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ABSTRACT

The vast body of Expressed Sequence Tag (EST)
data in the public databases provide an important
resource for comparative and functional genomics
studies and an invaluable tool for the annotation of
genomic sequences. We have developed a rigorous
protocol for reconstructing the sequences of tran-
scribed genes from EST and gene sequence fragments.
A key element in developing this protocol has been the
evaluation of a number of sequence assembly programs
to determine which most faithfully reproduce transcript
sequences from EST data. The TIGR Gene Indices
constructed using this protocol for human, mouse, rat
and a variety of other plant and animal models have
demonstrated their utility in a variety of applications and
are freely available to the scientific research community.

INTRODUCTION

Our efforts to catalog the collection of human genes are
progressing rapidly. Although both public and private efforts
have greatly accelerated the pace of human genome sequencing,
annotation of the genome, including identification of the gene
sequences, remains a significant challenge. Expressed Sequence
Tag (EST) sequences represent the most extensive available
survey of the transcribed portion of the genome. ESTs are single
pass, partial sequencing reads generated from either the 5′- or the
3′-end of a cDNA clone (1). There are >4 000 000 ESTs in
GenBank, nearly two-thirds of which are human (http://
www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html ). ESTs
have proven to be an indispensable tool for the identification of
expressed genes (2) and for genomic mapping (3,4).

There have been a number of attempts to identify unique
genes represented by EST data (5). UniGene (6) uses pairwise
sequence comparisons at various levels of stringency to group
related sequences, placing closely related and alternatively
spliced transcripts into clusters. The TIGR Gene Indices
described here use assembly algorithms, rather than clustering,
to produce tentative consensus (TC) sequences that represent the
underlying mRNA transcripts (7). This has several advantages: it
separates closely related genes into distinct consensus
sequences; it separates splice variants; it produces longer repre-
sentations of the underlying gene sequences. The resulting TCs
can be used for eukaryotic genome sequence annotation (8,9),
integration of complex mapping data and identification of
orthologous genes (I.Holt, F.Liang, G.Pertea, S.Karamycheva
and J.Quackenbush, submitted for publication). However, the

quality and utility of the assembled sequences relies on the
ability of sequence assembly programs to effectively generate
high fidelity consensus sequences from the available EST data.

Among the assembly programs that have been developed for
genomic sequencing projects, the most extensively used are
Phrap (http://www.phrap.org/phrap.docs/phrap.html ), CAP3
(10) and TIGR Assembler (11). The version of TIGR Assembler
now in use for genomic sequence assembly has been modified
significantly from the original, which was optimized for
assembly of EST sequences. In this manuscript we refer to the
original version as TA-EST and the modified version, optimized
for genomic assembly, as TIGR Assembler. While all of these
have proven their utility in assembling genomic shotgun
sequencing data, EST sequences present a number of distinct
computational problems for an assembler. In genomic shotgun
sequencing, which typically uses a single clone for the source
DNA, sequences sharing <98% identity can be assumed to
come from different copies of a repetitive sequence element. In
contrast, EST data are derived from a wide variety of sources
representing the spectrum of polymorphisms in the original
samples. This is compounded by sequencing errors inherent in
single pass sequencing, including a relatively high rate of inser-
tions and deletions, contamination by vector and linker sequences
and the non-random distribution of sequence start sites in
oligo(dT)-primed libraries. Therefore, the degree of identity in
overlapping sequences from the same gene will often be lower
than in genomic projects. In addition, the patterns of overlap-
ping sequences caused by alternative transcripts are different
from that observed in a genomic shotgun project. Finally, gene
sequences in GenBank and the ESTs in dbEST lack the base
call quality values that most assembly programs now use as
part of the assembly process. Sequence chromatograms can be
obtained for approximately half of the nearly 2 000 000 human
ESTs from the Washington University ftp site and quality
values can be derived for these sequences. This information is
not available for the remaining ESTs and for all of the gene
sequences. Of the four programs we evaluated, only TIGR
Assembler is capable of assembling a mix of sequences with
and without quality values.

Using the >118 000 rat ESTs in dbEST as a model, we evaluated
Phrap, CAP3, TA-EST and TIGR Assembler to determine
which program most faithfully assembles ESTs to produce TC
sequences, to compare the number of TCs and singletons
produced and to evaluate the relative performance of the
algorithms. In this comparison we have focused on a number
of known genes. As there are a number of potential difficulties
in working with available EST data, including the presence of
undetected gene families and variable error rates, we
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augmented our studies using simulated sequences designed to
model known sequencing errors (12) or ESTs transcribed from
closely related genes. Finally, we validated our simulation
results by assembling ESTs derived from 73 known, annotated
genes in GenBank. In our analysis we have found that CAP3
consistently out-performs the other programs, producing the
fewest high quality assemblies from single genes while being
tolerant to random errors yet maintaining the ability to discrim-
inate between related genes; we have adopted CAP3 as the
assembler for the TIGR Gene Indices.

We used CAP3 to construct the most recent release of the
Human Gene Index (HGI) (9), which is based on 1 610 947
human ESTs, 47 283 human sequences derived from CDS
features in GenBank (we refer to these as NP, for NucProt,
sequences) and 7223 curated expressed transcript (ET)
sequences from the TIGR EGAD database (http://
www.tigr.org/tdb/egad/egad.html ). Using the 52 825 ESTs
that have been mapped by the International Radiation Hybrid
Mapping consortium (13), we were able to assign map locations
to >40% of the tentative human consensus (THC) sequences.
While adding significant value to the HGI, this mapping
information also serves to validate the assemblies, as THCs
containing multiple, independently mapped markers almost
invariably map to consistent locations within the genome.

MATERIALS AND METHODS

Rat Gene Index assembly

Rat EST sequences were downloaded from dbEST. These were
trimmed to remove vector sequences, poly(A/T) tails, adaptor
sequences and contaminating bacterial sequences. The cleaned
ESTs were clustered by comparing all pairs using WU-BLAST
(http://blast.wustl.edu ) (14) and collecting those with ≥95%
identity over regions at least 40 bp in length with unmatched over-
hangs <20 bp. The sequences comprising each cluster were assem-
bled using Phrap (v.990315), CAP3, TIGR Assembler and TA-EST
and the results from the independent assemblies were compared.

Modeling error rates for EST sequence assembly

Errors produced during automated DNA sequencing are non-
uniformly distributed and tend to be concentrated at the beginning
and end of the sequence read (12). To assess the effects of
sequencing errors we used a 600 base segment of a reference
sequence (ECA1, GenBank accession no. U96455) to model
the distribution of sequence start positions and errors in EST
data. From the reference sequence a set of fragment sequences
ranging from 450 to 550 bases in length was generated.
Sequencing errors with a pattern similar to that previously
reported (12) were introduced as substitutions, insertions or
deletions with a 3:1:1 ratio at positions selected using the
normalized probability density model of the form (see Fig. 1):

where x is the position along the length of the sequence read
and N is a normalization constant equal to:

Total sequencing error rates ranging from 1 to 8% (5–40 errors/
sequence) and sequence coverages ranging from 5- to 50-fold
were simulated. Model sequences were generated and each
assembly program was used to independently assemble the
sequences. The numbers of contiguous assemblies and single-
tons were recorded. The best consensus sequence produced by
each program was compared with the original sequence and its
fidelity was assessed using an assembly score (A-score)
defined by

A-score = (2 × sequence length) – (15 × no. of insertions) –
(15 × no. of deletions) – (5 × no. of substitutions),

where a perfect assembly would have an A-score of 1200 for
our 600 base test sequence.

Assembly of gene families

Gene families were modeled by taking an 1800 bp segment of the
ECA1 gene and introducing substitutions at random positions,
generating eight sequences that were 99, 98, 97, 96, 95, 94 and
90% identical to the original. For each of the eight family
members, the gene sequence was artificially shotgunned,
creating 5-fold coverage of EST fragments 450–550 bp in size.
Two pools of EST sequences were created, one with all eight
sequences and a six sequence family containing only those
≥95% identical to the reference sequence. Each family was
assembled using the four assembly programs; the consensus
assemblies were evaluated by comparing them with each
member of the gene family. Six independent simulations were
conducted.

Assembly and evaluation of representative human genes

A set of 73 representative human genes was selected based on
their EST content. EST sequences representing each gene were
assembled using Phrap, CAP3, TA-EST and TIGR Assembler;
the parent gene sequences were not included in the assembly
process. For each gene the longest consensus sequence
produced by each assembler was compared to the original gene
sequence in order to assess consensus quality; the errors in the
consensus sequences were tabulated and classified and a
normalized A-score was calculated for each program by
summing the A-scores for each gene and dividing by the total
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Figure 1. DNA sequencing base call error probability. Error probability distribution
adapted from Ewing and Green (12) used to simulate systematic base call errors.
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sequence length. For a perfect sequence reconstruction the
normalized A-score would be 2.0.

HGI assembly and analysis

Human EST and coding gene sequences were downloaded
from dbEST and GenBank records and cleaned using the same
filters as were used for rat. Cleaning eliminated 82 228 (5.1%)
of the original 1 610 947 ESTs and trimmed an additional
8 350 769 bases of contaminating sequence. A total of 54 506
human gene sequences were included: 47 283 human tran-
scripts (NP sequences) parsed through Entrez from the CDS
and CDS-join features in GenBank records and 7223 curated ET
sequences from the TIGR EGAD database (http://www.tigr.org/
tdb/egad/egad.html ). Sequences were compared using FLAST,
a rapid sequence comparison program based on DDS (15) in
which query sequences are first concatenated and then
searched against a nucleotide database. Sequences were placed
in clusters using criteria identical to those used for rat EST
clustering. Sequences in each cluster were assembled using
CAP3. A THC sequence containing a known gene was
assigned the function of that gene; THCs without assigned
functions were searched using DPS (15) against a non-
redundant protein database; high scoring hits were assigned a
putative function. The THC sequences were assigned map
locations using the most recent data from the International Radia-
tion Hybrid Mapping Consortium (13). EST mapping
information was downloaded via ftp from the NCBI (ftp://
ftp.ncbi.nlm.nih.gov/repository/genemap ) and map locations
assigned using Greg Schuler’s e-PCR program (16).

RESULTS

Incorporation of EST sequences into TC assemblies

Construction of the TIGR Gene Indices relies on faithfully
clustering and assembling sequences, so ESTs from the same
transcript are properly assembled while ESTs from distinct but
closely related transcripts are appropriately placed into separate
assemblies. Sequences that do not fit into any assemblies are
called singletons. The number of singletons provides an estimate
of the number of rare transcripts represented in the data; to
avoid overestimates, assemblers must be fairly tolerant of
sequencing errors so as to not produce an excessive number of
singletons.

Following sequence cleaning, pairwise comparisons placed
118 473 Rat ESTs in 16 183 clusters. The sequences
comprising each cluster were assembled using Phrap, CAP3,
TA-EST and TIGR Assembler, respectively, using each
program’s default parameters. Following assembly, the number
of consensus sequences and singletons was tabulated, as shown
in Table 1. While each program produces approximately the
same number of assemblies, TA-EST gives nearly 20 times the
number of singletons produced by CAP3 or Phrap, suggesting
that it is much less tolerant of sequence discrepancies. This
observation is further supported by the slightly larger number
of TCs generated from high coverage clusters, suggesting that
it is also more likely to split sequence contigs when sequencing
errors occur.

Much of the difference between Phrap and CAP3 can be
attributed to large clusters containing tens or hundreds of
sequences. These present a unique challenge to the assembly

programs because they contain many closely related sequences
that must be correctly assembled, despite sequencing errors
and polymorphisms inherent in the data. The results for four
representative clusters are presented in Table 2. Again, we can
see clear differences between the programs, indicating that
TA-EST and TIGR Assembler are far less error tolerant than
Phrap and CAP3. This analysis at first glance suggests that
Phrap may be better at assembling ESTs containing errors.
However, as described below, Phrap tends to misassemble
sequences and to produce low fidelity consensuses containing
many insertions and miscalled bases.

Consensus assessment

While clustering alone can provide an estimate of the number
of genes represented in an EST database, the construction of
TCs has a number of advantages. For example, each TC sequence
tends to be longer than its component ESTs, facilitating func-
tional assignment, transcript mapping and genomic sequence
annotation. The utility of TC sequences depends critically on
the fidelity of the consensus produced. To evaluate the quality
of this consensus for each assembly program, we used ESTs
from known, annotated genes and compared the consensus
sequences produced by each program to the reference
sequence. An example, representing the single copy cyto-
chrome c oxidase subunit II gene of the rat mitochondrial
genome (GenBank accession no. M27315), is shown in Figure 2
(this corresponds to Cluster 3 in Table 2). Analysis of the
alignment in Figure 2 shows that CAP3, TA-EST and TIGR
Assembler were all able to accurately reproduce the reference
sequence (modulo one consistent difference that suggests an
error or polymorphism in the GenBank sequence). However,
while CAP3 was able to use all the sequence data to produce a
single consensus, TA-EST and TIGR Assembler used some of
the lower quality sequences to produce a second consensus that

Table 1. Summary of TC and singletons of rat EST clusters using Phrap,
CAP3 and TA-EST

Phrap CAP3 TA-EST TIGR
Assembler

TCs 16 635 16 647 16 977 17 653

Singletons 121 138 2 751 7 540

Total 16 756 16 785 19 728 25 193

Table 2. Contigs and singletons produced by Phrap, CAP3, TA-EST and
TIGR Assembler for four representative ‘large’ clusters of rat sequences

Cluster Contigs/singletons produced

(no. of ESTs) Phrap CAP3 TA-EST TIGR Assembler

1. (135) 11/0 17/0 21/43 25/41

2. (270) 25/1 35/1 37/125 42/126

3. (540) 1/0 1/0 2/2 3/12

4. (1791) 15/0 18/7 28/62 71/229

Total 52/1 61/8 88/232 141/408
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spans only part of the reference sequence and that differs from
it by 9.3% (data not shown). Phrap assembled all of the ESTs
into a single consensus, but the resulting sequence contains a
large number of insertions and other errors, representing a 5%
error rate. While Phrap has been shown to produce accurate
consensus sequences for genomic sequencing projects, the lack
of quality values for EST sequences appears to have a significant
adverse effect on its output. Further analysis, described below,
suggests that Phrap also over-assembles sequences, combining
ESTs from distinct transcribed genes into single consensus
sequences. However, in genomic sequence assembly using
quality values CAP3 has been demonstrated to produce fewer
errors than Phrap (10).

Effects of sequencing errors on EST assembly

The errors generated in automated DNA sequencing are known
to be concentrated at the start and end of the sequence read
(12). In genomic sequence assembly this is mitigated by the
random distribution of sequence start points. The situation is
quite different for ESTs. cDNA clones are constructed from
polyadenylated mRNA using oligo(dT) to prime reverse tran-
scription first-strand DNA synthesis. Consequently, clone ends

and 3′-EST sequences start from the same position (or nearly
so) and errors, while independent, are positionally clustered.
The existence of these correlated errors can have a significant
impact on EST assembly; assembly programs must effectively
handle this in order to generate high fidelity contigs and an
accurate estimate of the number of transcripts represented
within the data.

To systematically assess the relative performance of the
various assembly programs we generated model EST data with
lengths of 450–550 bp, error rates ranging from 1 to 8% and
various levels of coverage spanning a 600 base segment of the
ECA1 gene (GenBank accession no. U96455). These were
assembled using each of the programs: both the number of
contigs and singletons and the quality of the consensus
sequences were compared (Figs 3 and 4). In each instance,
Phrap and CAP3 produced a single consensus sequence. In
contrast, TA-EST and TIGR Assembler split sequences into
singletons or separate contigs as the error rate increased (data
not shown). We also assessed the quality of the consensus
sequences. For each program we calculated an A-score (see
Materials and Methods) for the consensus sequences produced
by each program at 5- and 50-fold EST coverage. Figure 3

Figure 2. CLUSTAL W (17) alignment of consensus sequence assemblies for the rat cytochrome c oxidase gene produced by Phrap, CAP3, TA-EST and TIGR
Assembler.
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shows the A-score for the best consensus sequence produced
by each program as a function of EST error rates. Although
both CAP3 and Phrap produced a single consensus in all of the

situations analyzed, the fidelity of the Phrap consensus
sequence was consistently worse than that generated by CAP3.
The best consensus assemblies produced by TA-EST and

Figure 3. Consensus sequence errors. Plot of A-scores for the best consensus assemblies produced by Phrap, CAP3, TA-EST and TIGR Assembler (TA) using
simulated data for various error rates at 5× and 50× sequence coverage.

Figure 4. Error source distribution and normalized A-score for assemblies of 73 known genes. Consensus sequence error classification for Phrap, CAP3, TA-EST
and TIGR Assembler using EST sequences containing 5% errors at various depths of coverage.
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TIGR Assembler score similarly to CAP3, although this must
be considered in the light of the fact that the former programs
tend to generate additional consensus sequences and singletons
and fail to produce a consensus if the error rate is sufficiently
high.

The consensus sequence discrepancies generated by each
program were classified as insertions, deletions, substitutions
or IUPAC codes (an IUPAC code represents an ambiguous
nucleotide, e.g. Y represents one of C or T) and tabulated.
Figure 4 shows the distribution of consensus errors for each
program at various depths of coverage. While the total error
rates for CAP3, TA-EST and TIGR Assembler are relatively
constant and independent of depth of coverage, the errors
produced by Phrap, particularly the insertions and substitutions,
increase as the depth of coverage increases. This is consistent
with the data in Figure 3, where the A-score for Phrap at 50-fold
coverage is lower than that for 5-fold coverage. Phrap has a
tendency to retain the errors in the EST sequences, introducing
them as insertions in the consensus.

Assembly of ESTs from a family of genes

While software used for EST assembly should be relatively
tolerant of random errors, it should be capable of separating
ESTs from distinct but closely related transcripts. To assess the
performance of the assembly programs to handle data from
gene families we generated model ESTs from sequences
sharing 90% or greater identity (see Materials and Methods)
and measured the number of contigs generated by each of the
programs. TA-EST was generally unable to separate the gene
family members, always grouping the six member family into
a single consensus and the eight member family into an
average of 1.38. Phrap did only slightly better, generating an
average of 2 and 4.33 consensus sequences from the six and
eight member families, respectively. CAP3 did a good job of
discriminating between closely related but distinct transcripts,
however, it too failed with sequences that share >96% identity,
producing an average of 4.5 and 6.67 for the two families.
TIGR Assembler provided the greatest discrimination, generating
an average of 5.83 and 8.5 consensus sequences, respectively,
for the two families.

Evaluation of EST assembly algorithms using highly
represented human genes

To further validate the results from our simulation studies, we
examined 73 human genes with EST sequences spanning their
lengths. The length of these genes was 1881 ± 1037 bp and the
sequences had an average coverage of 203 ± 183 ESTs.
Ideally, the ESTs from each gene should assemble to a single
contig without singletons. However, without the gene
sequence to serve as a reference, regions of low coverage and
errors in the ESTs may cause multiple contigs and singletons to
be formed. We examined the performance of each assembler,
tallying the number of contigs and singletons produced for
each gene. As summarized in Table 3, CAP3 was able to
produce an average of 1.26 ± 0.58 contigs with a single contig
in 59 of 73 cases (81%). The performance of Phrap was nearly
as good, with 46 (63%) of the genes producing a single
consensus and an average of 1.56 ± 0.88 assemblies. Neither
CAP3 nor Phrap generated a significant number of singletons.
Based on these measures, both programs performed significantly
better that either TA-EST or TIGR Assembler.

For each gene we assessed the fidelity of the longest
consensus sequence produced by each of the four programs. As
for our simulation studies, the best assemblies produced by
CAP3, TIGR Assembler and TA-EST were all significantly
better than those produced by Phrap. Figure 5 shows the
number of errors, classified by type, generated by each
program. Phrap produced considerably more insertions, deletions
and substitutions than did the other assemblers. As a measure
of the fidelity of the best assembly produced by each gene we
normalized the total A-score for all assemblies by the total
length of the assembled sequence; in this case, perfect assemblies
would produce a value of 2. The normalized A-score for CAP3
was 1.59, while those for TA-EST, TIGR Assembler and Phrap
were 1.49, 1.25 and 0.55, respectively.

As expected, based on our previous results, CAP3 generated
the highest quality assemblies of the corresponding gene
sequences. Further, CAP3 exceeded our expectations, generating
fewer consensus sequences than even Phrap, which had
produced the fewest assemblies in both our simulations and
our analysis of the Rat Gene Index. While these results may
have been different if sequence quality values had been used in
the assemblies, the gene sequence and EST data in GenBank
do not include these data. For the available data our results
clearly indicate that CAP3 has the best balance of error tolerance
and error resolution.

Assembling the HGI and assessing THC fidelity by e-PCR

The HGI was assembled using CAP3 from 1 524 335 ESTs,
47 283 NPs and 7223 ET sequences, producing 75 424 THCs
and 338 999 singletons. Of the 52 825 EST-based markers
placed on radiation hybrid maps, we were able to assign 28 577
markers to one or more THCs. In all, 32 404 map assignments
were made, suggesting a redundancy in the THC data set of
1.13-fold (32 404/28 577). Of 20 731 THCs assigned map
locations, 7328 contained two or more independently mapped
markers; of these, 7104 THCs (97%) contained multiple
markers that mapped to nearby chromosomal locations,

Table 3. Performance of the four assemblers under evaluation for ESTs
representing 73 known genes with an average coverage of 196 ± 180
sequences

For each of these genes, one would expect the assembler to produce a single
consensus without singletons. (A) The number of single contigs produced by
each assembler and the mean and standard deviation of the number of
assemblies. (B) The mean and standard deviation of the number of singletons
produced by each of the assemblers.

Phrap CAP3 TA-EST TIGR
Assembler

(A)

No. of single assemblies 46 59 15 2

Mean no. of assemblies 1.56 1.26 2.85 17.26

Standard deviation 0.88 0.58 1.79 17.20

(B)

Mean no. of singletons 0.07 0.10 8.05 38.55

Standard deviation 0.35 0.45 10.09 47.14
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suggesting that the assemblies properly reconstructed the gene
sequence.

DISCUSSION

EST data have proven to be an important resource for gene
discovery and mapping and promise to be invaluable for the
annotation of the eukaryotic genomes soon to be completed.
However, the large number of EST sequences have made
working with this data a challenge. The TIGR Gene Indices are
an attempt to reduce those data to a manageable, well-defined
collection of high fidelity consensus sequences. Central to this
process is the use of a sequence assembly program that provides
an accurate representation of the gene sequences from which the
ESTs were derived. We have conducted an extensive analysis of
the performance of four of the most widely known DNA
sequence assembly programs—Phrap (http://www.phrap.org/
phrap.docs/phrap.html ), CAP3 (10) and two versions of TIGR
Assembler (11)—and used a variety of measures to assess the
fidelity of the consensus sequences produced by this process.

Evaluation of sequence assembly programs

While none of the assembly programs performed perfectly,
CAP3 consistently provided the highest fidelity assemblies,
accurately assembling ‘dirty’ EST data without introducing an
inordinate number of errors into the consensus or generating
unnecessary singletons. TIGR Assembler and TA-EST proved
slightly more sensitive to subtle yet consistent differences in
sequence, such as those present in closely related members of
a gene family. However, this sensitivity, combined with the
naturally occurring errors inherent in ESTs, causes both to split

transcripts, generating an over-representation of some genes.
In contrast, Phrap is insufficiently sensitive to sequence differ-
ences, causing it to over-assemble ESTs and sacrifice the
fidelity of the consensus sequences it produces by generating a
significantly higher number of insertions and incorrect base
assignments. CAP3 incorporates the best features of these
other programs, producing high fidelity consensus sequences
and maintaining a high level of sensitivity to gene family
members while effectively handling sequencing errors. Based
on our analysis we have selected CAP3 for assembly of the
TIGR Gene Indices (http://www.tigr.org/tdb/tgi.org ).

Factors that influence consensus sequence fidelity

Most EST sequences in the public repositories do not have
quality values assigned to each base. Quality values indicate
how accurate the base call is; values >20 (99% confidence)
represent high confidence calls (12). Without these, Phrap
assigns a default quality of 15 to each base. The construction
by Phrap of a consensus relies heavily on the quality value;
when several input sequences disagree, it often resolves the
problem by inserting two different bases in the final consensus,
producing an insertion error. In contrast, CAP3, TA-EST and
TIGR Assembler use a ‘majority rule’ scheme that tends to
resolve disagreements correctly. [This result is consistent with
that reported by Miller and Powell (18), although that study
considered an earlier generation of assembly algorithms.]
CAP3 uses only the majority base for its consensus; TA-EST
and TIGR Assembler use an IUPAC code to represent possible
ambiguities.

Although each of the assembly programs uses internal checks to
discriminate between sequences, all include a user-definable

Figure 5. DNA sequencing base call error probability. The total number of errors, classified by type, in the best assembly produced by the four assemblers and the
normalized A-score for 73 known genes.
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parameter that specifies how similar two sequences must be to
initially be considered identical. The default values of this

parameter for the four assemblers are 95, 65, 94.5 and 97.5%
for Phrap, CAP3, TA-EST and TIGR Assembler, respectively.

Table 4. Radiation hybrid mapping data for a representative sample of THCs from HGI5.0 that contain multiple, independently mapped markers

The first column is the THC ID, the second column represents the position of the marker within the THC sequence, the third contains the RHDB ID
(http://corba.ebi.ac.uk/RHdb ) for the marker, the fourth contains the chromosome associated with the marker, the fifth is the location of the marker on the
chromosome expressed in CentiRays (CR), the sixth is the radiation hybrid panel on which the marker was mapped and the final column is the score associated
with the marker position (F for G3 means that this is a ‘framework’ marker). It should be noted that the G3 and GB4 panels were constructed using different
radiation dosages. Consequently, the ‘size’ of the chromosome in CR is different. Single lines separate distinct THCs; of the THCs shown, only the last,
THC404053, has a discrepancy in its map location.

THC ID Marker position RHDB ID Chromosome Location Panel Score

THC403868 766–890 RH53683 14 281.46 GB4 P = 1.70

THC403868 766–890 RH14883 14 4460 G3 F

THC403877 71–335 RH26593 6 105.5 GB4 P > 3.00

THC403877 74–212 RH46761 6 105.5 GB4 P > 3.00

THC403877 1224–1344 RH46705 6 105.5 GB4 P > 3.00

THC403877 1414–1661 RH26034 6 105.5 GB4 P > 3.00

THC403892 552–748 RH24987 9 404 GB4 P > 3.00

THC403892 594–798 RH11721 9 403.9 GB4 P > 3.00

THC403892 660–798 RH13861 9 4806 G3 F

THC403910 830–989 RH44275 10 547.83 GB4 P = 2.44

THC403910 916–1036 RH16755 10 548.62 GB4 P = 1.28

THC403911 50–149 RH51822 11 247.67 GB4 P = 2.48

THC403911 86–185 RH27455 11 247.67 GB4 P = 2.48

THC403911 86–185 RH10295 11 242.54 GB4 P = 0.00

THC403912 2–101 RH51822 11 247.67 GB4 P = 2.48

THC403912 38–137 RH27455 11 247.67 GB4 P = 2.48

THC403912 38–137 RH10295 11 242.54 GB4 P = 0.00

THC403923 597–759 RH15921 19 216.04 GB4 P = 0.01

THC403923 1179–1280 RH16797 19 214.04 GB4 P = 1.26

THC403929 1637–1761 RH12769 2 574.71 GB4 P > 3.00

THC403929 1773–1903 RH56254 2 573.36 GB4 P = 1.03

THC403929 1908–2241 RH14021 2 8064 G3 F

THC403929 1918–2049 RH70825 2 572.14 GB4 P = 0.84

THC403929 1929–2217 RH56929 2 557.16 GB4 P = 0.96

THC403934 755–883 RH39372 17 295.52 GB4 P = 0.76

THC403934 793–998 RH76470 17 293.11 GB4 P = 0.02

THC403947 22–122 RH49734 1 145.4 GB4 P = 1.33

THC403947 1431–1555 RH50152 1 145.91 GB4 P = 1.12

THC403950 1724–1872 RH78931 11 18.46 GB4 P = 0.36

THC403950 1745–1920 RH32214 11 17 G3 P = 1.62

THC403950 1766–1877 RH27310 11 4.63 GB4 P = 2.39

THC403956 2300–2430 RH91675 16 194.86 GB4 F

THC403956 2300–2430 RH79175 16 193.96 GB4 P = 0.33

THC403987 25–174 RH55229 17 329.2 GB4 P = 1.52

THC403987 25–174 RH14431 17 2298 G3 P = 0.47

THC403987 353–473 RH70694 17 319.86 GB4 P = 2.12

THC404053 354–470 RH44831 12 401.81 GB4 P > 3.00

THC404053 557–686 RH52825 12 400.21 GB4 P > 3.00

THC404053 1146–1390 RH75162 14 140.79 GB4 P = 0.17
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This explains in part why TA-EST and Phrap, and to a lesser
extent CAP3, could not separate ESTs from genes sharing
>95% DNA sequence identity. One could increase the discrim-
ination of these programs by selecting a higher stringency, but
this has other unwanted effects, including increasing the
number of consensus sequences and singletons.

Human sequence mapping and validation

The most extensive collection of EST and genomic mapping
and sequence data is available for humans. This provides a
unique opportunity to assess the fidelity of the consensus
sequences contained within the TIGR Gene Indices. Radiation
hybrid mapping does not provide precise map locations, but
rather bins markers into approximate chromosomal locations.
The likelihood that two markers from independently mapped
ESTs fall into the same or adjacent bins is extremely small,
unless the ESTs were derived from the same gene. The 97%
(7104/7328) concordance between map locations for the THCs
containing multiple, independent radiation hybrid markers
suggests that the consensus sequences faithfully reconstruct
the genes from which the ESTs were derived. In many cases
the mapped markers fall into distinct, non-overlapping regions
of the THCs. If there were a large number of chimeric or
misassembled sequences in the THCs one would expect a
discordance rate significantly higher than the 3% observed;
this rate is not significantly different than that expected due to
mapping errors at the various radiation hybrid laboratories (13).
The fact that these discrete markers map to consistent locations
within the genome provides an independent, experimental vali-
dation for the clustering and assembly process used to create
the TIGR Gene Indices. Representative data for 14 of the 7328
THCS containing multiple mapped ESTs can be found in
Table 4; radiation hybrid map locations for the HGI are available
at http://www.tigr.org/tdb/hgi/searching/rh_map.html

Conclusions

We have conducted a careful analysis of sequence assembly
programs in order to determine their performance in assembling
EST sequences and developed a refined process of EST
sequence cleaning, clustering, assembly and annotation that
provides a faithful representation of the gene sequences from
which the ESTs were derived. With the imminent completion
of the sequence of the human and other genomes, our challenge
will be to use all our available resources to accurately catalog
and characterize the encoded genes. Finding genes in a
genomic sequence is a significant challenge; the vast body of
EST data represents a tremendous resource that can be applied
to this problem. The TIGR Gene Indices provide a reliable
reduction of the EST data and can simplify annotation by
providing fewer, accurate sequences that can be searched
against genomic sequences.
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