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Abstract
Among all reactive oxygen species (ROS), hydrogen peroxide (H2O2) takes a central role in regulating plant development 
and responses to the environment. The diverse role of H2O2 is achieved through its compartmentalized synthesis, temporal 
control exerted by the antioxidant machinery, and ability to oxidize specific residues of target proteins. Here, we examine 
the role of H2O2 in stress acclimation beyond the well-studied transcriptional reprogramming, modulation of plant hormonal 
networks and long-distance signalling waves by highlighting its global impact on the transcriptional regulation and trans-
lational machinery.
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Introduction

Crops grown in the field rarely achieve their genetically 
encoded yield potential. Fluctuating environmental condi-
tions and severe or mild abiotic and biotic stress episodes are 
the main drivers of reduced plant productivity [1, 2]. Their 
amplitude, intervals of occurrences throughout the growing 
season, and plant developmental stage at which they occur 
are inextricably intertwined with plant yield. Any changes in 
growth conditions are immediately perceived and transduced 
via signalling pathways ultimately remodelling the epige-
netic landscape, gene expression, proteome, and metabo-
lome. This ensures plant survival in a changing environ-
ment. The dynamics and amplitude of those responses are 
a function of stress severity and duration. Creating further 
complexity, plants often experience a combination of stress 
factors which can occur either simultaneously or separate 
in time [3–5].

Even when stress conditions subside, many molecular 
processes are not immediately reset to their prestress levels 
and create a new base level that underlies a conceptually 
new response to future environmental fluctuations. Similarly, 
plants experiencing mild stress will react differently to a sub-
sequent harsher stress than naïve plants. The new response 
is often faster and stronger and has a lesser negative impact 
on plant physiology and growth compared to plants that have 
not been previously exposed to any stress condition. This 
concept is often referred to as priming, acclimation, or hard-
ening [6–10]. Depending on the nature and duration of the 
initial stress exposure, those terms can often be used inter-
changeably but in general, acclimation denotes processes 
that develop over prolonged mild stress periods [10, 11].

Plants experiencing adverse environmental conditions 
accumulate reactive oxygen species (ROS) that are par-
tially reduced (superoxide radicals, hydrogen peroxide and 
hydroxyl radicals) or excited (singlet oxygen) forms of O2 
[12, 13]. Historically, excessive ROS levels associated with 
abiotic stresses has been exclusively seen as a trigger of oxi-
dative stress characterized by indiscriminate oxidative attack 
on proteins, DNA, and lipids [14]. This paradigm has led to 
numerous attempts to engineer stress resilience by overex-
pression of components of the antioxidant machinery [15, 
16]. Despite certain successful outcomes, this approach has 
revealed that boosting the antioxidant capacity can have far 
more outreaching effects than minimizing oxidative impact. 
This largely stems from the fact that apart from their dam-
aging nature, ROS also initiate, integrate, and fine-tune 
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numerous signalling cascades involved in growth, develop-
ment, and defense [17–19].

The highly reactive nature of ROS, their interconversion, 
and extremely short lifetime have been a serious barrier to 
understanding the precise roles of individual ROS types 
[13, 20–22]. Among them, hydrogen peroxide (H2O2) has 
attracted significant attention due to its relative stability, 
transmembrane mobility, and direct sensing by receptor pro-
teins [23–25]. Apart from the fact that H2O2 accumulation 
has been associated with various stress conditions, exog-
enously applied H2O2 can also prime plants against a range 
of adverse environmental conditions [11, 26, 27]. Here, we 
take a critical look at the role of H2O2 in stress acclima-
tion. The origins of H2O2, its signalling role, and crosstalk 
with various phytohormonal pathways have been extensively 
reviewed previously [23, 24, 28, 29] and will not be the 
focus of this review. Instead, we summarize and explore less 
researched but equally important and intriguing areas related 
to the impact of H2O2 on the transcriptional regulation and 
translational machinery that are likely to have a global regu-
latory effect during stress acclimation. Moreover, we revisit 
the use of H2O2 as a priming agent and discuss its potential 
as a solution against adverse environmental stresses.

Effect of H2O2 on plant signaling and metabolism

Priming against adverse environmental conditions 
upon H2O2 exposure

Plants cannot only be primed against adverse environmen-
tal conditions after experiencing a mild stress episode but 
can also be chemically primed upon exposure to natural and 
synthetic small molecules [30–32]. The scientific literature 
abounds with examples of various chemical compounds that 
improve stress tolerance in model and crop species [26, 27, 
30, 33–36]. Although many of these reports are anecdotic 
and the diverse range of stress conditions, concentrations, 
application modes, and plant developmental stages makes 
it difficult to draw outreaching conclusions for the efficacy 
and applied potential of most compounds, stress protective 
agrochemicals are an exciting alternative to climate resilient 
crops. Several small molecules have been shown to protect 
crops in the field and a substantial effort fueled by the latest 
developments in chemical biology is underway to discover 
and commercialize novel agrochemicals with stress protec-
tive effects [37, 38].

The priming effect of exogenously applied H2O2 has been 
documented in various stress scenarios (salt, drought, heat, 
cold, and heavy metal stress) and model plant and crop spe-
cies [35, 39–41]. Seed treatment, spraying or addition to the 
growth medium was used to administer a wide range of H2O2 
concentrations. The effect of H2O2 priming was assessed 
by monitoring plant growth parameters, photosynthetic 

efficiency, photosynthetic pigments and chloroplast struc-
ture, osmolytes, ion leakage, lipid peroxidation, levels of 
enzymatic and non-enzymatic antioxidants, and endogenous 
ROS content [26, 33, 42–45]. Not all H2O2 concentrations 
provoke an equal response. In fact, H2O2 application is often 
employed as a proxy for oxidative stress with a negative 
impact on Arabidopsis rosette and root growth and germina-
tion rate observed when plants are germinated and grown on 
0.5–2.5 mM H2O2 [46]. Tobacco plants primed by spraying 
with 5 mM H2O2 displayed improved performance under 
high light and aminotriazole, a catalase inhibitor, whereas 
concentrations above 50 mM were lethal [47]. The concen-
trations of H2O2 used to successfully prime plants against 
subsequent stresses have been reported in the range from 
0.05 µM to 200 mM. This vast range likely reflects the 
modes of application, their duration, and plant-specific mor-
phological and physiological features. For example, a high 
H2O2 concentration (200 mM) was needed to successfully 
prime 7-day-old Vigna radiata seedlings by spraying them 
12 h before exposure to chilling stress (4 °C for 36 h) [48]. 
In contrast, pretreatment of tomato seedling roots with only 
1 mM H2O2 for an hour enhanced plant tolerance to chilling 
(3 °C for 16 h) 4 days after the priming [49]. Even lower 
amounts of H2O2 (10 µM) were sufficient to improve the 
resistance of hydroponically grown rice plants to salinity and 
heat when H2O2 was present in the medium for 2 days [50].

H2O2 production and signalling

The negative effects observed at high H2O2 concentrations 
are largely a reflection of a general oxidative stress response 
that leads to indiscriminate damage of cellular constituents. 
Separating the damaging and signalling aspects of externally 
applied H2O2 would prove to be extremely difficult not least 
because exogenous H2O2 is likely to activate and/or perturb 
other ROS-producing mechanisms. Multiple sources con-
tribute to H2O2 production which is highly compartmental-
ized between different cellular compartments (Fig. 1). Their 
contribution to the overall H2O2 content depends on the 
particular cell type and physiological state. For example, in 
illuminated leaves, chloroplasts, together with peroxisomes, 
are major sources of H2O2 [51, 52]. H2O2 is actively pro-
duced in the apoplast by dismutation of NADPH oxidase-
derived superoxide and cell wall peroxidases [13, 23, 53]. 
Plant NADPH oxidases (NOXs) have been implicated in 
many developmental processes, such as root hair forma-
tion and cell expansion, stomatal closure, as well as defense 
responses [54–56]. Propagation of long-distance ROS 
signals that alert systemic tissues to mount a coordinated 
response upon abiotic and biotic stresses are also dependent 
on NOX activity [57].

The exact molecular mechanisms that underlie the 
improved response to stress after H2O2 treatment remain 
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largely unclear. Increased H2O2 levels and perturbation 
of cellular redox homeostasis is a common theme among 
many environmental stresses. In this respect, exogenous 
H2O2 application is likely to mimic naturally occurring 
redox processes that are integral to plant stress responses 
since elevated ROS levels have also been observed upon 
H2O2-induced priming. Priming of maize with H2O2 
increased the endogenous levels of superoxide radicals, 
but not H2O2, prior to stress exposure and led to attenu-
ated accumulation of ROS during a subsequent salt stress 
exposure [45]. Similarly, a peak of H2O2 was detected dur-
ing priming of maize with heat (42 °C for 4 h) which cor-
related with improved subsequent performance to salinity, 
chilling, drought, and heat stresses [58]. Due to its relatively 
long half-life and physicochemical properties that resem-
ble water, H2O2 can migrate significant distances and enter 
the cell from its extracellular production site via aquaporin 
membrane proteins [51]. Aquaporins might play a role in 
internalizing externally applied H2O2. Whether the increase 
in endogenous ROS content is simply due to uptake of the 
applied H2O2 and its conversion to other ROS types or 
exogenous H2O2 triggers in planta ROS production is not 
immediately clear but most likely, it involves a combina-
tion of both. The subcellular production sites that might 
be involved in exogenous H2O2-triggered ROS production 
are not yet resolved. Among the direct targets of externally 
applied H2O2 might be the plasma membrane localized 
H2O2 sensor HPCA1 that is activated via covalent modi-
fication of extracellular cysteine residues [59]. HPCA1 is 

a leucine-rich-repeat receptor kinase that mediates Ca2+ 
influx into the cytosol by activating Ca2+ channels. Since 
calcium spikes are closely interacting with ROS production 
and amplify each other, apoplastic H2O2 production through 
calcium-stimulated NOXs activity is likely to contribute to 
the observed ROS increase upon H2O2 priming [59, 60].

Impact of H2O2 on cellular redox homeostasis

In many reports, the beneficial effect of H2O2 priming has 
been found to correlate with increased activities of antioxi-
dant enzymes, higher content of small molecule antioxi-
dants, diminished oxidative damage, and lower ROS levels 
under stress [26, 41, 42]. Whereas some of these parameters 
are not so technically demanding to assess, the reported con-
tent of H2O2 and other ROS types like superoxide radicals is 
prone to misinterpretation due to the difficulties in measur-
ing specific ROS [21, 61]. The outlines of these studies and 
their conclusions largely reflect the predominant view that 
has dominated the redox field in the last decades. Namely 
that adverse environmental conditions lead to oxidative 
stress which if counteracted by the antioxidant machin-
ery would result in improved stress tolerance [42, 49, 62]. 
Thus, the common theme among the vast majority of stud-
ies reporting priming with H2O2 is enhanced tolerance to 
stress correlated with activation of the antioxidant machin-
ery. Overexpression of various key antioxidant enzymes and 
boosting the levels of ascorbate and glutathione does not 
necessarily translate into enhanced tolerance to oxidative 

Fig. 1   Sources of H2O2 and its possible role in stress acclimation. 
H2O2 is produced in different subcellular compartments in response 
to environmental stimuli and during normal metabolism. Elevated 
H2O2 levels can impact key cellular processes such as gene expres-

sion, chromatin remodeling, alternative splicing, RNA modification 
and compartmentalization, and translation that can ultimately lead to 
stress priming. Created with BioRe​nder.​com

https://biorender.com/
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stress-promoting conditions suggesting that other mecha-
nisms are likely to contribute to the beneficial effects of 
H2O2 priming. For example, accumulation of osmoprotect-
ants (proline and soluble carbohydrates) correlated with 
improved tolerance to osmotic stress in H2O2 primed plants 
[63]. H2O2 pretreatment regulated ion uptake thus enhancing 
salinity tolerance [27, 64]. Reduced uptake of heavy met-
als and increased vacuolar sequestration was observed after 
H2O2 priming as well [65].

H2O2‑induced posttranslational modifications

The signalling roles of H2O2 are especially crucial in estab-
lishing a primed state due to the profound effect H2O2 has 
on gene expression, hormonal pathways, developmental and 
defense responses [23]. H2O2-induced oxidation of Cys resi-
dues is recognized as an important molecular switch that can 
regulate numerous cellular processes and signalling path-
ways [66–68]. Cysteine residues with low pKa that reside in 
specialized protein environments and exist as thiolate anions 
can be selectively oxidized by H2O2 [69]. The first oxida-
tion product of a cysteine thiol is sulfenic acid (-SOH) that 
is highly unstable and can be further oxidized to sulfinic 
(-SO2H) and sulfonic acid (-SO3H). Whereas, sulfinic and 
sulfonic acid are largely seen as irreversible oxidative mod-
ifications of damaged proteins, sulfenic acid formation is 
specific and reversible. Sulfenic acid can react with proxi-
mal thiols to form functionally important intramolecular 
and intermolecular disulfides. Alternatively, sulfenylated 
cysteine residues can form mixed disulfides with glutathione 
which is often regarded as a way to protect proteins from 
further oxidation [68, 70]. Cysteine oxidation can ultimately 
lead to functionally significant conformational changes that 
modulate protein function and interaction with protein part-
ners and DNA. H2O2 can potentially oxidize thousands of 
cellular proteins, many of which have been identified in 
large-scale proteomics approaches [67, 71–73]. Neverthe-
less, a biological role has been attributed to only a fraction of 
these redox posttranslational modifications. It is very likely 
that not all protein oxidation events have a functional rel-
evance, and the future challenge will lie in systematically 
analyzing their biological roles.

Impact of H2O2 on post‑transcriptional regulation

Elevated H2O2 levels either as a result of exogenous chemi-
cal treatment, genetic perturbation, or adverse environmental 
conditions trigger extensive transcriptional reprogramming 
[74, 75]. Accumulating evidence supports the notion that 
oxidative stress can also regulate gene expression at the 
post-transcriptional level that includes mRNA cleavage, pre-
mRNA splicing (alternative splicing; AS) and translation ini-
tiation. For instance, the Cu/Zn superoxide dismutase genes 

CSD1 and CSD2 in Arabidopsis are post-transcriptionally 
induced under oxidative stress. Under normal growth con-
ditions, miR398 cleaves the CSD1 and CSD2 transcripts or 
causes their translational repression which is lifted upon oxi-
dative stress-induced suppression of miR398 expression [76, 
77]. Oxidative stress caused by methyl viologen treatment in 
the human neuroblastoma cells induces extensive changes 
in the AS [78]. Direct evidence on the impact of H2O2 in 
modifying AS landscape is currently not available in plants, 
however, oxidative stress-promoting conditions such as 
salinity stress and temperature variations are known to cause 
such modifications [79, 80]. Under salt stress, 10% of the 
total intron-containing genes show significantly differential 
AS and these genes are related to stress responses and RNA 
splicing [79]. For example, an E3-ligase encoding gene Salt-
Responsive Alternatively Spliced gene 1 (SRAS1) in Arabi-
dopsis has two splicing variants SRAS1.1 and SRAS1.2 with 
opposing functions. Under salinity, SRAS1.1 is accumulated 
in higher amount to support growth during salt stress by 
SRAS1.1-mediated degradation of COP9 signalosome 5A 
(CSN5A), an important regulator of plant development and 
growth [81]. Similarly, spliceosomal protein AtU1A controls 
alternative splicing of ACONITASE 1 (ACO1;[82]) under salt 
stress. ACO1 was proposed to affect the transcript levels of 
antioxidant enzyme CSD2 by binding to its 5’UTR [83]. 
Interestingly, mutant plants lacking AtU1A are sensitive to 
exogenous H2O2 suggesting that alternative splicing is impli-
cated in maintenance of the cellular redox homeostasis [82]. 
While heat stress is known to widely repress pre-mRNA 
splicing across eukaryotes in general, thermopriming leads 
to derepression of splicing upon subsequent exposure to 
lethal temperatures [84]. The possibility of existence of such 
a ‘splicing memory’ in response to H2O2 priming cannot be 
denied. AS provides another layer of control in response to 
environmental perturbations, and the functional relevance 
of these differential AS is to preferentially accumulate the 
splice variants which participate in the stress-response 
pathways owing to their different biochemical and cellular 
properties.

Impact of H2O2 on translation

Gene expression regulation at the translational level allows 
quick acclimatory response without a need for de novo 
mRNA synthesis, splicing, and mRNA export from the 
nucleus. Translation in plants occurs in three distinct com-
partments i.e., cytoplasm, mitochondria, and chloroplasts. 
In this review, we focus on regulation of cytoplasmic trans-
lation catalyzed by eukaryotic type 80S ribosomes. The 
impact of oxidative stress on translation is likely to have a 
global regulatory effect on gene expression and is emerging 
as an important mechanism to modulate plant responses to 
adverse environmental conditions [85]. H2O2 can influence 
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translation at multiple levels including the structure and 
posttranslational modifications of the ribosome, activation 
of specific signalling pathways, regulation of tRNA levels, 
and mRNA modification and compartmentalization.

Can ribosome heterogeneity play a role during oxidative 
stress?

Cytoplasmic ribosomes, apart from rRNAs, contain around 
80 nuclear-encoded ribosomal proteins (RPs). The Arabi-
dopsis ribosomal proteins genes have two to seven paralogs 
each and encode all together more than 230 RPs that could 
theoretically lead to 1034 different ribosome conformations 
[86]. The differential paralog usage can regulate ribosome 
composition. Ribosomes can also display heterogeneity due 
to posttranslational modifications of RPs, binding to ribo-
some-associated proteins, and variations in rRNA sequences 
[87]. Ribosome specialization can provide an additional 
layer of gene expression control that regulates the transla-
tion of specific mRNAs in a spatio-temporal manner [88]. 
Nevertheless, currently, it is not clear whether ribosome het-
erogeneity exists and has translational consequences in plant 
cells. The expression of paralogous ribosomal proteins genes 
under oxidative stress, however, is regulated at the tran-
scriptional level suggesting that it can influence ribosome 
composition [86, 89]. Moreover, decrease of ribosome abun-
dances and increase of average ribosome age were observed 
in Arabidopsis cells exposed to H2O2. [90]. Interestingly, 
the ribosomal protein RPS14C showed increased turnover 
rate and degraded more rapidly upon oxidative stress. Since 
RPS14C is relatively stable under control conditions, this 
might implicate its involvement in ribosome repair and/or 
increased susceptibility to H2O2 [90].

Can TOR kinase modulate translation 
in H2O2‑dependent manner?

Post-translational modifications of RPs, such as phospho-
rylation, can introduce an additional source of ribosome 
heterogeneity. One of the best characterized signaling com-
ponents affecting translation is target of rapamycin (TOR) 
kinase which regulates growth and development of eukary-
otic organisms. Interestingly, TOR kinase plays a central 
role in plant responses to stress. TOR signalling regulates 
translation on multiple levels and promotes protein transla-
tion in plants [91]. For example, it activates 40S ribosomal 
protein kinase which phosphorylates ribosomal S6 protein 
(RPS6) in so-called TOR-RPS6 pathway, activates transla-
tion initiation factor eIF3h, and stimulates transcription of 
rRNAs and tRNAs through phosphorylation of RNA poly-
merase III repressor MAF1 (Fig. 2) [92].

Holistic description of TOR signalling events in response 
to H2O2 in plants is still missing but recent works suggest 

that TOR pathway is activated by H2O2 and might influence 
translational output. TOR is likely activated by chloroplast-
derived H2O2 [93]. Arabidopsis plants treated with methyl 
viologen, which leads to superoxide-mediated production 
of H2O2 in chloroplasts, has a higher activity of TOR-RPS6 
pathway combined with increased expression of TOR com-
plex genes [93]. In yeast, H2O2 causes widespread trans-
lational reprogramming [94] and likely similar mechanism 
can be observed in plants since excess light which promotes 
generation of chloroplast H2O2 significantly influences trans-
lational output in Arabidopsis [95]. Moreover, the biological 
significance of TOR–RPS6 pathway in H2O2 signalling was 
shown in mutant plants lacking components of TOR com-
plex, as such they were more susceptible to oxidative stress 
and had altered levels of H2O2 [93]. These works suggest 
that a specific signalling pathway H2O2–TOR–RPS6 might 
exist in plants.

One of the roles of the TOR pathway is inhibition of 
MAF1 which acts as RNA polymerase III repressor. As such, 
TOR activates transcription of diverse tRNAs, 5S rRNA and 
small RNAs, and likely influences translational output. Inac-
tivation of MAF1, in maf1 mutant, leads to hypersensitiv-
ity to H2O2 [96]. Thus, it is proposed that MAF1 regulates 
tRNA biogenesis in response to environmental cues and 
influences translation. However, it would be interesting to 
test whether such regulation is global or rather specific, and 
leads to the selective mRNA translation. In yeast, tRNAs’ 
abundance is regulated in response to H2O2 which results 
in selective translation [97]. It is not clear how expression 
of tRNAs is regulated but MAF1 can play a key role in this 
process.

tRNA-derived RNA fragments (tRFs) are products of 
tRNA cleavage and likely influence translation [98]. They 
were found in all eukaryotes and in plants, tRFs were identi-
fied for the first time in 2008 in response to H2O2 [99]. Nota-
bly, tRFs arise not only from cytosolic but also from orga-
nellar (i.e. chloroplastic and mitochondrial) tRNAs [100]. 
Organellar tRFs do not accumulate inside chloroplasts or 
mitochondria but rather are found outside these organelles 
suggesting that tRFs can play a regulatory role and/or can 
be involved in signalling.

Role of GCN2 kinase in translation response 
during oxidative stress

One of the best characterized pathways involved in trans-
lational regulation in all eukaryotes is phosphorylation of 
the translation initiation factor eIF2α by General Control 
Nonderepressible 2 (GCN2) kinase. In plants, GCN2 is 
activated by diverse conditions including abiotic stresses, 
pathogens, and photosynthetic electron transport-derived 
H2O2 [101]. Whereas in animals and yeast, activation 
of GCN2 leads to global repression of translation, it is 
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not clear whether the same regulation exists in plants. In 
Arabidopsis, activation of the GCN2–eIF2α pathway by 
bacterial infection, promotes translational derepression of 
transcription factor TBF1 and expression of ABA-related 
genes [102]. In other work, activation of GCN2 led to 
significant inhibition of translation of many mRNAs. It 
is likely that this pathway specifically regulates transla-
tion because a pool of mRNAs (enriched for kinase and 
E3 ligase encoding genes) were not repressed after GCN2 
activation [101]. These results together with the above-
mentioned regulation of TOR activity suggest that chlo-
roplast, might exert control over cytosol translation. Addi-
tionally, H2O2 can influence translation not only through 
changes of ribosome composition or posttranslational 

modifications of RPs but also via tRNA biogenesis and 
generation of tRFs.

Impact of H2O2 on RNA modification 
and compartmentalization

mRNA modifications influence translation, and recently 
their role in response to H2O2 has started to be elucidated. 
The importance of RNA methylation (i.e. incorporation 
of 5-methylcytosine, m5C) in response to oxidative stress 
was shown in Arabidopsis [103]. As such, plants lacking 
the methyltransferase TRM4B, crucial for m5C catalysis, 
were sensitive to H2O2. In addition, the trm4b mutant plants 
had reduced tRNA stability suggesting the role of m5C in 
translation.

Fig. 2   Possible effects of H2O2 on the translational apparatus. H2O2 
can influence gene expression through TOR and GCN2 signalling 
cascades by promoting or repressing translation and regulating tRNA 
transcription. H2O2 can also influence ribosome composition and 

redox posttranslational modifications on ribosomal proteins leading 
to the generation of a pool of specialized ribosomes. Created with 
BioRe​nder.​com

https://biorender.com/
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Another example is a direct RNA oxidation by ·OH, 
being a result of H2O2 decay and leading to the formation 
of 8-hydroxyguanosine (8-oxo-G) [104]. Since the 8-oxo-G 
can pair with A and C, its presence in mRNA can cause the 
formation of aberrant proteins and ribosome stalling leading 
to the premature translation termination and accumulation of 
short polypeptides. Oxidation of the mRNA is widespread 
and it is estimated that on average at least one 8-oxo-G is 
present in each mRNA [105]. This process seems to be non-
random since experiments on sunflower seeds showed that 
only selected mRNAs are oxidized [106]. Additionally, com-
partmentalization of oxidized mRNA seems to be crucial for 
RNA quality control. In unicellular alga, Chlamydomonas 
reinhardtii, 8-oxo-G was detected in pyrenoid (chloroplast 
CO2 assimilation micro-compartment found in most algae) 
where large subunit of RuBisCo was involved in the control 
of the oxidized mRNA levels [107]. Apart from mRNA, 
rRNA and tRNA can be also oxidized leading to the decrease 
of protein production rate and tRNA degradation. In higher 
plants, chloroplast is a key source of H2O2 during light 
stress. Thus, it is likely that RNA oxidation may influence 
RNA metabolism and translation in this organelle; however, 
such regulation has not been so far described.

Capped and polyadenylated mRNA in cytoplasm is gener-
ally ready for translation. However, it can be sequestered in 
membrane-less condensates such as stress granules (SGs) 
[108, 109]. SGs transiently form in response to diverse 
stresses leading to translation inhibition, and disassem-
ble after the stress is over to release translation-competent 
mRNA. In mammalian cells, the SGs can form in response 
to H2O2 [110], however, so far in plants, SGs were only 
shown to accumulate in cytoplasm in response to hypoxia 
[111] and heat [112]. Although hypoxia and heat shock are 
related to the H2O2 accumulation and signalling in plants, 
it is not clear if SGs formation can be induced by H2O2. 
Intriguingly, SG-like condensates were also observed in 
Arabidopsis chloroplasts in response to heat shock [113] and 
in C. reinhardtii exposed to H2O2 [114]. Such granules in 
C. reinhardtii contained chloroplast encoded mRNAs, SGs 
marker proteins and large subunit of RuBisCo which might 
function in mRNA metabolism. These results suggest the 
existence of an elegant mechanism of translation regulation 
during oxidative stress.

Hydrogen peroxide in the nucleus

Nuclear sources of H2O2

In contrast to cellular compartments such as chloroplasts, 
mitochondria, and peroxisomes which are well explored 
with regards to H2O2 synthesis and signalling, our under-
standing of the redox homeostasis in the nucleus remains 
enigmatic. The majority of H2O2 detected in the nucleus 

likely diffuses from other cellular compartments like cytosol 
and chloroplasts through nuclear pores [115, 116]. Direct 
physical association between chloroplasts and nuclei facili-
tated by the formation of stromules has been suggested 
to be instrumental for H2O2 accumulation in the nucleus 
[117]. Intriguingly, exogenously applied H2O2 can stimulate 
stromule induction [118]. Elicitor-induced H2O2 accumula-
tion visualized with 2′, 7′-dichlorofluorescein diacetate was 
observed in the nucleolus of tobacco BY-2 cells suggesting 
even more granular distribution of H2O2 at the subnuclear 
level [119]. Interestingly, the nucleolus harbours the rRNA 
biosynthetic machinery that can potentially be subjected to 
redox regulation. The elevated H2O2 levels in the nucleolus 
can be further activated to hydroxyl radicals in a reaction 
with ferrous ions which are abundant in this subnuclear com-
partment [120].

Active nuclear ROS production might also contribute to 
the overall ROS content in the nucleus since isolated nuclei 
can generate H2O2 upon treatment with Ca2+ [119]. Blue 
light-induced ROS synthesis mediated by cryptochromes 
represents another exciting mechanism that is involved in 
H202 production and signalling in the nucleus [121]. Manip-
ulation of cryptochrome responses through blue light illu-
mination has been proposed as a chemical-free approach to 
prime plants against abiotic stresses.

Different components of the antioxidant machinery have 
been found in the nucleus supporting the notion that the 
nuclear H2O2 homeostasis is actively regulated. The two 
major non-enzymatic antioxidants ascorbate and glutathione 
have been consistently detected in the nucleus [122, 123]. 
Moreover, several antioxidant enzymes that use GSH as a 
reductant, such as glutathione peroxidases (GPXs), glutar-
edoxins (GRXs), and glutathione S-transferase (GSTs) can 
also be targeted to the nucleus [124]. For example, GPX8 
is partitioned between the cytosol and the nucleus [125]. 
Glutathione reductase, a component of the Halliwell-Asada-
Foyer cycle that detoxifies H2O2, is also observed in the 
nucleus [126]. Several thioredoxins that are either exclu-
sively localized in the nucleus or shuffle between the nucleus 
and the cytosol have been also characterized [127, 128]. 
Nuclear partitioning of antioxidant enzymes is often pro-
moted by oxidative stress conditions further corroborating 
the idea that the nuclear redox homeostasis is dynamically 
fine-tuned [129].

Redox signalling to chromatin

Adverse environmental conditions trigger extensive tran-
scriptional reprogramming that is partially regulated at the 
chromatin level which adds critical context for the activity 
of transcription factors. Chromatin features such as post-
translational histone modifications (acetylation, methyla-
tion, sumoylation, phosphorylation and ubiquitinoylation) 
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and DNA methylation are dynamically altered by histone 
modifying enzymes and DNA (de)methyltransferases in 
response to abiotic and biotic stimuli [130]. The persistence 
of these epigenetic marks can vary widely and some of them 
are reverted back as soon as the stress episode is over while 
others can last throughout the whole life of the plant or even 
in the next generations [131–133]. Epigenetic mechanisms 
are likely at the core of stress priming and acclimation with 
specific histone marks such as H3K4 di- and tri-methylation 
implicated in the process [134]. Interestingly, epigenetic var-
iations are attracting interest in plant breeding and represent 
a novel source of diversity in crop improvement [135].

Redox regulation of chromatin remodeling is emerg-
ing as an important mechanism to systematically control 
gene expression. Numerous studies have demonstrated 
that adverse environmental conditions linked to oxidative 
stress in plants trigger profound epigenetic changes [136]. 
Similarly, oxidative stress in animal systems associated with 
pathogenicity, such as cancer and cardiovascular disorders, 
impacts the epigenetic landscape [59, 137, 138].

Among the four main groups of epigenetic regulators, 
i.e. (1) histone modifying enzymes (methyltransferase, 
acetyltransferase, demethylase, deacetylase, kinase), (2) 
chromatin remodelers (CHD, SWI/SNF, INO80/SWR1 and 
IMITATION SWITCH (ISWI)), (3) DNA (de)-methylation 
enzymes (CHG/CG/CHH methyltransferase and demethy-
lase), and (4) ncRNAs (miRNA, small-interfering RNA), 
histone modifying enzymes and DNA methyltransferases are 
most likely to be directly redox regulated according to the 
currently available evidence [139]. Such processes have been 
predominantly described in animal systems but are likely to 
be evolutionary conserved and occur in plants as well. Nev-
ertheless, the identification and particularly, the functional 
characterization of specific oxidation events remain techni-
cally challenging due to their transient nature.

H2O2 treatment has been shown to recruit DNA methyl-
transferase 1 to specific genome regions and promote the for-
mation and re-localization of protein complexes with other 
epigenetic modifiers [140]. The ROS-sensitive histone meth-
yltransferases of the H3K4-trimethylating protein complex 
(COMPASS) in Caenorhabditis elegans deplete H3K4me3 
marks upon transient ROS increase that ultimately enhances 
stress resistance and prolongs lifespan [141]. Some nuclear 
enzymes such as Repressor of Silencing1 and Demeter-like 
family members involved in removal of methylation marks 
from the DNA backbone are suspected to be redox sensitive 
due to the presence of Fe-S clusters [142]. Enzymes that 
use Fe2+ as a factor can be also potentially susceptible to 
oxidation. Among them, the activity of the demethylation 
enzymes from the TET and JmjC families which demethyl-
ate DNA and histones, respectively, might reflect changes in 
the cellular redox status [143].

Histones are highly decorated by PTMs which provides 
an additional layer of dynamic regulation for the chromatin 
structure. Histone marks can have a direct effect on the chro-
matin landscape and activity or influence epigenetic readers 
that target adaptor proteins and chromatin remodelling com-
plexes to certain genome regions [144]. In cardiac muscle 
cells exposed to ROS-generating stimuli, the histone dea-
cetylase HDAC4 forms an intramolecular disulfide bridge 
that promotes its nuclear exit [145]. Interestingly, NOX4-
generated H2O2 was also able to oxidize HDAC4 in endothe-
lial cells which resulted in increased HDAC4 phosphoryla-
tion and disturbance of the complex between HDAC4 and 
Mef2A, an important transcription factor involved in the 
activation of stress-induced genes [146]. The histone dea-
cetylase activity of Arabidopsis HDACs can be inhibited by 
NO ultimately leading to genome-wide hyperacetylation of 
stress-induced genes [147]. Among them, HDA6 has been 
experimentally validated to be directly inhibited by NO 
[148]. Interestingly, its closest human ortholog, HDAC2, 
is also modified by NO, which has a direct effect on chro-
matin remodelling [149, 150]. Genome-wide distribution 
analysis of the histone acetylation mark H3K9ac which was 
unchanged in Arabidopsis hda6 mutants upon GSNO treat-
ment, but accumulated in the wild type, further positioned 
HDA6 as an important player in the deacetylation of growth 
responsive genes [148].

Interestingly, mammalian histone H3 contains a redox-
active conserved Cys residue which can be glutathionylated 
during cell proliferation and deglutathionylated during aging 
thus affecting nucleosome stability [151]. The highly reac-
tive lipid oxidation products α, β-unsaturated aldehydes 
have been shown to commonly target histones in animal 
systems which could destine them for removal from the 
chromatin. Even though most α, β-unsaturated aldehydes 
would react with a wide range of cellular proteins, 4-oxo-
2-nonenal (4-ONE) preferentially targets histones [152]. 
Intriguingly, adduct between 4-ONE and H3K27 was sug-
gested as a redox-mediated histone mark that could stimulate 
transcription [153]. Because histones are the most abundant 
chromatin proteins, any changes that impact their structure 
and distribution are likely to have a global effect on gene 
expression and genome stability (Fig. 1). Whereas direct 
evidence for redox PTMs on plant histones is currently lack-
ing, deposition of histone variants that are often decorated 
with distinct histone marks is crucial for establishment and 
reprogramming of plant chromatin landscapes [154].

Transcriptional expression of components involved in 
maintenance of ROS homeostasis might be equally subjected 
to regulation by dynamic changes in chromatin accessibility. 
The bread wheat histone acetyltransferase TaHAG1 directly 
targets three NADPH oxidases and facilitates their expres-
sion under salt stress by increased histone H3 acetylation 
[155]. Plants overexpressing TaHAG1 were more tolerant 
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to salt stress which was modulated by H2O2 production. 
Salt tolerance was also associated with the ploidy level 
where hexaploid wheat was more tolerant than its tetraploid 
wheat progenitor. In animal cells, upregulation of transcrip-
tion of the Nox4 gene was also associated with enrichment 
of activating acetylated histone marks, whereas silencing 
of the HAT that acetylates H4K16 negatively impacted 
Nox4 expression [156]. The relationship between histone 
acetylation and transcriptional activation of H2O2 pro-
ducing enzymes might not be that straight forward since 
reports where the expression of Nox4 has been shown to 
be inversely correlated with histone acetylation also exist 
[157]. For example, treatment of smooth muscle cells with 
a range of HDAC inhibitors led to decreased levels of Nox4 
expression [158]. Regulation of NADPH oxidases by histone 
methylation marks and DNA methylation have also been 
shown in animal models [156, 159] but currently, there is no 
experimental evidence for such regulation in plants.

Redox‑regulated transcription factors

Apart from the genome-wide effect on gene expression that 
H2O2 might exert by modulating certain epigenetic regu-
lators, numerous transcription factors can be governed by 
redox regulation causing either conformational changes that 
alter their association with DNA, protein interaction part-
ners, or partitioning to the nucleus [160, 161]. The following 
examples are not meant to give a comprehensive view on 
this exciting area of redox signalling which has been excel-
lently summarized previously [161, 162] but to illustrate 
the potential of H2O2 and redox homeostasis to orchestrate 
gene expression through its effect on transcription factors. 
Many TFs reside in the cytosol and are partitioned to the 
nucleus upon stress. A notable example is NONEXPRES-
SOR OF PATHOGENESIS-RELATED GENE 1 (NPR1), a 
master transcriptional regulator of pathogen-induced gene 
expression, that is retained in the cytosol as inactive oligom-
ers maintained by intermolecular disulfide bonds involving 
Cys82 and Cys216 [163]. SA-induced perturbation of redox 
homeostasis triggers the thioredoxin H3/H5-dependent 
reduction of these disulfide bonds. The resulting monomeric 
NPR1 migrates to the nucleus and activates gene expression 
including that of PATHOGENESIS-RELATED (PR) genes 
[164].

The effect of heat stress is closely intertwined with H2O2 
accumulation, and several heat shock transcription factors 
(HSFs) are activated by oxidation [165, 166]. The Arabidop-
sis HSFA8 is destined to the nucleus under H2O2 treatment, 
and its nuclear partitioning is dependent on two redox-sen-
sitive Cys residues [167]. HSFA1A is similarly activated by 
H2O2 through trimerization which induces its binding to heat 
shock elements in target promoters [168].

H2O2 has a drastic impact on gene expression and thou-
sands of induced or repressed transcripts have been iden-
tified in various model systems [75, 165]. Functioning 
alongside redox-sensitive TFs, numerous other TFs that 
recognize specific cis-regulatory DNA sequences have been 
implicated in the transcriptional response to H2O2 [162, 
169]. Nevertheless, a gene regulatory network that provides 
a complete set of regulatory interactions between TFs and 
their target genes in the response to H2O2 is still missing. 
Systematically identifying TF-binding sites through yeast 
one-hybrid (Y1H) screens, chromatin immunoprecipitation 
(ChIP) experiments, and information about open chroma-
tin profiling is instrumental in constructing gene regula-
tory networks, but the challenge is to extract information 
about functionally significant interactions. To address this, 
a network-based approach based on supervised learning for 
large-scale functional data integration was used to capture 
and validate regulators of ROS transcriptional regulation. 
This network covering 1,491 TFs and 31,393 target genes 
(1.7 million interactions) contained 124 ROS-related TFs 
that target core ROS responsive marker genes [170]. Five of 
them (WRKY15, WRKY28, ERF6, JAM1, and JUB1) have 
been previously reported to function in plant responses to 
H2O2 [171–177]. Moreover, newly predicted ROS regula-
tors were experimentally validated using gain- or loss-of-
function lines. Among them, Arabidopsis mutants lacking 
WRKY45 displayed enhanced sensitivity to 1 µM 3-amino 
triazole (3-AT), a catalase inhibitor used to increase endog-
enous H2O2 content, whereas WRKY45 overexpression 
resulted in improved performance. In contrast, transgenic 
lines overexpressing ERF115 displayed reduced growth and 
bleaching in comparison to the wild type when grown at 
1.5 µM 3-AT [170]. Such integrative networks combining 
different experimental types are the next step in studying the 
systems biology of H2O2-induced stress acclimation.

Conclusions and perspectives

The versatile roles of H2O2 in plant growth, development, 
and stress responses reflect the enormous importance of 
redox chemistry in living systems. Myriad of cellular con-
stituents can be oxidized by H2O2 potentially changing their 
physicochemical properties and functional roles. This seem-
ingly indiscriminate impact of H2O2 and other ROS types on 
proteins, lipids, DNA, and small molecules, together with 
their accumulation under adverse environmental conditions 
have historically attracted a negative connotation and fueled 
a long line of research aimed to counteract the damaging 
effects of ROS and/or prevent their buildup. Ample evidence 
now demonstrates that H2O2 is much more than a harmful 
molecule and plants have integrated numerous H2O2-induced 
oxidation events in their signalling networks. H2O2 synthesis 
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and signalling sustain plant growth and development not 
only under favourable conditions but also ensure mount-
ing of timely and effective responses to abiotic and biotic 
stresses. Here, we discussed that H2O2 can impact key cel-
lular processes like translation and chromatin remodelling 
which integrate various intracellular and extracellular cues. 
Adding these effects to the already wide repertoire of H2O2 
target proteins and signalling networks impacted by H2O2 
makes the mechanistic understanding of the systems biology 
of H2O2-induced stress acclimation even more challenging. 
The largely empirical effect of H2O2 priming is an excellent 
example that the regulatory roles of H2O2 can be harnessed 
without a complete knowledge of the underlying molecular 
mechanisms. Nevertheless, H2O2 priming has not found a 
place in agricultural practices not least because of the many 
variables associated with its application and unfavourable 
physicochemical properties. Chemicals that can produce 
H2O2 upon contact with plant tissues or trigger H2O2 synthe-
sis in planta are viable alternatives to exploit the acclimation 
potential of H2O2 priming. Arguably, the most important 
implication of identifying crucial regulatory components 
mediating H2O2 signalling will be the engineering of climate 
resilient crops. Among the approaches that have the poten-
tial to dominate the field in the future are genome-editing 
technologies aimed at fine-tuning the signalling properties 
of key proteins by informed substitution of redox-sensitive 
Cys residues and/or modulation of their local environment. 
Epigenetic engineering of histone marks that are under redox 
control is another exciting avenue to capitalize on the rapidly 
growing information about redox signalling to chromatin.
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