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Abstract
In the past decade, significant progress has been made in understanding the role of protein tyrosine phosphatase as a positive 
regulator of tumor progression. In this scenario, our group was one of the first to report the involvement of the low molecular 
weight protein tyrosine phosphatase (LMWPTP or ACP1) in the process of resistance and migration of tumor cells. Later, we 
and others demonstrated a positive correlation between the amount of this enzyme in human tumors and the poor prognosis. 
With this information in mind, we asked if LMWPTP contribution to metastasis, would it have an action beyond the primary 
tumor site. We know that the amount of this enzyme in the tumor cell correlates positively with the ability of cancer cells 
to interact with platelets, an indication that this enzyme is also important for the survival of these cells in the bloodstream. 
Here, we discuss several molecular aspects that support the idea of LMWPTP as a signaling hub of cancer hallmarks. Chemi-
cal and genetic modulation of LMWPTP proved to shut down signaling pathways associated with cancer aggressiveness. 
Therefore, advances in the development of LMWPTP inhibitors have great applicability in human diseases such as cancer.
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Introduction

Eukaryotic cells respond to various stimuli in the microenvi-
ronment by modulating signal transduction pathways, which 
is dependent on post-translational protein modification. 
Among the different post-translation modifications, phos-
phorylation/dephosphorylation is the main form of rapid and 
reversible covalent modulation of proteins [1, 2]. Phospho-
rylation of a protein can create a new recognition site for 
protein–protein interactions, control protein stability, and, 
more importantly, can regulate enzyme/protein activity and 
localization. Thus, the phosphorylation of tyrosine, serine, 
and threonine residues, mediated by the balance between 

the action of protein kinases (PKs) and protein phosphatases 
(PPs) is recognized as a crucial factor in the generation and 
regulation of signals necessary for survival, proliferation, 
cell differentiation, and death [2]. In this context, abnormal 
changes in the activity of these enzymes can provide serious 
consequences that include diabetes, obesity, inflammation, 
immunological, neurodegenerative diseases, and cancers 
[2–6].

Based on the function, structure, sequence, specificity, 
sensitivity to activators, and inhibitors, the phosphatases 
are generally classified into three families: serine/threonine 
phosphatase, tyrosine phosphatase, and dual-specificity 
phosphatases. In the human genome, 107 genes from tyros-
ine phosphatase family have been identified [3, 7] which, 
based on function, structure, and amino acid sequence on 
the catalytic domain, can be classified into four groups 
(I–IV). Low molecular weight protein tyrosine phosphatase 
(LMWPTP) falls into class II (18 kDa), also known as 
ACP1. In humans, this enzyme is codified by the ACP1 
single gene copy on chromosome 2, whose transcription 
is derived from four different mRNA by splicings. From 
four LMWPTP isoforms, the isoform 1 and isoform 2 were 
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described to be catalytically active and identically functional 
[8]. The isoform 1 was described to play a major role in can-
cer aggressiveness and chemoresistance [4, 9, 10].

The cellular function of the LMWPTP is the dephospho-
rylation/regulation of many tyrosine kinase receptors and 
other molecules involved in signal transduction [11]. The 
normal function of LMWPTP has been associated with (i) 
cell motility and spreading coordinated by FAK dephospho-
rylation on several Tyr sites, in mouse fibroblast model; (ii) 
immune response modulation by dephosphorylation of Zap-
70 Tyr292 (inhibitory site), a member of TCR signaling; (iii) 
balance between tight modulation of cell–cell contact by 
co-localization with β-catenin coordinating cell–cell contact, 
and inhibition of cell–cell adhesion and clustering formation 
by negative modulation of ICAM-1; (iv) cytoskeletal remod-
eling by interaction with the EphrinA2 receptor (EphA2) and 
modulating of Ras-MAPK; (v) decrease of cell proliferation 
by negative regulation targeting Janus kinase (JAK)-2, sig-
nal transducer and activator of transcription (STAT) family 
members, such STAT-2, -3 and -5, platelet-derived growth 
factor receptor (PDGFR) and fibroblast growth factor recep-
tor (FGFR)—[10, 12–23]. Under normal cellular aspects, 
the function of LMWPTP has been extensively character-
ized in osteoclasts and osteoblasts cell lines. LMWPTP 
contribution to bone metabolism was first associated with 
osteoblast differentiation by modulating Src phosphoryla-
tion status. Indeed, the LMWPTP expression decreased in 
time-dependent osteoblastic differentiation. The same pat-
tern of activity was observed in GSH profiles, suggesting 
the crosstalk between redox status and LMWPTP activity 
[24, 25]. Besides that, LMWPTP activity also coordinates 
the adhesion process by transient dephosphorylation of FAK 
Tyr397 and Src Tyr416, both activators sites, in osteoblasts 
[26]. Also, FAK plays a major role in bone integrity as its 
activity was described to be deeply modulated by secreted 
phosphoprotein 1 (SPP1)-induced LMWPTP expression 
[27]. Further, keratinocytes cells under hyperosmotic con-
ditions, which provoke cellular architecture modifications, 
have suggested that LMWPTP selectively targets Src Tyr416 
dephosphorylation, instead of Tyr527 (inhibitory site). This 
mechanism might be associated with LMWPTP phospho-
rylation on Tyr132 increasing the selectivity to substrates 
(for LMWPTP modulation, see [5, 28, 29]).

Despite being important in normal processes, LMWPTP 
has been described to play a role in metabolic diseases, 
such as obesity, diabetes, and cancer. In metabolic dis-
eases, higher expression of LMWPTP was associated with 
a protective effect on hypertriglyceridemia [30]. Indeed, 
the protein tyrosine phosphatases LMWPTP and PTP1B 
might coordinate lipid overload, and the LMWPTP inhibi-
tion provoked lipid-induced apoptosis in the liver [31]. In 
diabetes, LMWPTP overexpression led to insulin resistance 
in obese mouse models [32]. Also, LMWPTP knockdown 

in mice was associated with cardiomyopathy prevention, as 
decreasing cardiac remodeling, fibrosis, and hypertrophy 
[33]. In the cancer field, we focused on the recent findings 
of LMWPTP’s major role in cancer progression.

LMWPTP as a signaling hub in cancer

Phosphatases have been considered to be tumor suppressors; 
however, some of them emerged as having a role in initiating 
and progression of various types of cancers [34]. LMWPTP 
influences the phosphorylation of mediators of signaling 
pathways involved in cancer and, therefore, is postulated to 
be a tumor-promoting enzyme. Studies have shown that the 
increase in the expression of LMWPTP is enough to induce 
cell transformation and that the activity of this enzyme is 
strongly correlated with the development and progression of 
tumors in animal models and patients [10, 35]. Accordingly, 
analyses of human tumors have revealed a high prevalence 
of the dephosphorylated and oncogenic form of the EphA2 
receptor, which has been associated with increased expres-
sion of LMWPTP [16, 36].

Malentacchi and colleagues (2005) evaluated the 
LMWPTP expression levels in samples of breast, colon, 
lung, and neuroblastoma tumors. The results showed an 
increase in the expression of LMWPTP in most of the ana-
lyzed samples, also indicating the existence of a significant 
positive correlation between the levels of expression of 
LMWPTP with the main clinical and pathological charac-
teristics common to each type of cancer. Additionally, the 
increase in the expression of LMWPTP proved to be indica-
tive of a less favorable prognosis, constituting a marker of 
tumor aggressiveness [5, 9, 10, 37–39]. Therefore, several 
intracellular processes are associated with LMWPTP: chem-
oresistance, energetic metabolism modulation, antioxidant 
defense, migration, pre-metastatic window partner, and con-
tribution outside cellular signaling.

LMWPTP and resistance to chemotherapeutics

Acquisition of chemotherapeutic resistance is one of the 
main reasons for the low efficiency of cancer therapy, which 
can be due to an individual’s genetic differences, called 
intrinsic and acquired resistance. Acquired resistance occurs 
by different mechanisms, such as multidrug resistance, cell 
death inhibition, drug metabolism and DNA repair optimiza-
tion, epigenetic and drug targets alteration, and gene amplifi-
cation. We have demonstrated that in chemoresistant human 
chronic myeloid leukemia cells (Lucena-1), the LMWPTP 
is much more active (around 20-fold) than in their sensitive 
counterpart (K562)—[4]. The higher activity and expres-
sion of LMWPTP is related to a multidrug resistance profile 
in chronic myeloid leukemia (CML) including supporting 
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Src kinase and Bcr-Abl activation. The Src kinase family 
is well known to be upregulated in several cancers. Src was 
the first proto-oncogene described in animal cells. When 
it is activated, Src positively regulates survival and prolif-
eration. Also, Src is associated with LMWPTP regulation 
by Tyr131 and Tyr132 phosphorylation [40]. In CML, the 
LMWPTP knockdown decreased Src activation, which was 
associated with sensitizing drug-resistant leukemia cells. 
LMWPTP and Src down-regulation enhanced the sensitivity 
through vincristine and imatinib (the last one is the standard 
treatment for chronic myeloid leukemia). Importantly, the 
knockdown of LMWPTP in Lucena-1 cells culminated in 
the inactivation of Bcr-Abl, which is well known to have a 
relevant contribution in leukemogenesis [4]. The inhibition 
of LMWPTP by Morin was also associated to chemothera-
peutical sensitizer (see more details below) [41, 42].

In solid tumors, LMWPTP was also described to play 
a major role in tumorigenesis. The LMWPTP knockdown 
in colorectal cancer cells (HCT116 and Caco-2) improved 
the sensitivity to chemotherapeutics effect, especially in 
Caco-2, which presents P-Glycoprotein expression, a mul-
tidrug resistance protein 1 (MDR1)—[9]. Furthermore, the 
LMWPTP inhibition improves chemotherapeutical sensitiv-
ity (for more details, see below). All these studies showed 
the high challenge faced in translational medicine to over-
come the chemoresistance led by, in part, due to LMWPTP 
overexpression.

LMWPTP and mitochondrial function—Warburg 
effect

Otto Warburg was the first to show that tumor cells sub-
stantially metabolize glucose to lactate, even with the 
availability of oxygen. Under normal conditions, glu-
cose is metabolized to pyruvate by a cascade of enzy-
matic reactions in the glycolytic pathway, which is sub-
sequently oxidized by the Krebs cycle and respiratory 
chain, generating  CO2,  H2O and 32 or 34 molecules of 
ATP per glucose molecule, while in glycolysis, 2 ATPs/
glucose is produced. This change in glucose metabolism 
depends on the increased transcription of GLUTs, gly-
colytic enzymes and oncogenes, and increased demand 
for mitochondrial metabolism for biosynthetic processes 
[43]. In this scenario, we found out that leukemia cells 
displaying the high amount of LMWPTP tend to have a 
predominance of Warburg effect, due to a down-regula-
tion of mitochondrial proteins: PDH1, SDHA, and VDAC 
and upregulation of GLUT-1 and lactate dehydrogenase, 
and in turn, improving lactate production [44]. However, 
Lori and collaborators (2018) have reported the opposite 
effect of LMWPTP in melanoma metabolic reprogram-
ming. LMWPTP knockdown enhanced glycolytic flux and 

inhibited the mitochondrial metabolism, and these authors 
claimed that it was in part, due to promotions of PKM2 
translocation from cytosol to nucleus [45].

LMWPTP and antioxidant defense—redox 
modulation

In this case, under glycolytic activation for energy supply, 
the cancer cell decreases mitochondrial metabolism, which 
also contributes to lower ROS production. However, the 
predominance of glycolytic metabolism also contributes 
to antioxidant machinery to neutralize the reactive oxygen 
species (ROS). Cancer cell displays different strategies to 
decrease the intracellular ROS, such as pentose pathway 
activation, NADPH, and glutathione peroxidase recruiting, 
autophagy, and reductases activation [46]. We have found 
that in resistant chronic myeloid leukemia cells, LMWPTP 
provides antioxidant advantages via promoting the War-
burg effect and expression of SOD and catalase, which 
in turn, under oxidative stress allows cancer cells to be 
able to provide a quick defensive response [47]. There-
fore, LMWPTP confers survival and growth advantage to 
tumor cells.

Metastasis promotion

Metastasis is the cause of about 90% of deaths associated 
with cancer and the mechanisms that govern this process 
is  still poorly understood. During metastatic spread, a 
cell of a primary tumor performs the following sequence 
of steps: localized invasion, intravasation, survival in the 
bloodstream, extravasation, formation of micrometastasis, 
and colonization [48]. During this process, several environ-
mental challenges and stimuli impact the metastatic potential 
of tumor cells [49, 50]. As was discussed before, LMWPTP 
contributes directly to primary tumor progression by positive 
modulation of chemoresistance phenotype, lower mitochon-
drial function leading to lower ROS production and effi-
ciency ROS neutralization. On the other hand, the contribu-
tion of LMWPTP to the pre-metastatic window is poorly 
understood. However, the importance of the LMWPTP in 
cancer progression has also been reported in colorectal 
cancer. It was demonstrated that the LMWPTP overexpres-
sion in colorectal cancer correlated to higher potential to 
develop liver metastasis. In this case, the higher expression 
of LMWPTP in colorectal cancer induced a migratory phe-
notype, suggesting the contribution of this enzyme in metas-
tasis in cell line models and clinical samples. Importantly, 
it was also demonstrated that the LMWPTP knockdown 
decreases colorectal cancer cell survival, and sensitizes them 
to chemotherapy [9].
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Poor outcome

It has also been reported that the overexpression of 
LMWPTP contributes to invasive profile and primary sar-
coma formation in nude mice [36]. In this context, a higher 
amount of LMWPTP (mRNA and protein) was found in 
primary human prostate cancer in comparison to normal 
adjacent tissue. Interestingly, the high level of mRNA of 
LMWPTP was detected in lymph nodes, an indication 
that this phosphatase takes part in the metastasis process 
[10]. In the same study, 147 patients out of 481 with pros-
tate cancer presented higher expression of LMWPTP and 
worse clinical outcomes [10]. Accordingly, the LMWPTP 
has been categorized as a potential biomarker for recur-
rence prediction for prostate cancer [51].

Low molecular weight protein tyrosine 
phosphatase as a druggable target: 
challenges and advances in inhibitor 
development

Since the first reports that linked the dysfunction of PTPs 
with diseases, the search for natural and synthetic inhibitors 
has attracted widespread interest as drug targets [52–54]. 
However, some characteristics of PTPs make them difficult 
for drugs to be designed against them such as:

 i. Consensus sequence in the catalytic site—PTPs have 
the signature motif  CX5R at the catalytic site, which 
forms the P-loop (phosphate-binding loop) [55];

 ii. Presence of cysteine residue at the catalytic site—
the catalytic mechanism is identical for the major-
ity of PTP members, in which cysteine thiol group 
takes part in the nucleophilic attack, making the PTP 
superfamily sensitive to oxidation. Therefore, com-
pounds that either act as an oxidant or through ROS 
generation, inactivate the majority of PTPs due to 
their inability to form a cysteinyl-phosphate interme-
diate at the first step of the catalysis [28, 56–58]. In 
addition, LMWPTP has two cysteines at the catalytic 
site (Cys12 and Cys17). Due to this peculiar feature, 
unique among the PTP family, LMWPTP can form 
S–S intramolecular bonds that protect the catalytic 
Cys12 from irreversible oxidation [59, 60].

 iii. In general, most competitive inhibitors have a nega-
tive charge to favor the electrostatic interaction with 
a positive-charged environment of the PTP catalytic 
site. However, this chemical characteristic of inhibi-
tors is responsible for low cell permeability and bio-
availability [61].

In the literature, there are several examples of natural 
compounds (from plants, algae, and microorganisms) that 
can inhibit PTPs [62]. Figure 1 shows the chemical structure 
of some of them, which will be discussed in this review. 
Specifically, in the case of LMWPTP, we demonstrated that 
morin (Fig. 1—cpd A) and ferruginol (Fig. 1—cpd B), at 
µM concentration range inhibit this enzyme [59, 63]. How-
ever, these compounds modulate a broad spectrum of mac-
romolecules including glucose metabolism-related enzymes 
and DNA repair enzymes, in the case of morin, and inflam-
mation signaling pathway, and apoptotic proteins in the case 
of ferruginol [64–69]—for anti-tumor activity, see below.

Therefore, for many years, the bottleneck has been 
obtaining specific inhibitors for LMWPTP. This sce-
nario has changed with studies that described the sur-
face topology by crystallization of different PTPs. For 
instance, Ottanà and collaborators (2012) synthesized 
4-[(5-arylidene-2-arylimino-4-oxo-3-thiazolidinyl)methyl]
benzoic acid derivatives that displayed  IC50 values at 
sub-µM concentration and acts as competitive and revers-
ible inhibitors of LMWPTP. These authors also validated 
the inhibitory property of these compounds in differenti-
ated mouse C2C12 myotubes. 4-[(5-arylidene-2-arylim-
ino-4-oxo-3-thiazolidinyl)methyl]benzoic acid derivatives 
did not affect skeletal muscle cells (C2C12) viability, and 
importantly, the inhibition of LMWPTP was confirmed 
via insulin receptor (IR) phosphorylation tracking, one of 
substrates of this phosphatase. Cells treated with the most 
potent inhibitor (4-{[5-(4-Benzyloxybenzylidene)-2-(4-
trifluoromethylphenylimino)-4-oxo-3-thiazolidinyl]methyl}
benzoic acid—Fig. 1—cpd C) displayed a higher level of 
IR phosphorylated one of the most well-described substrates 
[70].

A study performed by Ottanà and collaborators (2014), 
synthesized and validated in vitro a new series of derivative 
from 4-[(5-arylidene-4-oxo-2-phenylimino/oxothiazolidin-
3-yl)methyl] benzoic acids with the ability to inhibit tyrosine 
phosphatases such as PTP1B, LMWPTP, and T-cell protein 
tyrosine phosphatase (TCPTP) [71]. The authors provided 
many optimizations in the central structure of the above-
mentioned benzoic acid and docking studies, and they 
found that many compounds have in vitro activity promot-
ing insulin receptor phosphorylation in mouse C2C12 skel-
etal muscle cells. The authors claimed a relevant activity of 
the compounds through non-selective inhibition of PTP1B, 
TCPTP, and LMWPTP, despite a general preference for 
human PTP1B. In particular, most compounds selectively 
inhibited isoform 1 of human LMWPTP opening possibili-
ties to rationale new optimized compounds with specific 
activity against LMWPTP.

In recent years, the major contributions in the synthetic 
field of inhibitors targeting LMWPTP came from groups 
led by Professors Zhang and Bottini. Zhang’s group defined 
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a pipeline from an identification of cefsulodin fragment 
(SulfoPhenyl Acetic Amide—SPAA) that acts as phospho-
tyrosine mimetic, and through detailed mapping of this 
fragment-LMWPTP interaction, it was possible to capture 
interactions outside the catalytic site. This finding led them 
to invest in the SPAA-based synthesis using amines with 

variable size, charge, and lipophilicity [72]. The products 
were characterized by kinetic studies, and a set of LMWPTP 
inhibitors with much higher selectivity for this phosphatase 
over a panel of PTP family members were identified. From 
the inhibitor set, compound [(1,3-benzothiazol-2-yl)carba-
moyl](phenyl)methanesulfonic acid (Fig. 1—cpd D) was 

Fig. 1  Chemical structure of LMWPTP inhibitors. Cpd A morin. 
Cpd B ferruginol. Cpd C 4-{[5-(4-Benzyloxybenzylidene)-2-(4-
trifluoromethylphenylimino)-4-oxo-3-thiazolidinyl]methyl}benzoic 
acid. Cpd D (1,3-benzothiazol-2-yl)carbamoyl](phenyl)methanesul-

fonic acid. Cpd E [(6-nitro-1,3-benzothiazol-2-yl)carbamoyl](phenyl)
methanesulfonic acid. Cpd F (N,N-diethyl-4-(4-((3-(piperidin-1-yl)
propyl)amino)quinolin-2-yl)benzamide. Cpd G Vemurafenib. Cpd H 
3-bromopyruvate
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selected to be used for structure-guided optimization, which 
resulted in compound [(6-nitro-1,3-benzothiazol-2-yl)car-
bamoyl](phenyl)methanesulfonic acid (Fig. 1—cpd E) that 
displayed a Ki value around 1.00 μM [60]. Importantly, the 
inhibitory effect of LMWPTP by Fig. 1—cpd E (at 16 μM 
dosage) was also validated in HepG2 cell line [61]. Based 
on that pipeline, Zhang’s group pioneered reported ligand 
(inhibitor) that induced conformational change in LMWPTP 
made a tremendous difference for the inhibitor selectivity 
and potency.

The Bottini group used another strategy, investing in 
the synthesis of an orthosteric uncompetitive inhibitor of 
human LMWPTP after a high-throughput screening of 
NIH chemical library. Quinoline derivatives were produced 
and their influence in the catalytic mechanism, by acting 
as uncompetitive inhibitors, was proved by different tech-
niques: isothermal titration calorimetry, nuclear magnetic 
resonance spectroscopy, X-ray crystallography, hydroxyl 
radical footprinting, and mutagenesis. In addition to the 
potency of the inhibitors and oral bioavailability, one inhib-
itor (N,N-diethyl-4-(4-((3-(piperidin-1-yl)propyl)amino)
quinolin-2-yl)benzamide—Fig. 1—cpd F) was able to act 
as LMWPTP inhibitor. This proposed compound is capable 
to bind the LMWPTP phospho-cysteine intermediate and 
fully occupy the active site preventing the access of water 
molecule required for the hydrolysis in the final catalysis 
step. The authors claimed an  IC50 values around 0.8 µM 
and performed in vitro and in vivo assays to prove the effi-
cacy of the LMWPTP inhibitor. The treatment of human 
HepG2 hepatocytes with 10 µM of compound cpd F (Fig. 1) 
increased insulin receptor phosphorylation after insulin 
stimulation. In vivo studies showed that cpd F improved 
glucose tolerance and decreased insulin levels of diabetic 
mice without body weight loss. Another set of in vivo exper-
iments revealed that 2 weeks of cpd F treatment increased 
insulin receptor phosphorylation and elevated downstream 
activation of Akt and Erk signaling pathway in the liver [32].

From now on, we present some examples of compounds 
that display an inhibitory effect on LMWPTP (purified or 
recombinant one) and anti-tumor effect.

Morin

The flavonoid morin (Fig. 1—cpd A) presents broad bio-
logic properties (for review, see Caselli, 2016) [68]. As 
an anti-tumor agent, at µM concentration, morin has been 
described to play a different role in cancer cell metabolism: 
(i) the anti-tumor activity is associated to DNA damage pro-
tection and ROS controlling [73]; (ii) apoptosis induction by 
caspase-3 and Bax activation [74]; (iii) inhibition of NFκB 
and Akt pathway [75–77]. Despite the broad mechanism of 
action, morin was able to increase the in vitro chemothera-
peutical sensitivity, including in chemoresistance melanoma, 

prostate cancer, leukemia cell lines by decreasing LMWPTP 
expression [41, 42], the effect observed also in vivo [78]. 
Morin acted as a non-competitive inhibitor of LMWPTP, at 
µM range, and triggered transient degradation of LMWPTP 
through the proteasome-dependent mechanism on the cancer 
cells [42].

Ferruginol

The abietane diterpene ferruginol (Fig. 1—cpd B) displays 
an interesting effect on decreasing of reduced glutathione 
(GSH)/glutathione disulfide (GSSG) ratio, leading to ROS 
production [69, 79]. Also, Ferruginol showed anti-tumor 
activity, at µM concentration range, by inducing apopto-
sis, and inhibiting proliferation and survival signaling of 
melanoma, thyroid cancer, ovary cancer, and prostate can-
cer [58, 69, 80, 81]. The treatment with ferruginol against 
prostate cancer cell (PC3) provoked down-modulation of 
LMWPTP activity and expression, which it was, in part, due 
to a change in redox status [58]. The capacity of ferruginol 
(25 µM) in diminishing the LMWPTP activity indicates the 
potential of this compound in overcoming the aggressiveness 
of prostate cancer [10].

Vemurafenib

Vemurafenib (PLX4032—Fig. 1—cpd G) is an ATP analog, 
which acts as a competitive inhibitor of BRAF kinase and 
is commonly used on melanoma treatment [82]. BRAF pro-
tein belongs to RAF serine–threonine kinase protein family, 
which is upstream of the mitogen-activated protein kinase 
(MAPK) pathway that modulates cell functions such as 
proliferation and survival [83, 84]. Interestingly, although 
developed to target BRAF, recently we reported that vemu-
rafenib, at µM concentration range, was able to diminish the 
level of LMWPTP in colorectal cancer cells. As mentioned 
above, this enzyme has been suggested to be associated with 
colorectal cancer poor prognosis [85].

Pyruvate analog: 3‑bromopyruvate

As for cancer cells, much is known regarding the role of 
kinase activities in platelets, while phosphatases have been 
relatively less well studied. We demonstrated for the first 
time that platelet-containing active LMWPTP enzyme, 
which is modulated by platelet agonists associated with the 
adhesion process, arguably plays a role in their physiological 
activation. In pathological conditions, a higher amount of 
LMWPTP mRNA was detected in platelets from colorectal, 
pancreatic, breast, and hepatobiliary cancer patients [86]. 
In addition, platelets from gastrointestinal cancer patients 
presented higher sensitivity to agonist aggregation; fur-
ther, LMWPTP was identified overexpressed in the same 
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hyper-reactive gastrointestinal cancer patients’ platelets, 
suggesting that the LMWPTP plays a major role in platelet 
hyperaggregability in cancer [87].

Venous thromboembolism event (VTE) is one of the 
most common causes of cancer-related mortality [88]. 
Based on our findings of LMWPTP activity in platelets 
from healthy and cancer patients, we investigated the ability 
of 3-Bromopyruvate (3BP—Fig. 1—cpd H) in modulating 
platelet function, in part, due to LMWPTP inhibition. 3BP 
is an alkylating agent whose proposed chemical mechanism 
is a nucleophilic substitution through the SN2 mechanism 
with a nucleophilic thiol group(s). During the cleavage of 
bromine (leaving group), an alkylating (electrophilic) center 
is exposed to nucleophilic targets, such as –SH groups of 

enzymes [89]. We reported that 3BP also inhibits the 
enzymatic activity of LMWPTP (100 µM), concomitantly 
reduces Src activities in platelets from gastrointestinal can-
cer patients, and in turn, culminating in the lower capacity of 
tumor cell-induced platelet aggregation, using 3BP subtoxic 
concentration in ex vivo model. These findings brought out 
evidence that 3BP might reduce cancer mortality by limiting 
venous thromboembolism (VTE) in patients [87].

Fig. 2  LMWPTP acts as a hub in cancer hallmarks. LMWPTP con-
tributes to intracellular metabolic changes such as promoting the 
Warburg effect by modulating the level of insulin receptor (IR), glyc-
olytic and mitochondrial enzymes, and favoring antioxidant defenses; 
LMWPTP acts as a positive modulator of Src kinase and FAK, pro-
moting cell proliferation and motility; and as a negative modula-

tor of autophagy in CML. LMWPTP also plays a role outside of the 
cancer cells: (a) it is overexpressed in platelets from gastrointestinal 
cancer patients, which supports platelet hyperactivity (a key step of 
hematogenous dissemination of cancer cell), and a high propensity of 
venous thromboembolism events (VTE); (b) it favors metalloprotein-
ases activity, key molecules required for cell migration
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Concluding remarks

Over the past 2 decades of research on protein tyrosine phos-
phatases, the field has achieved great progress in scrutinizing 
the role of these phosphatases in cancer progression. In this 
review, we pointed out different aspects of the importance 
of LMWPTP in cancer biology. This phosphatase takes part 
in a molecular net responsible for providing some capabili-
ties of cancer cells that contribute to the disease complex-
ity: sustaining proliferative signaling, resisting cell death, 
deregulating cellular energetics, avoiding immune destruc-
tion, and activating invasion and metastasis (Fig. 2). Alto-
gether, in our opinion, the rational modulation of LMWPTP 
has great potential to improve the outcome and life quality 
of cancer patients. In this aspect, so far, LMWPTP inhibitors 
developed by the Bottini group that display some desirable 
characteristics, under pharmacological view: specificity, 
stability, and bioavailability appear as excellent candidates 
for improving our understanding about the contribution of 
LMWPTP for cancer biology and open a new avenue for 
therapy.
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