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Abstract
Characterized by a surplus of whole-body adiposity, obesity is strongly associated with the prognosis of atherosclerosis, 
a hallmark of coronary artery disease (CAD) and the major contributor to cardiovascular disease (CVD) mortality. Adi-
pose tissue serves a primary role as a lipid-storage organ, secreting cytokines known as adipokines that affect whole-body 
metabolism, inflammation, and endocrine functions. Emerging evidence suggests that adipokines can play important roles 
in atherosclerosis development, progression, as well as regression. Here, we review the versatile functions of various adi-
pokines in atherosclerosis and divide these respective functions into three major groups: protective, deteriorative, and 
undefined. The protective adipokines represented here are adiponectin, fibroblast growth factor 21 (FGF-21), C1q tumor 
necrosis factor-related protein 9 (CTRP9), and progranulin, while the deteriorative adipokines listed include leptin, chemerin, 
resistin, Interleukin- 6 (IL-6), and more, with additional adipokines that have unclear roles denoted as undefined adipokines. 
Comprehensively categorizing adipokines in the context of atherosclerosis can help elucidate the various pathways involved 
and potentially pave novel therapeutic approaches to treat CVDs.
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Introduction

Cardiovascular diseases (CVDs) are the leading cause of 
mortality, with approximately 17.9 million deaths reported 
in 2019 globally [1]. Coronary artery disease (CAD) is 
among the most common forms of CVDs. CAD is character-
ized by the formation of plaques along the arterial walls that 
are highly and chronically inflammatory, and this buildup is 
known as atherosclerosis [2]. Atherosclerosis is initiated by 
the retention of apolipoprotein-B containing lipoproteins in 

the subendothelial space of arteries that triggers an inflam-
matory response [3], promotes the migration and prolif-
eration of smooth muscle cells, and forms a necrotic core 
[4]. Chronic inflammation has become an inevitable factor 
contributing to the formation of atherosclerotic plaque and 
participating in various stages of development. Inflamma-
tory signaling in atherosclerosis coordinates the recruitment 
of monocyte-derived macrophages and T lymphocytes that 
heavily influence plaque stability, leading to rupture and 
thrombosis [5].

Obesity is one of the major risk factors for CVDs. Its pri-
mary co-morbidities, insulin resistance and type 2 diabetes 
(T2DM), increase the incidence and severity of atherosclero-
sis 2–4 folds. About 40% of deaths in T2DM patients are due 
to risk factors associated with CVDs [6]. Features in obesity, 
like adiposity, confer abnormalities in metabolism and are 
linked to CVDs and other metabolic diseases. Besides as 
the primary organ of energy storage, adipose tissue has been 
well recognized to produce adipokines that regulate metabo-
lism, inflammation, and endocrine functions [7]. Moreover, 
the patterns associated with the secretion of adipokines can 
vary depending on the state of the adipose tissue. Adiposity 
in obesity can be classified into two key fates: hyperplasia, 
the de novo maturation of preadipocytes, and hypertrophy, 
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an enlargement in adipocyte size. Hyperplasia obesity and 
hypertrophic obesity show distinct profiles in adipokine pro-
duction, generally beneficial and detrimental, respectively 
[8]. Adipokines, such as adiponectin, FGF21, and CTRP9, 
can be protective in metabolic diseases like atherosclero-
sis, while other adipokines, such as leptin, chemerin, resis-
tin, and pro-inflammatory cytokines that are secreted from 
hypertrophic adipose tissue, can further burden the progres-
sion of the disease.

In this review, we highlight the well-known and lesser 
known adipokines, extensively catalog the roles they play 
in atherosclerosis, and further explore adipokines as poten-
tial therapeutic targets for the treatment of atherosclerosis. 
Based on the rigorous assessments made, we labeled each 
adipokine into three major groups: protective, deteriorative, 
and undefined (Fig. 1 and Tables 1, 2, 3).

Protective adipokines in atherosclerosis

Adiponectin

Adiponectin (Acrp30, AdipoQ, apM1) was identified as 
an adipokine by several independent groups, and has been 
initially shown to regulate lipid metabolism and insulin 
sensitivity [9–11]. A number of clinical studies have indi-
cated that adiponectin could possibly be anti-atherogenic. 
A case–control study of 101 patients with type 1 diabetes 
revealed an inverse association with plasma adiponectin 
levels and the progression of coronary artery calcification 
(CAC) [12]. In patients with coronary heart disease, adi-
ponectin was found to be positively associated with circulat-
ing high density lipoprotein-cholesterol (HDL-C), but nega-
tively associated with plasma triglycerides (TG) [13, 14]. In 
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Fig. 1   Representative adipokines in regulating atherosclerosis. Ather-
osclerosis is a chronic inflammatory cardiovascular disease impacting 
the arterial walls with lipid-laden plaque. Obesity is a major risk fac-
tor for atherosclerosis. Adipokines have been shown to play a myriad 
of roles in the progression and regression of atherosclerosis, with the 
former being exacerbated in obesity. Key representative adipokines 
that regulate atherosclerosis are described here. Protective adipokines 
depicted are adiponectin, CTRP9, and FGF-21. Adiponectin inhibits 
macrophage and endothelial cell (EC) activation via the inhibition of 
monocyte chemoattractant protein-1 (MCP-1) and vascular endothe-

lial growth factor (VEGF), respectively. FGF-21 decreases circulat-
ing triglycerides (TG) and low-density lipoproteins (LDL). CTRP9 
prevents monocyte adhesion to the vascular wall. Deteriorative adi-
pokines depicted are leptin, chemerin, IL-6, TNF-α, and IFN-γ. Lep-
tin upregulates the expression of FoxP3 in regulatory T cells (Treg) 
and caveolin-1 in ECs. Chemerin upregulates pathogenic C-Reactive 
Protein (CRP) levels. IL-6 and TNF-α activate the inflammatory 
response and influence the lipid profile. IFN-γ also induces inflam-
mation and promotes the transformation of macrophages into choles-
terol-loaded foam cells
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another study, nondiabetic patients with low circulating adi-
ponectin corresponded with intimal thickening, an increase 
in lipid-rich plaque, and elevated plasma lipoproteins [15]. 
Similar results were replicated in obese subjects in which 
adiponectin levels were inversely connected to intima-media 
thickness (IMT), serum triglycerides, fasting insulin, and 
insulin resistance using homeostasis model assessment-insu-
lin resistance (HOMA-IR). Positive associations were found 
when evaluating large artery elasticity index (LAEI), small 
artery elasticity index (SAEI), and HDL-C [16]. Further-
more, a study in atherosclerotic patients suggested similar 
findings, as well as the discovery that adiponectin secre-
tion from adipocytes was further dampened in patients who 
smoked [17]. Smoking has been identified as a risk factor for 
atherosclerosis. This study found adiponectin was decreased 
in smokers and proved that nicotine might reduce adiponec-
tin expression via ATP-dependent potassium (KATP) chan-
nel in adipocytes.

In assessing inflammation, a clinical study in patients 
with CAD exhibited a decrease in adiponectin and an 

increase in IL-6, tumor necrosis factor-α (TNF-α), Toll-like 
receptor 4 (TLR4), and macrophage infiltration in epicar-
dial adipose tissue [18]. Further strengthening the negative 
association between adiponectin and atherosclerosis, the 
Matsuzawa group at Osaka University uncovered a specific 
role for adiponectin that involves inhibiting the formation of 
foam cells by preventing lipid droplet accumulation and cho-
lesterol loading in macrophages [19]. Mechanistically, this 
was achieved by inhibiting the expression and activity of the 
class A macrophage scavenger receptor (MSR) ligand [19]. 
An in vivo study from the same group showed a reduction 
in atherosclerotic lesion area in apolipoprotein E-deficient 
(apoE−/−) mice upon treatment with a recombinant adenovi-
rus expressing adiponectin. Adiponectin downregulated the 
expression of vascular cell adhesion molecule-1(VCAM-1), 
MSR, and TNF-α, with no changes in CD36 [20]. Luo et al. 
overexpressed adiponectin in macrophages, resulting in 
decreased secretion of pro-inflammatory cytokines, such 
as monocyte chemotactic protein-1 (MCP-1) and TNF-α, 
prevented macrophage foam cell formation, and improved 

Table 1   Protective adipokines for atherosclerosis

Rank of evidence: Weak (*), moderate (**), strong (***), stronger (****), Strongest (*****)

Adipokines Major function Rank of evidence References

Adiponectin ↓ cholesterol, lipid droplet MSR, VCAM-1, TNF-α, MCP-1 in macrophage,
↓ cAMP-PKA- TNF-α,IL-8, VEGF in ECs
↓adiponectin ∞ ↑CAC, TG, plaque volume, IMT, ∞ ↓ HDL-C

**** [12–23, 25]

FGF21 ↑ insulin sensitivity and regulates lipid metabolism
↓the levels of plasma triglycerides, free fatty acids and cholesterol in genetically com-

promised diabetic and obese rodents
↓ the levels of TG and LDL,↑HDL
↑ ABCA1/ABCG1 expression at mRNA and protein level in macrophages
↑foam cells formation, macrophage migration, inflammatory response, and lipid 

metabolism in OxLDL-induced THP-1 macrophages
↓ proliferation and migration of smooth muscle cells
↓endothelial dysfunction
↓ conversion of macrophages to foam cells
↓oxidized LDL-C uptake by macrophages
↓sterol regulatory element-binding protein-2
↓ apoptosis in cultured cardiac endothelial cells from male adult rats
↓∞ the cytotoxic and apoptotic effect of H2O2 in a dose-dependent manner

**** [26, 29–34, 192–202]

CTRP9 ↓VSMCs’ proliferation and phenotype switch and cell dysfunction
↓neointimal formation, endothelial cell senescence and dysfunction
↓pro-inflammatory cytokines in macrophages and THP-1 cell adhesion to VSMCs; ↑ 

the autophagy level in atherosclerosis lesions
↓ serum glucose level and VSMC cholesterol uptake; ↑the expression of cholesterol 

efflux-related molecules
↑carotid plaque stability
↓atherosclerosis through AMPK-NLRP3 inflammasome singling pathway, activating 

AMP-dependent kinase, PGC-1α/AMPK-mediated antioxidant enzyme induction, the 
AMPKα/ KLF4 signaling pathway, or AMPK/ mTOR pathway

****** [36–42, 203]

PGRN ↓inflammation and adhesion molecules, conversion of macrophages to foam cells and 
foam cell formation;

PGRN degradation into GRNs ↑ inflammation;
↑endothelial nitric oxide synthase
↓cholesterol uptake
↓TNF-α

*** [45, 47, 49, 51]
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Table 2   Deteriorative adipokines for atherosclerosis

Adipokines Major function Rank of evidence References

Leptin ↑piHDL, Lp(a) and apoB100
↓T-cell helper type 1 response
↑FoxP3 expression and Treg cell function
↑caveolin-1, ERK1/2, eNOS in ECs
↑AngII, ROS, JNK, caveolin-1 in smooth cells
↑TSP-1

**** [53–59, 61, 204, 205]

Chemerin ↑chemerin ∞ ↑ high-sensitivity CRP, IL6, TNF-α, resistin, leptin, BMI, TG, hyperten-
sion, ∞ ↓ HDL-C

↑chemerin ∞ ↑ Gensini score
↓chemerin → ↓atherosclerosis, TNFα,IL1β in Apoe−/− mice

*** [67–70]

Resistin ↑ lipid profile,↑ insulin resistance, ↑TG
↑ macrophages polarization, ↑TNF-α, ↑IL-1β, ↑IL-6,
↑VCAM-1, ↑VSMCs, ↑MCP-1, ↑monocyte-endothelial adhesion

**** [71–78]

FABP4 ∞ a cluster of metabolic and inflammatory risk factors
↓levels of the adipocyte fatty acid binding protein 4, insulin sensitivity
∞↓cholesterol ester accumulation and inflammatory responses

*** [90–92, 206–212]

IL-1β expression of various cytokines, chemokines, adhesion molecules ↑leukocytes↑
platelet adhesion to collagen and thrombin↑
VCAM-1↑MCP-1 recruitment↑∞IL-10 produce↓
SMC proliferation↑ and macrophage proliferation in plaques ↑ vascular smooth muscle 

cell calcium deposition ↑ smooth muscle markers ↑
intimal proliferation↑
advance atherosclerosis: outward remodeling, SMC- and collagen-fibrous cap↑

***** [95, 97–106, 213, 214]

IL-18 cholesterol efflux (lipoprotein cholesterol↑ serum cholesterol↑)
oxidative stress ↑ endothelial dysfunction

* [110, 111]

IL18r no differences in atherogenesis
induct MMP-9 to promote plaque rupture
involve IFN-γ-dependent mechanism to develop atherosclerosis
combine with IL-17 promote the diagnostic value of CT

*** [112–118]

IL-6 ↑IL-6 ∞ macrophage infiltration in plaque ↑ anti-inflammatory cytokines level in 
plaques ↑ recruitment of inflammatory cells to the atherosclerotic plaque↑

↑IL-6 ∞ SMC↑
↑IL-6 ∞ lipid content ↑ TG ↑ LDL ↑ lipid accumulation↓

**** [121, 122, 126, 215]

IL-6−/−∞lesion formation↑MMP-9↓pro-inflammatory cytokines↑
IL-6−/−∞serum cholesterol↑

** [119, 120]

IFN-γ ↓ plaque destabilization,↑ foam cell,↑macrophage activity, ↑oxidative stress,↓IFN-γ∞↓ 
macrophage, ↓IFN-γ∞↓T lymphocyte

↑mini-TrpRS, ↑VSMC,
↑monocyte adhesion, ↓ECs glucose metabolism, ↑IFN-γ∞↑ECs dysfunction

*** [127, 128, 130, 131, 
133, 135–138]

TNF-α ↑pro-atherosclerotic factors, such as ICAM-1, VCAM-1, MCP-1
the paracrine ring between adipose cells and macrophages
↑the migration and proliferation of medial smooth muscle cells
↑the transcytosis of lipoproteins (e.g., LDL) across endothelial cells and macrophages
↑the intracellular cAMP level and the expression level of SRA
co-activation of NF-κB and PPAR-γ
↑ DNA binding of Osf2, AP1, CREB and ↑vascular calcification

**** [141–149]

PAI-1 ↑neointima formation
↑fibrin(ogen) accumulation;
↑thrombosis
↑cell proliferation and SMCs senescence
↑macrophage invasion

**** [151–155, 158]

RBP4 ↑macrophage cholesterol uptake and foam cell formation
↑RBP4 serum levels in patients with established carotid atherosclerosis∞ the severity 

of atherosclerosis

** [161, 162]
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insulin sensitivity [21]. Kobashi et al. revealed that adi-
ponectin could inhibit IL-8 through the cAMP–PKA–TNFα 
signaling pathway in human aortic endothelial cells (HAEC) 

[22]. Similarly, another study found that adiponectin could 
inhibit vascular endothelial growth factor (VEGF)-mediated 
endothelial cell (EC) migration through the cAMP–PKA 

Table 2   (continued)

Adipokines Major function Rank of evidence References

LCN2 ↓the stimulatory effect of lipopolysaccharide on cytokine gene expression
↑the development of aortic atherosclerotic lesions
↑intraplaque monocyte/macrophage infiltration and pentraxin-3 and collagen-1 expres-

sions
↑ the production of IL6
↑IL-8
↑ monocyte chemotactic protein-1 in human macrophages
↑human coronary artery smooth muscle cells
↑ THP1 monocyte adhesion to HUVECs accompanied with upregulation of intercel-

lular adhesion molecule-1
↑vascular cell adhesion molecule-1
↑E-selectin associated with nuclear factor-κB (NF-κB) upregulation

*** [163, 166, 167]

∞↓Plaque size [216]

Rank of evidence: Weak (*), moderate (**), strong (***), stronger (****), Strongest (*****)

Table 3   Adipokines with undefined roles in atherosclerosis

Adipokines Major function References

Adipsin ↑adipsin ∞ ↑ all-cause death and rehospitalization in CAD patients [169]
adipsin do not impact atherosclerosis in Ldlr-/- mice [170]

IL-17 monocytes/chemokines/inflammatory cytokines produce ↑ monocyte chemotaxis ↑ macrophage differentiate↑ 
foam cell formation↓

immunization recruitment↑

[172–174]

protective and regulatory role
Inhibit pathogenic Th1 differentiate to Anti-inflammatory
different gene backgrounds induce difference
different atherosclerosis stage

[175–178]

Omentin circulating and EAT-derived omentin level ↓ in patients with CAD
↓macrophage accumulation, foam cell formation and mRNA expression of pro-inflammatory mediators (TNF-α, 

IL-6 and MCP-1); ↑anti-inflammatory M2 phenotype during macrophage phenotypic differentiation
↓lipid droplets and plasma total cholesterol levels
↓angiotensin II-induced VSMC migration and platelet-derived growth factor-BB-induced proliferation

[179, 180]

an increased cardiovascular risk with high plasma omentin levels [182]
BMPs ↑monocyte recruitment and chemoattraction through direct activation of BMPRII

↑endothelial inflammation and endothelial dysfunction
↑Hepatic Cholesterol Biosynthesis
↑vascular calcification

[183, 184]

BMPRII knockdown ↑ endothelial inflammation, atherosclerosis [185]
NAMPT ↑neutrophil infiltration; ↓collagen levels;

↑ MMP-9 content, CXCL1 levels, inflammation, macrophage number and apoptosis;
↓plasma HDL-C levels and cholesterol efflux
↑plaque area;

[186, 187]

Ldlr−/− iNAMPThi ↓plaque burden; ↑ lesion stabilization; ↓macrophages to apoptosis [188]
Vaspin ↓inflammatory phenotypes and foam cell formation;

↓migration and proliferation, ↑ collagen production
Vaspin↑in macrophages/vascular smooth muscle cells (VSMCs) within human coronary atheromatous plaques

[190]

circulating vaspin and severity of AS: no association
↓vaspin serum concentrations ∞the recent presence of ischemic events in patients with carotid stenosis

[189]

vaspin is linked to CV risk factors
serum vaspin concentration is genetically modulated

[191]
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signaling pathway in human coronary artery endothelial 
cells (HCAECs) [23]. To investigate the direct involvement 
of adiponectin with atherosclerosis outcome, the Scherer 
group employed adiponectin knockout mice and adiponectin 
overexpressing mice crossed with either low-density lipopro-
tein-deficient (Ldlr−/−) or apoE−/− mice. Surprisingly, the 
study conveyed no difference in lipoprotein profile, lesion 
area, and plaque morphology in either model [24]. Despite 
this, using mouse studies with T-cadherin and apoE dou-
ble knockout mice, Fujishima et al. found an increase in 
atherosclerosis severity at 12 weeks on a high-cholesterol 
diet compared to control apoE−/− mice. The data further 
confirms adiponectin as an anti-atherogenic adipokine due 
to its required interactions with T-cadherin for proper func-
tioning [25]. Overall, numerous studies indicate a protective 
role of adiponectin in atherosclerosis, although the under-
going molecular mechanism remains complex (Table 1, 
adiponectin).

FGF‑21

FGF-21 is mainly secreted by the liver and skeletal mus-
cle. FGF-21 has also been identified in adipose tissue as an 
adipokine and can enhance insulin sensitivity through reg-
ulating lipid metabolism [26–28]. In atherosclerosis, FGF-
21 can alter the lipid profile by modulating transcription 
factors and key transporters involved in lipid metabolism. 
FGF-21 induces liver X receptors (LXR) to upregulate 
the expression of ABCA1 and ABCG1 in macrophages 
and promote cholesterol efflux [29]. Concurrently, FGF-21 
lessens hypercholesterolemia by inhibiting the transcrip-
tion factor sterol regulatory element-binding protein-2 
(SREBP-2) in hepatocytes, which is involved in cholesterol 
biosynthesis [30]. In diabetic monkeys, FGF-21 treatment 
has been shown to reduce circulating TG and low-density 
lipoprotein (LDL), accompanied by an increase in HDL 
[31]. In oxidized low-density lipoprotein (oxLDL)-loaded 
THP-1 macrophages, FGF-21 can regulate foam cell for-
mation, cell migration and death, inflammatory response, 
and lipid metabolism [32]. FGF-21 can further promote 
the secretion of the previously mentioned protective adi-
pokine, adiponectin, which in turn can reduce endothelial 
dysfunction, suppress the proliferation of smooth mus-
cle cells, and prevent the transformation of macrophages 
to foam cells [30]. In human umbilical vein endothelial 
cells (HUVECs), treatment with FGF-21 diminished the 
cytotoxic and apoptotic effects of hydrogen peroxide. 
Exogenous FGF-21 impeded the apoptosis of microvas-
cular endothelial cells in rat hearts under atherosclerotic 
conditions, further suggesting a protective role in early 
atherosclerosis [33]. Another study presented FGF-21 to 
be protective against dyslipidemia in apoE−/− mice by 
inhibiting the inflammasome through NLRP3, preventing 

ROS buildup and production, and reducing ER stress 
[34]. As another well-established protective adipokine in 
atherosclerosis, FGF-21 is a promising therapeutic target 
(Table 1, FGF-21).

CTRP9

CTRP9, a newly discovered adipokine [35], can activate a 
variety of signaling pathways that exert anti-atherogenic 
effects, particularly in stabilizing carotid plaque. It is doc-
umented that CTRP9 attenuates vascular smooth muscle 
cell (VSMC) proliferation and VSMC phenotype switch-
ing by activating AMP-dependent kinase [36, 37]. CTRP9 
decreases neointimal lesion formation [37], limits endothe-
lial cell senescence through the AMPKα/KLF4 signaling 
pathway [38], and retards oxLDL-induced endothelial 
dysfunction through PGC-1α/AMPK-mediated antioxi-
dant enzyme induction [39]. In the inflammatory response, 
CTRP9 downregulates pro-inflammatory cytokine secre-
tion in macrophages [40] and upregulates the autophagy in 
atherosclerotic lesions through the AMPK/mTOR pathway 
[41]. In addition, the AMPK–NLRP3 inflammasome sign-
aling pathway is involved in the atheroprotective function 
of CTRP9 [42]. Furthermore, CTRP9 lowers cholesterol 
uptake in VSMCs with an increase in the expression of 
cholesterol efflux-related molecules [36]. Besides these 
direct protections, CTRP9 may benefit atherosclerosis 
through improving glucose metabolism, particularly in the 
setting of T2DM [35, 43, 44] (Table 1, CTRP9).

Progranulin

Progranulin (PGRN) is a unique anti-inflammatory growth 
factor that regulates cell cycle and cell motility [45]. Pro-
granulin is abundantly expressed in various cell types 
besides adipocytes, including immune cells, epithelial 
cells, neurons, and chondrocytes [46]. The anti-athero-
genic effects of progranulin are mediated through influ-
encing local and/or systemic inflammation and chemotaxis 
of VSMCs and macrophages, with the opposite occurring 
in studies with PGRN knockout mice [45, 47]. Kawase 
et al. proved that the protective effects of PGRN depended 
on anti-TNF-α [48]. There was a similar study showed 
that PGRN protected vascular endothelium countered with 
atherosclerotic inflammation and reduced TNF-α expres-
sion [49]. It is also demonstrated that PGRN directly binds 
to TNF receptors to affect the TNFα/TNFR interaction 
[46, 50]. Additionally, another mouse study by Nguyen 
et al. showed that hematopoietic deficiency of PGRN in 
Ldlr−/− mice promotes cholesterol uptake and foam cell 
formation [51] (Table 1, PGRN).
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Deteriorative adipokines for atherosclerosis

Leptin

Leptin is the adipokine that declares adipose tissue as an 
endocrine organ [52]. Pathogenic leptin (in obesity) can 
accelerate atherogenesis [53]. A cross-sectional study 
involving 174 men and 26 women with T2DM found that 
plasma leptin levels were tightly correlated to coronary 
atherosclerosis [54]. In systemic lupus erythematosus 
(SLE) patients, leptin levels were also strongly associ-
ated with an increased risk of atherosclerosis, as well as 
lipid markers of inflammation, such as piHDL, Lp(a), and 
apoB100 [55]. In apoE−/− mice, 4 week administration of 
leptin (125 μg/day) significantly increased atherosclerosis 
and thrombosis after vascular injury [56]. Leptin-deficient 
mice (ob/ob) suppress atherogenesis when crossed with 
apoE−/− mice, independent of serum cholesterol, TNF-
α, or adiponectin [57]. Consistent with the findings in 
apoE−/− mouse mode, ob/ob:Ldlr−/− mice are protected 
from atherosclerosis by reducing the T-cell helper type 
1 (Th1) response and promoting regulatory T-cell (Treg) 
function [58]. Singh et al. showed that leptin could upregu-
late caveolin-1 and activate ERK1/2 and eNOS signaling 
in vascular endothelial cells [59]. Schroeter et al. found 
that apoE and caveolin-1 are critical in leptin-induced 
lesion development, ROS formation, and smooth muscle 
cell proliferation [60]. Raman et al. also demonstrated that 
leptin could induce atherosclerosis progression in apoE-
/- mice, subsequently showing that this process can be 
reversed by knocking out thrombospondin-1 (TSP-1) [61]. 
TSP-1 deficiency inhibits leptin-induced atherosclerosis 
progression and reduces CREB activation and vimentin 
protein expression in aortic lysates without changing the 
plasma lipid profile [61].

However, the Multi-Ethnic Study of Atherosclerosis 
(MESA) revealed that leptin does not have a correlation 
with cardiovascular events. The study was conducted 
in men and women in different ethnic backgrounds, 
adjusted for multiple risk factors [62]. Additional ani-
mal studies with conflicting outcomes show varying 
roles of leptin in atherosclerosis. Severe hypercholester-
olemia was observed in ob/ob:Ldlr−/− mice compared to 
Ldlr−/− mice despite chow diet feeding (0.075% choles-
terol) [63]. Jun et al. found that a type 1 diabetes model, 
Ins2 + /Alkita:apoE−/− mouse, had 92% less leptin but an 
increased risk for atherosclerosis compared to nondia-
betic Ins2 + / + :apoE−/− mice. Daily supplements of lep-
tin reversed this risk in Ins2 + /Alkita:apoE−/− mice by 
significantly decreasing aortic arch lesion area, accom-
panied by upregulated hepatic sortilin-1, which is a 
receptor for LDL clearance [64]. Wei et al. showed that 

leptin receptor-mediated STAT3-independent signal-
ing pathways offer protection against atherosclerosis in 
a model of obesity and hyperlipidemia using a selective 
leptin receptor-STAT3 signaling deficiency mouse model: 
Leprs/s:ApoE−/− [65]. Collectively, these data suggest that, 
although leptin can offer metabolism benefits, increased 
leptin levels are more likely to contribute to atheroscle-
rosis progression through acting on multiple signaling 
pathways, including ROS, JNK, and STAT3, with obesity 
exacerbating the leptin-induced pathogenesis of CVDs 
(Table 2, leptin).

Chemerin

Similar to leptin, chemerin is a white-adipocyte-enriched 
adipokine [66]. A clinical study in patients with chest pain 
revealed a positive association between chemerin secretion 
and plasma levels of high-sensitivity C-reactive protein 
(CRP), IL-6, TNF-α, resistin, leptin, triglycerides, as well 
as body mass index (BMI) and hypertension. An inverse 
correlation was seen with circulating HDL-C. Despite this, 
after adjusting for established risk factors, chemerin is not 
a significant biomarker of atherosclerosis [67]. Another 
clinical study involving 367 hypertensive patients suggested 
plasma levels of chemerin to be an independent biomarker 
of arterial integrity and early stage atherosclerosis [68]. 
Chemerin mRNA levels in human epicardial adipose tissue 
are positively associated with TNF-α, BMI, waist circumfer-
ence, fasting blood glucose, and Gensini score, which is an 
indication for the severity of atherosclerosis [69]. Adenovi-
rus-mediated knockdown of chemerin in high-fat-diet-fed 
apoE−/− mice ameliorated atherosclerosis outcome, followed 
by decreasing pro-inflammatory cytokines, such as TNF-α 
and IL-1β [70] (Table 2, chemerin).

Resistin

Another representative white adipocyte-derived adipokine 
is resistin, which has multiple roles in the development of 
atherosclerosis, such as vascular inflammation, lipid accu-
mulation, and plaque destabilization [71]. Clinical data 
imply that after an atherothrombotic ischemic stroke event, 
patients with high plasma resistin levels have an increased 
risk of 5-year mortality or disability [72]. Reilly et al. dem-
onstrated that plasma resistin levels correlated with markers 
of inflammation and can predict coronary atherosclerosis in 
asymptomatic humans [73]. Animal studies also confirm the 
link between resistin and inflammation in CVDs. In obese 
and atherogenic albino rats, higher resistin levels are associ-
ated with worse pro-atherogenic lipid profile and inflamma-
tion [74]. In rabbits, resistin exacerbates atherosclerosis by 
inducing vascular inflammation [75]. Consistently, resistin 
overexpression in Ldlr−/− mice aggravates atherosclerosis 
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burden, reduces brown fat tissue activity, and induces insulin 
resistance. These outcomes are attributed to resistin-medi-
ated hypothalamic leptin resistance [76]. Resistin expres-
sion is notably increased in apoE−/− mice too. Additionally, 
Burnett et al. found that recombinant resistin treatment of 
murine aortic endothelial cells increased soluble vascular 
cell adhesion molecule (sVCAM) and monocyte chemoat-
tractant protein (MCP)-1, two pro-atherogenic factors [77]. 
Resistin also significantly promotes the proliferation of rat 
VSMCs [78]. A study using patients’ samples showed that 
resistin inhibited neutrophil infiltration, likely contributing 
to the alleviated atherosclerotic plaque inflammation [79]. 
These studies conducted in various animal models and 
human samples are overall consistent in supporting a pro-
atherogenic role of resistin (Table 2, resistin).

FABP4

Adipocyte fatty acid-binding protein (A-FABP; also known 
as FABP4 or aP2) is expressed in adipocytes and mac-
rophages, influencing metabolic activity in a variety of ways. 
FABP4 was initially discovered in adipocytes as an intracel-
lular protein activated by PPARγ to regulate lipid transport 
and fatty acid metabolism [80–83]. Early animal studies 
have shown that FABP4 deficiency in both adipocytes and 
macrophages improves hyperinsulinemia, hyperglycemia, 
insulin resistance, dyslipidemia, and fatty liver disease in 
the context of genetic and dietary obesity [84–86]. FABP4 
was soon found to be secreted by adipocytes and abundantly 
present in the circulation and correlate with metabolic risks 
[87], macrovascular complications [88], and atherosclerosis 
[89, 90] in humans. From a large-cohort prospective study, 
serum FABP4 is a biomarker of higher risk of CVD mor-
tality [91]. In another clinical study in a Chinese cohort, 
FABP4 was found to be positively associated with carotid 
atherosclerosis in Chinese women but not in men. This sex 
difference may be due to lower baseline serum FABP4 levels 
in men [90]. FABP4 also functions in macrophages to regu-
late the accumulation of cholesterol esters and inflammatory 
response [92]. Finally, atherosclerosis in apoE−/− mice was 
significantly reduced by FABP4 deficiency in macrophages 
[93]. (Table 2, FABP4).

IL‑1β

Adipocytes also produce many nonexclusive cytokines 
that are expressed in the other tissues and types of cells. 
Among them, Interleukin-1β (IL-1β) is an innate inflamma-
tory response factor that plays an important role in promot-
ing the development of atherosclerosis [94, 95]. IL-1β is 
secreted upon the activation of the NLRP3 inflammasome. 
When stimulated, IL-1β triggers macrophages to release 
pro-inflammatory cytokines and activates T-helper cells. 

In atherosclerosis, IL-1β promotes immune cell recruit-
ment and increases vascular permeability [96–98]. The size 
of aortic lesions in IL-1β knockout [99, 100] and neutral-
izing mice [101] are significantly reduced because of the 
dampened recruitment of monocytes and activation of 
macrophages to the intima. Serum IL-1β levels can serve 
as a biomarker of advanced stages of atherosclerosis [102], 
plaque calcification, and potentially fibrous caps formation 
[103].

Interestingly, IL-1β has an endogenous inhibitor, IL-1Ra. 
Deficiency in IL-1Ra promotes neointimal formation in mice 
after injury [104, 105]. Consistently, IL-1β inhibition with 
canakinumab significantly improved the reendothelializa-
tion of denuded carotid arteries and limited neointimal for-
mation, an inflammatory response in the incidence of car-
diovascular events [106]. It is thus plausible that targeting 
IL-1β offers therapeutic promise in atherosclerosis (Table 2, 
IL-1β).

IL‑18

Interleukin-18 (IL-18) is a pro-inflammatory and pro-ather-
ogenic cytokine modulating cholesterol efflux [107], plaque 
stabilization [108], and plaque rupture susceptibility [109, 
110]. Genetic analysis of IL-18 variations in CAD patients 
suggests a causal role of IL-18 in atherosclerosis associ-
ated with higher mortality [111]. IL-18 inhibitors have been 
shown to prevent plaque progression and promote plaque 
stability [112]. It remains unclear whether IL-18 is an inde-
pendent predictor of atherosclerosis or an indirect influenc-
ing factor. A more plausible consensus is that the pro-ath-
erogenic effects of IL-18 are more likely to be dependent 
on IFN-γ [112–114] or other relevant factors [115–118] 
(Table 2, IL-18).

IL‑6

Studies in IL-6 knockout atherogenic mouse models have 
shown that IL-6 can promote plaque formation, influence 
serum cholesterol, and upregulate matrix metalloprotein-9 
(Mmp-9), which is associated with vulnerable plaques [119, 
120]. Other work has shown that IL-6 is independently asso-
ciated with the early onset of atherosclerosis [121]. IL-6 
stimulation of VSMCs in vivo and in vitro activates the 
renin-angiotensin system, expands vascular oxidative stress 
and endothelial dysfunction, and impacts the migration and 
proliferation of VSMCs [122, 123]. In aged animals, ele-
vated IL-6 levels induced vascular mitochondrial dysfunc-
tion and accelerated atherogenesis [124, 125]. Therapeuti-
cally, treatment of mice with an IL-6 inhibitor significantly 
suppressed endothelial activation, intimal smooth muscle 
cell infiltration, and monocyte recruitment, and subsequently 
impacted plaque progression [126]. The pathogenesis of 
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IL-6 in atherosclerosis has been extensively studied in 
mice, potentially making it a desirable target for treatment 
(Table 2, IL-6).

IFN‑γ  Interferon γ (IFN-γ) is a major inflammatory cytokine 
in atherosclerosis [127]. A prospective study of 2380 CAD 
patients followed for 56 months has revealed IFN-γ activity 
as a predictor for a long-term prognosis of major coronary 
events [128]. Both the pro- and anti-atherogenic effects of 
IFN-γ have been documented due to the complexities of 
its role in atherosclerosis [129, 130]. Previous studies have 
highlighted IFN-γ expression in lipid-laden macrophages 
of atherosclerosis lesions [131, 132] and at all stages of 
development [133]. In  vitro, treatment of oxLDL-loaded 
THP-1 human macrophages with IFN-γ promoted foam cell 
formation and inhibited cholesterol 27-hydroxylase [134]. 
Endothelial cell function is imperative in maintaining nor-
mal vessel integrity. Lee et  al. performed transcriptomic 
and metabolic analyses of HCAECs treated with IFN-γ and 
unraveled a metabolic shift in endothelial function with 
worsened glucose metabolism and increased fatty acid oxi-
dation [135]. Sáez et al. validated these findings by linking 
IFN-γ and high glucose levels to endothelial dysfunction 
[136]. The plaque area was decreased by 75% in IFN-γ-
deficient Ldlr−/− mice after 8 weeks on cholesterol-enriched 
diet feeding [137]. IFN-γ deficiency also decreased lesion 
size in apoE−/− mice fed with a cholesterol-enriched diet 
(0.15% cholesterol) for 12  weeks [138]. However, Niwa 
et al. found that IFN-γ produced by bone marrow-derived 
cells inhibited the advancement of atherosclerosis. After 
6  weeks on a high-fat diet (HFD), Ldlr−/− mice received 
IFN-γ-deficient bone marrow developed larger lesions than 
those received control bone marrow without affecting lipid 
profiles [139]. The majority of studies on IFN-γ suggest 
a role of this cytokine in atherosclerosis progression and 
prove a benefit to consider IFN-γ therapies (Table 2, IFN-γ).

TNF‑α

TNF-α is a cytokine of high biological value, and its pro-
duction in adipose tissue is increased in obesity and T2DM 
[140]. Indeed, TNF-α is expressed by many cells, includ-
ing adipocytes, monocytes, macrophages, endothelial cells, 
and VSMCs. It is appreciated that TNF-α promotes the 
progression of atherosclerosis through a variety of factors 
[141–149]. TNF-α upregulates the expression of intercellu-
lar cell adhesion molecule-1 (ICAM-1), scavenger receptor 
class A (SRA), and MCP-1 both in vitro and in vivo [143, 
146, 149], and induces the migration and proliferation of 
medial smooth muscle cells in the vascular wall to the intima 
[145]. TNF-α also advances vascular calcification, medi-
ated by the cAMP signaling pathway [141]. In mature bone 
marrow dendritic cell-derived exosomes, stimulating TNF-α 

can trigger the NF-κB pathway and elicit endothelial inflam-
mation [148]. In regards to lipid and fatty acid metabolism, 
TNF-α can increase the transcytosis of lipoproteins (e.g., 
LDL) across endothelial cells and macrophages, eventually 
leading to LDL retention in the vascular wall [143, 147]. 
One study found no correlation between plaque progression 
and instability and the TNF-α receptor p55, suggesting that 
other receptors may mediate the TNF-α activity [150]. Alto-
gether, TNF-α is a critical factor that warrants clinical sig-
nificance for populations susceptible to CVDs. Meanwhile, 
the impact of its receptors and mediators need further char-
acterization (Table 2, TNF-α).

PAI‑1

Fibrinolytic imbalances in the progression of atherosclero-
sis have been observed in various experimental and clini-
cal studies. Fibrous deposits in plaques can be removed by 
plasminogen activators. In advanced atherosclerosis, fibrin 
depositions are rampant, and plasminogen activators are 
downregulated [151–155]. Type 1 plasminogen activator 
inhibitor (PAI-1) is the primary inhibitor of plasminogen 
activators. Elevated expression levels of PAI-1 in the plasma 
and coronary plaques were found in metabolic syndrome 
patients [156]. It was also shown that male patients with 
metabolic syndrome were prone to thrombosis due to the 
increased PAI-1 [157]. The upregulation of PAI-1 induces 
neointima formation, fibrin(ogen) accumulation, and throm-
bosis [151–155]. Protection against atherosclerosis in PAI-
1-deficient mice has ascertained its pro-atherogenic role, 
primarily improving fibrin clearance in plaques [151, 153]. 
Consistently, the expression of PAI-1 mRNA is found to 
increase in the arteries of patients with advanced atheroscle-
rosis [158]. However, Sjoland et al. found that aortic PAI-1 
expression has little to do with atherosclerosis progression 
[159]. Indeed, adipose tissue, particularly metabolically det-
rimental visceral fat, is a major source of PAI-1 in obesity 
and insulin resistance [160]. The effects of PAI-1 on neointi-
mal lesion formation represent a previously unwitnessed role 
for the plasminogen activation system in the pathogenesis of 
atherosclerosis [151, 153] (Table 2, PAI-1).

RBP4

Retinol-binding protein 4 (RBP4), an adipokine mainly 
secreted from the liver and adipose tissue, negatively 
impacts glucose metabolism and insulin sensitivity [161]. 
Serum RBP4 levels positively correlated with the severity 
of carotid atherosclerosis in patients [162]. RBP4 invokes 
atherogenesis by promoting cholesterol uptake and inducing 
macrophage-derived foam cell formation. Elevated levels of 
circulating RBP4 can potentially be a predictor of athero-
sclerosis [161] (Table 2, RBP4).
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LCN2

Lipocalin-2 (LCN2) is a complex bioactive hormone 
expressed in adipocytes, neutrophils, osteoblasts, and 
macrophages, primarily exhibiting antimicrobial effects, 
activating inflammatory cytokines, and regulating glucose 
homeostasis [163–165]. Serum LCN2 levels are positively 
correlated with the severity of CAD [166]. In apoE−/− mice, 
chronic administration of LCN2 accelerated the development 
of aortic lesions with increased monocyte and macrophage 
within plaques and increased plaque instability. LCN2 can 
also enhance the production of inflammatory cytokines such 
as IL-6, IL-8, and MCP-1 in macrophages and human coro-
nary smooth muscle cells. In HUVECs co-cultured with 
THP1 monocytes, LCN2 treatment stimulates cell adhesion 
and increases gene expression of ICAM-1, VCAM-1, and 
NF-κB [167]. Additionally, LCN2 can impact endothelial 
cell and VSMC proliferation. Overall, LCN2 systemically 
contributes to atherosclerosis by activating inflammation, 
cell adhesion, foam cell formation, and plaque vulnerability 
[167] (Table 2, LCN2).

Adipokines with undefined roles in atherosclerosis

In addition to the adipokines mentioned above, other adi-
pokines such as adipsin, Interleukin-17 (IL-17), omentin, 
bone morphogenetic proteins (BMPs), nicotinamide phos-
phoribosyl transferase (NAMPT), and Vaspin have been 
shown to somewhat be involved in atherosclerosis. Due to 
limited evidence or conflicting data, more work is needed 
to illustrate their explicit roles in atherosclerosis. In this 
review, we refer to these factors as undefined adipokines in 
atherosclerosis.

Adipsin

Adipsin (complement factor D) is the first cytokine identified 
to be produced in white adipose tissue, hence the discovery 
of adipocyte-derived cytokines: adipokines [168]. Ohtsuki 
et al. studied 370 patients with CAD and found plasma adip-
sin to be positively associated with mortality and rehospi-
talization, illuminating a potential role as a biomarker [169]. 
However, in animal studies, Adipisin−/−:Ldlr−/− double 
knockout mice displayed no significant differences in the 
aortic root and arch lesion area after 14 weeks on a western 
diet feeding [170]. Further studies are needed to establish 
a working model for adipsin in atherosclerosis (Table 3, 
adipsin).

IL‑17

To date, there lacks consensus on whether IL-17 is protec-
tive or deteriorative in atherosclerosis [171]. Several mouse 

models and in vitro studies support a pro-atherogenic effect 
of IL-17 [172–174]. Here, IL-17 sustains an inflamed 
plaque microenvironment. Additional studies showed that 
IL-17 could be both pro- and anti-atherogenic [175, 176], 
whereas some studies stated that IL-17 has only protective 
effects. In the presence of well-known anti-inflammatory 
cytokines, IL-17 can be induced and may play a protective 
and regulatory role in atherogenesis. This may be due to 
anti-inflammatory Th17 cells that inhibit the differentia-
tion of pathogenic Th1 cells. Taken together, IL-17 in the 
pathogenesis of atherosclerosis is unresolved and behaves 
differently based on the experimental models and context 
[175–178]. Moderate or severe atherosclerosis, a single gene 
or multiple gene knockouts, and patterns of dietary inter-
vention all manifest varying outcomes. Establishing more 
consistent models to study IL-17 in atherosclerosis is thus 
needed (Table 3, IL-17).

Omentin

Omentin is a relatively new adipokine mainly expressed in 
visceral adipose tissue. It is documented that omentin can 
inhibit macrophage accumulation, foam cell formation, and 
the expression of pro-inflammatory genes (TNF-α, IL-6, 
and MCP-1) and promote an anti-inflammatory (M2-like) 
phenotype during macrophage differentiation in vitro and 
in vivo [179, 180]. Du et al. observed the down-regulation of 
omentin in the serum and epicardial adipose tissue (EAT) in 
patients with CAD [181]. On the contrary, Saely et al. found 
increased plasma omentin as a predictor of cardiovascular 
events in CAD patients [182]. Therefore, the role of omentin 
in CVDs remains uncertain [180] (Table 3, omentin).

BMPs

The expression of BMPs is known to increase in athero-
sclerosis. BMPs induce monocyte recruitment, endothelial 
inflammation, and endothelial dysfunction, particularly 
BMP4 and BMP2 [183, 184]. The balance between BMPs 
(2 and 4) and BMP antagonists influences these outcomes. 
Inhibition of BMPs in Ldlr−/− mice by a potent pharma-
cological BMP inhibitor (LDN-193189) influenced athero-
sclerosis regression [183, 184]. Simoes Sato et al. found 
that BMPs secreted by VSMCs in atherosclerotic lesions 
can induce monocyte chemotaxis via direct activation of 
BMP receptor II (BMPRII), while Kim et al. found that 
BMPRII down-regulation resulted in endothelial inflamma-
tion and atherosclerosis progression [184, 185]. The exact 
role of each individual BMP in atherosclerosis should be 
distinguished, so do their functioning mechanism (Table 3, 
BMPs).
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NAMPT

NAMPT, also known for another name visfatin, is the key 
enzyme for NAD + biosynthesis from the precursor nicoti-
namide. It is produced by adipocytes and other inflammatory 
cells in adipose tissue, and has been connected to atheroscle-
rosis and insulin resistance. Nencioni et al. used a pharma-
cological inhibitor of NAMPT to mitigate inflammation and 
downregulate neutrophil activation and recruitment in an 
atherosclerotic mouse model [186]. In cholesterol metabo-
lism, NAMPT knockdown manifested protection by enhanc-
ing cholesterol efflux through the PPARα-LXRα- ABCA1/
G1 pathway [187]. Notably, what is mentioned above 
involves the actions of extracellular NAMPT (eNAMPT). 
It has an intracellular isoform (iNAMPT). Bermudez et al. 
studied the leukocyte-specific overexpression of iNAMPT in 
mice and observed less plaque burden and increased lesion 
stabilization. The effects of iNAMPT are influenced by 
PPARγ and is independent of changes in eNAMPT [188]. 
Given the opposite functions of eNAMPT and iNAMPT 
in atherosclerosis, though the former is the true cytokine, 
we temporarily put NAMPT in this class of undefined adi-
pokines (Table 3, NAMPT).

Vaspin

Visceral adipose tissue-derived serpin (vaspin) was initially 
identified as a novel adipokine related to obesity with insu-
lin-sensitizing effects [189, 190]. Sato et al. indicated that 
vaspin is anti-atherosclerotic and improves plaque stability 
in apoE−/− mice [190]. In a large cohort of patients with 
axial spondylarthritis, serum vaspin is associated with CVD 
risk factors [191]. Another study found the down-regula-
tion of serum vaspin levels to be a trace marker of recent 
ischemic events in patients with carotid stenosis [189]. The 
relation between circulating vaspin levels and the severity 
of atherosclerosis, therefore, needs further data both clini-
cally and pre-clinically to be determined [189, 191] (Table 3, 
vaspin).

Discussion

Obesity can significantly increase the risk of T2DM and 
CAD. It is well known that besides the primary function 
in lipid storage, adipose tissue impacts the whole body 
via producing numerous adipokines. The secretion pat-
terns of adipokines change in dysfunctional adipose tis-
sue (such as in obesity) compared to normal functioning 
adipose tissue vary in depots, such as subcutaneous, vis-
ceral, and perivascular, and are also affected by nutrient 
status. Despite the keep-growing list of adipokines and 

new functions and mechanisms to be discovered, there 
is concrete evidence to conclude that adipose tissue can 
regulate atherosclerosis outcomes by means of adipokine.

Although different adipokines regulate the process 
of atherosclerosis in different ways, there is some com-
monality in the pathways shared by adipokines (Fig. 1). 
Representative protective adipokines such as adiponectin, 
CTRP9, and FGF-21 vary in their regulatory mechanisms. 
Adiponectin reduces MCP-1 expression in macrophages 
and VEGF in ECs; FGF-21 mainly impacts circulating 
levels of TG and LDL; and CTRP9 inhibits the adhesion 
of macrophages to VSMCs. Both adiponectin and FGF21 
can reduce LDL-C and increase HDL-C to offer additional 
protection from atherosclerosis. Adipokines like leptin, 
chemerin, resistin, and LCN2 can activate pro-inflamma-
tory cytokines, such as TNF-α and IL-1β, and thus accel-
erate the progression. The pro-inflammatory adipokines 
secreted from adipose tissue, including IL-1β, IL-18, IL-6, 
IFN-γ, and TNF-α, worsen the atherosclerosis burden and 
are exacerbated in obesity.

In summary, adipokines underlie the increased risk of 
atherosclerosis in obesity and T2DM and may serve as 
biomarkers of atherogenesis. However, investigating the 
exact roles of adipokines in atherosclerosis is warranted 
for future clinical applications. It should also be reminded 
that adipokines function in orchestration and changes in 
one adipokine may affect others. Categorizing adipokines 
into protective or deteriorative classes may incite syner-
getic strategies to treat atherosclerosis and CVDs.
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