like 
domains of Drosophila DHX36; subsequently, the G4 struc-
ture was thoroughly unfolded by the translocation activity 
of DHX36 [250]. Another study shed light on a parallel G4 
unfolding model by DHX36 in an ATP-independent man-
ner, in which the N-terminal specific DNA binding-induced 
α-helix of DHX36 together with the OB-fold-like subdo-
main selectively binds to parallel G4, then the G4 binding 
process induces the rearrangement of the helicase core, 
finally actuating G-quadruplex unfolding one residue at a 
time by pulling on the ssDNA tail [251]. Depending on the 
structure of the DHX36 binding to G4, a bi-functional gua-
nine–RHAU23 peptide conjugate composed of a guanine 
moiety and a 23-aa G4-binding domain from the N-terminus 
of the RHAU helicase was designed to target and stabilize 
G-vacancy-bearing G4s with superior specificity, providing 
a novel and promising strategy to target some non-classical 
G4s [39].

Conclusions

The existence, structure, and function of G-quadruplex DNA 
structures have expanded exponentially in the last decade. 
With the development of detection strategies, especially 
through the application of high-throughput sequencing, 
G4 detection in cellular systems is becoming increasingly 
accurate. However, the topology of inherent G4 structures 

is highly diverse, dependent on their sequence specificity, 
existing ionic environment, and the accompanying molecu-
lar chaperones. Multiple G4 topologies may co-exist for the 
same sequence, so the investigation of the potential topolo-
gies for G4 sequences that play key roles in biological 
processes requires further in-depth studies. The biological 
effects of different G4 topologies and their transformations 
also merit a thorough exploration, particularly regarding 
their regulation of disease-related gene expression. In addi-
tion, G4-specific helicases are indispensable in organisms; 
apart from G4 unfolding, the biological function of helicase-
mediated G4 remodeling also needs to be uncovered.

The diversity in distribution and the vital regulatory func-
tions of G-quadruplex structures in the genome show that 
they are promising targets in drug design. Currently, large 
numbers of G4 ligands have been discovered or synthesized, 
but many of these do not exhibit specificity or clear struc-
ture–activity relationships in vivo, so ligands capable of tar-
geting specific G4 structures and their therapeutic potential 
still require further study, especially in vivo.
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