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Abstract

Probiotics currently available on the market generally belong to a narrow range of microbial species. However, recent studies
about the importance of the gut microbial commensals on human health highlighted that the gut microbiome is an unexplored
reservoir of potentially beneficial microbes. For this reason, academic and industrial research is focused on identifying and
testing novel microbial strains of gut origin for the development of next-generation probiotics. Although several of these are
promising for the prevention and treatment of many chronic diseases, studies on human subjects are still scarce and approval
from regulatory agencies is, therefore, rare. In addition, some issues need to be overcome before implementing their wide
application on the market, such as the best methods for cultivation and storage of these oxygen-sensitive taxa. This review
summarizes the most recent evidence related to NGPs and provides an outlook to the main issues that still limit their wide
employment.

Keywords Next-generation probiotics - Live biotherapeutics - Gut microbiome - Faecalibacterium prausnitzii -
Akkermansiamuciniphila - Prevotella copri

Introduction Microbiome-targeted intervention
to promote host health

The importance of the gut microbiome in influencing human

health is widely recognized [1]. Indeed, an alteration in the
gut microbiome composition (dysbiosis) has been linked to
several intestinal and systemic diseases, such as inflammatory
bowel and Crohn’s disease, obesity, diabetes and metabolic
syndrome, allergies, immune and cardiovascular diseases
[2, 3]. Although a causative effect is yet to be demonstrated,
independent observational studies highlighted the presence
of common microbial signatures, specific for each disease.
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Dietary interventions for the modulation of the gut
microbiome

Diet is considered as one of the main factors influencing
the gut microbiome. Long-term, habitual diet shapes the
gut microbiome composition and activities. Several studies
demonstrated that the gut microbiome of non-Westernized
populations living in Africa or South-America and habitu-
ally consuming a diet richer in undigestible fiber and phyto-
chemicals compared to urbanized, Western subjects, show
higher abundance of fiber-degrading microbial taxa in their
gut microbiome [4]. These microbes are able to degrade
complex polysaccharides and phytochemicals entrapped in
the matrix, producing health-promoting metabolites from
their catabolism, such as short-chain fatty acids (SCFA)
from fiber fermentation, isothiocyanates or urolithins from
polyphenols, that are usually enriched in the metabolome
of these subjects [5, 6]. Consistently, Western subjects con-
suming a habitual diet rich in products of vegetable origin
(e.g., vegetarian/vegan diet, Mediterranean diet) present
features in their gut microbiome similar to non-Western
populations, such as higher Bacteroidetes/Firmicutes ratio
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and higher levels of fiber-degrading bacteria (e.g., Prevo-
tella, Faecalibacterium, Roseburia, Lachnospira) [5, 7-10].
In addition, these studies demonstrated that a dietary pat-
tern rich in vegetable-based products is associated with a
beneficial metabolome and positive health effects, such as
a reduced inflammation, lower cardiometabolic risk and an
improved glucose homeostasis [6, 9, 10]. However, it was
highlighted that both the type of fibre and its structure may
influence the effect of the gut microbiome and metabolome
[11, 12]. In recent years, the possibility of manipulating the
gut microbiome composition and activities as a therapeutic
or preventive approach was explored. Dietary interventions
targeting the gut microbiome in healthy and diseased popu-
lations were carried out, either evaluating the effect of a sup-
plementation with specific foods (e.g., products rich in fiber
or polyphenols) or the influence of a more complex dietary
pattern (e.g., Mediterranean or vegan diets). Despite the dif-
ferences in the study design, target population and methods
used, most of these studies highlighted the strong impact of
the dietary intervention on the gut microbiome and on the
host health. A recent study evaluated the effect of a 2-month
intervention with a Mediterranean diet in obese/overweight
adults [8]. The intervention promoted the increase of Fae-
calibacterium prausnitzii, a microbial species well known
for the ability to degrade complex polysaccharides and
produce beneficial SCFA. On the contrary, a decrease in
the pro-inflammatory Ruminococcus gnavus was observed.
These changes were associated with a decrease in plasma
cholesterol, inflammatory markers and insulin resistance [8].
Consistently, Ghosh et al. [11] observed a similar effect in
a longer intervention (1 year) with the Mediterranean diet
on elder subjects. However, these and other studies high-
lighted that the effect of the dietary intervention cannot be
generalized. Indeed, the effects of a dietary treatment differ
inter-individually and may be influenced by a combination
of host and microbiome features [12, 13]. It was suggested
that the baseline composition of the gut microbiome may
be responsible for the individualized response to the same
meal. In addition, building a complex model integrating
the microbiome and host-specific features, it was possible
to predict the individual’s metabolic response with good
accuracy [14, 15], demonstrating that dietary recommenda-
tions should not be generalized. Therefore, the individual’s
microbiome should be considered to inform the design of a
personalized diet.

Modulation of the gut microbiome by probiotics
Probiotics are defined as “live microorganisms that, when
administered in adequate amounts, confer a health benefit on

the host” [16]. Probiotic microorganisms may interact with
the host and its microbiome through different mechanisms,
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directly interplaying with human intestinal cells or produc-
ing active metabolites, that can indirectly act on the host
microbiome by changing the gastrointestinal environment
(e.g., pH lowering). In addition, ingested probiotics may
compete with commensal microbes for nutrients and bind-
ing sites, or by producing antimicrobial compounds (organic
acids, bacteriocins). Metabolites produced by probiotic
microbes can act at the interface of human cell, binding to
receptors on intestinal epithelial, immune, endocrine, and
nervous cells [17, 18]. Probiotic strains may explicate their
activity in different ways. Some strains promote the pro-
duction of B-defensin and immunoglobulin A (IgA), thus
suppressing the growth of pathogens or reducing the perme-
ability of the intestinal barrier, inducing mucin production
and strengthening tight junctions [17-20]. Other strains have
an immunomodulatory activity, stimulating the production
of anti-inflammatory cytokine, or can produce neuroactive
molecules from dietary precursors, such as y-aminobutyric
acid (GABA), kynurenic acid, serotonin, catecholamines and
acetylcholine [19-21].

Most of the probiotic strains available on the market
belong to a limited number of genera, mainly Lactic Acid
Bacteria (LAB; e.g., Lactobacillus, Lactococcus) or Bifido-
bacterium spp. and the main isolation sources are fermented
foods or the human gut [18, 22]. These taxa have been
granted the status of Generally Regarded as Safe (GRAS)
in the United States or of Qualified Presumption of Safety by
the European Food Safety Authority. Although their activity
is strain-specific, the influence on human health and on the
human microbiome has been widely studied in animals and
humans and was recently and extensively reviewed [22-24].
However, recent advances in the knowledge of the gut micro-
biome suggested that the range of potentially beneficial
microbes is much wider, and the human gut microbiome may
be considered as an unexplored reservoir of novel probiotics.

Mining the gut microbiome
for next-generation probiotics

Next-generation probiotics (NGPs) are microbial taxa that
conform to the traditional definition of probiotics, but do
not have an history of use for health promotion. They also fit
well in the definition of live biotherapeutic products (LBP)
given by the US Food and Drug Administration: “a biologi-
cal product that: (1) contains live organisms, such as bac-
teria; (2) is applicable to the prevention, treatment, or cure
of a disease or condition of human beings; and (3) is not a
vaccine” [25]. Regulation about NGPs is still lacking and
varies across countries. In Europe, all microorganisms that
have not been used in foods before 1997, must be carefully
evaluated by EFSA before being admitted on the market,
either as a novel food or as a drug [26].
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Several microbial commensals have been evaluated
as NGPs. Of these, Akkermansia muciniphila, Faecali-
bacterium prausnitzii, Eubacterium hallii, Prevotella
copri, Bacteroides spp. are the most promising. NGPs
are phylogenetically distant from LAB, that belong to Fir-
micutes (Bacilli class) or Actinobacteria phyla (Fig. 1).
Most of these taxa (Prevotella, Bacteroides, Akkerman-
sia) are from different phyla (Bacteroidetes, Verrucomi-
crobia), while others (Faecalibacterium, Roseburia and

Branch color:
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Verrucomicrobiae
Actinobacteria
I Clostridia
Bacilli

Lacticaseibaci//us rhamnosys
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Fig. 1 Phylogenetic tree of species from common probiotics Lactic
Acid Bacteria ore recently investigated next-generation probiotics.
Outer ring is colored according to the phylum, while branch back-
ground is colored according to the class. Phylogenetic tree was based
on concatenated marker genes as inferred by PhyloPhlAn 3.0 (https://
github.com/biobakery/phylophlan) and visualized using iTOL v6
(https://itol.embl.de). Genomes used are from strains: Eubacterium
hallii DSM3353; Akkermansia muciniphila DSM22959; Bacteroides
fragilis NCTC9343; B. thetaiotaomicron DSM2079; B. uniformis
ATCC8492; Faecalibacterium prausnitzii A2165; Prevotella copri

Eubacterium) belong to the Firmicutes phylum but are
from a different class (Clostridia; Fig. 1).

Akkermansia muciniphila

Akkermansia muciniphila is the only cultured member
of Verrucomicrobia phylum. It can degrade the intestinal
mucus layer to obtain energy [27], which has been suggested
as one of the factors giving it a competitive advantage in the

Verrucomicrobia
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Lactobaa’l/us /ohnsonii

DSM18205; Roseburia intestinalis R1.82; Bifidobacterium adoles-
centis ATCC15703; Bif. animalis subsp. animalis ATCC25527; Bif.
animalis subsp. lactis BLCI1; Bif. bifidum ATCC29521; Bif. breve
DSM20213; Bif. catenulatum DSM16992; Bif. longum subsp. infantis
ATCC15697; Bif. longum subsp. longum KCTC3128; Lacticaseiba-
cillus casei DSM20011; Lc. paracasei ATCC25302; Lc. rhamnosus
DSM20021; Lactiplantibacillus plantarum DSM20174; Lactobacil-
lus acidophilus DSM20079; Lb. gasseri ATCC33323; Lb. johnsonii
GHZ10a; Limosilactobacillus reuteri subsp. reuteri DSM20016
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animal gut niche [28]. Evidence from several independent
studies suggested that it is usually depleted in gut inflam-
matory conditions (Inflammatory Bowel Diseases, IBD
and inflammatory bowel syndrome, IBS), as well as in obe-
sity and diabetes (Fig. 2). Indeed, several studies reported
a negative correlation of A. muciniphila abundance and
obesity [29, 30] and detected an increase in its abundance
during weight-loss [31]. However, a recent genome-based
study reported the presence of five putative different spe-
cies, closely related to A. muciniphila [32]. Interestingly,
only one species was negatively associated with Body Mass
Index, highlighting the need of an accurate taxonomic
classification within Akkermansia genus [32]. The possi-
bility to modulate A. muciniphila abundance by diet was
also observed: A. muciniphila increased upon an interven-
tion with prebiotic fructo-oligosaccharides (FOS) in obese
mice and rats [33-35], as well as upon the consumption of a

Fig.2 Average relative abun-
dance in the human gut of spe-

polyphenols-rich pomegranate extract [36]. In addition, the
presence of A. muciniphila was associated with an improved
metabolic response upon a 6-weeks calorie restriction diet:
Dao et al. [30] demonstrated that only the group of sub-
jects with higher abundance of A. muciniphila displayed an
improvement in insulin sensitivity upon the diet [30], while
the group with low A. muciniphila received the same diet,
but did not display the same beneficial effects. All these
data supported the role of A. muciniphila in human health,
particularly in glucose homeostasis, and fostered studies on
its use as probiotic supplementation (Table 1). Several stud-
ies carried out on mice models demonstrated an effect of A.
muciniphila supplementation on reducing chronic inflam-
mation (endotoxemia) and fat mass gain, improving glucose
homeostasis and insulin sensitivity, and increasing energy
expenditure, either consuming a normal or a high-fat diet
(Table 1). Therefore, most of the existing evidence suggests
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the use of A. muciniphila as probiotic to ameliorate the
metabolic state associated with obesity and diabetes. How-
ever, a recent study also highlighted that A. muciniphila was
able to reduce the decline associated with aging, attenuat-
ing inflammation, immune disorders, and intestinal mucus
layer thinning, thus promoting healthy aging [37]. Moreover,
the positive effect of the consumption of A. muciniphila on
experimentally induced periodontitis was also suggested:
the gavage with A. muciniphila in mice infected by Por-
phyromonas gingivalis (a primary periodontal pathogen),
reduced the bone loss typical of this condition compared
with controls not receiving the microbial supplement [38].
Finally, the positive effect on reducing colitis and associated
tumorigenesis was also suggested [39, 40].

The mechanisms leading to these beneficial outcomes
have not been fully elucidated yet. A primary role in medi-
ating these effects was given to the protein Amuc_1100, pre-
sent on the bacterium outer membrane, that seems to be able
to interact with the intestinal Toll-like receptors (TRL2) and
promote tight junctions occlusion, thus restoring the gut bar-
rier function. Interestingly, some studies highlighted that the
positive effects mediated by A. muciniphila supplementation
were also obtained by the pasteurized bacterial cells [41, 49]
or the purified Amuc_1100 protein [40, 49], supporting the
important role played by the cell membrane components. In
addition, a recent study identified a novel peptide secreted
by A. muciniphila (named P9) that can improve glucose
homeostasis and promote thermogenesis, thus counteract-
ing obesity in high-fat fed mice [44].

To date, only one pilot A. muciniphila intervention study
on human exists. Depommier et al. [43] carried out a ran-
domized, double-blind, placebo-controlled study in over-
weight/obese volunteers with metabolic syndrome, that
consumed live or pasteurized A. muciniphila (10'° CFU/
day) for 3 months [43]. The authors demonstrated that both
the formulas were safe and well tolerated by humans, and
that the intervention reduced inflammation and improved
insuline sensitivity, with the pasteurized bacteria showing a
better effect than live cells [43]. Indeed, the use of the pas-
teurized A. muciniphila as novel food was recently approved
by EFSA, making this species the first next-generation pro-
biotic that will be soon available on the market (https://open.
efsa.europa.eu/questions/EFSA-Q-2019-00767). This result
will surely boost further investigations on this microbe as
NGP directed to the prevention or treatment of diabetes and
metabolic syndrome.

Faecalibacterium prausnitzii
Faecalibacterium prausnitzii is a Gram-positive bacterium
belonging to the Ruminococcaceae family, also known as

Clostridium cluster IV (phylum Firmicutes). F. prausnitzii
is considered as extremely sensitive to oxygen and is the

@ Springer

only isolated species of the Faecalibacterium genus [47].
However, a recent study based on genomes reconstruction
from human gut metagenomes highlighted the presence of at
least 12 different species commonly found in the human gut,
most of them never isolated, and suggested the definition of
Faecalibacterium complex [48]. The interest in F. praus-
nitzii is associated with its capacity to produce beneficial
metabolites, mainly the short-chain fatty acid butyrate, that
is known to play several health-promoting effects. SCFAs
have an anti-inflammatory, anti-carcinogenic and immu-
nomodulatory activity, it is an energy source for the colono-
cytes, and it can improve the metabolic syndrome [46, 82].
Consistently, F. prausnitzii is usually considered as a bio-
marker of intestinal health, since it is depleted in inflamma-
tory states, such as IBD/IBS (Fig. 2) [46], while a diet rich
in complex fiber can promote its growth [5, 8, 11]. Indeed,
several trials on mice demonstrated a protective role of F.
prausnitzii in experimentally induced colitis (Table 1). A
treatment with F. prausnitzii or concentrated growth super-
natant were able to reduce inflammation and tissue damage
in mice with induced colorectal colitis [83—85]. In addition,
F. prausnitzii gavage in high-fat fed mice was also associated
with a reduction of visceral adipose tissue inflammation and
fibrosis [86]. Besides butyrate, several other metabolites may
be implicated in these beneficial effects. An uncharacterized
peptide [66] or salicylic acid [64] were both identified in F.
prausnitzii culture supernatant and were shown to exert an
anti-inflammatory activity and to prevent colitis in mice.
Nevertheless, contrasting results about this species are pre-
sent in literature. In fact, higher F. prausnitzii abundance
has been reported in allergic diseases [65, 72]. However,
these discrepancies might be due to the presence of differ-
ent and unidentified species/strains. As reported above, at
least 12 different species closely related to F. prausnitzii
were recently identified [48]. The same study also suggests
that a misidentification of some F. prausnitzii strains likely
occurred and some of them may belong to different species
[48]. These species may be differently linked with health
and disease [48]. In addition, different Faecalibacterium
species may co-occur in the same subject. A decrease in
Faecalibacterium diversity was found in obesity and inflam-
matory diseases, while the consumption of a diet rich in fiber
may promote it [48]. These considerations should guide the
development of NGPs, that should include more than one
strain to take advantage of the wide diversity existing in
this species. Therefore, although further investigations are
needed, F. prausnitzii can be considered as a promising NGP
for IBD/IBS and other inflammatory conditions.

Prevotella copri

Prevotella copri (Bacteroidetes phylum) is an obligate anaer-
obic Gram-negative rod and it is one of the dominant taxa in
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the human gut microbiome. P. copri is traditionally consid-
ered as a beneficial microbe, since it is often associated with
a diet rich in fiber from vegetable products and normally
shows higher levels in non-Western populations [87]. The
interest in P. copri is due to the proposed positive effect in
modulating glucose homeostasis, as recently demonstrated
in a cohort of more than 1000 subjects [71]. Indeed, subjects
with higher basal levels of P. copri showed higher glucose
tolerance and insulin sensitivity upon a 3-day intervention
with barley kernel fiber [88]. This mechanism seems to be
linked with the ability to promote glycogen storage in the
liver, probably activated by the production of succinate [89].
In addition, other studies demonstrated that a Prevotella-rich
microbiome predisposes to higher weight loss [77, 79, 90,
91] or cholesterol decrease [92] upon the consumption of
a fibre-rich diet. Consistently, mice gavaged daily with P.
copri showed improved glycemic control [88, 89] (Table 1).
Howeyver, also in this case literature data about the role of P.
copri in relation to human health are contrasting [93]. Sub-
jects with higher P. copri abundance reported higher serum
levels of branched-chain amino acids (BCAA) that promote
insulin resistance [94]. The same authors demonstrated that
P. copri was able to produce BCAA and that mice fed with
one P. copri strain for 3 weeks aggravated glucose tolerance,
increased insulin resistance and showed higher circulating
levels of BCAA [94] (Table 1). In addition, higher baseline
abundance of P. copri was associated with a lower decrease
in insulin resistance in obese subjects following a Mediter-
ranean diet intervention [8]. P. copri was also linked with
arthritis onset [95] and gavage with P. copri in mice with
experimentally induced colitis exacerbated colitis gravity
and inflammation [95] (Table 1). Interestingly, the same P.
copri strain (P. copri CB7, Table 1) was tested in these two
studies [94, 95], demonstrating that different strains may
explicate totally opposite effects. Indeed, a recent study
highlighted that different P. copri strains have a specific
functional potential and may be selected by diet [96]. In
addition, it was demonstrated the presence of at least four
different species closely related to P. copri (P. copri com-
plex) [97], suggesting that isolated strains previously identi-
fied as P. copri might belong to different species. Specific P.
copri strains may be selected by diet [80, 96] and display a
different polysaccharides utilization pattern [80]. Therefore,
although P. copri might be a promising taxon to be used
as NGP for glucose metabolism regulation, this beneficial
activity cannot be generalized to all strains and further inves-
tigations are needed.

Bacteroides spp.
Bacteroides spp. are anaerobic, non-spore-forming, Gram-

negative rods and some species (B. uniformis, B. fragi-
lis, B. xylanisolvens, B. thetaiotaomicron) are considered

interesting as NGP [81]. B. fragilis has been considered a
pathogen for several years. Indeed, some B. fragilis strains
can produce a zinc-dependent metalloprotease that is consid-
ered a toxin and can disrupt the intestinal mucosa. Therefore,
according to the occurrence of the toxin-encoding gene bft,
B. fragilis has been classified into two subgroups: non-enter-
otoxigenic (NTBF, lack of bft) and enterotoxigenic (ETBF,
with bft) B. fragilis. Other pathogenic factors are associated
with the presence of lipopolysaccharide (LPS) or ferritin
that should also be considered in B. fragilis safety evaluation
[98]. However, NTBF strains may exert several beneficial
effects owing to an anti-inflammatory and immunomodula-
tory activity [99] (Table 1). This activity seems to be medi-
ated by the production of a capsular polysaccharide A that
showed these properties even when purified and adminis-
tered to mice [100].

Among other Bacteroides species, B. uniformis and B.
thetaiotaomicron were suggested as NGP for the manage-
ment of metabolic syndrome, glucose homeostasis, and obe-
sity in mice fed with high-fat diet (Table 1). Indeed, oral gav-
age with B. uniformis can reduce liver steatosis, weight gain,
and immune dysfunctions associated with obesity [101],
while an intervention with B. thetaiotaomicron reduced adi-
posity and weight gain [102]. However, a B. thetaiotaomi-
cron isolate was reported to induce colitis in mice [103].

All these findings suggest that, although Bacteroides spp.
are potentially interesting as NGP, the strains should be care-
fully evaluated for safety both in vitro and in vivo.

Eubacterium hallii

Eubacterium hallii (Firmicutes, Clostridium cluster XIVa)
includes non-spore forming, obligately anaerobic rods and is
considered a beneficial microorganism since it can produce
several SCFAs [104], that play a major role in the modula-
tion of gut inflammation, promoting epithelial integrity and
regulating the immune response. Several studies report a
decrease in E. hallii abundance in IBD/IBS and a reduc-
tion of SCFA producers, including Eubacterium, in diabetic
subjects (Fig. 2) [56, 60]. Consistently, oral administration
of E. hallii to obese and insulin-resistant mice improved
insulin sensitivity and energy metabolism [105]. In addi-
tion, it was reported an increase in Eubacterium spp. and an
improvement in insulin sensitivity after a fecal microbiota
transplantation from lean to obese donors [106]. Although
the mechanism was not yet fully elucidated, it seems that
SCFA can bind to receptors, regulating satiety hormones
such as ghrelin and glucagon-like peptide-1 (GLP-1), thus,
inhibiting food intake [107].

@ Springer
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Current issues and future paths

NPGs are attracting more and more interest both at aca-
demic and industrial research levels. However, several points
should be addressed before proceeding to their introduction
on the market.

First of all, wider and thorough studies about safety and
tolerability of these novel microbial taxa need to be car-
ried out, by both animal and human trials. Trials involving
humans are still not available for most of the candidate NGPs
and when performed, they are mainly exploratory, with small
sample sizes and do not include sensitive populations (frailty
subjects, elderly, or children). These studies should also con-
sider that different subjects may show a specific response to
the same strain. Indeed, the same drug, dietary treatment or
probiotic supplementation may have a subject-specific effect,
that may be caused by several factors, including genetics
and gut microbiome composition. Therefore, a personalized
application of NGPs should also be considered. In addition,
an update in current regulation would be necessary. Indeed,
the introduction of new taxa on the market may follow the
novel foods framework or the pharmaceutical path, being
commercialized as LBPs. In both cases, a thorough charac-
terization of several strains from these new species will be
required, including phenotypic and genomic analyses, with
a focus on the research for the presence of genes related
to antibiotic resistance, toxin production, virulence factors,
and mobile elements. For this purpose, large-scale culturo-
mics studies are extremely important [74, 108], not only to
discover novel interesting strains, but also to highlight the
wide diversity existing within each species and characterize
the largest possible number of strains of the candidate NGP
species. Finally, our knowledge about NGP mode of action
is still scarce. In vitro and in vivo trials, as well as genomic
screening, are needed, to understand the functional mecha-
nisms leading to a positive effect on human health.

Another issue is related to NGP cultivation and stabiliza-
tion for storage. Indeed, all these taxa are extremely sensitive
to oxygen, much more than common probiotic LAB, that
constitute the major hurdle to be overcome for their produc-
tion and commercialization. Microbial biomass production
usually takes place in bioreactors that can work anaerobi-
cally. However, guaranteeing strict anaerobiosis in the fol-
lowing phases, such as during microbial cells collection,
freeze-drying and storage during the product shelf life, can
be more challenging. In addition, the viability of the strains
after the gastrointestinal passage should also be evaluated,
as well as the number of cells to be assumed to obtain the
desired effects. The use of appropriately designed coating
systems might be tested to protect cell viability during shelf
life and gastrointestinal transit [109].

@ Springer

Although there are several obstacles that need to be
overcome before these products can be introduced into the
probiotics products market, the development of NGPs hold
promises for innovation in both food and pharmaceutical
industry and it will be possible in following years as an
output of interaction between research centers, regulatory
boards, and industry.
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