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Abstract
Non-alcoholic fatty liver disease (NAFLD) is related to a dysregulation of mitophagy, a process that is not fully understood. 
Parkin-related mitophagy can sustain mitochondrial homeostasis and hepatocyte viability. Herein, we report that selenopro-
tein M (SELENOM) plays a central role in maintaining mitophagy in high-fat diet (HFD)-mediated NAFLD. We show that 
SELENOM was significantly downregulated in the liver of HFD-fed mice. SELENOM deletion aggravated HFD-mediated 
hepatic steatosis, inflammation, and fibrosis; accompanied by enhanced fatty acid oxidation and oxidative stress in the 
liver. Molecular analyses show that lipotoxicity was related to increased mitochondrial apoptosis as evidenced by enhanced 
mitochondrial ROS production, and attenuation of mitochondrial potential in the liver of HFD-fed  SELENOM−/− mice. 
Additionally, SELENOM deletion reduced mitophagy and aggravated hepatic injury in NAFLD. Mechanistically, SELE-
NOM overexpression activated Parkin-mediated mitophagy to reduce mitochondrial apoptosis and remove HFD-damaged 
mitochondria. We further found that SELENOM regulates Parkin expression via the AMPKα1–MFN2 pathway; blockade 
of AMPKα1 prevented SELENOM activation of Parkin-mediated mitophagy. Our work identified SELENOM downregula-
tion as a possible explanation for the defective mitophagy in NAFLD. Thus, targeting SELENOM may be potential new 
therapeutic modalities for NAFLD treatment.
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Introduction

Selenoproteins have important regulatory effects on fatty 
liver and lipid metabolism. Selenoprotein P is involved in the 
pathogenesis of non-alcoholic fatty liver disease (NAFLD) 
by regulating lipid accumulation [1]. Hepatic selenoprotein 
S deficiency caused hepatic steatosis and insulin resistance 
via regulating hepatic lipid accumulation and insulin action 

[2]. Selenoprotein M (SELENOM) is one of the selenopro-
teins in the selenoprotein family. SELENOM, a key thiore-
doxin-like enzyme present in the endoplasmic reticulum 
(ER), has been associated with hepatocellular degeneration 
and carcinoma [3, 4]. SELENOM exerts its physiological 
effects in many pathways including redox control, fatty acid 
composition, stress response and cancer cell proliferation 
[5, 6]. SELENOM could increase antioxidant activity to 
reduce the levels of oxidative and mitochondria stress in the 
progression of Alzheimer's disease [7]. Recent data showed 
that SELENOM is involved in redox signaling and energy 
metabolism through regulating STAT3 phosphorylation and 
cytosolic calcium responses [5, 8]. In addition, SELENOM 
has roles in the regulation of ER and inflammatory stress 
responses to ameliorate metabolic dysfunction [5, 9]. In liver 
diseases, selenoproteins have been reported to inhibit oxi-
dative damage and imbalance of mitochondrial dynamic in 
response to several types of stress [10–12]. Loss of SELE-
NOM could increase obesity by affecting metabolic and 
endocrine functions [13]. Therefore, SELENOM may be 
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able to alleviate disorders of lipid metabolism and high-fat 
diet (HFD)-mediated mitochondrial damage in NAFLD.

The incidence of NAFLD is expected to increase with the 
prevalence of obesity and diabetes globally. NAFLD is the 
culmination of multiple disorders, including abnormal lipid 
metabolism, oxidative stress, mitochondrial dysfunction, 
and lipid peroxidative stress [14]. HFD could contribute to 
NAFLD, but the mechanisms by which HFD causes exces-
sive accumulation of lipid in hepatocytes are complex, and 
multiple pathological factors are involved, especially hepatic 
oxidative stress and mitochondrial dysfunction [15]. NAFLD 
is often accompanied by lipotoxicity-induced hepatocyte 
apoptosis and inflammatory response [16]. There is increas-
ing evidence that alterations in the gut microbiota (dysbio-
sis) influence NAFLD pathological processes [17]. Mito-
chondrial damage contributes to NAFLD at different levels 
by impairing fatty liver functions, stimulate the overproduc-
tion of reactive oxygen species (ROS), which in turn trig-
gers pro-inflammatory cytokine release, lipid peroxidation 
and mitochondria-dependent apoptosis to aggravate HFD-
mediated liver injury [18, 19]. Thus, restoring mitochon-
dria homeostasis is vital to reverse or retard these NAFLD 
processes. However, the molecular mechanisms regulating 
mitochondrial homeostasis for this disease remain unclear.

Mitophagy is a specific type of autophagy that targets 
damaged mitochondria for degradation by lysosomes in 
response to mitochondrial stress, to maintain a healthy mito-
chondrial population [20]. Liver fibrosis has been associated 
with excess ROS levels and inhibition of mitophagy [21, 
22], and mitophagy activation is essential to protect hepato-
cyte function against mitochondrial apoptosis [23]. The 
Parkin-dependent mitophagy pathway, including the P62 
protein-mediated ubiquitination, is involved in sustaining 
mitochondrial function to ameliorate HFD-induced NAFLD 
[24]. Defects in the PTEN-induced kinase 1 (PINK1) pro-
tein and Parkin-dependent mitophagy could exacerbate 
acetaminophen-induced liver injury [25]. Activation of 
the PINK1/Parkin-mediated mitophagy pathway may also 
involve AMPKα1 signaling [26], and the AMPK–MFN2 axis 
may be involved in regulating the mitochondrial-associated 
ER membrane (MAM) and mitophagy [27, 28]. Clearly, 
mitophagy is an important pathway in different liver defects. 
However, the role of mitophagy in HFD conditions and 
NAFLD remains largely unknown.

In this study, we show that SELENOM expression was 
markedly reduced in NAFLD induced by HFD in vivo, 
and in AML12 hepatocytes treated with palmitic acid (PA) 
in vitro. Although the AMPK–MFN2 axis is involved in 
the mitochondrial-associated ER membrane (MAM) and 
autophagy regulation [27, 28], this pathway has not been 
shown in mitophagy regulation of NAFLD. Accordingly, 
our study aims to determine how SELENOM regulates the 
development of NAFLD via mitophagy, whether the role 

of SELENOM is dependent on AMPKα1–MFN2 signaling, 
especially focusing on the mitochondrial apoptosis in fatty 
liver disease.

Methods

Animal treatment

Male SELENOM wild-type (WT) and knockout 
 (SELENOM−/−) C57BL/6  J mice were purchased from 
Cyagen Biosciences (Cyagen Inc., US). Four-week-old mice 
(20–25 g) were first housed for 18 weeks under standard 
conditions (12/12 h of light/dark cycle, 50% ± 4% humid-
ity, 23–25 °C) in individual cages with access to food and 
water ad libitum. At 4 weeks of age, mice were randomly 
assigned to receive HFD diet for NAFLD induction, or nor-
mal chow diet for another 18 weeks, as previously reported 
[29]. The composition and energy density of the diets are 
listed in Table S1. After 18 weeks, fasting blood samples and 
liver specimens were collected following an overnight fast, 
and stored at − 80 °C. All animal studies were performed 
in triplicates.

Histopathological analysis

Liver tissue processing was as previously described [30]. 
Briefly, liver samples were fixed in 4% paraformaldehyde for 
2 h at 4 °C, embedded in paraffin, sectioned at 0.2–0.3 cm 
and stained with hematoxylin and eosin (H&E, Gibco, 
USA, 008011), Masson stain or Sirius Red (Gibco, USA, 
4351405). Pathological changes were observed with a Nikon 
optical microscope (Mitsubishi Inc., Japan, S154), and the 
staining intensity quantified with Image-Pro Plus 6.0 (Media 
Cybernetics, USA). The average diameter of hepatic vacu-
olations was measured by Image-Pro Plus 6.0 as previously 
described [31].

Biochemical evaluation

To evaluate liver injury, the levels of alanine transaminase 
(ALT), total cholesterol (TC), aspartate transaminase (AST) 
and triglyceride (TG) (Abcam, UK, ab234579 for ALT, 
ab282928 for TC, ab105134 for AST, ab178780 for TG) 
in the serum were determined with commercial kits on the 
automatic biochemical analyzer HITACHI 7020 (Hitachi, 
Tokyo, Japan, DS12556).

Transmission electron microscopy (TEM)

The liver tissues were fixed with 3% glutaraldehyde, post 
fixed with 1% osmium, dehydrated and embedded for ultra-
thin sectioning at 70 nm. Sections were stained with uranyl 
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acetate, lead citrate, and dried for imaging at 80 kV to detect 
changes in autophagy under the TEM (Elibo Biotechnology 
Co., Ltd, Japan, GEM-1200ES).

Cell culture and treatment

AML12 hepatocytes (ATCC, USA) were cultured in Dul-
becco’s modified Eagle’s medium (Gibco, USA, GB12511) 
supplemented with 10% fetal bovine serum (FBS) at 37 °C 
in a humidified 5%  CO2 atmosphere to 90–100% conflu-
ence, with medium changes every 2 days. In some experi-
ments, cells were treated with the palmitic acid (PA, 75 μM; 
Sigma-Aldrich, G11512) for 24 h to simulate a lipotoxicity. 
For AMPKα1 inhibition, cells were treated with Compound 
C (CC, 5 μM, Sigma-Aldrich, St Louis, G13418) for 6 h. 
For amino acid starvation, cells were treated with Grey’s 
Balanced Salt Solution (GBSS; Sigma-Aldrich, G9779) 
for 1–3 h. Autophagic vacuoles were measured using an 
autophagy detection kit (Abcam, ab139484).

Oil red staining

After fixation with 2 ml fixative solution per well for 30 min, 
the prepared oil red O working solution (Beyotime, China, 
C0158M) was stained at room temperature for 10–20 min, 
and the liver cells washed twice with the washing solution 
were observed under a microscope (Mitsubishi Inc., Japan, 
S154).

Immunofluorescence

Immunofluorescence was performed using primary antibod-
ies against Tom20 (1: 200, Abcam, ab283317), LAMP2 (1: 
200, Abcam, ab199946), Cyt-c (1: 200, Abcam, ab216971), 
P-AMPKα1 (1: 200, Wanleibio., China, WL02256) and Par-
kin (1: 500, Cell Signaling Technology, Inc, 4211). Cells 
were fixed in 4% paraformaldehyde and permeabilized 
(Biosharp, BL539A) with 0.1% TritonX-100, blocked with 
goat serum and incubated with primary antibodies, followed 
by appropriate secondary antibodies. The following second-
ary antibodies included Dylight 488-goat anti-rabbit lgG 
and Alexa Fluor 594-goat anti-mouse lgG. The nuclei were 
stained using DAPI (ImmunoBioscience, AR-6501–01). 
Images acquired by an Eclipse Ni-U microscope system 
(Nikon, N54) and a confocal laser scanning microscopy 
(Olympus, BX-61).

Oxidative stress biomarker assay

Liver tissues were homogenized in normal saline, and the 
supernatant collected for the following assays: total anti-
oxidant capacity (T-AOC), glutathione peroxidase (GPX), 
superoxide dismutase (SOD), malondialdehyde (MDA) and 

catalase (CAT) (Beyotime, China, S0119 for T-AOC, S0058 
for GSH-Px, S0087 for SOD, S0131M for MDA, S0082 for 
CAT), according to the manufacturer’s protocols as previ-
ously described [32]. T-AOC could be used to evaluate the 
antioxidant capacity of biologically active substances. For 
MDA measurement, tissues were homogenized in MDA kit 
extract buffer and assayed according to the manufacturer’s 
instructions [33].

Mitochondrial function analysis

Mitochondrial membrane potential (△Ψ m) was evalu-
ated with mitochondrial membrane potential probe (JC-
1) (Thermo, US, T3168) staining as described previously 
[34, 35]. Briefly, 3 ×  105 cells were stained with 2 μL of 
JC-1 stock solution (final concentration: 2 μg/mL). Stained 
cells were observed by fluorescence microscopy at 500 nm 
(JC-1 monomers) 590 nm (JC-1 aggregates). Apoptosis was 
assessed with the YO-PRO-1 (green fluorescent) and PI (red 
fluorescent) apoptosis and necrosis detection kit (Beyotime, 
China, C2022-0.2 ml). The relative expression of the two 
dyes determines the level of apoptosis and necrosis. Mito-
chondrial ROS (mtROS) levels were detected by labeling 
2 ×  105 cells with the mitoSOX™ red mitochondrial super-
oxide indicator (Molecular Probes, USA, M36008), and ana-
lyzed by a flow cytometry.

RNA interference

For knockdown of SELENOM and Parkin, cells (3 ×  105/
well) were transfected with siRNA against SELENOM 
(A04066) or Parkin (A04091) using Lipofectamine (LIP) 
RNAi MAX Reagent according to the manufacturer’s 
instruction. To overexpress SELENOM, a pcDNA3.1 vec-
tor containing the SECIS element was used according to 
the method of Gladyshev et al. [36]. The coding regions of 
mouse SELENOM were amplified by PCR and subcloned 
into the pcDNA3.1 vector to generate the pcDNA3.1-SELE-
NOM plasmid, followed by verification by sequencing. Cells 
were transfected with plasmid pcDNA3.1-SELENOM using 
the LIP 2000 reagent (Invitrogen, USA, 11668030) in an 
Opti-MEM medium for 24 h.

RNA isolation and quantitative real‑time 
polymerase chain reaction (qRT‑PCR)

Total RNA was extracted from liver and AML12 hepato-
cytes following the manufacturer’s protocol [37, 38]. cDNA 
was synthesized from 2 to 5 μg total RNA using a ReverTra 
 Ace® qPCR RT Kit & Master Mix (Accurate Biotechnology 
Co., Ltd., SQ-101). qRT-PCR was performed using the Light 
 Cycler®480 System (Roche, Beijing, China, 015278001) and 
ChamQ™ Universal  SYBR® qPCR Master Mix (Vazyme 
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Biotech Co., Ltd, Nanjing, China, azyme #Q711). The prim-
ers for target genes by qRT-PCR are shown in Table S2. 
GAPDH was used as an internal reference. The relative 
mRNA abundance was calculated by the  2−∆∆Ct method 
[39].

Protein extraction and western blot analysis

Samples were lysed with RIPA lysis solution for total pro-
tein extraction, and quantification by BCA protein quantita-
tive kit (Beyotime, China, P0012S). Proteins (30–40 μg per 
sample) were separated by SDS polyacrylamide gel electro-
phoresis and transferred to nitrocellulose membrane. Mem-
branes were blocked with 5% bovine serum albumin (BSA) 
and incubated with primary antibodies (Table S3), followed 
by secondary antibodies. Stained proteins were visualized 

with enhanced chemiluminescent (ECL) substrate (Sigma-
Aldrich, Germany, GE3541), imaged and normalized to 
GAPDH expression.

Quantification and statistical analysis

The GraphPad Prism 9.0 software (Graph Pad Software Inc., 
San Diego, CA, USA) was used for statistical analysis. Ana-
lyzed data are presented as mean ± SEM of triplicate sam-
ples (n = 3) for in vitro experiments, and six replicates (n = 6) 
for in vivo experiments. Statistical analyses were performed 
one-way ANOVA with Tukey’s post hoc test. All data in 
this study followed normal distribution. Significance level 
was set at *P < 0.05. Representative images were quantified 
by Image-Pro Plus 6.0 software (Media cybernetics Image 
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Fig. 3  SELENOM−/− increases HFD-mediated inflammation 
response in liver tissues. A The contents of cytokines (Tnfa, Il6 and 
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levels of inflammation response-related genes such as Il6, Il10, Nos2 
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Technology Co., Ltd, USA) and statistically analyzed by the 
GraphPad Prism 9.0 software.
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SELENOM deletion aggravates HFD‑induced NAFLD

To verify whether SELENOM is involved in NAFLD, an 
in vitro model of palmitic acid (PA)-mediated lipotoxicity 
and a mouse model of HFD-induced NAFLD were estab-
lished, and the level of SELENOM detected with qRT-PCR 
and western blot. In culture, SELENOM level was signifi-
cantly reduced in PA-treated hepatocytes at both the mRNA 
and protein expression levels, compared to the untreated 
control cells (Fig. 1A). This reduction in SELENOM level 
by PA treatment can be reversed by overexpression of SELE-
NOM (Fig. 1B). In vivo, mice fed with HFD for 18 weeks 
showed significantly higher weight (Fig. 1C), and increases 
in hepatic lipid metabolism parameters including alanine 
transaminase (ALT), aspartate transaminase (AST), total 
cholesterol and triglycerides (see Fig. 1H–K wild-type mice 
data). The liver of these mice showed lower mRNA and pro-
tein levels of SELENOM compared to normal chow-fed mice 
(Fig. 1D). This suggests that HFD downregulates SELE-
NOM expression in the liver. To dive deeper into the role of 
SELENOM in NAFLD, we generated SELENOM knock-
out  (SELENOM−/−) mice (Fig. S1A) with no expression of 
SELENOM in the liver (Fig. 1E). Immunohistochemistry 
result revealed that SELENOM expression was markedly 
lowered in the cytoplasm of hepatocytes of HFD-fed and 
 SELENOM−/− mice compared with the chow group (Fig. 
S1B–C). Data related to the mRNA expression of SELE-
NOM in other tissues are shown (Fig. S1D). Comparing the 
biological characteristics (bodyweight, blood glucose and 
metabolic parameters) of HFD-fed and  SELENOM−/− mice 
showed that bodyweight (Fig. 1F) and blood glucose content 

(Fig. 1G) were increased in mice fed with HFD, and were 
even higher in  SELENOM−/− mice. Similarly, the high levels 
of ALT, AST, total cholesterol and triglycerides in the serum 
of HFD-fed mice were further aggravated by SELENOM 
knockdown (Fig. 1H–K). Altogether, these data suggested 
that HFD downregulates SELENOM, and SELENOM dele-
tion aggravates the development of HFD-induced fatty liver 
disease.

SELENOM deletion induces hepatic injury in HFD 
treatment

Analysis of the gross liver morphology showed that the liver 
of HFD-fed mice was significantly larger and heavier than 
those of chow-fed mice, and  SELENOM−/− mice showed 
further increase in liver weight when fed HFD (Fig. 2A, B). 
The liver weight in % of body weight was consistent with the 
trend of body weight (Fig. 2C). H&E staining showed that 
HFD increased hepatic vacuolization and steatosis, which 
were further enhanced in the liver of  SELENOM−/− mice, 
particularly with they were fed with HFD (Fig. 2D). Simi-
larly, the increased liver fibrosis caused by HFD, shown by 
Masson and Sirius Red staining, was also further exacer-
bated in  SELENOM−/− mice (Fig. 2E, F). These increases 
in steatosis, nuclear atrophy and overall liver degeneration 
were further validated by transmission electron microscopy 
(Fig. 2G). At the molecular level, many liver fibrosis-related 
genes including Cox I, Cox IV, Ccn2, Acta2, Tgfb1, Timp1, 
Ccn1, Ccn2, Vim and Mmp9 were significantly increased by 
HFD, and further increased by SELENOM deletion (Fig. 
S2A). The protein expressions of Ccn2, Tgfb and Acta2 
were also similarly increased in vitro (Fig. 2H). These 
in vivo changes in liver fibrosis-related genes and proteins 
were recapitulated in PA-induced lipotoxicity cultures, 
and reversed by SELENOM overexpression in hepatocytes 
(Figs. 2I and S2B). Together, these results suggest that 
SELENOM deletion increases HFD-mediated hepatic alveo-
lar steatosis and fibrosis.

SELENOM deletion increases inflammation response 
in HFD‑induced liver.

Chronic inflammation is a critical histological change in 
NAFLD [40, 41], contributing to fibrosis, cirrhosis, liver 
failure and even hepatocellular carcinoma. Thus, we evalu-
ated the effect of HFD and SELENOM deletion on liver 
inflammation, and found that both conditions significantly 
increased the serum levels of Tnfa, Il6, and Il1b compared 
to the chow-fed group;  SELENOM−/− mice fed with HFD 
showed even higher levels of these proteins (Fig. 3A). In the 

Fig. 5  SELENOM−/− increases HFD-mediated mitochondrial path-
way apoptosis in the liver. A, B Cas 3 was measured via immuno-
histochemistry analysis in livers from WT,  SELENOM−/−, HFD and 
 SELENOM−/− + HFD. Six fields (Scale bar: 200 and 50  μm) were 
randomly selected for each sample. The positive area in each image 
was measured (n = 6; *P < 0.05). C The mRNA and protein expres-
sion levels of mitochondrial pathway apoptosis-related genes Cas 
3, Cas 9, Bax and Bcl2 were determined in HFD-treated livers with 
 SELENOM−/− (n = 6; *P < 0.05). D The mRNA and protein expres-
sion levels of mitochondrial pathway apoptosis-related genes Cas 3, 
Cas 9, Bax and Bcl2 were determined in hepatocytes of Veh, SELE-
NOM, PA and SELENOM + PA (n = 3; *P < 0.05). E, F Apoptosis 
and necrosis staining with YO-PRO-1 and PI for apoptosis detection, 
and the green nucleus represent an apoptotic cell (n = 3; *P < 0.05). 
Fields from one representative experiment of three are shown. G 
CCK8 assay was used to assess the hepatocyte viability under PA 
treatment (n = 3; *P < 0.05). H Cell viabilities and apoptosis rates 
were determined by flow cytometry. Healthy (Q1), early apoptotic 
(Q2), late apoptotic (Q3), and necrotic populations (Q4). Images were 
chosen from three independent biological samples (n = 3; *P < 0.05). 
Values represent means ± SEM

◂
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liver, the gene and protein levels of the pro-inflammatory 
cytokines Il6, Ifng, Nos2 and Tnfa were similarly increased 
by HFD and SELENOM deletion (Fig. 3B, C). On the other 
hand, the mRNA level of the anti-inflammatory factor Il10 
was decreased by HFD and SELENOM deletion (Fig. 3B). 
Again, these observations could be reproduced in vitro with 
PA treatment, which increased the mRNA and protein lev-
els of Il6, Ifng, Nos2 and Tnfa, and decreased Il10; SELE-
NOM overexpression counteracted these effects (Fig. 3D, 
E). Taken together, these results support that SELENOM 
deletion may exacerbate HFD-induced hepatic inflammation.

SELENOM−/− increases HFD‑mediated oxidative 
stress and attenuates fatty acid oxidation (FAO) 
in liver tissues

Recent evidence has shown that oxidative stress and FAO 
play an important role in hepatocyte lipid metabolism 
and the pathogenesis of NAFLD [42]. Thus, we evalu-
ated these pathways in liver samples and found that HFD 
reduced the level of CAT, GPX, SOD and T-AOC, and 
SELENOM deletion further reduced these antioxidant 
enzymes when combined with HFD (Fig. 4A). By com-
parison, the lipid peroxidation marker malondialdehyde 
(MDA) was elevated by HFD, and further enhanced in 
 SELENOM−/− mice fed with HFD. In vitro results show 
that PA treatment could reduce the levels of CAT, SOD, 
GPX and T-AOC, and increase the level of MDA; all 
changes were reversed by SELENOM overexpression 
(Fig. 4B). In addition, ROS were significantly increased 
in PA-treated hepatocytes, and this was reduced in 
hepatocytes with SELENOM overexpression (Fig. 4C). 
Together, these data indicate that SELENOM deletion 
increases oxidative stress in the presence of HFD.

For the lipid metabolism pathway, we found that the 
FAO-related genes Cpt1a, Acadm, Ppara, Cdh15, Eci2 
and Acox1 were downregulated in HFD-fed mice, and fur-
ther decreases were seen in  SELENOM−/− mice on HFD 

(Fig. 4D). In vitro results show that PA treatment also 
decreased the expression of these genes in hepatocytes, 
and the effect was reversed by SELENOM overexpression 
(Fig. 4E). Conversely, the levels of lipogenic genes Gpam, 
Plin1, Scd1, Lipe, Fasn, Acly and Pparg were increased by 
HFD and further enhanced in  SELENOM−/− mice on HFD 
(Fig. S3A). As expected, SELENOM overexpression could 
inhibit PA induction of these lipogenic genes (Fig. S3B). 
In addition, siRNA knockdown of SELENOM enhanced 
the mRNA level of these lipogenic genes and aggravated 
PA-induced lipid accumulation (Fig. S3C). Oil red staining 
showed that SELENOM overexpression could inhibit PA-
induced lipid accumulation, and restore the level of beta-
hydroxybutyrate, a metabolic product of beta-oxidation 
(Fig. 4F, G). Together, these data underscore the effects of 
SELENOM deficiency in decreasing FAO and increasing 
lipid deposition in HFD-fed mice.

SELENOM attenuates hepatocyte mitochondrial 
pathway apoptosis

The mitochondrial apoptosis pathway plays an impor-
tant role in the lipotoxicity of the hepatocyte [43, 44]. 
Accordingly, we observed that caspase 3 (Cas3) staining 
was increased in the liver of HFD-treated mice, and fur-
ther enhanced by SELENOM deletion (Fig. 5A, B). This 
result was supported with observations of increased mito-
chondrial pro-apoptotic genes and proteins including Bax, 
Cyt-c, pro- and cleaved-Cas3 and Cas 9, in HFD-fed mice, 
an effect that was strengthened by SELENOM deletion 
(Fig. 5C). In contrast, the level of the anti-apoptotic factor 
Bcl2 was downregulated. These results were reproducible 
in vitro with PA-induced hepatocyte apoptosis where the 
suppression of Bax, Cyt-c, Cas3 and Cas9 expressions, 
and enhancement of Bcl2 was reversed by SELENOM 
overexpression (Fig. 5D). Consistent with this, results 
of YO-PRO-1/PI apoptosis staining, CCK8 cell viabil-
ity assay and annexin V staining all demonstrate that PA 
treatment enhanced apoptosis, which was reversed by 
SELENOM overexpression (Fig. 5E–H). Taken together, 
these data illustrate that SELENOM deletion augments 
mitochondrial apoptosis induced by HFD and this can be 
attenuated by SELENOM overexpression.

SELENOM−/− attenuates hepatocyte mitophagy 
activity

Mitophagy maintains mitochondria quality by removing 
damaged mitochondria with the help of lysosomes [45]. We 
evaluated mitophagy-related factors and found that HFD 
diminished the ratio of LC3-II/LC3-I, and the levels of Bec-
lin1 and Atg5; HFD-fed  SELENOM−/− mice exhibited even 

Fig. 6  SELENOM involves in HFD-inhibited mitophagy in the liver. 
A The expression levels of mitophagy-related proteins such as LC3-I, 
LC3-II, Atg5, Tom20, Beclin1, Lamp2 and Sqstm1 in livers from WT, 
 SELENOM−/−, HFD and  SELENOM−/− + HFD (n = 6; *P < 0.05). B 
The expression levels of mitophagy-related proteins such as LC3-I, 
LC3-II, Atg5, Tom20, Beclin1, Lamp2 and Sqstm1 in hepatocytes of 
Veh, SELENOM, PA and SELENOM + PA (n = 3; *P < 0.05). C, D 
Immunofluorescence assay for mitophagy via assessing LC3 in vitro. 
Fields from one representative experiment of three are shown (n = 3; 
*P < 0.05). E, F The quantity of autophagy vacuoles was recorded by 
MDC staining. Fields from one representative experiment of three are 
shown (n = 3; *P < 0.05). G Immunoblotting for LC3-I, LC3-II, Atg5, 
Tom20, Beclin1, Lamp2 and Sqstm1 in AML12 hepatocytes treated 
with Si-NC or Si-SELENOM were subjected to amino acid starvation 
for the indicated durations, 0, 1, 3 h, respectively (n = 3; *P < 0.05). 
Values represent means ± SEM
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further reduction (Fig. 6A). Moreover, the protein level of 
Sqstm1 was elevated in HFD-fed mice and further increased 
in HFD-fed  SELENOM−/− mice. The mitochondrial protein 
Tom20 and lysosomal protein Lamp2 were downregulated 
in HFD-fed mice, but the decreases were much greater in 
 SELENOM−/− mice on HFD, indicating that mitophagy 
was impaired in  SELENOM−/− mice under high-fat stress. 
As expected, mRNA expression levels of these mitophagy-
related genes were consistent with the protein expression 
level (Fig. S4A). Consistent with the in vivo data, PA treat-
ment also decreased the ratio of LC3-II/LC3-I, the levels of 
Atg5, Tom20, Beclin1 and Lamp2, and increased the level 
of Sqstm1; SELENOM overexpression reversed the effect 
(Fig. 6B). The mRNA levels of these mitophagy-related 
genes were consistent with the protein expression levels 
(Fig. S4B). Immunofluorescence staining of LC3 was con-
sistent with the western blot data (Fig. 6C, D). Furthermore, 
we stained autophagy vacuoles with MDC and found that PA 
treatment reduced the number of vacuoles, and SELENOM 
overexpression reversed this effect (Fig. 6E, F), indicating 
that SELENOM may increase the number of autophagy 
vacuoles.

The autophagy activation model was established with 
amino acid starvation (AAS) [46] to further determine the 
role of SELENOM in mitophagy. As shown in Fig. 6G, AAS 
increased the ratio of LC3-II/LC3-I, levels of Atg5, Tom20, 
Beclin1, Lamp2, and reduced Sqstm1 expression in a time 
dependent manner. SELENOM knockdown could decrease 
the levels of mitophagy induced by AAS of 1 or 3 h (Si-
SELENOM; see Fig. S4C, D for the mRNA and protein lev-
els of SELENOM after siRNA treatment). The mRNA levels 

of mitophagy-related genes were consistent with the protein 
levels (Fig. S4E). Together, these data indicate that SELE-
NOM may regulate HFD-induced NAFLD via mitophagy 
pathways.

SELENOM modulates mitochondrial stress 
via activating the Parkin‑related mitophagy

Parkin was found to be a major factor in mitophagy activa-
tion [47]. To determine whether Parkin contributes to SELE-
NOM-modulated mitophagy, we first knockdown Parkin 
(Si-Parkin) in hepatocytes with siRNA and found that SELE-
NOM level did not change (Fig. S5A). Immunofluorescence 
staining showed that Lamp2 was reduced by PA stress and 
rescued by SELENOM overexpression; Si-Parkin abolished 
the effect of SELENOM (Fig. 7A, B). Evaluation of other 
mitophagy factors showed that PA treatment decreased the 
mRNA and protein expressions of Parkin, LC3, and Beclin1, 
and increased the expression of Sqstm1; SELENOM over-
expression reversed these effects, and Si-Parkin blocked the 
action of SELENOM (Fig. 7C, D). We have shown above 
that PA treatment reduced the number of autophagy vacuoles 
and the effect was reversed by SELENOM overexpression; 
Addition of Si-Parkin also counteracted the effect of SELE-
NOM in this setting (Fig. S5B, C). These results show that 
SELENOM activates mitophagy via enhancement of Parkin 
expression in response to PA-induced stress.

To further clarify the function of SELENOM in mito-
chondrial homeostasis, mitochondrial transmembrane 
potential was assessed by JC-1 staining in vitro. We found 
that the increased membrane potential induced by PA treat-
ment could be ameliorated by SELENOM overexpression; 
however, this effect was abrogated by Si-Parkin treatment 
(Fig. 7E, F). Similarly, we observed that PA-induced up-reg-
ulation of mitochondrial ROS was attenuated by SELENOM 
overexpression in a Parkin-dependent manner as Si-Parkin 
treatment inhibited the effect of SELENOM (Fig. 7G).

The release of cytochrome C (Cyt-c) from the mitochon-
drial membrane into the nucleus/cytoplasm is a central step 
in the mitochondrial apoptosis pathway. Immunofluorescent 
staining shows that PA treatment increased Cyt-c release, 
while SELENOM overexpression mitigated this effect; Par-
kin siRNA transfection again inhabited the action of SELE-
NOM (Fig. 7H, I). Levels of the apoptotic protein Cas 9 
were similarly induced by PA treatment, which was reversed 
by SELENOM overexpression in a Parkin-dependent man-
ner (Fig. 7J). Moreover, the antioxidants GPX, SOD, CAT 
and T-AOC were all reduced by PA treatment, an effect that 
was inhibited by SELENOM overexpression, and Parkin 
deletion blocked the effect of SELENOM; for MDA the 
reverse is true since PA increased this factor, SELENOM 
overexpression reduced it, and Si-Parkin treatment abolished 
the effect of SELENOM (Fig. 7K–O). Altogether, our data 

Fig. 7  SELENOM regulates in PA-inhibited mitophagy by activat-
ing Parkin. A, B The immunofluorescent intensity of Lamp2 was 
verified via immunofluorescence assay in groups of Si-NC, SELE-
NOM, PA + Si-NC, SELENOM + PA and SELENOM + PA + Si-
Parkin (n = 3; *P < 0.05). Si-Parkin (50  nM) was used to block 
Parkin expression. Fields from one representative experiment of 
three are shown. C, D The mRNA and protein expression levels of 
mitophagy-related genes such as Parkin, LC3, Beclin1 and Sqstm1 
were determined in hepatocytes of Si-NC, SELENOM, PA + Si-NC, 
SELENOM + PA and SELENOM + PA + Si-Parkin (n = 3; *P < 0.05). 
E, F Mitochondrial membrane potential was detected by the JC-1 
staining (n = 3; *P < 0.05). Representative images were chosen from 
three independent biological samples (scale bar, 75 μm). G ROS pro-
duction stained by DCFH-DA (5  mM) was measured by a fluores-
cence microplate reader. The data represent the mean ± SEM (n = 3; 
*P < 0.05). H, I Immunofluorescent intensity of Cyt-c was verified 
via immunofluorescence assay (n = 3; *P < 0.05). Fields from one 
representative experiment of three are shown (scale bar, 50  μm). J 
The mRNA of Cas 9 was determined in hepatocytes of Si-NC, SELE-
NOM, PA + Si-NC, SELENOM + PA and SELENOM + PA + Si-Par-
kin (n = 3; *P < 0.05). K–O The contents of GSH-PX, SOD, MDA, 
CAT, T-AOC were measured in hepatocytes of Si-NC, SELENOM, 
PA + Si-NC, SELENOM + PA and SELENOM + PA + Si-Parkin 
(n = 3 per group, *P < 0.05 versus the difference between groups). 
The data represent the mean ± SEM
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indicate that under high-fat pressure, the protective effect of 
SELENOM overexpression on liver mitochondrial homeo-
stasis and oxidative stress requires Parkin-related mitochon-
drial autophagy.

SELENOM regulates Parkin via the AMPKα1–MFN2 
pathway

It has been reported that the AMPKα1–MFN2 signaling 
pathway is involved in mitophagy [27, 28]. We evaluated this 
pathway in the liver of HFD-fed and  SELENOM−/− mice 
and found that the mRNA levels of AMPKα1, MFN2, PINK1 
and Parkin were decreased by HFD and SELENOM deletion 
alone, but was further decreased in  SELENOM−/− mice fed 
with HFD (Fig. 8A). Similarly, the protein levels of MFN2 
and Parkin, and the ratio of P-AMPKα1/AMPKα1 were 
decreased in HFD-fed and  SELENOM−/− mice, and further 
depleted in  SELENOM−/− mice fed with HFD (Fig. 8B). 
These observations were reproducible in in vitro where 
PA stress decreased the mRNA and protein expressions of 
AMPKα1, MFN2, PINK1 and Parkin, and the effects were 
nullified by SELENOM overexpression. Using an inhibitor 
of AMPK, Compound C (CC, 5 μM), we further showed 
that the effect of SELENOM can be abolished (Fig. 8C, D). 
These findings were also observable with P-AMPKα1 and 
Parkin immunofluorescent staining (Fig. 8E–G). Together, 
these data suggest that SELENOM activates Parkin via the 
AMPKα1–MFN2 pathway in hepatocytes.

Discussion

SELENOM has been shown to play a pivotal role in various 
liver diseases [3]. In this study, we show that SELENOM 
was downregulated in fatty liver disease and SELENOM 
deletion increased the susceptibility to fatty liver disease 
induced by HFD in mice. SELENOM deficiency aggra-
vates HFD-mediated hepatic oxidative stress, mitochondria 
apoptosis, inflammation, steatosis, and fibrosis. Additionally, 

SELENOM regulates mitochondrial membrane potential 
and mitophagy, two routes through which mitochondrial 
apoptosis may be controlled. Mechanistically, we showed 
that SELENOM regulates Parkin-mediated mitophagy via 
the AMPKα1–MFN2 signaling pathway; blockade of the 
AMPKα1–MFN2 pathway could inhibit mitophagy and abol-
ish the mitochondrial protective effects of SELENOM. Our 
findings, thus, reveal that manipulating SELENOM provides 
a potential opportunity for treating NAFLD (Fig. 8H).

Fibrosis is part of the pathological progression in NAFLD 
and is characterized by increased collagen deposition and 
inflammation. These features, including the activation 
of fibrosis markers Ccn2, Tgfb and Acta2 and inflam-
matory cytokines Tnfa, Il6, Ifng and Nos2, were signifi-
cantly increased in the absence of SELENOM. Steatosis is 
another pathological feature of NAFLD and reduction in 
FAO has been shown to increase lipid deposition and pro-
mote NAFLD development [48]. We showed that SELE-
NOM deletion inhibits the expression of FAO-related genes 
(Ppara, Cpt1α, Cdh15, Acox1 and Acadm), and increases 
the expression of lipogenic genes (Gpam, Plin1, Scd1, Lipe, 
Fasn, Acly and Pparg), thus contributes to lipid accumula-
tion and steatosis. Based on these findings, our data suggest 
that SELENOM inhibition may be one of the reasons that 
aggravate fatty liver disease, hepatic steatosis, inflammation 
and liver fibrosis. Further studies are needed to examine the 
effects of SELENOM-mediated signal transduction on the 
pathogenesis of NAFLD.

SELENOM and thioredoxin have antioxidant activity 
and activate hypothalamic leptin signaling in the hypo-
thalamus of mice [49]. SELENOM is mainly located in 
the brain, and overexpression of SelenoM in rats could 
improve Alzheimer’s disease by inhibiting the activity of 
secretase in the brain [50]. Dietary selenium supplemen-
tation promotes the development of mature II oocytes in 
the ovaries of aging mice by increasing the expression 
of SELENOM [51]. SELENOM knockout mice gained 
weight and increased white adipose tissue levels, sug-
gesting that SELENOM has a regulatory effect on energy 
homeostasis in the body [52]. Studies have shown that 
SELENOM can be expressed in primary murine neuronal 
cultures, HT-1080 (fibrosarcoma) and MCF-7 (breast 
adenocarcinoma), hepatocellular carcinoma, adipocytes, 
neutrophils and so on [53, 54]. SELENOM could prevent 
the increase in oxidative stress and mitochondria damage 
in Alzheimer’s disease [7, 55], and reduces chondrocyte 
apoptosis by regulating oxidative stress and mitochondrial 
pathways [56]. Similarly, we show that SELENOM dele-
tion in hepatocytes could induce excessive ROS production 
and unbalance the antioxidant system through decreasing 
the activity of SOD, GPX and T-AOC, resulting in mito-
chondrial metabolic dysfunction. Thus, SELENOM plays 
a key role in maintaining mitochondrial homeostasis in the 

Fig. 8  SELENOM regulates Parkin via the AMPKα1–MFN2 path-
way. A, B The mRNA and protein expression levels of AMPKα1, 
MFN2 and Parkin were determined in HFD-treated livers with 
 SELENOM−/− (n = 6; *P < 0.05). C, D The mRNA and protein lev-
els of AMPKα1, MFN2 and Parkin were determined in hepatocytes of 
Veh, SELENOM, PA, SELENOM + PA and SELENOM + PA + CC. 
Compound C (CC) was an inhibitor of AMPKα1 to block the acti-
vation of AMPKα1 (n = 3; *P < 0.05). E–G The immunofluorescent 
intensity of P-AMPKα1 and Parkin was verified via using the immu-
nofluorescence assay in hepatocytes of Veh, SELENOM, PA, SELE-
NOM + PA and SELENOM + PA + CC (n = 3; *P < 0.05). Fields 
from one representative experiment of three are shown (scale bar, 
50 μm). Values represent means ± SEM. H Schematic representation 
of SELENOM promoting AMPKα1–MFN2 pathway in mitophagy of 
liver
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liver, SELENOM deletion could increase mitochondrial 
oxidative stress (mtROS) and mitochondrial potential dis-
order in hepatocytes. The loss of mitochondrial transmem-
brane potential could be related to the recruitment of the 
pro-mitophagy factor Parkin [57, 58]. In support of this 
concept, our results show that SELENOM overexpression 
could maintain mitochondrial transmembrane potential by 
activating Parkin-dependent mitophagy. SELENOM also 
diminishes apoptosis by protecting mitochondria function 
in chicken chondrocytes [7, 56]. Similarly, we show here 
that the loss of SELENOM was followed by activation of 
Cas 3/Cas 9-mediated apoptosis in hepatocytes. High-fat 
diet-induced liver apoptotic damage may be the root cause 
of lipid accumulation [59–61]. Accumulation of damaged 
mitochondria may be a major cause of oxidative stress 
damage in the liver, which can cause mitochondrial path-
way apoptosis to liver cells. We also observed concomi-
tant increase in liver apoptosis and lipid accumulation in 
 SELENOM−/− mice. These data suggest that HFD-medi-
ated hepatocyte injury is caused by mitochondrial dys-
function, and the downregulation of SELENOM may be a 
pathogenic factor in HFD-induced NAFLD.

Mitophagy defects are thought to induce NAFLD by 
allowing damaged mitochondria to accumulate [24]. 
Impaired mitophagy may contribute to the abnormal accu-
mulation of lipid, but the underlying molecular mechanisms 
are unclear. Our data suggest that SELENOM is the upstream 
inhibitor of mitochondrial damage, as defective mitophagy 
was increased by HFD-stress and SELENOM deletion, and 
further exacerbated in  SELENOM−/− mice fed with HFD. 
Parkin is one of the major activators of mitophagy. Lipid 
deposition in chronic alcoholic fatty liver is related to the 
PINK1/Parkin signaling pathway [25], and lipid accumula-
tion induced by mitochondrial damage is associated with 
NAFLD in mice [62]. Based on these findings, we confirmed 
that SELENOM deletion may induce the accumulation of 
damaged mitochondria in NAFLD due to reduced activation 
of Parkin-related mitochondrial autophagy, leading to liver 
steatosis and inflammation. Numerous mitophagy-network 
genes, such as Parkin, Atg5, Tom20, LC3 and Lamp2, are 
detected under nutrient deprivation [63]. Similarly, we found 
that SELENOM deficiency suppressed nutrient starvation-
induced mitophagy, while SELENOM overexpression effec-
tively rescued the PA-induced mitophagy impairment, sug-
gesting that SELENOM sustains Parkin-related mitophagy 
activation to decrease hepatocyte apoptosis. Thus, SELE-
NOM is a key activator that mediates the hepatic network 
involved in Parkin-related mitophagy to maintain liver 
function.

The activation of AMPK/MFN2 maintains the biologi-
cal function of mitochondria to regulate the process of 
energy metabolism [64]. Several previous studies have 
shown that AMPK could regulate the metabolic impact of 

pro-inflammatory cytokine and lipogenic genes expression 
through improvements in mitochondrial biogenesis [65]. 
Consistent with this, deletion of SELENOM promote the 
obesity-induced increase lipogenic genes expression in liver 
via affecting AMPKα1–MFN2 pathway, which also includes 
increased expression of pro-inflammatory genes involved in 
NAFLD. Several pieces of evidence indicate a close rela-
tionship between AMPKα1 function and Parkin-related 
mitophagy [66]. The regulation of mitophagy by energy 
stress is related to AMPKα1 and MFN2, and AMPKα1 regu-
lates the autophagic ability of mouse embryonic fibroblasts 
via direct interaction with MFN2 [27]. In the present study, 
we show that the level of AMPKα1 phosphorylation was 
significantly suppressed in SELENOM-deficient livers in 
response to HFD treatment along with impaired mitophagy 
induction. Mechanistically, PA treatment led to the decrease 
in AMPKα1 phosphorylation and reduced mitophagy, which 
was abolished SELENOM overexpression. Importantly, 
AMPKα1 inhibition by Compound C ameliorated the 
effect of SELENOM, suggesting that SELENOM mediates 
mitophagy in an AMPKα1-dependent manner. Our study 
demonstrated that SELENOM could promote Parkin-related 
mitophagy via interacting with the AMPKα1–MFN2 signal 
pathway to impede NAFLD development. In addition, the 
multiple roles of signaling pathways mediated by the SELE-
NOM–AMPKα1–MFN2 axis in the pathogenesis of liver dis-
eases need to be further studied.

Conclusions

In conclusion, our findings show that energy stress-induced 
downregulation of SELENOM in hepatocytes could aggra-
vate HFD-mediated liver damage. SELENOM deficiency 
increased oxidative stress, mitochondrial apoptosis, inflam-
mation, steatosis, and fibrosis in HFD-treated livers. SELE-
NOM enhanced Parkin-mediated mitophagy induced by 
energy stress via activation of the AMPKα1–MFN2 path-
way to prevent the pathogenesis of NAFLD. Our findings 
highlight SELENOM as a molecular target of NAFLD 
pathogenesis and reveal the importance of SELENOM and 
Parkin-mediated mitophagy in maintaining mitochondrial 
homeostasis in hepatocytes.
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