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Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oli-
godendrocyte precursor cells’ behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only 
leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is 
largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting 
factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migra-
tion or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on 
oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses 
the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic 
approaches for myelin repair.
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MAG	� Myelin-associated glycoprotein
MAIs	� Myelin-associated inhibitors
MAPK	� Mitogen-activated protein
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MDM2	� Murine double-minute 2 homolog
MS	� Multiple sclerosis
MTP-PlexA1	� Membrane domain-targeting peptide of 

Plexin-A1
mTOR	� Mammalian target of rapamycin
NF1	� Neurofibromin 1
NG2	� Neuron glial antigen 2
NRP1	� Neuropilin 1
OL	� Oligodendrocyte
Omgp	� Oligodendrocyte myelin glycoprotein
OPC	� Oligodendrocyte precursor cell
P75NTR	� Neurotrophin receptor p75
PDGF	� Platelet-derived growth factor
PDK1	� Protein kinase phosphoinositide-dependent 

kinase1
PDX	� Patient-derived xenograft
PH	� Pleckstrin homology
PI3K	� Phosphatidylinositol 3-kinase
PIP3	� Phosphatidylinositol triphosphate
PKC α	� Protein kinase C α
PLA	� Proximity ligation assay
PLC	� Phospholipase C
PlexA1	� Plexin A1
PPI	� Protein–protein interaction
PTEN	� Phosphatase and tensin homolog
RRMS	� Relapsing/remitting multiple sclerosis
RTK	� Receptor tyrosine kinase
Sema3A	� Semaphorin 3A
SEMA4D	� Semaphorin 4D
SOS	� Son of sevenless homolog
srGAPs	� Slit-Robo-GTPase activating proteins
SREBP	� Sterol regulatory element-binding protein
TNFSFR	� Tumour necrosis factor super family 

receptors
TSC2	� Tuberous sclerosis complex 2
WASP	� Wiskott-Aldrich syndrome protein
WNK1	� WNK lysine-deficient protein kinase

Repairing myelin in multiple sclerosis

Multiple sclerosis (MS) is the most common auto-immune 
disease of the central nervous system and affects 2.5 million 
people worldwide. This pathology is characterized by the 
destruction of the myelin sheaths by the immune system. 
This drives to axonal weakness which disturbs severely neu-
ronal communication and leads to motor and sensory disor-
ders. Main feature of the disease starts with relapse/remitting 
phases (RRMS) followed after several years (15–20 years) 
by a progressive phase in the majority of patients. The 
remaining MS patients (10–15%) have a primary progres-
sive form of the disease, without RRMS, characterized by 
a slow and progressive neurodegeneration in which the 

symptoms worsen and disability accumulates from the onset. 
In early stage of the lesion, disturbance of brain–blood bar-
rier is accompanied by moderate T-cell (CD8 + and CD4 +) 
and B-cell infiltration which will drive to oligodendrocyte 
destruction only after a profound invasion of inflammatory 
cells [1, 2]. Like other neuroinflammatory diseases, infil-
tration at the site of tissue damage in multiple sclerosis is 
regulated by cytokines [3, 4]. This deleterious inflamma-
tion is characterized by increase of T-cell and B-cell, mac-
rophage infiltration and activation of resident microglia and 
macrophages. In later stages, granzyme B as well as immu-
noglobulin and activated complement deposition can be 
observed in lesions [5, 6]. In classical active lesion architec-
ture, normal-appearing white matter surrounding the lesion 
contains scattered perivascular inflammatory infiltrates and 
microglia nodules whose density increases at the border of 
the lesion. Loss of oligodendrocytes occurs in lesion area 
where activated macrophages phagocyte myelin debris [7]. 
Tissue composition of the lesion is ultimately altered by 
reactive astrocytes and microglia which drives to glial scar 
formation, supposed to prevent tissue destruction spreading 
by retaining immune cells and toxic metabolites. Moreover, 
angiogenesis occurs inside and around the demyelinating 
lesion, [8]. This profound tissue remodelling is the source 
of a molecular and cellular barrier impeding myelin repair 
thereby installing over time severe motor and sensitive defi-
cits (Fig. 1).

Strikingly, remyelination is observed in lesions but is gen-
erally incomplete, giving rise to “shadow” plaques where 
newly generated myelin sheaths are thinner than pre-existing 
ones [9, 10]. This regenerative process decreases and dis-
appears with chronicity and entrance in progressive phase 
of the disease. In progressive form of MS, chronic inflam-
mation is maintained in slowly expanding lesions despite 
a closed brain blood barrier with involvement of activated 
microglia, T-cells and B-cells. High production of reactive 
oxygen species contributes to mitochondrial and axonal 
damages [11].

While the current therapies aim at controlling the inflam-
matory component of MS, better comprehension of the rea-
sons of remyelination failure in MS would help to develop 
new therapeutic approaches. In chronic lesions, oligoden-
drocyte precursor cells (OPCs) derived from neural precur-
sor cells of subventricular zone or coming from perilesional 
environment are recruited to regenerate the myelin sheet 
[12, 13] and accumulate at the border rather in the core of 
the lesion [14, 15]. Whereas many factors promoting OPC 
recruitment are secreted in demyelinating lesions [16], sev-
eral repulsive cues contribute to remyelination failure. The 
massive changes occurring in the lesion regarding matrix 
and cell composition as well as their activation state produce 
this particular environment where negative cues outperform 
remyelinating cues. The counteraction of negative cues or 
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the promotion of positive cues is offering the possibility to 
develop a therapeutic strategy which could stem on natural 
capacity myelin repair. To this end, it is important to under-
stand the machinery of this repulsive barrier. In this review, 
we will highlight signalling pathways involved in remyelina-
tion and analyse how repulsive cues alter them.

Intracellular pathways controlling 
remyelination

Spontaneous remyelination occurring in the early stages of 
the disease involves proliferation and migration of OPC, fol-
lowed by their differentiation in mature oligodendrocytes for 
wrapping up of axons by new myelin sheaths [17, 18]. These 
steps involve three canonical signalling pathways controlling 
numerous basic cellular pathways. Ras GTPase, PI3K-Akt 
pathway and MAPK pathway are central regulators of myeli-
nation with already a well-depicted role in developmental 
myelination (Fig. 2).

The members of the Ras GTPase family (HRas, NRas, 
KRas) cycle between an inactive form bound to GDP and an 
active form bound to GTP [19]. Activation of receptor tyros-
ine kinase RTKs by growth factors and chemokines leads to 
their tyrosine trans-autophosphorylation, serving as docking 
sites for Grb2-Sos complex which activates Ras. G-protein 
coupled receptors (GPCR) also activate Ras via Ras-GEF 
activation [20]. Among well-characterized downstream 

pathways, Ras is known to stimulate PI3K-Akt pathway, 
Raf-MEK-ERK pathway (also known as MAP Kinases) and 
Ral/Exocyste complex. R-Ras1−/− and R-Ras2−/− null mice 
exhibit a diminished oligodendrocyte population with higher 
proportion of immature oligodendrocytes [21]. In these mice 
PI3K-Akt and Erk1/2-MAPK pathways are less activated.

The PI3K family is composed of regulatory subunits 
(p85, p87, p110) and p110 catalytic subunit catalysing the 
phosphorylation of phosphatidylinositol PtdIns(4,5)P2 into 
PtdIns(3,4,5)P3. It can be directly activated by RTK or via 
either Ras or Grb2/GAB [22]. PIP3 recruits proteins with PH 
(pleckstrin homology) domains like PDK1 and Akt allowing 
Akt activation by PDK1 and mTORC2 phosphorylation. Akt 
has multiple functions. First it favours survival by inhibit-
ing proapoptotic Bcl-2 proteins, phosphorylating Mdm2 or 
inhibiting transcription factor NF-kappaB. It regulates also 
metabolism and differentiation by activating mTORC1 and 
inhibiting GSK3β [23, 24]. Knock-out of the PI3K-Akt path-
way inhibitor PTEN in oligodendrocyte lineage resulted in 
significant hypermyelination throughout the CNS of trans-
genic mice associated with increased PIP3 levels and Akt 
phosphorylation [25, 26]. Similarly, expression of constitu-
tively active Akt in oligodendrocytes resulted in hypermy-
elination increasing as mice aged up to reach a pathological 
level [27]. Treatment with the mTOR inhibitor rapamycin 
inhibited hypermyelination suggesting its involvement 
downstream Akt [28].

Fig. 1   Opposing molecular factors in demyelinated lesions. In the 
context of multiple sclerosis, the myelin sheaths are attacked by auto-
immune reactive cells. The concomitant pro-inflammatory situation is 
leading to a glial activation of astrocytes and microglial cells contrib-
uting to the secretion of various molecular signals. On the one side, 
growth factors and chemokines are positively acting on the recruit-

ment of oligodendrocyte precursor cells (OPCs) attracted towards the 
lesion in order to repair myelin. On the other side, repulsive growth 
inhibitory molecules accumulating in this perturbed microenviron-
ment create a molecular barrier preventing OPCs to reach the centre 
of the lesion hence precluding myelin repair



5260	 F. Binamé et al.

1 3

Canonical MAPK pathway activation starts with Raf 
phosphorylation by Ras. Then Raf phosphorylates MEK 
which activates ERK [20]. Phosphorylated ERK moves into 
the nucleus to regulate expression of target genes. MAPK 
pathway can be activated either by RTK or GPCR via Ras, 
adenylate cyclase or Rac-dependent mechanism. As well as 
Akt, ERK activates mTORC1 [29]. Knock-out of b-raf in 
neural progenitor cells impaired oligodendrocyte differen-
tiation in developing mice [30]. Erk2 deletion from GFAP-
expressing radial glial cells impaired their differentiation in 
oligodendrocyte in vitro [31]. However, this effect was not 
found in vivo where Erk1 and Erk2 deletion in oligoden-
drocyte lineage did not affect OPC differentiation but rather 
reduced myelin sheath thickness [32]. Therefore, MAPK 
pathway seems to play a more prevalent role in myelin 
growth compared to cell differentiation.

The interplay between these pathways is adding another 
complexity in the signalling machinery controlling OPC dif-
ferentiation. Fine tuning of these pathways also depends on 
the integrin-dependent activation of Src family kinases like 
Fyn. Fyn activation by α6β1 integrin can, therefore, amplify 
PDGF signalling and switch neuregulin signalling from 

PI3K to MAPK pathway [33]. Among targets of Fyn identi-
fied in OPC, Cdk5 has been shown to transmit PDGF-A 
induced migration [34] and Fyn also interacts with p130cas 
to activate Rac [35, 36]. Hence, the concomitant activation 
of RTK, GPCR and integrins in response to environmental 
cues is creating intracellular competitions of signalling path-
ways whose biological consequence on OPC relates on the 
relative strength of each components [37]. Consequently, the 
dominance of one or the other pathways impacts the different 
stages towards remyelination.

Pathways involved in migration

To reach the site of lesions, OPCs must migrate direction-
ally and thus acquire antero-posterior polarity regulated 
by proteins acting specifically at one cell pole. Phosphati-
dylinositol 3-kinase (PI3K) and its products, phosphati-
dylinositol triphosphate (PIP3), are preferably located 
forward in protrusions [38]. PIP3 recruits at the plasma 
membrane the Arp2/3/WASP complex which regulates 
the connection of the actin cytoskeleton and the guanine-
nucleotide exchange factors (GEF) which then activate the 

Fig. 2   Involvement of Ras/PI3K/MAPK pathway in remyelination. 
Migration: the proteoglycan NG2 contributes to front-rear polarity 
establishment in OPCs in response to growth factors and chemokines. 
NG2 maintains high RhoA activity at the rear of the cell whereas it 
stimulates Rac at the migration front via its switch of activity induced 
by RTK/GPCR dependent PKCα activation. Ras/Raf/MEK/ERK and 
PI3K/Akt pathways regulate this Rac activation. Conversely, removal 
of GSK3β mediated inhibition of p190A by Akt probably favours 

local RhoA inhibition. Proliferation/differentiation: Akt dependent 
regulation of mTORC1 and β-catenin plays a parallel role to ERK1/2 
in proliferation and differentiation of oligodendrocytes. However, 
β-catenin can have opposite effects on this differentiation depending 
of its nuclear level. Arrows show activation and truncated red arrows 
show inhibition. PI3K-Akt pathway is shown in orange boxes, MAPK 
pathway in blue boxes and GSK3β/β-catenin in purple boxes. Factors 
shown in green favour establishment of the migration front
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Rho GTPases [39]. Rho GTPases Rac and Cdc42 stimu-
late the polymerization of actin at the migration front, and 
at the back RhoA stimulates the contraction of actin to 
advance the cellular body. The receptor tyrosine kinase 
(RTK) and GPCR of growth factors and chemokines 
contribute to raise the PIP3 levels locally and define the 
migration front by activating the PI3K directly or via the 
GTPase Ras [40]. Downstream Ras, Ral/exocyste pathway 
coordinates membrane trafficking and actin polymeriza-
tion contributing also to the front-rear polarity [41]. All 
these proteins involved in actin-driven protrusions have 
been found in oligodendrocytes from OPC stage to myelin 
sheath preparations [42]. Some specificities exist with pre-
dominance of actin nucleator WAVE1 in oligodendrocytes, 
whereas WAVE2 is more expressed in Schwann cells [42]. 
Loss of WAVE1 leads to a decreased number of OPC pro-
cesses and hypomyelination in corpus callosum and optic 
nerve [43].

The contribution of Ras, PI3K-Akt and MAPK pathways 
to the growth of OPC pool and their involvement in the final 
steps of differentiation and myelination have overshadowed 
their involvement in migration, explaining sparse studies 
about their intrinsic contribution during the remyelination 
sequence. However, the transmission of promigratory sig-
nal obviously involves these pathways. Taking the example 
of CXCL12 dependent migration of OPCs, its binding to 
its receptor CXCR4 activates both PI3K-Akt pathway and 
MAPK pathway whose inhibition reduces OPC migration 
in vitro [44]. Activation of PKC, known to interact with 
these pathways, stimulated also OPC protruding activ-
ity [45]. Work in zebrafish demonstrated that knockdown 
of NF1 improved OPC migration presumably via the loss 
of its GAP inhibitory activity on Ras [46]. One frequent 
outcome of these pathways ends up on regulation of Rho 
GTPases like Rac. Whereas growth-factor induced Ras sig-
nalling activates Rac via PI3K, Ras-Raf-MAPK pathways 
can also downregulate expression of the Rac GEF activator 
Tiam1 [47]. Reciprocally, Rac contributes to the recruit-
ment of PI3K at the leading edge of migrating cells [48] 
and Rac regulates formation of MEK-ERK1 complexes 
via PAK [49]. A bFGF dose-dependent activation of Rac 
determines the switch between directed and random migra-
tion of OPCs [50, 51]. The specificity of NG2 proteoglycan 
expression in OPCs has to be considered to fully understand 
their migration properties. NG2 intrinsically maintains high 
RhoA activity at the periphery of the cell via the RhoA GEF 
Syx [51], resulting in contact inhibition of locomotion and 
explaining the self-repulsion of OPCs observed in vivo in 
adult brain [52]. However, the phosphorylation of NG2 by 
PKCα switches downstream signalling from RhoA to Rac 
stimulation via recruitment of PAR and CRB complex pro-
teins and activation of the Rac GEF Tiam1 [51, 53]. The 
activation of PKCα, notably by PLC activity downstream 

RTK and GPCR, favors a polarized shape where NG2 itself 
contributes to the high Rac activity at the migrating front 
and maintain RhoA at the rear of the cell (for extensive 
review see [50]).

Pathways involved in proliferation/survival

In experimentally induced demyelination, a dramatic 
increase of OPCs is observed [54]. Several mitogens have 
been involved in lesion-associated remyelination such as 
PDGF-A, bFGF, NT-3, IGF-1, CNTF, IL-6, LIF [16]. The 
consecutive Ras, PI3K-Akt and MAPK cascade controls cell 
proliferation [55]. It was shown that bFGF and IGF1 syn-
ergistically promotes cell cycle progression via enhanced 
cdk2 and cdk1 activity [56, 57]. This effect was impeded 
by rapamycin, involving mTOR in oligodendrocyte cell 
progression. Connexin 47 upregulation in OPC induced 
by coculture with astrocytes, possibly via heterotypic gap 
junctions, stimulates OPC proliferation via ERK1/2 [25]. 
Growth factors promote also oligodendrocyte survival like 
IGF1 which protects OPCs against TNFα-induced damage 
via PI3K/Akt dependent phosphorylation of BAD [58]. 
Knockout in oligodendrocyte lineage of PIKE, an upstream 
activator of PI3K-Akt, impaired remyelination of corpus 
callosum treated with lysolecithin. In this model, neural 
precursor from the subventricular zone usually recruited to 
repair corpus callosum demyelination had lower prolifera-
tion because of PIKE knock-out [59].

Pathways involved in differentiation and myelin 
sheath formation

Transcription factors, like Olig1, Ascl1, Nkx2.2, Sox10, 
YY1 and Tcf4, are required for the generation of mature 
oligodendrocytes [60]. Oligodendrocyte differentiation 
control by the Wnt/β-catenin pathway is ambivalent since 
it is mainly described as inhibitor for oligodendrocyte dif-
ferentiation, whereas its transient activation seems crucial 
for initiating terminal differentiation [61, 62, 63]. This posi-
tive effect has been proposed to be dependent of β-catenin 
level in the nucleus and its association with the transcription 
factor Tcf7l2 [64]. GSK3β is a key actor of this balance 
since it regulates β-catenin availability by controlling its 
phosphorylation-dependent targeting to proteasome. Indeed 
pharmacological inhibition or knockdown of GSK3β can 
either promote or supress OPC differentiation [63, 65].

PI3K-Akt and MAPK pathways play an important role 
in oligodendrocyte differentiation [66–68]. Their parallel 
role has been demonstrated by the myelination rescue of 
Erk1/2 deficient mice by PI3K/Akt constitutive activation 
[67]. One common target of these pathways is TSC2 whose 
phosphorylation by Akt or Erk1/2 results in mTORC1 com-
plex activation [69]. Even parallel, these pathways could 
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have sequential roles since Erk1/2 regulates differentiation 
in early stages and mTOR in later stages [70]. The func-
tion of mTORC1 is interesting since it coordinates myelin 
protein expression with lipid synthesis and via transcription 
factors SREBP [69]. Regarding studies focusing on remyeli-
nation of lesions, a focal LPC-induced demyelination with 
CNP- dependent deletion of Cdk5 impaired OPC differen-
tiation and decreased levels of activated AKT [71]. Erk2 
conditional knockout in oligodendrocytes resulted in delayed 
remyelination of LPC-induced lesion in the corpus callosum 
accompanied by impaired MBP translation [72]. Similarly, 
sustained activation of ERK1/2 by expression of constitu-
tively active MEK in oligodendrocyte lineage accelerated 
remyelination of LPC-induced lesions with improved myelin 
thickness compared to wild-type littermates [73].

Acting downstream of Ras, Ral GTPase and exocyst 
impact several aspects of cell polarity through vesicular 
trafficking, The massive membrane remodelling necessary 
to myelination is, therefore, impaired when these pathways 
are ablated [74, 75].

The process of myelin membrane wrapping requires a 
coordination of the cytoskeleton dynamics. Indeed, in the 
inner tongue, it has been shown that the polarized growth of 
myelin is determined by elevated levels of PIP3 at the grow-
ing edge [68]. Downstream Rho GTPase effectors use this 
signal to structure cytoskeleton organisation. Indeed, loss 
of Cdc42 and Rac1 leads to accumulation of cytoplasm of 
myelin sheaths and myelin out folding, revealing their role 
in coordinating myelin sheath wrapping [76, 77]. Ultimately, 
F-actin presents in the leading edge and outermost myelin 
layer is disassembled in the rest of the myelin sheath with 
MBP coming [78, 79].

Remyelinating factors secreted in 
the lesions, a rheostat controlling 
oligodendrocyte behaviour

Despite the neurotoxic effect consecutive to the proinflam-
matory role of astrocytes and macrophages/microglia, they 
can be beneficial for remyelination. Density of O4-positive 
OPCs is corelated with increased debris-laden macrophages 
in human MS lesions [80]. Elevated density of HLA-DR 
macrophages and microglia at the lesion border in MS also 
correlated with more extensive remyelination [81]. Indeed, 
depletion of pro-inflammatory macrophages/microglia at 
early time points post-demyelination impairs OPC prolifera-
tion whereas depletion of M2 polarized cells at later points 
impairs OPC differentiation [82]. This could be explained 
by the release of several growth factors important for OPC 
recruitment, proliferation and differentiation: IGF-1, activin-
A, endothelin-2, HGF, PDGF-A, bFGF, galectin 3, TNF, 
IL-1β, IL4, CXCL1, 8, 10, 12 [83–85].

Analysis of MS lesions revealed selective expression of 
bFGF within active lesion and in the peri plaque of chronic 
lesions [86]. The stimulation level of factors such as PDGF-
A or bFGF affects the oligodendrocytic cell response [50, 
51]. Thus PDGF activates the migration of OPCs at low con-
centrations via PI3K and proliferation at high concentrations 
via PLCγ [87]. Therefore, the gradient of growth factors and 
chemokines around MS lesions [88] suggests a concentra-
tion-dependent mechanism of oligodendrocyte response.

Neurotrophic factors also modulate remyelination. In 
demyelinating lesions of the spinal cord, NRG1 promotes 
remyelination through generation of oligodendrocytes [89] 
and presumably through stimulation of migration by activa-
tion of Rac1 and Cdc42 via the GEF Dock7 [90]. Among 
neurotrophins, NT3 enhances Schwann cell migration via 
Rac1 and Cdc42 activation [91], whereas BDNF binding 
to p75NTR inhibits Schwann cell migration by activation 
of the GEF Vav2 and RhoA [92]. Conversely, NT3 inhib-
its peripheral neural system myelination [93, 94] whereas 
BDNF promotes it [95, 96].

Hence, a gradient of signalling molecules emanating from 
the lesion probably controls the transition of oligodendro-
cyte behaviours between migration, proliferation and dif-
ferentiation. Thus, depending on OPCs or Schwann cells, 
these lesion-associated factors can specifically favour one 
of these behaviours or induce different effects depending on 
their level of activity. Besides positive factors, inhibitory 
molecules arise from the lesion and block remyelination.

Inhibitors of remyelination, a reminiscence 
of developmental guidance mechanisms

As usual with biological processes, positive/activating path-
ways are counterbalanced by negative/inhibitory signals 
aiming at providing to the cell the right equilibrium adapted 
to the function. Indeed, facing the numerous factors favour-
ing myelination, several types of guidance molecules known 
for their critical roles during brain development are impact-
ing OL and OPC functions by triggering complex signalling 
pathways controlling cytoskeleton remodelling (Fig. 3).

Sema3A/PlexinA1/Nrp1

Downstream signalling deciphering of Sema3A was 
mainly carried out in neurons [97–102]. Sema3A stim-
ulates the Ras GAP activity of PlexinA1 which directly 
inhibits Ras [97, 98]. Binding of Sema3A to PlexinA1/
Nrp1 complex receptor leads to the release of Rac-GEF 
FARP2 which activates Rac. GTP-bound Rac is then 
sequestrated by PlexinA1 and allows the recruitment of 
Rnd1 which activates the GAP domain of PlexinA1 [99, 
100]. Collapsus induced by localized addition of Sema3A 
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involves RhoA activation and retrograde waves of active 
Cdc42 [101] showing disorganized cell polarity which 
could be potentially linked to Ras/PI3K pathway inhibi-
tion. Sema3A is also responsible of decreased activity of 
PKA and reduced phosphorylation of its targets GSK3β 
and LKB1 [102].

The roles of Semaphorins on oligodendrocyte lineage 
and its relevance in the context of multiple sclerosis has 
been well-documented [103, 104].

Sema3A expression has been found in MS lesions as 
well as EAE and cuprizone experimental demyelination 
models [105–107]. Sema 3A has been originally identified 
as a repulsive cue for OPCs during optic nerve development 
[108, 109]. Sema3A exerts its inhibitory action on oligo-
dendrocytes in multiple ways. Sema3A inhibits process 
extension [110], migration [105] and also oligodendrocyte 
differentiation in vitro resulting in remyelination impairing 
when sema3A is infused in demyelinating lesions [111]. 
Loss of function of Sema3A receptor Nrp1 rescues OPC 
recruitments into the demyelinating lesion [112]

NOGO and myelin associated inhibitors

Neurite outgrowth inhibitor (Nogo-A), myelin-associated 
glycoprotein (MAG) and oligodendrocytes myelin glycopro-
tein (Omgp) are myelin-associated inhibitors (MAIs) largely 
described for their inhibitory function on neurite extension 
in neurons. MAIs are expressed in oligodendrocytes and 
accumulate in demyelinated plaques exhibiting oligoden-
drocytes debris. MAIs inhibit neurite outgrowth by interac-
tion with Nogo receptor 1 (NgR1), a GPI-anchored recep-
tor activating RhoA pathway. Since NgR1 has no catalytic 
domain, it associates with LINGO1 [113], AMIGO3 [114] 
or some of the tumor necrosis factor super family receptors 
(TNFSFR): p75NTR or TROY to trigger signalling [113, 115, 
116]. These receptors assemble into a signalling platform in 
which LINGO-1 in association with WNK1 [117] facilitates 
the binding of Rho-GDiα to p75 or TROY, leading to the 
release of RhoA-GDP [118, 119]. RhoA-GDP will then be 
converted into RhoA-GTP by Rho-GEFs (Guanine nucleo-
tide Exchange Factors) to activate RhoA [118]. Interestingly, 
LINGO-1 homodimerization similarly leads to RhoA activa-
tion [120, 121]. LINGO-1 also reduces EGFR phosphoryla-
tion by a direct association downregulating MAPK and PI3K 
pathways [121, 122]. Another study reports that the direct 
binding of Lingo-1 to ErbB2 blocks its translocation in lipid 
rafts thereby inhibiting OPC differentiation [123]. TROY has 
been reported to activate cJunk and PKCα phosphorylation in 
OPC [124] but the precise mechanism remains unclear.

Netrin/DCC/UNC5

Earliest description of unc-6 (ortholog of netrin-1) in C. ele-
gans development suggested its duality, since it performed 
repulsive effect on axons extending dorsally and attraction 
on axons extending ventrally [125]. This relies on receptor 
complexes transmitting netrin-1 signal: homodimers of DCC 
induce an attraction response, whereas heterodimers DCC/
UNC5 induce repulsion [126]. Membrane receptor level, 
secondary messengers such as PKCα [127, 128] or ligand 
concentration can affect this response. This later parameter 
appeared in netrin-1 gradient where lower concentrations are 
attractive and higher repulsive [129]. This could be explained 
by the higher affinity of netrin-1 for DCC homodimer com-
pared to DCC/UNC5 heterodimer [126] which would, there-
fore, bind repulsive heterodimer only at highest concentra-
tions. Intracellular signalling of both receptors relies on 
similar actors like SFK and Rho GEFs. DCC homodimer 
drives to Rac1 activation [130] whereas DCC/UNC5 heter-
odimer drives to RhoA activation [131] (For extensive review 
on netrin-1 signalling, see [132]). This regulation of RhoA has 
been shown to be mediated by a Rho GEF in C. elegans [133].

In oligodendrocyte lineage, netrin-1 acts similarly and dis-
plays a chemorepulsive effect on OPCs mediated by RhoA 

Fig. 3   Signalling pathways affected by inhibitors of remyelination. 
Rac1/RhoA balance is commonly found altered by all inhibitors of 
remyelination to the benefit of RhoA. MAIs induce sequestration of 
Rho-GDI by p75 or TROY, releasing activable RhoA-GDP. Ephrin/
Eph association as well as DCC/UNC activation by netrin-1 acti-
vates RhoA through RhoGEF. Reading of Sema3 effect on RhoGT-
Pases is complexified by the kinetic of its receptor activation relying 
on an initial stimulation of Rac1 to subsequently activate its RasGAP 
domain. However downstream signalling unambiguously favours 
RhoA signalling. Indeed, PlexinA1 inhibits Ras activity and simulta-
neously removes RhoA inhibiting activity of p190A through removal 
of PKA dependent inhibition of GSK3β. Arrows show activation and 
truncated red arrows show inhibition. PI3K-Akt pathway is shown in 
orange boxes, MAPK pathway in blue boxes and GSK3β/β-catenin in 
purple boxes. Elements in favour of Rac activity are shown in green 
and elements in favour of RhoA activity in red. Crosses show inhibi-
tory effect of inhibitors of remyelination on signalling. Signalling 
pathways presented have been deciphered in neurons and/or oligoden-
drocytes
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activation and its downstream effector ROCK. Interestingly, 
netrin seems later necessary for differentiated oligodendro-
cytes branching [134, 135]. This remyelinating effect relies 
in fact on Fyn recruitment to DCC receptor resulting in RhoA 
inhibition [136]. Presence of Netrin in MS sample is attested 
and could regulate OPC recruitment to the lesions [137].

Slit/Robo

Studies on Drosophila embryo revealed that binding of Slit to 
transmembrane receptor Robo is a chemorepulsive cue stop-
ping midline crossing of the CNS [138, 139]. Slit could dis-
play its action by inducing molecular tension in Robo allowed 
by ECM-immobilization of Slit [140]. This leads to exposure 
of metalloproteinase cleavage site and ectodomain shedding 
[141]. This cleavage is required for recruitment of downstream 
signalling molecules [142]. Slit-Robo signalling involves 
GSK3β/β-catenin pathways and Rho GTPases. Binding of 
Slit2 induces the binding of the PI3K subunit p85 and blocks 
Akt activation. As a consequence, GSK3-β inhibition by 
Akt is released and β-catenin translocation is blocked [143]. 
Slit-Robo-GTPase activating proteins (srGAPs) inhibit Rho-
GTPases like srGAP2 which inhibits Rac1 [144] (for review: 
[145]). Interestingly, Slit/Robo pathway can cross react with 
the other inhibitory pathways. Indeed, SlitC cleaved fragment 
can interact with PlexinA1 and induces growth cone collapse 
[146]. In the presence of Slit, Robo1 can silence Netrin/DCC 
attraction signalling [147]. On the contrary, Robo3 which has 
lost its ability to bind Slit during evolution, collaborate with 
DCC for Netrin-1 attraction signalling [148].

Slit2 has been involved in the dispersal of OPCs. Slit2 
binding with Robo1 induces Fyn recruitment and inactiva-
tion of Fyn as well as RhoA activation [149].

Ephrin/Eph

Ephrin/Eph signalling is involved in direct cell interactions 
signalling and regulates axon guidance [150]. Ephrin and Eph 
receptors are both membrane-anchored and from their interac-
tion results a bi-directional signalling with a forward signal-
ling relying on Eph tyrosine phosphorylation and a reverse 
signalling in ephrin expressing cells. EphrinA binding to 
EphA4 triggers the RhoA GEF ephexin activation in neurons 
[151] or Vsm-RhoGEF in vascular smooth cells [152].

Several ephrin and Eph have been found in MS lesion 
samples [153]. OPC express ephrinB2 and are repealed by 
EphB2 [154].Ephrin-A1 interaction with OPC EphA4 acti-
vates RhoA/ROCK signalling and causes inhibition of oligo-
dendrocyte process extension [155] probably via a RhoGEF. 
EphrinB3 found in MS lesion is also responsible for RhoA 
activation in OPCs probably via EphA4 binding, and its 
antibody-mediated neutralization favours remyelination in 
an experiment model [156].

 Targeting the inhibitory signals to promote 
remyelination

Few therapeutic approaches are attacking the problem of 
myelin repair (Fig. 4). The most promising ones are the use 
of miconazole [157], MD1003 [158] a highly concentrated 
oral formulation of biotin (also known as Vitamin H or Vita-
min B7), the retinoid X receptor Gamma [159], Clemastine 
fumarate [160] or Sobetirome [161]. The molecules are 
acting by favouring the differentiation of OPC but do not 
address the inhibitory molecular barrier. As described above, 
one common feature of the inhibitory/repulsive molecules 
signalling overexpressed in MS lesions relies on RhoA acti-
vation. This convergence in the signalling pathway mirrors 
what is seen in CNS nerve lesions where the glial scar being 
formed upon lesion is also exhibiting a variety of inhibitory 
factors [162] including ECM components (CSPGs, Tenas-
cin or NG2), myelin-derived growth inhibitors NOGO, 
MAG, OMgp, and other membrane bound or secreted repul-
sive cues (Semaphorins, Ephrins). In this situation, many 
therapeutic options have been developed to antagonize the 
inhibitory factors and favour neuron-intrinsic regeneration 
capability to restore axon regrowth [163]. The use of small 
molecules, antibodies or peptides indeed showed significant 
improvement of axon regrowth and in some cases retarget-
ing with improved functional recovery [164]. Strikingly, the 
inhibition of one single inhibitory factor is commonly suf-
ficient to circumvent the deficit of growth in preclinical stud-
ies but it so far poorly translated into clear benefits in clini-
cal studies. However, the beneficial effect obtained relies on 
resetting of the growth capacity by direct or indirect modula-
tion of axon growth-associated signalling pathways. By anal-
ogy, it appears interesting in the context of demyelination 
diseases to modulate the response of OPCs to environmental 
inhibitory signals in order to promote remyelination. The 
promotion of pro-migratory/pro-differentiating factors by 
the selective blockade of inhibitory signals should allow a 
reinforcement of the intrinsic myelin repair mechanism.

To test this strategy, studies have been conducted with 
anti-Nogo-A antibody [165] up to clinical phases. On the 
same line, the antagonism of the Nogo-Receptor subunit 
-Lingo1 favouring MAPK and glucocorticoid receptors is 
showing remyelination capability with a quite good tolerance 
in human [166]. An anti-SEMA4D antibody (VX15/2503) is 
currently being investigated [167] to counteract SEMA4D 
inhibitory effects on remyelination. More recently, an experi-
mental therapeutic approach was designed to block Sema3A 
inhibitory signalling by inhibiting its Plexin-A1 signalling 
receptor [105]. This approach is based on the use of a peptide 
targeting the transmembrane domain of Plexin-A1 (MTP-
PlexA1) that disrupts the dimerization necessary to trigger 
Sema3A signalling pathway [168]. This strategy of inhibit-
ing dimerization of the Plexin-A1 receptor has already been 
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used for the inhibition of glioblastoma progression in PDX 
models [168] and is a validated approach for other receptors 
such as NRP1 [169–171] or ErbB2 [172]. The choice to tar-
get Plexin-A1 is further strengthened by the demonstration 
of overexpression in the oligodendrocytes of MS patients. 
This increase is concomitant with transient re-expression 
of Sema3A in demyelinated regions. The administration of 
MTP-PlexA1 peptide showed a positive effect on remyelina-
tion which results in a restoration of myelin sheaths and the 
disappearance of locomotor disorders in the cuprizone but 
also in the EAE demyelinating in vivo models. The observed 
effects are due to a disruption of the dimerization of NRP1 
and Plexin-A1 which counters the anti-migratory and anti-
differentiation effect of Sema3A as shown by in vitro and 
in vivo approaches using in particular the proximity ligation 
assay (PLA). The therapeutic benefit observed in mice does 
not appear to be related to modulation of inflammation but 
to a direct effect on repair capacity.

Thus, it would seem that alteration of the balance between 
remyelination promoter and inhibitor signals may offer 
an interesting avenue for the development of what could 
become, in combination with anti-inflammatory drugs, 
the beginning of curative therapeutic approaches for MS. 
However, the exact therapeutic window of anti-inhibitory 

molecules has to be correctly defined because RhoA activ-
ity appears involved in final steps of remyelination. Indeed, 
RhoA GEF Vav3 knockdown mice display impaired remy-
elination in lysolecithin and cuprizone demyelination mod-
els and produce thinner myelin sheaths [173]. This can be 
attributed to the necessary fine tuning of actin cytoskeleton 
during myelination or differentiation program regulation 
as shown in Schwann cells where RhoA allows differentia-
tion by inhibiting JNK pathway [174]. Generally, it appears 
that signalling pathways promoted by growth factors and 
chemokines like Ras, PI3K and Rho GTPases are inversely 
regulated by repulsive molecules. These inhibitory mole-
cules can, therefore, modulate signalling pathways induced 
around the lesion and contribute to behavioural transitions. 
After recruitment of new OPCs thanks to migration and 
proliferation, cells obviously need a dramatical change of 
signalling pathways to induce differentiation and produce 
the myelin sheaths. Repulsive molecules could play a role in 
this final step. However, we can argue that their pathological 
secretion in demyelinating pathologies reach a too high level 
and impairs all steps required for proper remyelination. The 
next challenge will be to demonstrate the clinical benefit of 
counteracting the inhibitory molecular barriers to promote 
remyelination.

Fig. 4   Therapeutic strategies to promote remyelination. The left panel 
shows therapeutic strategies to activate OPC differentiation. MD1003 
increases fatty acid synthesis trough acetyl CoA carboxylase activa-
tion. Miconazole drives ERK phosphorylation. 9-Cis retinoic acid 
and Sobetirome act on nuclear receptor Retinoic X receptor gamma 
and Thyroid hormone receptor, respectively. The right panel illus-
trates alternative strategies blocking inhibitory signals. Clemastine 

drives remyelination by antagonising muscarinic receptor activa-
tion. Monoclonal antibodies directed against Nogo-A or the recep-
tor LINGO-1 cancel the inhibitory signalling. A polyclonal antibody 
directed against ephrinB3 prevents its association with EphA4. MTP-
PlexA1 promotes both OPC differentiation and migration by blocking 
Sema3A-induced NRP1/Plexin-A1 dimerization
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Box 1: Negative loop between Rac 
and RhoA GTPases

Studies addressing specifically cell signalling in oligo-
dendrocytes are still sparse. However, we can hypoth-
esize that ubiquitous intrinsic regulation of RhoGTPases 
applies in oligodendrocytes. Cytoskeleton dynamics are 
under the control of RhoGTPases which cycle between 
an inactive GDP-bound form and an active GTP-bound 
form. Their activity is tightly regulated by the coordinated 
action of regulators: guanine nucleotide exchange factors 
(GEFs) improve GTP loading, GTPase-activating pro-
teins (GAPs) promote GTPase inactivation by enhancing 
GTP hydrolysis and GDIs inhibit RhoGTPases by seques-
tering them in the cytoplasm [175]. Rac promotes actin 
polymerization at migration front while RhoA ensures 
contractility of actomyosin predominantly through its 
effector Rho-associated protein kinase (ROCK). The bal-
ance between these antagonistic activities is critical for 
coordination of cell motility.

Rac negatively regulates RhoA through the RhoGAP 
p190A. Active Rac induces ROS production which inacti-
vates the tyrosine phosphatase LMW-PTP through direct 
oxidation of cysteines in the catalytic pocket, relieving 
the inhibition of p190 [176]. P190A GAP specific-
ity for RhoA is enhanced by PKCα which dissociates 
p190A from plasma membrane acidic phospholipids and 
blocks its RacGAP activity [177]. Subcellular targeting 
of p190A controls its spatial regulation of RhoA [178]. 
Rnd1 [179], Src, FAK, p120-catenin [180] and cortactin 
[181] allow targeting of p190A to actin protrusions. The 
polarity complex proteins also contribute to inhibit RhoA 
at the migration front via Par6/aPKC dependent activa-
tion of p190A [182].

RhoA negatively regulates Rac through ROCK. 
Tiam1, a main Rac GEF, is recruited by the PAR complex 
proteins Par3 and Par6, resulting in Rac activation at the 
migration front [183, 184]. ROCK disrupts Par complex 
by phosphorylating Par3 and impairs Rac activation in 
the rear of the cell [185]. Other effects of ROCK have 
been found such as dissociation of the Rac GEF β-PIX 
from integrin-based adhesions [186] and Rac GAPs acti-
vation [187, 188].

It should be noted that interactions between Rac and 
Rho are more complex since another effector of RhoA, 
the formin mDia1, antagonizes ROCK effect by stimulat-
ing Rac through Src [189] and could drive RhoA activity 
found in initial events of membrane ruffling [190].

Box 2: The concept of membrane domain 
targeting peptides

Most of the current drugs target extra- or intracellular 
domains of membrane receptors to modulate downstream 
signalling. Alternatively, protein–protein interaction 
(PPI) inhibitors are conceived to alter the dimerization 
/oligomerization of receptors to inhibit their activity 
[191]. Membrane domain targeting peptides (MTP) are 
indeed a new class of small interfering peptides mimick-
ing the transmembrane domains of receptors to act as 
decoy acting by direct competitive binding with the target 
domain leading to abnormal oligomerization of the recep-
tor [192]. The consequence is a partial or total shutdown 
of downstream signals blocking the subsequent biological 
functions. This approach turns out to be a potent thera-
peutic strategy in the context of brain tumor or breast 
cancer and also recently finds an application in the con-
text of Multiple Sclerosis. More than 20 years’ research 
[193, 194] was needed to solve issues related to the high 
insolubility of MTPs and to demonstrate the specificity 
of the approach which is nowadays applicable to GPCR 
receptors [195–198].

MTPs are 20–30 amino acids long peptides.
MTPs are often containing a GxxxG motif or GAS 

motif defining the dimerization interface.
MTPs activity is in the range of 0.01–0.1 µM in vitro 

and µg/kg in vivo.
MTPs exhibit long-lasting biodistribution profiles 

markedly different from soluble peptides.
MTPs exhibit good tolerance profiles compatible with 

chronic administrations.
The strength of the strategy is the mechanism of 

action inducing a prolonged inhibition of receptors 
which was seen with a single dose up to 48 h in vitro and 
72 h in vivo. Initially described as antagonist peptides 
blocking the dimerization interfaces, studies are now 
demonstrating a more profound impact by inducing con-
formational changes of extracellular domains of target 
receptors. The interference of the dimerization capacity is 
providing a way to attack both the activation of the recep-
tor but also potential compensatory or redundant path-
ways when neutralizing the heterodimerization capability 
of receptors. None of these MTPs reached so far a clinical 
validation. A global effort is needed to promote the use of 
MTPs which should not stay at the level of bench tools.
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