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Abstract
Induction of bone formation by Wnt ligands is inhibited when sclerostin (Scl), an osteocyte-produced antagonist, binds to 
its receptors, the low-density lipoprotein receptor-related proteins 5 or 6 (LRP5/6). Recently, it was shown that enhanced 
inhibition is achieved by Scl binding to the co-receptor LRP4. However, it is not clear if the binding of Scl to LRP4 facili-
tates Scl binding to LRP5/6 or inhibits the Wnt pathway in an LRP5/6-independent manner. Here, using the yeast display 
system, we demonstrate that Scl exhibits a stronger binding affinity for LRP4 than for LRP6. Moreover, we found stronger 
Scl binding to LRP6 in the presence of LRP4. We further show that a Scl mutant (SclN93A), which tightly binds LRP4 but not 
LRP6, does not inhibit the Wnt pathway on its own. We demonstrate that SclN93A competes with Scl for a common binding 
site on LRP4 and antagonizes Scl inhibition of the Wnt signaling pathway in osteoblasts in vitro. Finally, we demonstrate 
that 2 weeks of bi-weekly subcutaneous injections of SclN93A fused to the fragment crystallizable (Fc) domain of immuno-
globulin (SclN93AFc), which retains the antagonistic activity of the mutant, significantly increases bone formation rate and 
enhances trabecular volumetric bone fraction, trabecular number, and bone length in developing mice. Our data show that 
LRP4 serves as an anchor that facilitates Scl–LRP6 binding and that inhibition of the Wnt pathway by Scl depends on its 
prior binding to LRP4. We further provide evidence that compounds that inhibit Scl–LRP4 interactions offer a potential 
strategy to promote anabolic bone functions.
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Introduction

Bone tissue constantly undergoes modeling and remod-
eling, mediated by the coordinated activity of bone-resorb-
ing osteoclasts, bone-building osteoblasts, and regulatory 

osteocytes. In healthy tissue, bone resorption is coupled 
with bone formation to maintain bone homeostasis [1, 2]. 
Unbalanced performance of bone cells leads to diverse bone 
pathologies, including osteoporosis, a common skeletal dis-
order characterized by a decrease in bone mass and bone 
strength, which significantly reduces quality of life and life 
expectancy in a large affected population [3]. A major cel-
lular pathway responsible for sustaining physiological bone 
mass is the canonical Wnt pathway.

Signaling in the Wnt pathway is initiated when cell-
secreted Wnt ligands form complexes with low-density lipo-
protein receptor-related protein (LRP) 5 or 6 (LRP5/6) and 
Frizzled co-receptors. Binding of Wnt ligands to LRP5/6 
triggers a signaling cascade that results in stabilization and 
nuclear translocation of β-catenin protein. In the nucleus, 
β-catenin associates with the DNA-bound T-cell factor/
lymphoid enhancer factor (TCF/LEF) family of transcrip-
tion factors, leading to expression of genes responsible for 
osteoblast differentiation and osteoclast inhibition [4–6].

Cellular and Molecular Life Sciences

 *	 Niv Papo 
	 papo@bgu.ac.il

 *	 Noam Levaot 
	 levaot@bgu.ac.il

1	 Department of Physiology and Cell Biology, Faculty 
of Health Sciences, Ben-Gurion University of the Negev, 
8410501 Beer‑Sheva, Israel

2	 Avram and Stella Goldstein‑Goren Department 
of Biotechnology Engineering and the National Institute 
of Biotechnology in the Negev, Ben-Gurion University 
of the Negev, 8410501 Beer‑Sheva, Israel

3	 Regenerative Medicine and Stem Cell Research Center, 
Ben-Gurion University of the Negev, 8410501 Beer‑Sheva, 
Israel

http://orcid.org/0000-0001-7747-3883
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04127-2&domain=pdf


	 S. Katchkovsky et al.

1 3

113  Page 2 of 12

Reduced signaling activity in the canonical Wnt pathway 
due to mutations affecting its signaling components is asso-
ciated with various alterations in skeletal phenotype. Loss of 
LRP6 function is linked to osteoporosis in humans [7] and 
in mouse models [8, 9], whereas mutations in Wnt1 [10–12] 
and Wnt16 [13–15] are associated with decreased bone min-
eral density (BMD), shortening of long bones, bone fragility, 
and increased fracture risk. Similarly, Wnt3a+/− mice have 
reduced BMD as well as lower trabecular bone volume and 
number [16], and Wnt10a KO mice show trabecular bone 
loss with impaired bone mineralization [17, 18]. Patients 
with loss-of-function mutations in LRP5 suffer from oste-
oporosis pseudoglioma syndrome [19, 20] and idiopathic 
juvenile osteoporosis [21, 22], both of which cause early-
onset severe osteoporosis, reduced BMD, and a tendency to 
fracture. On the other hand, missense gain-of-function muta-
tions in the extracellular domain (ECD) of LRP5 were found 
in individuals with a high bone mass (HBM) phenotype [23, 
24]. Similarly, patients with gain-of-function mutations in 
LRP6 that are homologous to LRP5 HBM variations exhibit 
generalized osteosclerosis, hyperostosis, and resistance to 
fracture [25].

The Wnt pathway is negatively regulated by sclerostin 
(Scl), a glycoprotein secreted mainly by osteocytes [26]. 
Loss of Scl expression leads to an exceptionally HBM phe-
notype, which is observed in two rare monogenic bone dis-
orders, sclerosteosis and van Buchem disease [27–29]. The 
similarity between the phenotypes seen in sclerosteosis, van 
Buchem, and LRP5 HBM establishes that Scl antagonizes 
the Wnt pathway by binding to LRP5/6 [30, 31].

Recently, it was demonstrated that Scl inhibition of the 
Wnt pathway is facilitated by a co-receptor, LRP4, as Scl 
inhibition of bone mineralization is blocked by silenc-
ing LRP4 in osteoblastic cells and LRP4 overexpression 
enhances the inhibitory effect of Scl in the Wnt signaling 
assay [32]. Additionally, three mutations in LRP4 described 
in patients with the sclerosteosis bone phenotype result in 
impaired binding of Scl to LRP4, reduce Scl inhibitory 
activity in the Wnt signaling pathway, and increase serum 
Scl levels [32, 33]. The sclerosteosis phenotype was repli-
cated in LRP4 knock-in mice bearing mutations that disrupt 
Scl binding, emphasizing the importance of Scl–LRP4 inter-
actions for bone homeostasis [34, 35].

LRP5/6 and LRP4 are members of the same protein fam-
ily with similar domain organization. They are single pass 
transmembrane proteins with large ECDs, which consist 
of four repeating YWTD β-propeller domains (E1, E2, E3, 
and E4) flanked by epidermal growth factor-like domains 
[36]. The interaction between Scl and LRP6 E1 is mediated 
through the conserved NXI motif located in Scl loop 2 [37], 
whereas the C-terminus of Scl has recently been shown to 
bind LRP6 E2 [38]. Furthermore, some mutations of the res-
idues Asn93 or Ile95 in the NXI motif significantly impair 

Scl inhibition potency toward Wnt signaling, as shown using 
luciferase reporter assay [37, 39]. The binding interface 
between LRP4 and Scl has not yet been described, although 
some mutations in the E3 of LRP4 cause impaired Scl bind-
ing [32]. Furthermore, it was suggested that the interaction 
of Scl with LRP6 and LRP4 involves different binding sites, 
as Scl mutated at the Asn93 position to Ala (i.e., SclN93A), 
interacted with LRP4 but not with LRP6 in a co-immuno-
precipitation assay. In the same assay, an Scl antibody with a 
loop 2-specific recognition site blocked Scl binding to LRP6 
but not to LRP4 [40]. However, it is not clear if simultane-
ous binding to both LRP4 and LRP6 is required for stronger 
inhibition of the Wnt pathway.

Results

Scl exhibits superior binding to LRP4 compared 
with LRP6

To understand the mechanism responsible for enhanced inhi-
bition of the Wnt pathway by Scl in presence of LRP4, we 
compared Scl binding to the ECDs of LRP4 and LRP6 using 
yeast surface display (YSD). Yeast surface-displayed Scl 
(YSD Scl) bound soluble LRP4 with an apparent KD value 
of 0.73 nM (Fig. 1a). Under the same experimental condi-
tions, YSD Scl showed a remarkably lower apparent affinity 
for soluble LRP6 (by more than two orders of magnitude). 
This also prevented us from obtaining an apparent KD value 
for YSD Scl-LRP6 due to the high concentration of soluble 
LRP6 required to reach a binding equilibrium (Fig. 1a).

We then asked whether sclerostin binding to LRP4 affects 
its binding to LRP6. For this purpose, YSD Scl was pre-
incubated with different concentrations of soluble LRP4, 
followed by incubation with soluble LRP6-Fc. Soluble 
recombinant human Fc (rhFc) was used as a control for the 
effect of Fc fusion on binding. We observed an increase in 
the geometric mean fluorescence intensity (Geo MFI) signal 
of LRP6-Fc in YSD Scl cells that were pre-incubated with 
a saturation concentration of LRP4 (Fig. 1b). This indicates 
that the binding of LRP6 to Scl is stronger in the presence 
of LRP4. Additionally, these results suggest that Scl can 
bind both receptors simultaneously, since no decrease in Geo 
MFI signal was observed after pre-incubation with different 
concentrations of LRP4.

N93A mutation in the NXI motif of Scl profoundly 
lowers its affinity for LRP6 but not for LRP4

In earlier reports, cell binding assay and biolayer interfer-
ometry showed that mutating Asn to Ala in position 93 of 
the mature Scl sequence greatly reduces its binding affin-
ity for LRP6 [37, 41]. To elucidate whether this mutation 
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also affects Scl affinity for LRP4, yeast surface-displayed 
single mutant Scl (YSD SclN93A) was titrated either with 
soluble LRP4 or LRP6. YSD SclN93A bound to LRP4 with 
high affinity (an apparent KD = 0.48 nM; Fig. 2a), similar 
to YSD Scl (Fig. 1a). Accurate Kd values for SclN93A and 
Scl could not be obtained due to limited availability of the 
soluble ligands. To overcome this limitation for reactions 
that do not reach saturation within the tested concentration 
range, it is a common practice to compare affinity titra-
tion plots in the specific ligand concentration range. Such 
comparison of the binding plots allows a qualitative, but 
still reliable, comparison between binding curves without 
establishing an actual precise Kd value [42–45]. A quali-
tative assessment of the binding plots clearly showed that 
the binding of SclN93A to LRP6 (Fig. 2a) was significantly 
reduced relative to Scl (Fig. 1a) in agreement with former 
studies.

SclN93A and Scl compete to bind LRP4, and SclN93A 
promotes Wnt signaling in osteoblasts

As both Scl and SclN93A were shown to interact with LRP4, 
we suggested they share a common binding site on LRP4. To 
test this, YSD SclN93A was titrated with increasing concen-
trations of soluble recombinant Scl, purified from P. Pastoris 
yeast (Suppl. Fig. 1). We observed a dose-dependent reduc-
tion in binding of YSD SclN93A to soluble LRP4 (Fig. 2b). 
This finding indicates there is a competition between Scl and 
SclN93A for the same binding site on LRP4.

Next, we endeavored to determine whether this competi-
tion would stimulate canonical Wnt signaling in a physiologi-
cal system. Scl binding to LRP6 inhibits canonical signaling 
activated by the Wnt1 and Wnt3a ligand classes. Regarding 
in vitro studies related to the Wnt pathway in particular, over-
expression of signaling components may be misleading [46]. 
Experimentally, SclN93A showed contradicted effects on Wnt 

Fig. 1   LRP4 binds Scl with higher affinity than LRP6 and enhances 
Scl binding to LRP6. a Yeast surface display (YSD) affinity titra-
tion curve. Recombinant yeast cells expressing Scl were incubated 
with soluble LRP6 (0.01–650  nM) or LRP4 (0.1–100  nM). b Geo 
MFI, presented as fold change. Recombinant yeast cells expressing 

Scl were pre-incubated with the indicated amounts of soluble LRP4, 
followed by incubation with soluble LRP6-Fc (200 nM). Points rep-
resent individual Geo MFI values of three independent experiments. 
Significance was assessed using unpaired, two-tailed Student's t test

Fig. 2   SclN93A binds with high affinity to LRP4, but with greatly 
reduced affinity to LRP6 and competes with Scl for the LRP4 binding 
site. a Yeast surface display (YSD) affinity titration curve. Recom-
binant yeast cells expressing SclN93A were assayed as described in 

Fig.  1a. b Binding competition. Recombinant yeast cells expressing 
SclN93A were incubated with increasing concentrations of soluble 
purified Scl (50–1000 nM) and a fixed concentration (5 nM) of solu-
ble LRP4
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pathway activation. One study showed that SclN93A moder-
ately enhanced Wnt1 signaling in HEK293T cells [40], while 
another group showed it exhibited a reduced ability to inhibit 
Wnt1- and Wnt3a signaling in a similar experiment [41]. To 
examine the effects of SclN93A in a more physiological related 
context, we conducted a competition assay in MC3T3-E1 pre-
osteoblastic cells, which endogenously express canonical Wnt 
pathway-relevant receptors without the need for their over-
expression. As expected, addition of Wnt3a CM to the cell 
culture increased TCF/LEF activity while addition of Scl to the 
culture media reduced activation of Wnt signaling (Fig. 3a). 
Addition of SclN93A to culture media did not inhibit Wnt3a-
induced TCF/LEF activity (Fig. 3b). When cells were treated 
with both Scl and SclN93A, we observed a dose-dependent 
increase in Wnt3a-activated luciferase expression. At a molar 
Scl:SclN93A ratio of 1:100, the signal of activation was similar 
to base-line activation with Wnt3a CM (Fig. 3a). To verify 
that the effects of SclN93A on the Wnt signaling activation is 
downstream of Wnt3a, we cultured MC3T3 cells with Scl and/
or SclN93A, in the absence of Wnt3a CM (Suppl. Fig. 2a). No 
activation of luciferase in the absence of Wnt3a was detected 
in cultures of cells treated with either Scl (or SclN93A) or with a 
combination of both. To confirm that SclN93A ability to relieve 
inhibition of the Wnt pathway by Scl is LRP4 dependent, com-
petition assays were reproduced in cells treated with small 
interfering RNA (siRNA) that target mouse LRP4 sequence. 
Immunoblot with LRP4 specific antibodies confirmed efficient 
knockdown of LRP4 by two different siRNAs (Suppl. Fig. 2b). 
When LRP4 was knocked down, addition of SclN93A to cells 
treated with Scl did not increase luciferase activity (Fig. 3c and 
Suppl. Fig. 2c). These results indicate that SclN93A stimulates 
Wnt3a signaling by competing with Scl for binding to LRP4.

Treatment with purified SclN93AFc increases 
the volumetric fraction of trabecular bone and bone 
length in developing mice

Next, we determined whether competition on Scl binding to 
LRP4 can promote bone anabolic functions. To the best of 
our knowledge, the retention time for Scl in circulating blood 

Fig. 3   SclN93A relieves Wnt3a-activated signaling inhibition by Scl in 
MC3T3-E1 cells and this activity is LRP4 dependent. Wnt pathway 
activation in MC3T3 demonstrated by luciferase activity (measured 
as fold change) in a super-TOPFlash assay (a–c). Cells were treated 
with Wnt3a conditioned medium (CM) and a SclN93A (6–620  nM) 
or b Scl (6 nM) in the absence or presence of SclN93A (6–620 nM). 
c Cells were transiently transfected with LRP4 specific siRNA (si1), 
or nontargeting siRNA (NC) and different combinations of Scl and 
SclN93A. Points represent individual measurements of biological rep-
licates (A–C, n = 9) collected in three separate experiments. Signifi-
cance was assessed using unpaired, two-tailed Student's t test. An out-
lier identified using Grubbs' test was removed in two cases (treatment 
with Wnt3a CM and 124 nM SclN93A, and treatment with Wnt3a CM, 
6 nM Scl, and 124 nM SclN93A)

▸
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has not been reported. However, due to its relatively low 
molecular weight (around 28 kDa for mature glycosylated 
protein) and positive charge, we reasoned that it would be 
rather rapidly cleared by renal filtration [47]. Therefore, we 
conjugated the fragment crystallizable domain of immu-
noglobulin to the C-terminal end of SclN93A (designated 
SclN93AFc), which is an established strategy to prolong pro-
tein retention in circulating blood [48]. Similarly to unmodi-
fied SclN93A, treatment with SclN93AFc increased TCF/LEF 
activity in cells co-cultured with Wnt3a CM and SclWT 
(Suppl. Fig. 3), confirming that modification with Fc did 
not affect SclN93A activity.

Thereafter, we administered subcutaneous injections 
of SclN93AFc (0.5 mg/kg) to healthy 8-week-old female 
C57BL/6 mice twice a week for 2 weeks, a length of one 
bone remodeling cycle in mice. This concentration is 
equivalent to an approximately 150-fold molar excess of 
SclN93AFc on endogenous serum-circulating Scl, calculated 
based on average mouse weight, blood volume, and previ-
ously reported serum Scl levels (about 50 pg/mL for female 
mice) [49]. After 2 weeks, mice were killed and femurs 
were extracted and scanned using microcomputed tomog-
raphy (µCT). We observed an increase in trabecular volume 
(Fig. 4a) and a 45% increase in volumetric fractions (BV/
TV) in the femurs of SclN93AFc-injected mice, compared 
to the vehicle controls (Fig. 4b). Trabecular number was 
35% higher in the SclN93AFc-injected group (Fig. 4c). Mean 
trabecular thickness and separation values were different in 
the treated group compared with the control group but did 
not reach statistical significance for the cohort size used in 
this study (Fig. 4d–e). We did not observe any differences 
in femoral cortical bone parameters in the midshaft between 
the treated and control groups (Suppl. Fig. 4). Nevertheless, 
femur length in SclN93AFc-treated mice was significantly 
greater compared with the control group (Fig. 4f). To cor-
roborate the increase in bone volume observed in µCT, prox-
imal trabecular region of mice tibiae was analyzed by static 
and dynamic histomorphometry. We found a 57% increase in 
the mineralizing surface to bone surface ratio (Fig. 4g) along 
with no change in mineral apposition rate (Fig. 4h), resulting 
in a net increase of 58% in the bone formation rate (Fig. 4i). 
Furthermore, osteoclast surface was significantly decreased 
in SclN93AFc-treated mice compared with the control group 
(Fig. 4j), by TRAP enzymatic activity staining. These data 
indicate that disrupting LRP4-Scl binding interface can pro-
mote bone formation in vivo.

Discussion

Our data show, for the first time, that Scl binds more strongly 
to LRP4 compared with LRP6. Furthermore, the binding 
of Scl to LRP4 increases Scl–LRP6 binding, consistently 

both with the previously suggested role of LRP4 as an 
anchor to increase local Scl concentrations in bone [33] and 
with studies showing increased Scl serum concentrations 
in mice lacking LRP4 or in which Scl–LRP4 interactions 
were blocked by a specific antibody [50]. In contrast to our 
binding affinity results, it was previously shown using sur-
face plasmon resonance (SPR) that Scl bound immobilized 
LRP4 and LRP6 with similar affinities in the low nanomo-
lar range [32]. Nevertheless, in a different SPR study, Scl 
exhibited profoundly lower affinity for immobilized LRP6 
(KD = 8.6 µM) [51].

This controversy may be explained by the fact that immo-
bilization of a ligand via non-specific residues may affect 
the results and reproducibility of binding assays by caus-
ing conformational changes, or by blocking or reducing the 
number of available binding sites, as opposed to measur-
ing free interactions between binding partners in solution. 
Although, in our binding assay, Scl was displayed on the 
yeast cell surface, which also implies a certain degree of 
conformational strain, our YSD platform was shown pre-
viously to enable the determination of KD values with an 
accuracy comparable to those obtained for soluble protein 
complexes [52, 53]. Moreover, our results show, for the first 
time, that Scl binds more strongly to LRP6 when LRP4 is 
present. Given the superior affinity of Scl for LRP4 com-
pared with LRP6, we propose that Scl binds first to LRP4, 
which is followed by a conformational change in either Scl 
or LRP4 that promotes an optimal orientation for subse-
quent Scl binding to LRP6 and thereby achieves efficacious 
inhibition of Wnt3a-activated canonical Wnt signaling. This 
mechanism of activation may not apply to the Wnt1 class of 
ligands, as they have a different binding site on LRP6.

It was previously shown that deleting LRP4 or block-
ing its interaction with Scl activates the Wnt1 pathway in 
osteoblasts [32, 54]. However, it remained unclear whether 
the inhibitory effect of the Scl–LRP4 interaction on the Wnt 
pathway is LRP6 dependent. For the first time, we show 
here that LRP4 promotes Scl inhibitory action on Wnt3a-
activated signaling, in addition to previously described facil-
itator role for inhibition of Wnt1. Using the YSD system, 
we show that SclN93A binding to soluble LRP6 is negligible 
compared with that of Scl, but the affinities of SclN93A and 
Scl toward soluble LRP4 are identical. We also show that, 
although SclN93A binds strongly to LRP4, it fails, unlike Scl, 
to inhibit Wnt3a signaling in osteoblasts. This suggests that 
Scl binding to LRP4 alone is insufficient for Wnt3a pathway 
inhibition, possibly because it does not affect the availability 
of binding sites for Wnt ligands on LRP6. When SclN93A 
is added in combination with Scl, a dose-dependent relief 
of Scl inhibition is observed. Low doses of SclN93A alone 
do not activate the Wnt pathway, suggesting that SclN93A 
competes with Scl on binding to LRP4, which was also dem-
onstrated in our YSD binding competition experiment. As a 
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result, fewer LRP4 receptors are available for Scl binding, 
thus greatly reducing the instances of Scl–LRP6 interaction. 
Consequently, this allows free interaction of Wnt ligands 

with LRP6 and promotes Wnt pathway activation. Taken 
together, these results provide evidence that the inhibitory 
effect of Scl–LRP4 interactions on the Wnt3a pathway is 

Fig. 4   SclN93AFc antagonizes Scl inhibition of the Wnt pathway, pro-
motes bone formation, and increases femoral bone mass and length. 
Eight-week-old female C57BL/6 mice treated with purified SclN93AFc 
(0.5  mg/kg) for 2  weeks by bi-weekly subcutaneous injections. a 
Three-dimensional reconstructions of distal femurs from X-ray com-
puted µCT scans. b–e Femoral µCT analysis of trabecular bone archi-
tecture in terms of b bone volume as a percentage of total trabecular 
volume (BV/TV) and c–e trabecular number (Tb.N), thickness (Tb.
Th), and separation (Tb.Sp). f Femoral length measurement. Group 

size, n = 7 per vehicle group, n = 8 per SclN93AFc group. g–i Dynamic 
histomorphometry analysis of tibial bone formation parameters: min-
eralizing surface to bone surface ratio (MS/BS), mineral apposition 
rate (MAR), and bone formation rate (BFR). Group size, n = 6 per 
vehicle group, n = 5 per SclN93AFc group, randomly selected. j Quan-
titative analysis of osteoclast surface per bone surface (Oc.S/BS). 
Group size, n = 5 per vehicle group, n = 6 per SclN93AFc group, ran-
domly selected. Significance was assessed using unpaired, two-tailed 
Student's t test
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LRP6 dependent. Of note, our study is focused on Scl inter-
action with LRP4 and LRP6. Nevertheless, it is known that 
LRP5 and LRP6 share high structure similarity [55], most 
residues implicated in binding to Scl are conserved in these 
receptors [38] and they exhibit alike behavior in binding to 
both Scl and SclN93A [39]. Given this, we predict that rep-
lication of our experiments with LRP5 would yield similar 
results.

Mice treated with SclN93AFc exhibited a significant 
increase in trabecular BV/TV ratio and number as a result of 
higher bone formation parameters than in the vehicle group.

Moreover, osteoclast surfaces were significantly lower in 
SclN93AFc treated mice. This phenotype is consistent with 
observations made in skeletally mature mice with LRP4-
deficient osteoblasts and osteocytes [54], in Scl-deficient 
mice [56, 57], and in mouse models bearing LRP4 mutations 
that compromise LRP4–Scl binding [34, 35]. In addition, the 
femurs of SclN93AFc-treated mice were significantly longer, 
consistently with results obtained previously in Scl-deficient 
mice [56]. The similarities between the phenotypes indicate 
a common mechanism in which the binding of sclerostin to 
LRP4 is essential for its binding to LRP6 in order to antago-
nize the Wnt pathway. Worthy of mention, besides being a 
bone formation inhibitor, LRP4 is a key component in the 
formation, stabilization and maintenance of the neuromus-
cular junction through complex formation with agrin and 
muscle-specific kinase [58–60]. Thus, a major concern in 
targeting LRP4 with a large molecule would be disruption of 
these interactions. Agrin or LRP4 deficient mice die at birth 
or unable to breathe independently [50, 58, 61]. Adult mice 
with conditional muscle LRP4 deletion quickly lose weight 
and exhibit muscle weakness within three weeks [60]. For 
this reason, we closely monitored SclN93AFc-injected mice 
and did not observe any weight loss, general weakness or 
other signs of distress. This suggests that no apparent dam-
age to neuromuscular junction was caused by SclN93AFc 
treatment, although a longer experiment may be required 
to ensure safety.

Our results suggest that it may be possible to modulate 
Wnt signaling in bone by targeting LRP4, without the need 
to neutralize endogenous Scl. Such an approach could be 
advantageous in the treatment of bone disorders, given the 
complexity of the Wnt pathway and its involvement in vari-
ous pathologies. For example, the anabolic response of bone 
lessens after prolonged treatment with Scl–Ab, accompanied 
by significant upregulation in the expression of other Wnt 
antagonists, possibly by inducing a negative feedback mech-
anism [62]. Complete loss of endogenous Scl was shown 
to promote osteoarthritis, rheumatoid arthritis, and post-
traumatic osteoarthritis in mice [63–66], with another study 
demonstrating a protective role for endogenous Scl in pros-
tate cancer invasions [67]. In addition, reports regarding the 
role of circulating serum Scl are controversial. Some studies 

linked increased Scl levels with inflammation and vascular 
lesions in chronic kidney disease patients [68] or with car-
diovascular events [69, 70], whereas others reported an asso-
ciation between higher Scl levels and improved survival and 
lower short-term cardiovascular mortality in dialysis patients 
and patients with vascular calcification [71–73]. To the best 
of our knowledge, an association between Scl–LRP4 inter-
actions and any of these pathologies was not reported and 
remains to be elucidated.

Experimental procedures

Mice and ethics statement

Six-week-old C57BL/6J female mice were obtained from 
Jackson Laboratory (Bar Harbor, ME, USA). Upon arrival, 
mice were randomly assigned to the vehicle group or the 
sclerostinN93AFc treatment group. Animals were maintained 
in a 12-h light/dark cycle and provided ad libitum access 
to food and water at all times. Upon reaching 8 weeks of 
age, both groups were injected subcutaneously twice a week 
for 2 weeks. In this manner, treatment group mice received 
recombinant SclN93AFc (0.5 mg/kg; calculated based on an 
average mouse weight of 20 g) dissolved in PBS (Biological 
Industries, Beit Haemek, Israel) at a SclN93AFc:PBS ratio of 
1:6.5, whereas the vehicle group mice received PBS diluted 
with HEPES‐buffered saline (HBS150; 20 mM HEPES, 
150 mM NaCl, pH 7.4) at a HBS150:PBS ratio of 1:6.5. 
On the 10th and 13th days of subcutaneous treatment, mice 
were subcutaneously injected with the fluorescent dye cal-
cein (10 mg/kg; Sigma Aldrich, St. Louis, MO, USA) and 
then killed on the 14th day, at age 10 weeks.

All mouse studies were carried out according to protocols 
approved by the Ben- Gurion University Committee for the 
Ethical Care and Use of Animals in Experiments (permit 
number: IL-04-01-2019(D)).

Cell culture

MC3T3-E1 cells (ATCC​® CRL-2593™; an osteoblas-
tic mouse calvaria cell line) were purchased from ATCC 
(Manassas, VA, USA). The cells were cultured in alpha-
minimal essential medium (alpha-MEM) supplemented with 
10% FBS, l-glutamine (2 mM), penicillin (100 U/mL), and 
streptomycin (0.1 mg/mL) in a humidified incubator at 37 °C 
under a 5% CO2 atmosphere. L-Wnt3a-transfected cells (a 
gift from Michal Hershfinkel, Ben Gurion University of the 
Negev (BGU), Beer-Sheva, Israel) were cultured in DMEM 
supplemented with G-418 (0.4 mg/mL). Conditioned media 
were prepared from these cells according to the ATCC 
protocol.
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Purification of recombinant SclWT and SclN93A

To express SclWT and SclN93A variants in P. pastoris strain 
GS115, the sequences were amplified from pCTCON tem-
plate vector, while adding recognition sites for AvrII and 
ECORI restriction enzymes (NEB) using 5’-ACA AAG 
AAT TCC GTC AAG GGT GGC AAG CGT-3’ as the for-
ward primer and 5’-AAA ACC TAG GGT ACG CGT TCT 
CTA ATT CGG-3’ as the reverse primer. The amplified 
DNA and pPICK9K plasmid (Invitrogen) were digested with 
AvrII and ECORI (NEB), ligated using Quick Ligase (NEB) 
and transformed into competent E. coli cells by heat shock. 
Next, the plasmids were transformed into electrocompetent 
P. Pastoris GS115 strain cells, as previously described [74]. 
The highest expressing clones were chosen based on West-
ern blot analysis of cell cultures using a 1:2000 dilution of 
primary human SOST/Sclerostin Antibody Polyclonal Goat 
IgG (R&D Systems), followed by 1:5000 dilution of don-
key anti-goat IgG H&L (HRP) antibody (Abcam) and signal 
detection using the ECL substrate kit (Biological Industries). 
All antibodies were diluted in TBST with 5% bovine serum 
albumin. Protein purification was scaled up as described 
previously [74], with small modifications, namely, protein 
elution buffer was exchanged to HBS150 buffer (10 mM 
HEPES, 150 mM NaCl, pH  7.5) using a 5,000 MWCO 
Vivaspin centrifugal concentrator (GE Healthcare). The pro-
teins were further purified using an AKTA pure 150 FPLC 
Superdex 75/10/300 size-exclusion column (GE Health-
care) pre-equilibrated with HBS150. Protein-containing 
size-exclusion fractions were pooled together after relevant 
fractions were determined by SDS-PAGE and staining with 
InstantBlue (Expedeon). Protein concentration was meas-
ured using a NanoDrop spectrophotometer (Thermo Sci-
entific), based on protein absorbance at 280 nm (percent 
extinction coefficient = 11.36). Protein yields were 1.5 mg/L 
of yeast culture for SclWT and 1.1 mg/L for SclN93A.

Purification of recombinant SclN93AFc

pFUSE-hIgG1e3-Fc1 plasmid with IL2 signal peptide (a 
gift from Amir Aharoni, BGU) was used as a template for 
Gibson assembly using a set of overlapping primers. The 
forward and reverse primers for amplification were 5’-GTG 
CTA GCT GGC CAG ACA TG-3’ and 5’-CGA ATT CGT 
GAC AAG TGC-3’, respectively, for pFUSE-hIgG1e3-Fc1. 
For SclN93A the forward and reverse primers for amplifica-
tion were 5’-CAC TTG TCA CGA ATT CGC AAG GGT 
GGC AAG CGT TTA AAA ATG-3’ and 5’-CTG GCC AGC 
TAG CAC TCA GTG ATG GTG ATG GTG ATG G-3’, 
respectively, while adding 6 × His tag for further affinity 
purification, followed by assembly reaction using Gibson 
assembly master mix (NEB). All constructs were confirmed 
by sequencing (Hylabs, Rehovot, Israel).

For protein expression, FreeStyle 293-F cells (a gift 
from Angel Porgador, BGU) were cultivated at 37 ℃ in an 
8% CO2 atmosphere in a humidified orbital shaker incuba-
tor at 135 rpm. The cells were grown in serum-free Free-
Style™ 293 Expression medium (Gibco) and maintained at 
1.5–2 × 106 cells/mL in a volume that did not exceed 30% 
of the total volume of the culture flask. The cells were tran-
siently transfected using GeneTranIII transfection reagent 
(Biomiga, San Diego, CA) according to the manufacturer’s 
instructions. On day 4 after transient transfection, the cells 
were lysed in a lysis buffer (50 mM Tris, 50 mM NaCl, 1% 
Triton, pH  7.4) and centrifuged at 15,000 × g for 10 min at 
4 ℃ to separate all cell debris to the sediment. The lysate 
supernatant was loaded into a Ni–NTA agarose (Invitrogen) 
gravity column, washed with binding buffer (50 mM Tris, 
10 mM imidazole, 300 mM NaCl, pH  7.5) and eluted with 
an elution buffer (50 mM Tris, 300 mM imidazole, 300 mM 
NaCl, pH  7.5). The buffer was exchanged to HBS150 using 
a 30 kDa Amicon Ultra centrifugal filter unit (Merck KGaA, 
Darmstadt, Germany). The proteins were further purified 
using an AKTA pure 150 FPLC Superdex 200/16/600 size-
exclusion column (GE Healthcare) pre-equilibrated with 
HBS150. Protein-containing size-exclusion fractions were 
pooled together after relevant fractions were determined by 
SDS-PAGE and staining with InstantBlue (Expedeon). Pro-
tein concentration was measured using a NanoDrop spectro-
photometer (Thermo Scientific), based on protein absorb-
ance at 280 nm (percent extinction coefficient = 12.41). 
Protein yield was 0.65 mg/L of the starting cell culture.

Protein expression on yeast cell surface and binding 
analysis by flow cytometry

Full length human sclerostin cDNA encoding for mature 
sclerostin protein (residues Gln24–Tyr213) was synthe-
sized by Integrated DNA Technologies. A mutation chang-
ing asparagine 93 to alanine was introduced to the SclWT 
sequence by site-directed mutagenesis using back-to-back 
5’ phosphorylated primers carrying the mutation (forward, 
5’-/Phos/TGC TGC CAG CTG CGA TTG GT-3’; reverse, 
5’-/Phos/AAC GTG CAG GAC CAC ACT GAC C-3’). The 
sequences were subcloned to a pCTCON vector (a gift from 
Dane Wittrup, MIT) by restriction cloning using BamHI 
[New England Biolabs (NEB)] and NheI (NEB) restriction 
enzymes and T4 DNA ligase (NEB). The plasmids were 
transformed into a competent EBY100 Saccharomyces cere-
visiae yeast strain (a gift from Amir Aharoni, BGU) by elec-
troporation (MicroPulser electroporator, Bio-Rad). To con-
firm the DNA sequences of the transformed yeast cells by 
Sanger sequencing (Hylabs, Rehovot, Israel), the plasmids 
were extracted from the yeast using Zymoprep™ yeast plas-
mid miniprep I kit (Zymo Research, USA) and transformed 
to competent Escherichia coli cells by electroporation, 
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followed by extraction using HiYield plasmid mini kit (RBC 
Bioscience, Taiwan).

For flow cytometry analysis, yeast cells transformed with 
wildtype or mutated Scl (Scl or SclN93A) were grown in 
expression-inducing SGCAA medium (2% galactose, 0.67% 
yeast nitrogen base, 0.5% bacto casamino acids, 1.47% 
sodium citrate, 0.429% citric acid monohydrate) overnight 
at 30 °C, until the culture achieved an optical density at 
600 nm of 5.0 (i.e., OD600 = 5.0). Cells were washed with 
PBS with 1% bovine serum albumin (BSA; Caisson Labo-
ratories, Utah, USA). The expression of displayed proteins 
was detected with 1:50 mouse anti-c-Myc antibody, 9E10 
(Abcam, Cambridge, MA, USA) followed by 1:50 anti-
mouse IgG (whole molecule)—R-phycoerythrin antibody 
produced in goat (Sigma-Aldrich).

For binding analysis of displayed SclWT or SclN93A, cells 
were incubated with different concentrations of either solu-
ble His-tagged mouse LRP6 (R&D Systems) or with soluble 
His-tagged human LRP4 (R&D Systems) for 2 h at room 
temperature, following detection with a 1:50 FITC-conju-
gated anti-6xHis-tag monoclonal antibody (Invitrogen). 
For competition binding between LRP4 and LRP6, cells 
displaying Scl were pre-incubated with soluble LRP4 (1, 
5 or 200 nM) for 2 h, followed by incubation with 200 nM 
soluble human LRP6-Fc (R&D Systems) for 2 h and detec-
tion with a 1:50 monoclonal anti-human IgG (Fc specific)—
FITC antibody produced in mouse (Sigma Aldrich). All Geo 
MFI values were normalized to the Geo MFI of control cells 
incubated with only the secondary fluorescent antibody. For 
competition binding between YSD Scl and YSD SclN93A, 
cells displaying SclN93A were incubated with soluble His-
tagged human LRP4 (5 nM; R&D Systems) and various con-
centrations of soluble SclWT for 2 h at room temperature, 
followed by detection with a 1:50 FITC-conjugated anti-
6xHis-tag monoclonal antibody (Invitrogen). All antibodies 
were diluted in PBS with 1% bovine serum albumin. Labeled 
cells (30,000 per experimental condition) were analyzed on 
an Accuri C6 flow cytometer (BD Biosciences). Further 
FACS analysis was performed using FlowJo software (BD, 
Ashland, OR, USA). All values were normalized to the high-
est binding signal of the respective yeast-displayed protein 
combination. Apparent KD values were calculated by non-
linear regression.

Dual luciferase reporter assay

MC3T3-E1 cells (7 × 103 cell per well) were seeded in a 
96-well plate in triplicate, so that the cells were 70–80% 
confluent on the following day. After 24 h, the cells were 
transiently transfected with M50 Super 8 × TOPFlash 
reporter plasmid (50 ng/well; a gift from Randall Moon, 
Addgene plasmid # 12456; http://​n2t.​net/​addge​ne:​12456; 
RRID:Addgene 12456) and Renilla control plasmid (5 ng/

well; a gift from Ramon Birnbaum, BGU, Beer-Sheva, 
Israel), using Lipfectamine2000 (Invitrogen) according to 
the manufacturer’s instructions. Twenty-four hours after 
transfection, cells were treated with Wnt3a conditioned 
media (CM) from L-Wnt3a-transfected cells and various 
concentrations of purified recombinant SclWT, SclN93A, 
and/or SclN93AFc for an additional 19 h. The cells were 
lysed with passive lysis buffer (Promega, Madison, WI) 
and luciferase activity was measured on a SPARK micro-
plate reader (Tecan Austria GmbH, Grödig, Austria) using 
the dual-luciferase reporter assay kit (Promega). Each 
transfection was performed in triplicate and repeated in at 
least two separate experiments. All luciferase results were 
normalized to the Renilla control.

LRP4 knock down assay

Dicer-substrate short interfering RNAs (DsiRNAs) target-
ing mouse LRP4 (mm.Ri.Lrp4.13.1 and mm.Ri.Lrp4.13.3) 
and nontargeting negative control (51-01-14-03) were pur-
chased from Integrated DNA Technologies (IDT, Coral-
ville, IA). 80–90% confluent MC3T3-E1 cells were trans-
fected with DsiRNA, M50 Super 8 × TOPFlash reporter 
and Renilla control mix using using Lipfectamine2000 
(Invitrogen) according to the manufacturer’s instructions. 
After 48 h, cells were treated with Wnt3a CM and purified 
recombinant SclWT or SclN93A, alone or in combination, for 
an additional 19 h. The cells were assayed by Dual Lucif-
erase Reporter Assay, as described above. Knockdown 
efficiency was detected at 48 h by western blot analysis 
using mouse monoclonal anti-LRP4 antibody (Abcam), 
mouse anti-Actin monoclonal antibody (MP Biomedicals) 
and Peroxidase AffiniPure Goat Anti-Mouse IgG (H + L) 
(Jackson ImmunoResearch, West Grove, PA, USA).

Microcomputed tomography and bone length 
measurement

Following euthanasia, femurs were extracted and stored in 
PBS-soaked gauze prior to imaging. Images of the left dis-
tal femurs were acquired using a microcomputed tomogra-
phy Bruker SkyScan 1174 scanner (Skyscan, Aartselaar, 
Belgium). The femurs were scanned at 50 kV and 800 µA 
using a 0.25 mm aluminum filter with an isotropic voxel 
size of 10 µm. The mineralized tissues were segmented by 
a global thresholding procedure. Trabecular bone param-
eters were assessed in a region starting 2.1 mm below the 
growth plate (reference level) and extending down for 
1.5 mm. Femur length was measured from the fovea capi-
tis to the medial condyle with a caliper.

http://n2t.net/addgene:12456
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Dynamic histomorphometry

Left tibiae were fixed in 4% PFA with 0.1 M phosphate 
buffer for 24 h at room temperature and then embedded in 
methyl methacrylate. Sections (4 µm) were prepared with 
a Leica RM2255 Rotary Microtome (Leica Biosystems). 
Images of the trabecular region were captured at 20 × mag-
nification using a CoolSNAP HQ2 Monochrome camera 
(Photometrics, Tucson, AZ, USA), Olympus IX81 micro-
scope and CellSens Dimension imaging software (Olympus 
America, Inc., Center Valley, PA, USA). Three sections per 
mouse were analyzed using ImageJ2 software [75].

Tartrate‑resistant acid phosphatase (TRAP) 
enzymatic activity staining

Right femurs were fixed in 4% PFA with 0.1 M phosphate 
buffer for 24 h at 4 °C, then transferred to 30% sucrose in 
0.1 M phosphate buffer for additional 24 h at 4 °C. Femurs 
were embedded and frozen in SCEM-(L1) cryoembedding 
medium (SECTION-LAB Co. Ltd., Japan) and cut into 
8 µm sections with Leica CM1860 Cryostat Microtome 
(Leica Biosystems). For detecting TRAP enzymatic activ-
ity, sections were first stained with Calcein blue (Sigma) for 
accumulated mineral, followed by TRAP enzymatic activity 
staining using ELF™ 97 Phosphatase Substrate (Invitrogen) 
[76]. Sections were imaged at 20 × magnification using a 
CoolSNAP HQ2 Monochrome camera, Olympus IX81 
microscope and CellSens Dimension imaging software. Sec-
tions were analyzed using ImageJ2 software.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 
8 (GraphPad Software, La Jolla, CA, USA). Unpaired, two-
tailed Student's t tests were used to analyze between-group 
differences following treatment with SclWT, SclN93A, and/
or SclN93AFc in the dual luciferase experiments and in the 
YSD binding assays, and to evaluate differences between the 
mouse groups treated with SclN93AFc or vehicle. Differences 
at p < 0.05 were considered significant.
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