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Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the 
β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory path-
ways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD 
development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, com-
monly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving 
event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less 
pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemi-
cal events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the 
peptides’ aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid 
(RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered 
RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we 
provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and 
discuss its advantages and drawbacks in subcellular AD related events.
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Introduction

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disease and the main cause of dementia in the elderly 
population [1], affecting around 6% of individuals over the 
age of 65 [2]. Although there are families with higher AD 
incidence (Familial AD, FAD), caused by autosomal domi-
nant mutations in genes coding for the amyloid precursor 
protein (APP) and Presenilins (PSEN1 and PSEN2) [3], 
the main mechanisms causing AD are still, to some extent, 
unclear, with most cases occurring spontaneously.

Biochemically, AD is characterised by abnormal intracel-
lular deposition of hyperphosphorylated Tau and extracel-
lular accumulation of the amyloid beta (Aβ) peptide and the 
mechanisms of Aβ processing and prevention are a current 

topic of extensive research. The shedding of the APP ecto-
domain can be catalysed by two alternative proteases, α- and 
β-, which compete for the first APP cleavage [4], resulting in 
the APP secreted fragment (sAPP). The β-secretase pathway 
is the major contributor to the consequential Aβ produc-
tion, while cleavage by α-secretase prevents its accumula-
tion [3]. Subsequently, γ-secretase cleavage generates the p3 
(α-secretase pathway) or Aβ (β-secretase pathway) peptides.

Although ubiquitously expressed in all tissues, the 
APP695 isoform is enriched in the brain. This is a single-
pass transmembrane protein with a large extracellular N-ter-
minus and a short cytosolic C-terminus [5]; following pro-
tein synthesis in the endoplasmic reticulum (ER)-associated 
polysomes, APP is N-glycosylated in the ER and transported 
to the Golgi apparatus where it undergoes O- and N-glyco-
sylation, phosphorylation and sulphonation [6, 7].

APP is part of the type-I transmembrane mammal pro-
tein family, which includes the similarly processed APP-like 
protein 1 (APLP1) and 2 (APLP2). The human APP gene 
is located on chromosome 21 and contains 18 exons, span-
ning 290 kilobases [8], with three major isoforms resulting 
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from alternative splicing as follows: APP695, APP751 and 
APP770 [9]. The two larger isoforms contain a 56-amino 
acid Kunitz Protease Inhibitor (KPI) extracellular domain 
and are expressed in most tissues [10], while APP695 lacks 
the KPI domain and is principally expressed in neurons [11]. 
The KPI domain is primarily a serine protease inhibitor 
[12] reported to play a role in APP dimerization, regulat-
ing its sub-cellular location, secretory pathway, and con-
sequent processing of KPI-containing APP isoforms [13]. 
Protein and mRNA levels of KPI-containing APP isoforms 
are elevated in AD brains and correlate with increased Aβ 
deposition [14, 15]. In neurons, prolonged activation of 
extra-synaptic NMDA receptor can shift APP expression 
from APP695 to KPI-containing APP isoforms, accompa-
nied by increased production of Aβ [16]. APP695 associates 
with NMDA receptors, in a manner implying regulation of 
intracellular trafficking [17], strengthening the theory that 
dysregulated splicing of APP RNA [15] and favouring APP 
isoforms facilitating access to the γ-secretase complex [16] 
contributes to AD pathogenesis.

Even though the inherent biological role of APP is of 
understandable interest for Alzheimer's research, its physi-
ological function remains puzzlingly elusive. Its most vali-
dated role is in synaptic formation and repair, with APP 
expression being upregulated during neuronal differentiation 
and following neural injury [18]. Roles in cell signalling, 
long-term potentiation, cell adhesion, and transport, have 
been proposed, but are supported by, as-yet, limited research 
[19, 20]. Similarities in post-translational processing have 
warranted comparisons with the signalling role of the sur-
face receptor protein Notch, a shared substrate of several 
APP secretases [21].

Literature suggests additional functions for APP as a cell 
surface receptor-like protein and ligand, mediating several 
physiological or pathological effects, either from the cell 
surface or via the released proteolytic fragments [7]. Moreo-
ver, APP presence is described in spermatozoa [22], marking 
it as a sentinel protein for male reproduction [23], suggesting 
a wide range of yet unravelled functions.

The importance of phosphorylation in AD is well estab-
lished [24], with research correlating α-secretase phospho-
rylation with increased cleavage activity (and consequent 
amyloid protection) [25]. Moreover, APP phosphorylation 
is particularly significant, as its trafficking is regulated by 
the phosphorylation state of the cytoplasmatic domain [26]. 
Phosphorylation at serine 655 determines the fate of APP 
with to respect to Golgi or lysosomal targeting [27, 28]. 
But most relevant to the work here discussed is that threo-
nine 668 (Thr668) phosphorylation by MAPK8 promotes 
β-cleavage, by facilitating secretase-APP interaction [29, 30] 
(Fig. 1). However, this theory remains unconfirmed, as the 
same Thr668 phosphorylation also decreases extracellular 
Aβ and γ-secretase activity [31].

As it is evident, proteolytic processing of the transmem-
brane region of APP is a crucial step in the progression of 
AD and, as such, has been the subject of extensive research, 
revealing novel secretases and cleavages, beyond the clas-
sic α-, β-, and γ-cleavages. The C-terminus is generated by 
sequential cleavages by the γ-secretase complex (ε-cleavage 
[32] followed by ζ- [33] and γ-cleavages) resulting in release 
of either p3 or Aβ, depending on the original cleavage (α-, 
β-, respectively) [34].

APP secretases

α‑Secretases

α-secretase is manly localised in the plasma membrane, 
where it cleaves full-length APP, but can also be found in the 
Golgi apparatus [35–37]. APP α-cleavage occurs between 
Lys-16 and Leu-17 within the Aβ peptide, believed to be 
determined by an α-helical conformation and membrane dis-
tance from the hydrolysed bond. The action of α-secretase 
on APP results in a membrane-anchored carboxyterminal 
fragment (C83) and the extracellular release of the large 
soluble fragment sAPPα [38–40].

The soluble APP N-terminal fragment derived from 
α-cleavage, sAPPα, is proposed to be associated with neu-
rotrophic and neuroprotective functions, further supporting 
the therapeutic value of increasing APP α-secretase cleavage 
[41]. sAPPα has been shown to be constitutively secreted 
from cells and stimulation of protein kinase C (PKC) by 
phorbol esters increases sAPPα release, demonstrating that 
APP cleavage by α-secretase can either be constitutive or 
regulated by phosphorylation, potentially suggesting the 
existence of different α-secretase proteases [42–44].

The anti-amyloidogenic α-secretase A Disintegrin And 
Metalloproteinase (ADAM) domain-containing protein 10 
(ADAM10) is a relevant α-secretase with constitutive activ-
ity that directly competes for APP at the cell surface [45]. 
The ADAM protein family is characterised by conserved 
amino-acid domains, which include an N-terminal signal 
sequence (required for directing the proteins to the secre-
tory pathway), a pro-domain (responsible for proper protein 
folding), a metalloproteinase domain, a disintegrin domain, 
a cysteine-rich region, an EGF-like domain (with the excep-
tion of ADAM10 and ADAM17), a transmembrane domain, 
and a cytoplasmic domain [46, 47].

The diversity of the ADAM protein family is increased 
by alternative splicing, with 21 described human isoforms. 
ADAMs are divided in two groups as follows: the cata-
lytically inactive group, which includes proteases lacking 
a functional Zn-binding active site, acting via other mecha-
nisms such as protein folding or protein interaction, and the 
catalytically active group (where ADAM10 and ADAM17 
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are included), containing proteases with a Zn-binding 
active site [37, 46]. α-secretase cleavage was classically 
described as a sequence independent process, determined 
by an α-helical conformation and a 12–13 residue interval 
between the membrane cleavage site [37], but a cleavage 
preference for ADAM10 was eventually described [48]. Ini-
tially reported to be responsible for the proteolytic activa-
tion of the membrane precursor of TNFα [1], ADAM17, 
like ADAM10, was found to target a range of substrates 
implicated in several physiological mechanisms [49]. Notch 
receptors, ligands, cadherins, IL-6 receptor, EGF receptor 
ligands, and other type-I transmembrane proteins are also 
cleaved by α-secretases, resulting in the release of their 
respective extracellular domains [50].

Several ADAM proteases have α-secretase activity [51]: 
selective interference of individual ADAM10, ADAM17, 
and ADAM19 genes, in cell and animal models, had no 
noticeable impact on non-amyloid APP processing [52, 53]. 

ADAM10 was shown to have the most relevant α-secretase 
activity in neurons [45]. We have described that even though 
several ADAMs act on APP, only ADAM10 and ADAM17 
interact directly with it, with other proteins playing a sup-
porting role such as escorting or bridging α-secretase 
activators through post-transduction modifications (most 
commonly phosphorylation) (da Cruz e Silva et al., submit-
ted). Additionally, the secretase ADAMTS4 (A disintegrin 
and metalloproteinase with thrombospondin motifs 4) was 
shown to interact with APP in in vitro models [54].

Retinoic Acid (RA) metabolism and signalling are essen-
tial for neuronal health, and several studies have described 
its impairment in AD patients, where RA precursor levels 
are decreased [55, 56]. Considering the promising results of 
promoting α-secretase expression in AD, functional stud-
ies described two potential RA responsive elements in the 
ADAM10 promotor region, 203 and 302 bp upstream from 
gene translation start site [57]. Promotor reporter assays in 

Fig. 1   Retinoid signalling and the integrated impact on APP pro-
cessing and consequent fragment production. Treatment with atRA 
alters the gene promotor region for each of secretase. This stimulus 
can be either direct [120] or mediated by NFkB [87]. Activation of 
several kinases by the RA receptors (represented by PKC) can have 
a direct impact on α-secretase activation, contributing to augmented 
non-amyloidogenic APP processing. ERK pathway activation by 
RAR stimulus also results in loss of γ-secretase activity, even though 
its mRNA levels are increased; the same observations are described 
for the β-secretase BACE1. AICD resulting from β-cleavage is more 
transcriptionally active (represented by the solid arrow, while the 
dashed arrow corresponds to the less transcriptionally active). APP´s 

3 main structural elements are represented accordingly: circles rep-
resenting the extracellular domain; linear representing the transmem-
brane domain; continuous representing the intracellular domain. 
Red arrows correspond to the amyloidogenic pathway while green 
arrows correspond to the anti-amyloidogenic pathway. A—RAR 
activation. B—Anti-amyloid pathway. C—Amyloid cascade. *PKC 
is represented since it is the most relevant kinase activated by RAR, 
but other kinases are described to take part in RAR-indued activa-
tion of α-secretase. **MAPK8 is represented to phosphorylate APP 
in Thr668 since it is the kinase most frequently described to produce 
this effect, but several other kinases are shown to produce the same 
modification
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neuroblastoma cells treated with all–trans RA (atRA) dem-
onstrated significant increase in ADAM10 transcriptional 
activity, mRNA, and protein levels and, consequently, 
sAPPα secretion [58–60]. RA receptor (RAR) activation 
(discussed below in “modulation of retinoic acid receptors”) 
as a means to increase α-secretase regulatory activity is well 
established, as is the case for ADAM10 [61]. Moreover, RA 
activates several kinase proteins (including PKC) [60, 62] 
with anti-amyloid effects, both by interacting with target 
promotors [63] and through direct activation of α-secretase 
activity via phosphorylation [64] (Fig. 1).

Even though α-secretases are complex therapeutical tar-
gets, due to their large substrate number and the range of 
signalling pathways in which they are involved, they are, 
nonetheless, prime candidates to prevent Aβ deposition. 
However, most studies regarding AD, Aβ formation, and 
APP proteolytic processing, focus on β and γ-secretases, and 
their influence on APP cleavage events, lacking a holistic 
approach encompassing α-secretases and their supporting 
interactors [65].

β‑Secretases

BACE1 (beta-site APP cleaving enzyme 1) is the principal 
protein with β-secretase activity [66]. This secretase plays 
a central role in Aβ generation, being considered by some 
as the initial (and rate-limiting) stage of APP amyloid pro-
cessing [67]. These observations result from repeated and 
well-validated experiments whereby knocking out BACE1, 
Aβ formation completely ceases [68–70].

BACE1 is a membrane-bound aspartyl protease, structur-
ally similar to the pepsin family [71], containing two active 
site motifs in the luminal domain (amino acids 93–96 and 
289–292) [72]. Each motif contains a highly conserved sig-
nature sequence of aspartic proteases, D T/S G T/S, in which 
the aspartic acid residue is essential for catalytic activity. 
BACE1 also has four putative N-linked glycosylation sites 
and six luminal cysteines, which allow for the formation of 
up to three intramolecular disulphide bonds.

β-secretase activity is highest in the secretory pathway 
compartments, namely the Golgi apparatus, trans-Golgi net-
work (TGN), secretory vesicles, and endosomes [73]. Like 
APP, it is highly expressed in the brain, but is nonetheless 
ubiquitously present in most tissues, with the pancreas being 
a close second. Pancreatic presence is marked by high levels 
of an mRNA splice variant, lacking exon 3, resulting in a 
different isoform with low activity, but its relevance is not 
yet clear [74, 75].

The therapeutical value of β-secretase has been widely 
investigated, with progress being made in regards to an 
inhibitor [76, 77], that although promising, fails to spe-
cifically inhibit the cleavage of APP alone, interfering 
with other BACE1 substrates. Specific inhibition proved 

particularly challenging, due to the fact that there are 
approximately 70 putative substrates cleaved by β-secretase, 
mostly other type I transmembrane proteins [78–80].

It is apparently contradictory that BACE1 knockout mice 
are viable, fertile, and lack morphological or developmen-
tal alterations [68–70]. However, these animals show subtle 
behavioural phenotypes, with mild memory impairment and 
spontaneous activity changes [81, 82], reiterating the com-
plexity of BACE1 selective inhibition.

The phenotypes observed in animal models can be 
explained by the role of BACE1 in the myelination process 
[83] as follows: very highly expressed during post-natal 
stages, BACE1 acts on the NRG1 (Neuregulin-1) signalling 
pathway, believed to promote myelinization [84]. Consist-
ently, all BACE1 knockout animal models present hypomy-
elination [83, 85]. The association between BACE1 and 
myelination, however, remains controversial, with as yet-
limited research. BACE1 has also been described to regulate 
voltage-dependent sodium channels [86], although with a 
probably diminished impact on behavioural changes.

Like α-secretases, BACE1 activity also correlates with 
RA. Treatment with atRA was shown to alter both BACE1 
expression and activity in a human neuroblastoma IMR-32 
cell line, while its homologue BACE2 remained unaltered 
[60]. Interestingly, BACE1 mRNA levels are significantly 
increased, but have no impact in overall protein quantity 
[60]. In a different study, using rat primary cultures of cor-
tical neurons, BACE1 expression levels were reduced by 
atRA treatment [87]. The same authors described that this 
alteration to BACE1 expression was mediated through NFkB 
(Fig. 1); disruption of NFkB led to increased transcription 
of BACE1 and reversed the effects of atRA treatment [87].

Although BACE2 is homologous to BACE1, its involve-
ment in APP processing has not been fully described. 
BACE2 was initially considered a β-secretase [88–90], cleav-
ing APP at the β-site [90]. Later studies showed BACE2 to 
cleave within the Aβ region [91], similar to α-secretase, sug-
gesting a protective role [92–94], as BACE2 overexpression 
prevents production of Aβ [91, 95–98]. Given that BACE2 
expression is lower in the brain [99], its impact on AD may 
be minor. However, its β-secretase activity has recently been 
reiterated, particularly when facilitated by AD-associated 
conformational changes in APP [100]. The corelation of 
BACE2 with AD pathophysiology is corroborated by its 
increased activity in pre-clinical AD [101]. These findings 
further strengthen the need for a holistic approach to AD, 
revealing novel pathways in which the amyloid process can 
be decreased/inhibited.

γ‑Secretases

γ-secretase is a multiprotein complex consisting of pre-
senilin (PSEN1 and 2), nicastrin, Aph-1, and Pen-2, with 
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PSEN proteases containing the two catalytic aspartates 
that mediate peptide bond scission [102], and cleaving 
APP within the transmembrane domain (TMD) [103]. 
The cleavage occurs by the two critical aspartyl residues 
within TMDs 6 and 7 of PSEN1/2 [104]. Although the 
specific function of each component of this complex has 
been subject to intense scrutiny over the last decade, con-
sensus has not been achieved [6, 105–108].

PSEN1 and PSEN2 are involved in the processing of 
type-1 transmembrane proteins, including APP [6, 109]. 
Their closely related genes were discovered as mutated 
loci in a large proportion of human pedigrees with inher-
ited early AD onset; these two genes encode components 
of γ-secretase complexes that cleave transmembrane 
proteins within lipid bilayers, including APP, the Notch 
receptor, E-cadherin, Nectin1, and others [110, 111].

Importantly, γ-secretase intramembrane processing 
of APP is not restricted to a single site; this complex is 
widely accepted to cleave at several sites within the TMD 
of their targets, and in the case of APP with three cleav-
age points separated by approximately three amino acids 
each [112–115]. Under physiological conditions, the last 
cleavage is variable, occurring between positions 37–43 
of the Aβ peptide. This variation is highly relevant for 
AD pathology, directly and proportionally linked to Aβ 
aggregation, deposition, and toxicity [116]. These mul-
tiple cleavages are thought to be due to a stepwise cleav-
age mechanism, and research suggests that this may be a 
general characteristic of all γ-like-secretases [117–119]. 
The distinction between the three cleavages is of great 
importance to AD and may hold the key to therapeutic 
strategies [76], being that the longer peptides exhibit a 
greater tendency to aggregate.

RAR signalling might not just be restricted to α and 
β-secretases, but may also impact the γ-secretase com-
plex. Its activity is largely reduced with RA treatment, 
leading to a threefold increase of γ-secretase substrate, 
C99 [120]. This is an important objection against the 
therapeutic effects of RA, since the cellular accumula-
tion of C99 is toxic [121]. The same study showed that 
isolated inhibition of γ-cleavage reduces Aβ secretion 
and that RA-mediated γ-secretase inhibition requires 
ERK activation [120]. RA regulates various signalling 
pathways, including kinases, and the ERK-pathway is a 
negative regulator of γ-secretase [122]. A more targeted 
analysis of the impact of atRA treatment on PSEN1 and 
2 revealed increased mRNA levels of PSEN1, but, mir-
roring the situation with BACE secretases, unaltered for 
PSEN2 [60]. In addition, although PSEN1 mRNA levels 
are increased, protein levels remain largely unchanged, 
and activity is actually decreased (Fig. 1).

Alternative APP‑cleaving secretases

Besides the above-described proteases, other APP cleaving 
enzymes have recently been described.

Membrane-Type Matrix Metalloproteinases (MT-MMP) 
were shown to be involved in the regulation of APP pro-
cessing, cleaving, and shedding of ectodomain fragments, 
generating CTFs, specifically MT1-MMP, MT3-MMP, and 
MT5-MMP [123, 124]. Mouse AD models suggest pro-amy-
loidogenic roles for MT1-MMP. [125], while the absence 
of MT5-MMP (MT5-MMP−/−) increased cognitive func-
tion in a FAD mouse model, without altering α-, β- and 
γ-secretases’ activities, but altering sAPP secretion [126]. 
Additionally, MT5-MMP also promotes AD pathogenesis 
in the same model [127]. The same study found the impact 
of MT5-MMP expression in APP processing to reside on its 
ability to affect cellular APP trafficking [127].

Consistently, inhibition of the lysosomal aspartic endo-
protease cathepsin D was also beneficial in reducing Aβ load 
and improving memory, in a transgenic mouse model [128]. 
Early studies corelated cathepsin D with AD [129, 130], 
without affecting Aβ formation in a cathepsin D knockout 
model [131]. Cathepsin D gained more significance when 
animal studies described a specificity for the APP β-cleavage 
site [132], which also highlighted that selective inhibition 
of the lysosomal cysteine protease cathepsin B significantly 
decreased Aβ(40/42) production, independent of β-secretase 
activity.

Other proteins involved in APP processing should be 
mentioned, among them meprin B, which can act as a 
sheddase for APP [133], cleaving within the N-terminal 
region without toxic fragment production [134, 135]. Also 
noteworthy, overexpression of ADAMTS4 in cell models 
increased Aβ secretion, verified in in vivo AD model, where 
ADAMTS4−/− knockout resulted in decreased Aβ [136]. The 
study further presented oligodendrocytes as a source of amy-
loid peptides, shedding new light on the peptide’s origin.

Except for some tenuous associations (namely with 
MT5-MMP), the impact of RA in alternative APP cleaving 
secretases remains elusive [137]. This adds another layer for 
the potential therapeutic exploitation, should the alterations 
induced by RA prove beneficial in the AD context.

Modulation of retinoic acid receptors

RA exerts a profound effect on homeostatic properties and 
signalling pathways [138], ranging from physiological 
functions to pathology [139, 140], and the nervous system 
is importantly regulated by this pathway. Unravelling the 
modulation of RAR in AD is of paramount importance, 
as regulation of APP cleaving secretases is a strong can-
didate for translational research for a therapy [141]. Most 
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studies on RA-induced alteration to secretase activity are 
based exclusively on atRA [60]. However, the influence of 
isoform specific RAR signalling in neuronal function and 
homeostasis is currently well defined [142, 143] and its over-
all significance in the context of AD has received recent 
interest, with some retinoid drugs currently undergoing 
clinical trials (Table 1). RAR activation as a therapeutical 
candidate is being explored in AD models [144, 145], as it 
reduces neuroinflammation and contributes to neuroregen-
eration [146], adding possible paths to promote neuronal 
health and rehabilitation [147]. The Aβ peptide inhibits RA 
synthesis, aggravating AD symptoms and progression [145], 
which correlates with the observed decreased serum levels 
of retinoid metabolites in AD patients [55, 56]. The potential 
of systemic retinoid as therapy has long been established, 
although not completely without side-effects [148], and its 
use has been approved for several conditions (Table 1). How-
ever, systemic retinoid therapy requires careful patient moni-
torisation, as information on long-term use and mechanism 
of potential adverse reactions is still lacking [149].

RA signalling is translated via two families of nuclear 
receptors as follows: RAR has three isoforms (α, β and γ) 
that can be activated by both atRA and 9-cis-RA enanti-
omer [150]. The retinoic X receptor (RXR) also has three 
isoforms and is activated by 9-cis-RA [151], playing a role 
in the RA-related negative feedback system, mediating anti-
proliferative effects [152]. RXR increases DNA binding and 
transcriptional function, with a direct effect on their respec-
tive response elements [102]. Both families can form heter-
odimers as RAR/RXR [153].

Similar to other type II nuclear receptors, each RAR 
isoform produces several splice variants [154–156]. Ago-
nist binding results in detachment of corepressor proteins, 
activating the receptor [153]; RAR signalling is highly 
dependent on recruiting coactivator proteins promoting 
downstream gene expression [157]. RAR gene expres-
sion is itself regulated by RAR activation via promotor 
methylation events [158]. While RARα and RARβ have 
been extensively studied and explored, the isoform RARγ 

is less well described [159], although the physiological 
processes regulated by this receptor are not entirely clear 
[160], it appears to share some of the broad functions in 
embryogenesis and cell differentiation, common to other 
members of the RAR family [161].

RAR/RXR ligand binding and heterodimer crosstalk

Although RARs can also be activated by atRA, RXRs are 
only activated by the less lipophilic 9-cis [150, 162]. Previ-
ous research has demonstrated that retinoid effects are also 
mediated by heterodimers formed by different RAR and 
RXR isotypes, which can act as transcription repressors or 
activators [163].

RXR Arg316 is the only polar contact, where its ligands 
can form an ionic connection; binding shape and lipophilic 
contacts are the primary determinants of ligand recognition, 
as most RXR ligands have the classic fatty acid design [164]. 
New classes of agonists with a better safety profile and less 
lipophilic properties are being developed [165, 166].

RXR regulates lipid, carbohydrate, and amino acid 
metabolism [167–169]. RXR activation affects lipid metabo-
lism by increasing the expression of ApoE (apolipoprotein 
E) and ABCA1 (ATP-binding cassette transporter ABCA1), 
which leads to an increase in ApoE lipidation mediated by 
ABCA1 and HDL levels in the brain [170, 171]. This is 
particularly relevant because APP processing, beta amyloid 
generation, and plaque development in vivo are all affected 
by changes in intracellular lipid homeostasis [172], much of 
which is controlled by the ApoE lipoprotein transport system 
[173, 174]. The convergence of the amyloid cascade theory 
(which posits Aβ brain deposition as the fundamental step 
in AD) [175] and the ApoE/lipid recycling cascade con-
cept [176] supports lipid homeostasis changes as a common 
denominator for ApoE and Aβ dysfunctions in AD. Further-
more, RXR activation by bexarotene has been reported to 
cause Aβ phagocytosis in brain myeloid cells, linked to an 
increase in the expression of the phagocytic receptors [177].

Table 1   Retinoids undergoing pre-clinical or clinical trials for AD

Drug Effect Other conditions Status in AD

9-cis retinoic acid Pan agonist, RXR preference Kaposi's sarcoma and chronic hand eczema—
approved

Explored [226]

Tamibarotene (AM-80) RARα/β agonist Acute Promyelocytic Leukaemia—approved 
(Japan), under development (US, EU, China)

Explored in AD, no outcomes [227]

Isotretinoin Possible precursor to RAR/
RXR agonists [228]

Acne Vulgaris—approved Explored [146, 229]

Acitretin Possible RAR/RXR agonist Psoriasis—approved Explored [230]
Bexarotene RXR Agonist Cutaneous T cell lymphoma—approved Explored in clinical trials: negative 

outcome [231]
Tazarotene RAR-γ and RAR-β agonist Psoriasis; Acne Vulgaris -approved Considered [146, 232]
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RARα

RARα is also denominated nuclear receptor subfamily 1, 
group B, member 1 (NR1B1) [178]; its activation by the 
selective agonist AM580 is protective against the decreased 
RA synthesis in a neuroblastoma cell line [145], inhibits 
Aβ generation in vitro via increased ADAM10 expression 
[48, 100], and directly inhibits γ-secretase cleavage of APP 
in cellular models [120]. Of note, not only does RARα sig-
nalling prevent Aβ synthesis, but it is also neuroprotective 
against Aβ [152].

RARα activation plays a central role in cell growth [180], 
differentiation [181], and organ formation during embry-
onic development [182]. RARα signalling has been linked 
to various pathways [183], especially in early embryonic 
development [184], inducing differentiation of Neuronal 
Progenitor Cells (NPC) into migrating fibroblasts and con-
sequent maturation into neurons [185]. It plays a central role 
in regulating neural differentiation [186], via the expression 
of the pro-neural induction factor Neurogenin 2 [187, 188].

RARβ

RARβ is another cytoplasmic nuclear receptor [189], 
directed to subnuclear compartments following activation 
[190]. This receptor also mediates signalling in cell growth, 
differentiation, and embryonic events: it has been described 
to increase the proliferation of NPCs through the Sonic 
Hedgehog Pathway (Shh) [185] and to be a key player in 
the neurite growth through the signalling sequence for the 
Nerve Growth Factor (NGF) [191]. Curiously, it is theorized 
to limit the growth of many cell types by regulating gene 
expression, as it acts in embryonic development control-
ling numerous aspects of cell proliferation, differentiation, 
and inducing apoptosis of selected cell populations [182, 
192–194].

A Genome-wide association study associates RARβ as a 
risk gene for several neurodegenerative pathologies, includ-
ing Alzheimer’s, Parkinson's, and Huntington's diseases 
[195]. Its activation in a neuropathic pain model restores 
mechanisms involved in cell adhesion [196], neuronal cone 
growth [197], gap junction [198], and pain-related pathways 
[199]. RARβ is central for retinoid-mediated neurite out-
growth [200], also acting in mature neurons [201] recruiting 
mitochondria to the neurite growth cone [147]. Moreover, 
RARβ neuroprotective roles additionally include the reduc-
tion of neuroinflammation and increase of neuroplasticity 
[202].

Activation of RAR in a neuronal setting

Modulating different RAR isoforms can induce signifi-
cantly different physiological responses [203]. Targeting 

RAR as a potential therapeutic target for neurodegenera-
tive diseases has been a topic of extensive research [144, 
146, 204], with several studies showing a clear difference 
between isoform-specific stimulation [205–209]. Specific 
RARγ stimulus has been linked to apoptosis in a mela-
noma cell line and to increased cell differentiation [205]. 
Moreover, a study in embryonal carcinoma cells revealed 
that different RAR isoforms perform distinct roles in the 
differentiation of spiny neurons [207].

The combined modulation of RAR differs from the 
conjugated effects of isolated isoform stimulus [203]. Co-
activation of RARα and β is described to play an impor-
tant signalling role in adult neurogenesis, modulating the 
Fibroblast Growth Factor (FGF) and Shh signalling path-
ways [185], while the sequential activation of RARα and 
β, in vitro, results in neuronal differentiation of cultured 
spinal cord progenitor cells (SCPC) [210]. Although both 
receptors are expressed in adult neurons of the subven-
tricular zone (SVZ) [211] their role in neurogenesis, espe-
cially co-modulation, remains somewhat elusive [185]. 
Interestingly, the disruption of both RAR and RXR fami-
lies, independent of isoform, causes an impairment in hip-
pocampal memory and synaptic plasticity in mice [212].

In addition to protective effects in neurodegenerative 
settings [202], pan-RAR activation promotes neuroplas-
ticity and regeneration [185, 191, 213–217], and indi-
vidual activation of all RAR isoforms promotes neurite 
outgrowth [218]. A study in a rat model of ageing found 
atRA to reduce neuroinflammation [219], while activation 
of RARβ was described to be involved in NG2-neuronal 
cross-communication, diminishing the formation of the 
glial scar [179, 188] and promoting regeneration [179] 
and remyelination [188], in a rodent model of spinal cord 
injury. RARβ activation can also revert inhibition of neu-
rite growth via PKC-induced events [220].

ADAM10 overexpression reduced levels of brain Aβ 
and reversed Long-Term Potentiation (LTP) inhibition and 
spatial learning impairments in APP transgenic mice, pro-
viding a proof-of-concept therapeutic option for increasing 
α-secretase activity [221]. Furthermore, deprenyl, an AD 
anti-dementia medication, appears to increase APP cleav-
age mediated by α-secretase in AD patients [222].

Activation of nuclear receptors is a promising therapeu-
tic approach for AD [204]. These receptors act as ligand-
activated transcription factors, regulating gene expression 
with cell type-specific effects [223]. AD is associated with 
a variety of pathophysiological features beyond amyloid 
plaques, including inflammation, cell death and regenera-
tion processes, altered neurotransmission, and age-related 
changes. RARs and retinoids are a potential therapeutic 
target, as they are involved in all of these [204, 223]. 
As such, considering the plethora of crucial pathways 
involved, the future possibilities of targeting RAR for 
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neurodegenerative disease therapy and regeneration can-
not be overstated.

Towards a holistic and systems approach

A relevant approach of pivotal importance to AD is pro-
moting APP α-secretase cleavage, which may be crucial to 
delaying disease onset, and understanding alterations to key 
proteins, induced through receptor modulation. Promoting 
α-cleavage of APP has long been a prime therapeutical target 
in AD and, as such, the holistic methodology is a relevant 
approach; this strategy investigates global and dynamic 
molecular changes, considering interactions under normal 
and pathological conditions, thus representing a promising 
approach for the study of AD and other complex patholo-
gies [40, 224].

Applications of omics approaches is attracting growing 
interest due to its association with different diseases [224]. 
The study of protein interactions (interactomes) has shown 
promising results in distinguishing key chains of events and 
functions of important proteins, with central roles in various 
pathways, either physiological or associated with disease 
[23, 225], (da Cruz e Silva et al., submitted).

For pathologies involving many affected pathways and 
regulation systems, analysis and data integration from differ-
ent omics technologies is crucial for a fuller understanding 
of the disease, supporting the development of personalized 
diagnostic and therapeutic tools. Several omics studies aim 
to determine novel pathways and networks, suggesting new 
pathologic mechanisms associated with disease states and 
cross-linked with other diseases. The limitation to the holis-
tic approach is the challenge in distinguishing whether the 
alteration of molecule and marker networks are a cause or an 
effect of the disease. Nevertheless, it is helpful in identifying 
new targets or in validating previously identified ones.

Overall, the notion of APP secretases as therapeutic tar-
gets for AD grows stronger. As the three secretase classes 
cleave a significant pool of substrates (not restricted to 
APP) affecting several signalling and metabolic pathways, 
purposefully altering their activity is a complex procedure 
with possible adverse outcomes. Secretase selective inhibi-
tion establishes problems in maintaining the physiological 
pathways inherent to normal cell function, with the answer 
lying on targeted modulation of several pathways. Besides, 
substrate build-up can have unforeseen cytotoxic effects and 
thus be counterproductive for promoting homeostasis and 
preventing neurodegeneration.

RAR-induced secretase alterations have been, to some 
extent, described in a specific context, lacking a holistic 
approach to determine whether they are restricted to the 
studied protein complex, or actually have deeper effects 
in the AD interactome. This knowledge is of upmost 

importance, as it allows determining whether these altera-
tions are compatible with homeostasis and, consequently, a 
potential AD therapy.

In closing, the holistic and systems approach focuses on 
several molecular players and not only the underlying indi-
vidual disease processes, with the unique advantage of iden-
tifying signalling cascades and crosstalk between different 
pathways, related to a specific molecular target, involving 
many fronts of the disease.
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