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Abstract
Obesity has been linked to an increased risk of and a worse prognosis for several types of cancer. A number of interrelated 
mediators contribute to obesity’s pro-tumor effects, including chronic adipose inflammation and other perturbations of 
immune cell development and function. Here, we review studies examining the impact of obesity-induced immune dysfunc-
tion on cancer risk and progression. While the role of adipose tissue inflammation in obesity-associated cancer risk has 
been well characterized, the effects of obesity on immune cell infiltration and activity within the tumor microenvironment 
are not well studied. In this review, we aim to highlight the impact of both adipose-mediated inflammatory signaling and 
intratumoral immunosuppressive signaling in obesity-induced cancer risk, progression, and metastasis.
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Introduction

Obesity and cancer

According to the Centers for Diseases Control and Preven-
tion (CDC), approximately 40% of adults in the USA were 
considered obese in 2017 [1]. In the same year, the Organi-
zation for Economic Cooperation and Development pre-
dicted that this number will approach 50% by 2030 [2]. The 
CDC and the World Health Organization (WHO) define obe-
sity as a body mass index (BMI) ≥ 30 kg/m2 and severe obe-
sity as ≥ 40 kg/m2. However, the WHO has recommended 
defining obesity in Asian adults as BMI ≥ 27.5 kg/m2 due to 
studies indicating a higher body fat percentage and higher 
rates of obesity-related health complications at lower BMIs 
in this population, relative to non-Hispanic whites [3, 4]. In 
concert with chronic adipose tissue inflammation, obesity 
increases the risk of several comorbidities such as heart dis-
ease, type 2 diabetes, and cancer. Obesity has been specifi-
cally associated with an increased risk of developing 13 can-
cers, including cancers of the esophagus (adenocarcinoma), 

gastric cardia, colon and rectum, liver, gallbladder, pancreas, 
postmenopausal breast, uterus, ovaries, kidneys, and thyroid 
as well as meningioma and multiple myeloma [5, 6]. It has 
been generally accepted that, with the exception of lung, 
brain/central nervous system, and malignant melanoma, 
obesity is also associated with increased mortality in most 
cancers, particularly liver, uterine, and kidney cancer [7]. 
However, there is a growing body of literature that supports 
the existence of an “obesity paradox” in cancer patients 
treated with immunotherapies, where obesity is associated 
with a better response to these treatments [8]. The effects of 
obesity on patient response to various cancer therapies will 
be described in more detail in the last section of this review.

Menopause, obesity, and associated cancer risks

Among women, menopause is also an important factor in 
susceptibility to certain cancers, and obesity interacts with 
this factor. Obesity has been shown to delay menopause, 
and a delay of 5 years increases postmenopausal breast 
cancer risk by 17% [9]. For ovarian and endometrial can-
cer, obesity increases risk regardless of menopausal status 
[10–12]. However, obesity protects against breast cancer 
in premenopausal women, particularly estrogen receptor 
positive disease, while the opposite is true in postmenopau-
sal women [10, 13, 14]. One possible explanation for this 
contrast is that, while the ovaries produce estrogen prior to 
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menopause, adipose tissue is the primary site of estrogen 
production in postmenopausal women due to their lack of 
ovarian aromatase activity and an increase in adipose tissue 
aromatase activity with age [15, 16]. In addition, increased 
inflammation due to adipose tissue dysfunction has been 
associated with increased adipose aromatase expression in 
obese postmenopausal women, suggesting that this inflam-
mation contributes to estrogen-mediated breast cancer risk 
[17]. Postmenopausal obese women also have lower avail-
ability of sex hormone binding globulin (SHBG) [18], and 
weight is inversely proportional to SHBG [19, 20]. Reduced 
SHBG increases the levels of estradiol in circulation and 
therefore increases the risk of not just breast cancer but also 
endometrial cancer [21]. Additionally, hormone replacement 
therapy usage in postmenopausal women can contribute to 
an increased risk of certain subtypes of breast cancer [22]. 
However, this increased estrogen exposure has not been 
shown to significantly increase breast, endometrial, or ovar-
ian cancer risk in obese postmenopausal women [23–27]. 
Finally, a change in fat distribution is observed in post-
menopausal women, likely due to pro-androgen hormonal 
shifts, causing an accumulation of central fat compared to 
premenopausal women [28]. This central obesity has been 
linked to a greater risk of colorectal cancer in women [29].

WAT homeostasis and inflammation

Development of WAT inflammation

Obesity is often described as a state of chronic inflamma-
tion, primarily in the white adipose tissue (WAT). The WAT 
consists of a complex network of cells including adipocytes 
and immune cells like neutrophils, lymphocytes, and mac-
rophages. One of the hallmarks of obesity-mediated inflam-
mation is the presence of crown-like structures, which are 
the clusters of macrophages that form around dying/dead 
adipocytes in the WAT. This pathology is a defining feature 
of WAT inflammation. While it is commonly observed in 
obese patients, crown-like structures and WAT inflammation 
can also be seen in patients with normal BMI [30]. Homeo-
stasis in the WAT of lean individuals is maintained by sev-
eral anti-inflammatory cell types, such as the T regulatory 
 (Treg) population through the release of cytokines like inter-
leukin (IL)-10 and IL-4. These  Tregs are also responsible for 
maintaining insulin sensitivity in lean adipose tissue [31]. In 
addition, adipose stromal cells produce IL-33, which helps 
maintain the type 2 innate lymphoid cells that release type 2 
cytokines like IL-4 and IL-5 [32]. Further, this environment 
supports the M2 macrophage phenotype, which suppresses 
the pro-inflammatory M1 phenotype [33]. The adipose tis-
sue hypoxia and mechanical stress that results from obesity 
disrupts this balance and triggers nuclear factor kappa B 

(NF-κB)-related pathways, inducing inflammatory changes 
in the WAT [34–37].

Adipocytes secrete the adipokine leptin, which regu-
lates metabolism and satiety through signaling to the hypo-
thalamus [38, 39]. In the obese WAT, healthy expansion 
of the adipose tissue occurs through adipogenesis, wherein 
the preadipocytes become mature adipocytes. However, 
excess calorie intake can result in adipocyte hypertrophy or 
increased fat accumulation into mature adipocytes, which 
is marked by hypoxia and subsequent inflammation [40]. 
Additionally, patient-derived adipocytes show increased lep-
tin and pro-inflammatory cytokine secretion with increased 
adipocyte size, while anti-inflammatory IL-10 and IL-1ra 
and adiponectin secretion are decreased [41–43]. Further-
more, hypoxia inhibits the differentiation of preadipocytes 
to mature adipocytes and promotes the synthesis of leptin 
and inflammatory cytokines by these preadipocytes [35]. 
Increased leptin production by the WAT and the stressed 
environment of the tissue results in the recruitment of pro-
inflammatory factors to the region [44]. Inflammation in this 
region also induces T-cells to break out of the tolerogenic 
state and become more Th1-like, further exacerbating the 
inflammation [45, 46]. The increased production of leptin 
and inflammatory cytokines like tumor necrosis factor alpha 
(TNF-α) results in a persistent insult to the WAT that also 
promotes a paradoxical leptin resistance commonly observed 
in the obese WAT [47, 48]. This resistance plays a key role 
in promoting obesity, sustaining the stressful WAT envi-
ronment and chronic inflammation. Although some studies 
show the presence of metabolically healthy obese individu-
als who do not present with adipose inflammation, they are 
still at increased risk for later insulin resistance, type II dia-
betes, and cardiovascular disease [40].

WAT inflammation and cancer

Chronic inflammation is associated with an increased risk 
of several cancers [49]. Dysfunctional adipose tissue also 
results in altered adipokine profiles, increased pro-inflam-
matory cytokines, and hypoxia, which can all promote tumor 
progression [50]. Many pathways involved in carcinogenesis 
are implicated in the inflammation process as well, includ-
ing STAT3/5 as well as toll-like receptor (TLR) recognition 
initiated inflammasome activation [51–53]. Additionally, 
increased aromatase activity in the WAT due to increased 
adiposity is correlated with WAT inflammation[30]. In vitro, 
prostaglandin E2 (PGE2) production by breast cancer cells 
and macrophages was shown to be enhanced by obese 
patient-derived sera, and this PGE2 was shown to promote 
aromatase production in preadipocytes [54, 55]. Further-
more, WAT inflammation in obese women has been shown 
to correlate with metastatic progression in breast cancer 
[56]. M1 macrophage-derived TNF-α has also been shown 
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to promote ovarian cancer cell metastasis through the NF-κB 
pathway, and accumulation of these macrophages in the adi-
pose tissue has been observed in obese individuals [57].

Leptin signaling

Leptin receptors and resistance

Leptin is a member of the adipokine family of hormones that 
work to regulate energy metabolism through interaction with 
the arcuate nucleus of the hypothalamus. It is primarily pro-
duced by adipocytes and signals satiety to the brain. Leptin 
interacts with cells through the leptin receptor, Ob-R, which 
is found on several cell types. Through RNA splicing, there 
are six isoforms of this receptor, with five forms predominat-
ing: the long Ob-Rb and four short forms (Ob-Ra, Ob-Rc, 
Ob-Rd, and Ob-Rf). The sixth form, Ob-Re, is a secretory 
form that lacks intracellular domains and has been mostly 
shown to provide a quenching effect on circulating leptin 
as a regulatory mechanism [58]. The long form, Ob-Rb, is 
found in the hypothalamus and on B and T lymphocytes 
where it influences their activity [59]. Ob-Rb differs from 
the other forms of Ob-R by also expressing suppressor of 
cytokine signaling (SOCS) motifs, which suppress leptin 
signaling. The commonly found short form of the leptin 
receptor, Ob-Ra, is expressed on multiple cell types, like 
those of the kidney and liver as well as macrophages. Signal-
ing through the leptin receptor can take place via the JAK-
STAT3/STAT5, PI3K/Akt, and MAPK (SHP2-dependent 
and SHP2-independent) pathways [58].

Obese individuals tend to have high levels of circulating 
leptin and present with “leptin resistance.” While the mecha-
nism of leptin resistance has not been clearly elucidated, 
some proposed mediators include decreased leptin perme-
ability through the blood brain barrier due to increased lep-
tin concentrations in the brain, downregulation of the Ob-Rb 
isoform in the presence of excess leptin, and delayed cell 
surface receptor expression [60, 61]. These mechanisms sug-
gest that leptin resistance primarily affects the hypothalamic 
neurons, while leptin sensitivity may be retained in other cell 
types. It has been shown that neuronal deletion of SOCS3 
restores leptin sensitivity in diet-induced obese mice [62].

Inflammatory role of leptin

Leptin has been shown to promote the production of IL-2 
and interferon gamma (IFN-γ) in stimulated T cells while 
suppressing  Treg proliferation [63–65]. Leptin also skews the 
monocyte and macrophage populations to the pro-inflam-
matory type by stimulating the release of TNF-α and IL-6 
in vitro [66, 67]. Furthermore, leptin and other adipokines 
have been shown to regulate the activity of inflammasomes, 

large multimolecular complexes that are key players in the 
innate immune system and the development of obesity-asso-
ciated adipose tissue inflammation [68]. Leptin has specifi-
cally been linked to an inflammasome-mediated increase 
in macrophage production of IL-18 in vitro [69]. Although 
leptin has been shown to be involved in several pro-inflam-
matory processes, subphysiological to physiological doses of 
leptin have an anti-inflammatory effect through the reduction 
of circulating macrophage chemoattractant protein (MCP)-1 
and IL-6, potentially by downregulating their mRNA expres-
sion in adipose tissues [70]. This anti-inflammatory effect 
has also been observed in glial cells as well as models of 
pancreatitis and acute colitis [71–73].

Leptin and cancer

Leptin is involved in many cancer-promoting mechanisms 
including proliferation, chemoresistance [74–76], and angio-
genesis [77, 78]. In vitro studies have shown that leptin not 
only supports the proliferation of cancer cells through path-
ways like the Wnt pathway, but also promotes the expres-
sion of epithelial-to-mesenchymal transition-related genes 
through the PI3K/Akt pathway [79, 80]. Furthermore, lep-
tin promotes the migration and invasion of several cancer 
types including breast, lung, prostate, and ovarian cancer. In 
addition to adipocytes and immune cells, cancer stem cells 
also express the leptin receptor, and in vitro leptin has been 
shown to promote cancer stem cell enrichment in breast can-
cer through the induction of stem cell transcription factors 
NANOG, OCT4, and SOX2 in a STAT3-dependent man-
ner [81, 82]. Leptin from adipose stromal/stem cells in the 
tumor microenvironment can also promote the metastasis of 
estrogen receptor positive breast cancer [83].

Hyperinsulinemia and insulin resistance

Insulin is another hormone implicated in obesity-associated 
cancers. Insulin plays a key role in adipocyte maintenance 
through various mechanisms, including generation of adi-
pocytes from preadipocytes as well as lipogenesis [84]. 
Chronic inflammation promotes insulin resistance in many 
obese individuals, as shown in studies assessing systemic 
inflammation and insulin resistance [85]. Insulin promotes 
triglyceride storage into adipocytes, which prevents their 
degradation by lipases into free fatty acids (FFA). These 
FFAs are often elevated in the plasma of obese patients 
and can cause insulin resistance in secondary sites like the 
skeletal muscles due to the accumulation of lipid products 
like fatty acyl-CoA, which interfere with the insulin sign-
aling cascade [86]. FFAs can also act in a pro-inflamma-
tory manner by binding the toll-like receptors TLR2 and 
TLR4, which then activate the NF-κB pathway to induce the 
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release of TNF-α and MCP-1 and therefore further increase 
pro-inflammatory immune cell infiltrations into the region 
[87]. The pro-inflammatory cytokine TNF-α has also been 
shown to induce insulin resistance via activation of inhibitor 
of nuclear factor kappa B kinase subunit beta (IKK-β) and 
subsequent serine phosphorylation of the insulin receptor, 
which interferes with insulin signaling [88].

Conversely, insulin signaling has been linked to adi-
pose tissue inflammation in obese individuals. Some stud-
ies report elevated adipose tissue inflammation and mac-
rophage infiltration in diabetic patients receiving insulin 
[89]. In addition, a reduction in circulating insulin levels in 
obese mice resulted in a significant decrease in adipose tis-
sue inflammation [90], likely by preventing insulin-induced 
(via ERK signaling) production of MCP-1 from adipocytes, 
which can occur even in the context of insulin resistance 
[91].

Insulin and cancer

Increased circulating insulin can contribute to carcinogenesis 
as in vitro studies show chronic exposure to insulin and glu-
cose promotes proliferation and aberrant chromosomal alter-
ations in melanocytes [92]. In colon cancer cells, chronic 
insulin exposure also results in increased chemoresistance 
to the drugs oxaliplatin and SN38 in vitro [93]. In addition, 
overexpression of insulin receptor substrate-1 (IRS-1) aids 
in cell proliferation and inhibits autophagy in fibroblasts [92, 
94]. Hyperinsulinemia-induced increases in IRS-1, as seen 
in patients, also promote colon and endometrial cancer pro-
gression [95, 96]. Further, in humans and mouse models, 
hyperinsulinemia results in increased expression of insulin-
like growth factor-1 [97], which has been shown to promote 
metastasis [98, 99]. Additionally, insulin resistance has been 
linked to an increased risk of breast, pancreatic, endometrial, 
colorectal, and prostate cancer [99–103].

Obesity‑mediated immune cell dysfunction 
in the adipose tissue

Adipose tissue homeostasis maintained by suppressive 
immune cells like  Treg cells, regulatory B cells  (Bregs), and 
M2-like macrophages is disturbed in obese conditions, with 
increased TNF-α and MCP-1 production by the adipocytes 
resulting in a pro-inflammatory immune profile [104]. In 
obese individuals, this chronic inflammation alters the 
immune profile to not only an inflammatory type but also a 
dysfunctional one as shown in Fig. 1. Chronic inflammation 
has been associated with an increased risk of several cancers 
like colon, pancreatic, and ovarian cancer [105], and pro-
inflammatory alterations in the immune profile of WAT are 
also associated with higher cancer risk [106].

Adaptive immune cells

T cells

Obesity modulates the antigen specific adaptive population 
of the immune system. It accelerates T cell senescence in 
the visceral adipose tissue (VAT) of HFD-fed mice, result-
ing in T cells that resemble those typically found in aging 
VAT [107]. In human and murine adipose tissue, increased 
adiposity results in the activation of NF-κb pathways, which 
induce the expression of inflammatory cytokines that recruit 
Th1-like cells to the region [45, 108]. Th1 cells secrete 
additional IL-6 and IFN-γ in the WAT microenvironment, 
exacerbating the inflammation [46]. Increased leptin expres-
sion also aids in induction of pro-inflammatory cytokines 
from the T cells, which express the long form of the leptin 
receptor (Ob-Rb) [109]. In addition, leptin appears to be 
important in lymphocyte generation and development since 
leptin-deficient ob/ob [39] and leptin receptor-deficient db/
db mice [110, 111] exhibit a significant reduction in func-
tional T cells [112].

Obesity in mice has also been shown to predispose the 
T-cell type to Th17 due to increased IL-6 presence [113]. 
Th17 cells are a helper T cell type characterized by the pro-
duction of the pro-inflammatory cytokine IL-17 and the 
transcription factor RAR-related orphan receptor gamma t 
(RORγt). T cells in obese mice selectively promote Th17 
cells and these cells produce a greater amount of IL-17, 
which was abrogated in  IL6−/− mice [113]. In addition to 
IL-6, Th17 cells are also induced through the IL-21 pathway. 
Obese mice show increased expression of IL-21 in the adi-
pose tissue, which has been shown to promote IL-17 expres-
sion in Th17 cells in an autocrine process that is STAT3-
dependent [114]. Furthermore, this population is maintained 
and supported by IL-23 secreted by adipose tissue dendritic 
cells (DCs) [115, 116]. In the adipose tissue, obesity results 
in increased fatty acid metabolism and acetyl CoA carboxy-
lase 1 expression. This enzyme modulates RORγt function 
in Th17 cells, promoting their growth in obese individuals 
[117].

As the major T cell population in lean adipose tissue,  Tregs 
are important for homeostasis through their anti-inflamma-
tory actions. The VAT in mice contains more  Tregs than the 
spleen, lung, and liver, but these numbers decline in obese 
mice, highlighting their importance in the adipose tissue 
[46]. The increased circulating leptin in obese mice can 
bind leptin receptors expressed on  Treg cells to suppress their 
proliferation and negatively regulate their anti-inflammatory 
activity [65]. Furthermore, these cells have decreased fork-
head box P3 (FOXP3) expression and are in an anergic state, 
which can be reversed with a leptin monoclonal antibody. 
Monoclonal antibody blockade of leptin signaling also 
results in increased ERK1/2 phosphorylation, which restores 



3427The role of immune dysfunction in obesity-associated cancer risk, progression, and metastasis  

1 3

 Treg cell responsiveness [65]. Adipocyte-derived IL-21 
also suppresses  Treg accumulation in the VAT, and IL-21 
knockout improved  Treg numbers, reduced body weight, and 
improved insulin sensitivity in HFD-fed mice [118].

B cells

Obesity also affects B-lymphocyte development and func-
tion. B cells express the leptin receptor (Ob-Rb) [59] and 
respond to leptin by upregulating expression of the pro-
inflammatory cytokines IL-6 and TNF-α as well as anti-
inflammatory IL-10 [119]. Leptin plays an important role in 
not only T cell development but hematopoiesis in general, 

and this has been shown through reduced B cell numbers in 
both db/db and ob/ob mice [120, 121].

B cells promote inflammation by modulating T-cell func-
tion through release of pro-inflammatory cytokines like IL-6 
and macrophage inflammatory protein 2 (MIP-2, also known 
as CXCL2) [122]. While the role of B cells in adipose tissue 
is not clearly understood, obesity-associated inflammation 
has been linked with suppressed B cell responses through 
leptin-mediated STAT3 induction of TNF-α [123], which 
in unstimulated B cells results in preactivation and lack of 
response to further antigenic stimulation [124]. Further, B 
cells derived from obese individuals showed impaired IL-6 
secretion and increased immunoglobulin IgM levels upon 

Fig. 1  Schematic showing the immune profile of the lean and obese 
adipose tissue. The immune profile of the obese adipose tissue is gen-
erally skewed toward the inflammatory phenotype due to the presence 

of cytokines like IL-6 and TNF-α secreted by the adipose tissue as a 
result of mechanical stress, hypoxia, and necrosis
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stimulation, and an impaired response was also observed 
in B cells from HFD-fed mice [125]. However, others have 
shown that B cells accumulate in the VAT of obese indi-
viduals and are responsible for the activation of inflamma-
tory macrophages and T cells here as well production of 
IgG autoantibodies, promoting insulin resistance [126]. 
Additionally, depletion of B cells in HFD-fed mice led to a 
decreased inflammatory profile, improved insulin sensitivity, 
and alterations in the IgG profile [126].

An anti-inflammatory regulatory B-cell type  (Bregs), simi-
lar to  Tregs, can also be found in the adipose tissue. These 
 Bregs constitutively produce IL-10, which inhibits adipose 
tissue inflammation. In diet-induced obese mice, deletion 
of IL-10 from B cells results in increased  CD8+ T cell and 
M1 macrophage infiltration in the adipose tissue and reduced 
insulin sensitivity [127]. Further, decreased frequencies of 
 Bregs were observed in the adipose tissue and peripheral 
blood of overweight and obese individuals compared to 
normal weight individuals [128].

Innate immune cells

Macrophages

In the adipose tissue, resident macrophages are found in 
the M2-like state, maintaining homeostasis [129]. Obesity 
affects this homeostasis, as seen with the WAT inflamma-
tion mentioned previously. Important to this process is the 
formation of crown-like structures (CLS) in the adipose 
tissue where, due to mechanical stress and hypoxia in the 
adipocytes, M1-like macrophages surround dead or dying 
adipocytes [85, 130]. In mice and human subjects, CLS are 
responsible for the release of several types of damage-asso-
ciated molecular patterns, which bind with nod-like recep-
tors on the macrophages, activating NF-κb-mediated release 
of MCP-1 [131] and TNF-α [132] and thereby promoting 
regional inflammation. Although it is a marker for DCs, 
CD11c expression is observed on M1-like macrophages 
that accumulate in the adipose tissue of obese mice but not 
in lean mice [133, 134]. In addition, obesity-induced leptin 
resistance enhances the release of FFAs, which bind TLRs 
on the macrophages and therefore promote the expression 
of pro-inflammatory genes, further contributing to WAT 
inflammation [135, 136]. Macrophages and monocytes also 
express the leptin receptor and produce pro-inflammatory 
cytokines like TNF-α and IL-6 in response to leptin [66, 137, 
138]. Macrophage production of several other pro-inflamma-
tory factors, such as IL-1β, nitric oxide (NO) and IFN-γ, can 
also be induced by leptin in vitro [138, 139]. Furthermore, 
obesity-associated TNF-α release in mice has been associ-
ated with an increase in circulating monocytes, which con-
tribute to insulin resistance and subsequent hyperinsuline-
mia [140]. Studies have also shown that higher plasma levels 

of MCP-1 in the leptin receptor-deficient db/db mouse model 
of obesity or adipocyte specific-MCP-1 overexpressing mice 
results in increased macrophage recruitment into adipose 
tissues, which promotes insulin resistance [141, 142].

Dendritic cells

DCs are critical antigen presenting cells responsible for 
T cell activation. In lean mice, conventional DCs in the 
adipose tissue promote a tolerogenic state through IL-10 
production as well as upregulating Wnt and PPARγ path-
ways, which regulate adipocyte differentiation and limit T 
cell activation [143, 144]. These lean adipose tissue anti-
inflammatory DCs have not been identified in humans, 
but adipose tissue resident DCs have been found to con-
tribute to inflammation and insulin resistance through the 
induction of Th17 cells in both mice and humans [145]. In 
humans, a positive correlation was observed between BMI 
and CD11c + CD1c + DCs, which induced Th17 responses 
ex vivo.  CD11chighF4/80low DCs from mice also induced 
Th17 cells [146]. DCs also express the leptin receptor, and 
leptin promotes a pro-inflammatory DC phenotype [147]. In 
contrast, DCs obtained from leptin-deficient ob/ob and lep-
tin receptor-deficient db/db mice have impaired functioning 
due to reduced expression of co-stimulatory molecules and 
inability to stimulate allogeneic T cells [148, 149]. In vitro, 
leptin has been shown to stimulate increased DC production 
of IL-12, but not IL-10 or transforming growth factor beta 
(TGF-β). IL-12 favors the polarization of CD4 + T cells to 
the pro-inflammatory Th1 and Th17 type [150].

Natural killer cells

Natural killer (NK) cells, while part of the innate system, 
exhibit lymphoid-like features due to shared lineage with 
T and B lymphocytes. Obese patients have been shown 
to have significantly lower levels of circulating NK cells 
compared to lean controls [151]. Further, circulating NK 
cells from obese patients show increased activation through 
CD69 upregulation, but they are functionally impaired with 
decreased IFN-γ and macrophage inflammatory protein 
(MIP)-1β production [152]. Furthermore, obesity reduces 
circulating NK cell degranulation, despite increased CD69 
levels, suggesting greater activation and exhaustion of these 
cells in comparison to lean controls [153]. NK cells from 
obese individuals also have decreased oxidative phospho-
rylation and glycolytic activity upon cytokine stimulation 
[154]. This metabolic dysfunction results in decreased cyto-
toxic function in terms of perforin and granzyme activity as 
well as decreased anti-tumor activity. However, a subsequent 
study found no difference in the total NK cell population 
between obese and normal weight humans, but did note 
that the low cytotoxic  CD56bright NK cell population was 
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increased in obese individuals compared to the cytotoxic 
 CD56dim phenotype [155].

Other cell types

Additionally, other innate cells are involved in maintaining 
adipose tissue homeostasis. Innate lymphoid cells have been 
shown to promote an anti-inflammatory Th2 environment by 
sustaining the alternatively activated macrophage population 
[156]. Neutrophils express the short form of the leptin recep-
tor (Ob-Ra). However, leptin only plays an indirect role in 
neutrophil migration and activation in vivo, which is directly 
mediated by the release of TNF-α from monocytes and 
chemokine (C-X-C motif) ligand 1 (CXCL1) from perito-
neal cells [157, 158]. In pancreatic cancer, tumor-associated 
neutrophils are recruited by adipocyte-derived IL-1β and 
activated pancreatic stellate cells, which release additional 
IL-1β to further increase neutrophil recruitment and there-
fore promote cancer progression and chemoresistance [159].

Another immune population, the mast cell, also expresses 
the leptin receptor [160] and is increased in the WAT of 

obese individuals. These cells have been shown to promote 
obesity and glucose intolerance, as well as adipose tissue 
apoptosis and angiogenesis, through release of IL-6 and 
IFN-γ [161]. Further, leptin-deficient (ob/ob) mast cells 
were shown to play a protective role when administered to 
wild-type diet-induced obese mice, mitigating obesity and 
diabetes by aiding in polarization of WAT macrophages to 
the anti-inflammatory M2-type [162].

Obesity‑mediated immune cell dysfunction 
in the tumor microenvironment

The tumor microenvironment is generally considered to be 
immunosuppressive due to the presence of IL-10 and TGF-β 
and the suppressive properties of various cell types like mye-
loid-derived suppressor cells (MDSCs), M2 macrophages 
and  Tregs in addition to the cancer cells as shown in Fig. 2. 
In the obese tumor microenvironment, the involvement of 
the adipose tissue and adipokines like leptin and adiponectin 
can influence the immune profiles as well.

Fig. 2  Schematic showing the immune profile of the obese tumor 
microenvironment. Unlike the adipose tissue, due to the immunosup-
pressive factors from the cancer cells, the obese tumor microenvi-

ronment is infiltrated by mostly suppressive populations such as M2 
macrophages, MDSCs, and  Tregs
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Adaptive immune cells

T cells

Obesity has been shown to promote immune exhaustion 
through upregulation of PD-1 on CD8 + T cells, as seen 
in the tumors of HFD-fed mice [163]. This effect has been 
beneficial in mouse models of breast cancer, lung cancer, 
and melanoma as well as colorectal cancer patients in their 
response to PD-1/PD-L1 blockade [164]. Further, treatment 
with anti-PD-1 antibodies in esophageal cancer not only 
improved the killing capacity of the T cells but also reduced 
the number of PD-1 + T cells in the tumors [165]. Increased 
T cell PD-1 expression has been linked to leptin signaling 
through an indirect mechanism involving the STAT3 path-
way as leptin resistant db/db T cells had decreased PD-1 
expression compared to wild-type T cells after adoptive 
transfer into tumor bearing diet-induced obese  Rag2−/− mice 
[164].

Th17 and Treg: the inflammatory environment in obesity 
favors the generation of Th17 cells through the release of 
not only IL-23 from the adipose DCs but also through IL-1β 
released from adipose macrophages [166]. While Th17 is 
generally an inflammatory T cell type, Th17 cells in the 
tumor microenvironment often promote tumor progression 
by inducing infiltration of pro-tumor immunosuppressive 
MDSCs [167] as well as angiogenesis and chemoresistance 
through granulocyte–macrophage colony stimulation factor 
(GM-CSF) and IL-17 secretion and stimulation of vascular 
endothelial growth factor (VEGF) production [168–170].

In colorectal cancer patients, Foxp3 + IL-17 + T cells 
are present in the microenvironment that not only express 
high levels of TGF‐β and RORγt, but can also promote the 
induction of cancer initiating cells ex vivo [171]. These 
T cells have immunosuppressive effects in colon cancer 
patients despite releasing high levels of IL-17 [172]. Fur-
ther, Foxp3 + RORγt + regulatory T cells also have immu-
nosuppressive activity as seen in pancreatic cancer patient 
samples through suppression of T cell proliferation. How-
ever, they can also be pro-inflammatory through release of 
TGF-β and IL-6, which promote IL-17 production from 
T cells, and through their own production of IL-17 [173]. 
MDSCs have been shown to promote the induction of  Tregs 
and the transdifferentiation of Th17 to  Tregs through TGF-β 
and retinoic acid [174]. In the tumor microenvironment of 
an ovarian cancer mouse model, tumor-derived TGF-β and 
PGE2 were also shown to promote the transdifferentiation of 
Th17 cells to suppressive  Tregs, and these Th17-Treg subsets 
have been identified in patient samples [175]. The enzyme 
cyclooxygenase-2 (COX2), which is responsible for the pro-
duction of prostaglandins like PGE2, is highly expressed in 
adipose tissue [176], and COX2 signaling is also upregu-
lated in the subcutaneous adipose tissue of obese individuals 

[177]. Hence, adipocyte-derived PGE2 could contribute to 
the generation of an immunosuppressive T cell population. 
Further, adipocyte-derived TGF-β, which has been shown to 
be increased in the adipose tissue of ob/ob and db/db mice 
[178], can also contribute to this Th17-Treg subset.

B cells

Tumor-infiltrating B cells are generally associated with a 
positive outcome in anti-tumor immunity [179] and are com-
prised of activated B cells [180, 181]. B cells are recruited to 
the tumor microenvironment through the action of CXCL13, 
produced by the tumor cells. This chemokine is also pro-
duced by mature adipocytes [182].

However, several studies in mice have shown that  Breg 
infiltration into tumors causes immunosuppression through 
IL-10 production and therefore promotes tumor growth 
[183].  Breg cells have also been shown to promote tumor 
growth in head and neck cancer patients through an increase 
in the production of adenosine seen ex vivo [184], which 
suppresses the cytotoxicity of NK cells. However, the role 
of tumor-infiltrating B cells in the obese TME has not been 
fully characterized.

Innate immune cells

Macrophages

Obesity results in the increased recruitment of macrophages 
to the tumor microenvironment, which are then polarized 
to the M2-like tumor-associated macrophages (TAMs) 
that promote an immunosuppressive tumorigenic environ-
ment [185]. Although M2 to M1 polarization does occur 
in the adipose tissue, this skewing has not been observed 
in tumors, where M2-like TAM cells predominate [135, 
163]. TAMs contribute to cancer progression through the 
release of TGF-β, promoting cancer growth and suppressing 
immune response [186, 187]. Angiogenesis is an important 
factor in breast cancer progression, and macrophages have 
also been implicated via in vitro studies in the promotion of 
stromal vascularization and angiogenesis through CXCL12 
when recruited and activated by adipocyte-derived MCP-1 
and IL-1β [188]. Of note, exosomes derived from melanoma 
cells were shown to be able to generate a hybrid M1/M2 
macrophage type in vitro with upregulation of both types of 
macrophage markers. These macrophages were associated 
with pro-tumor activity [189].

Dendritic cells

DCs play an important role in antigen presentation and T cell 
education. In the tumor microenvironment of diet-induced 
obese mice, there is an increase in the inhibitory type of DC, 
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which suppresses T cell proliferation [190]. Further, these 
cells also produce less IL-12 and TNF-α than DCs in normal 
weight mice, which contributes to their impaired functional-
ity and results in reduced T cell function [190].

Natural killer cells

NK cells express both long and short forms of the leptin 
receptor [191]. Leptin plays an important role in the devel-
opment of NK cells, as leptin receptor deficiency in db/db 
mice decreases NK cell numbers in the liver, spleen, lung, 
and peripheral blood and also impairs the activation of these 
cells [192]. Interestingly, leptin treatment in a hepatocellu-
lar carcinoma mouse model suppressed tumor progression 
through the increased proliferation and activation of NK 
cells [193]. However, obesity in humans results in signifi-
cantly reduced hepatic NK cell numbers as well as Ob-Rb 
expressing NK cells [194]. Resistance to leptin signaling 
through suppressed downstream JAK/STAT signaling has 
also been implicated in the NK cell dysfunction in diet-
induced obese rat models [195]. This suggests that while 
leptin promotes NK cell activity, obesity results in dysfunc-
tional NK cells, leading to impaired tumor immunity. Dys-
functional NK cells have also been implicated in promoting 
metastasis in db/db and ob/ob mice due to their lack of leptin 
signaling [196].

In addition to increased leptin and hyperinsulinemia, 
obesity also results in increased circulating levels of adeno-
sine [197]. Adenosine is implicated in dampening immune 
responses and, like adipocytes and  Breg cells, cancer cells 
produce adenosine through CD73 and CD39 activity. NK 
cells recruited to the tumor microenvironment express the 
A2a receptor, which binds adenosine, and this results in 
decreased cytotoxic functionality [198].

Metastatic microenvironment

The metastatic potential of tumors is influenced by several 
factors, including mutational burden of the tumor, expres-
sion of genes promoting metastasis, and the cancer type, 
as some cancers are more susceptible to metastasis [199, 
200]. However, obesity has also been shown to contribute 
to increased metastasis in several cancers such as breast, 
prostate, and colorectal cancer [201].

The innate immune population of myeloid-derived cells 
are seen as key players in metastasis due to their pro-angio-
genic (VEGF) actions and pro-inflammatory actions (TNF-
α) [202]. Comparison of the primary tumors and metastatic 
lesions in murine breast cancer models show an increase 
in polymorphonuclear neutrophils in the latter, while the 
primary tumors show increased inflammatory monocytes 
[203]. In the breast cancer 4T1 mouse model, HFD diet-fed 
mice showed decreased survival through increased tumor 

volumes as well as lung and liver metastasis [204]. Fur-
ther, in vitro studies show increased proliferation, migration, 
and invasion capacity of the cancer cells when treated with 
cytokines elevated specifically in the HFD-fed mice, such 
as macrophage colony-stimulating factor (M-CSF) [204]. 
In breast cancer, obesity also results in increased neutro-
phil count causing neutrophilia, which has been shown to 
promote lung metastasis through the release of GM-CSF 
and IL-5 by the lung neutrophils [205]. In obesity resist-
ant mice, HFD was sufficient to promote tumor growth and 
lung metastasis in colon cancer through expression of genes 
regulating inflammation and proliferation [206]. These mice 
also show increased macrophage infiltration into the adipose 
tissue [206].

The tumor metabolite sphingosine-1 phosphate (S1P), 
formed by the phosphorylation of sphingosine by sphin-
gosine kinase 1, is upregulated by HFD in both syngeneic 
and spontaneous tumor models of breast cancer [207]. S1P 
results in increased macrophage recruitment to the lungs, a 
common site of breast cancer metastasis, and IL-6 produced 
by the infiltrating cells helps promote lung metastasis. The 
role of IL-6 in promoting breast cancer metastasis has also 
been shown in other studies [208, 209]. HFD also increases 
circulating cholesterol, and its derivative 27-hydroxycholes-
terol has been shown to increase the neutrophil count (IL-17 
responders) as well as γδ-T cells (IL-17 producers) in meta-
static sites while decreasing the CD8 + T cell count [210].

Obesity’s implications for current therapies

Chemotherapy and adipose tissue‑mediated 
chemoresistance

Several studies have also shown that increased adiposity 
results in poorer response to chemotherapy. In a retrospec-
tive study of breast cancer patients enrolled in the BIG 2–98 
adjuvant clinical trial comparing docetaxel-based and non-
docetaxel-based chemotherapy, BMI > 30 kg/m2 was asso-
ciated with lower overall and disease-free survival rates in 
those receiving docetaxel-based therapies [211]. Excess vis-
ceral adipose tissue in postmenopausal breast cancer patients 
has been linked to decreased chemosensitivity [212–214]. 
In vitro studies have shown that adipose stromal cells can 
promote chemoresistance in prostate cancer cells by induc-
ing the expression of epithelial-to-mesenchymal transition-
related genes like Cdh2, fibronectin, vimentin, Zeb2, and 
Slug1 [215]. In ovarian cancer, adipocytes have been shown 
to promote chemoresistance through upregulation of genes 
involved in apoptosis like Bclxl [216]. Adipocyte-derived 
leptin can also promote resistance to the taxane chemo-
therapy paclitaxel in breast cancer cells via increased fatty 
acid oxidation [217]. Further, adipocytes can metabolize 
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chemotherapy drugs, rendering them inactive, as seen in 
the conversion of daunorubicin to inactive daunorubicinol 
[218]. Prevention of doxorubicin uptake through its accu-
mulation into cytoplasmic vesicles and eventual expulsion 
via upregulation of transport proteins like major vault pro-
tein has also been observed in co-cultures of adipocytes and 
breast cancer cells [219]. Fatty acid synthase (FASN) is an 
important enzyme in de novo lipogenesis and is upregulated 
in several cancers. Melanoma tumors from HFD-fed mice 
had increased FASN expression compared to normal diet 
mice, while conditioned media from obese patient-derived 
adipose macrophages (but not monocyte-derived mac-
rophages) stimulates FASN expression in breast cancer and 
colon cancer cells [220, 221]. This FASN overexpression 
promotes resistance to the chemotherapy drug cisplatin in 
breast and ovarian cancers, which can be overcome by treat-
ment with the FASN inhibitor C75 [222, 223]. However, 
FASN expression in renal cancer was shown to be inversely 
correlated with obesity, and high BMI was determined to 
be a prognostic factor for longer survival and response to 
targeted therapy. These findings highlight the importance 
of varying BMI considerations for  different cancers [224]. 
Overall, excess adipose tissue surrounding solid tumors like 
breast cancer can make it challenging to effectively target 
the cancer cells, which are being affected by the fatty acids, 
adipokines, and multiple other factors produced by that adi-
pose tissue.

Another major challenge to effective chemotherapy treat-
ment in obese cancer patients is under-dosing. Previously, 
up to 40% of obese patients were under-dosed because clini-
cians did not use patients’ actual body weights to calculate 
doses, resulting in a variation of up to 25% in calculated 
doses for patients at the same body weight. The under-dos-
ing was largely due to concerns about increased susceptibil-
ity to chemotherapy toxicity in obese patients, though there 
was no evidence of elevated short- or long-term toxicity 
with chemotherapy doses based on their full weight. The 
American Society of Clinical Oncology published practice 
guidelines in 2012 indicating that obese patients’ full weight 
should be used for dose calculations since toxicity concerns 
are limited and under-dosing results in greater risks [225]. 
Further, several clinical trials are currently being conducted 

to assess obese patients’ response to chemotherapy drugs for 
various cancers, which will help shed light on the efficacy of 
these drugs in the context of obesity (Table 1).

Endocrine therapy

In prostate and breast cancer, endocrine therapies such as 
androgen agonists and aromatase inhibitors (AI) are com-
monly administered to control tumor growth. AIs like anas-
trozole, letrozole, and exemestane are used in breast cancer 
to decrease estrogen production. However, increased adipos-
ity results in a greater concentration of circulating estradiol 
in obese postmenopausal patients due to greater aromatase 
activity in their adipose tissue, leading to concerns regard-
ing the effectiveness of AIs in obese breast cancer patients 
[226]. Trials involving AIs versus tamoxifen (ATAC, BIG 
1–98, TEAM, ABCSG-12) have in some cases suggested 
that AIs can be more beneficial than tamoxifen in women 
with higher BMI, but results are inconsistent [226, 227].

Immunotherapies

In more recent years, immune-based targeted approaches 
to cancer therapy have emerged. Some examples include 
chimeric antigen receptor (CAR), monoclonal antibody, and 
cytokine therapies.

In CAR-based therapies, patients’ immune cells are 
genetically modified to express a cancer antigen specific 
receptor, enhancing their anti-tumor ability. However, the 
increased cytotoxicity of CAR-based therapy, particularly 
in CAR-T cells, can produce a severe immune reaction in 
which too many cytokines are released too quickly, known 
as a cytokine storm. Given the underlying chronic inflam-
mation present in most obese patients, these individuals may 
be at particularly high risk of adverse side effects from such 
CAR-based therapies. In addition, monoclonal antibody 
treatment in aged mice with increased adiposity and pre-
existing inflammation has been shown to further increase 
inflammation as well as morbidity, relative to young lean 
mice [228, 229].

While monoclonal antibody therapies such as epi-
dermal growth factor receptor (EGFR) and cytotoxic 

Table 1  Clinical trials assessing drug efficacy in obese (BMI ≥ 30 kg/m2) cancer patients

Cancer Drug Study summary Sex Trial number

Multiple, advanced Xeloda (Capecitabine) Capecitabine pharmacokinetics in patients dosed as per ideal vs 
actual body weight

A NCT01828554

Colorectal Metformin Assessment of metformin in reduction of pS6Serine235 expression 
on mucosal tissue

A NCT01312467

Breast cancer Doxorubicin, Cyclophospha-
mide

Assessment of drug plasma clearance between normal weight and 
obese patients

F NCT01537029

Endometrial cancer Metformin Assessment of effects of metformin administration prior to hyster-
ectomy

F NCT01877564
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T-lymphocyte-associated protein 4 (CTLA-4) blockade 
(panitumumab and ipilimumab, respectively) have rec-
ommended doses based on weight, it has been suggested 
that fixed dosing be used for cost-effectiveness due to the 
potency of these therapies [230, 231]. The safety of αPD-1 
treatment in obese patients has been prospectively assessed 
in esophageal cancer, where it was shown to be safe due 
to a lack of extratumoral pro-inflammatory T cell pheno-
type rescue in the αPD-1-treated patients [165]. In addition, 
recent retrospective studies of patients treated with αPD-1/
PD-L1 and/or CTLA-4 checkpoint inhibitors have shown 
improved clinical outcomes in patients with BMI ≥ 25, com-
pared to those with BMI < 25. These studies, which included 
patients with non-small cell lung cancer, melanoma, and 
several other cancer types, also found no issues with elevated 
toxicity in the overweight/obese patients [232–234]. As pre-
viously mentioned, obesity has been shown to increase PD-1 
expression on cytotoxic CD8 T cells, which promotes tumor 
progression but also greatly aids in αPD-1/PD-L1 therapy 
effectiveness in mice and patients [164]. This enhanced 
efficacy was demonstrated in male patients with metastatic 
melanoma that received combinations of immunotherapy 
(trametnib, vemurafenid, nivolumab, cobimetinib, ipili-
mumab, pembrolizumab, and atezolizumab), as improved 
survival was observed in the obese men compared to lean 
men, but this effect was not seen in female patients [235]. 
For additional information, Deshpande et al. [236] recently 
published a review extensively detailing the effects of obe-
sity, as well as lifestyle factors and diabetes, on response to 
checkpoint inhibitors.

Cytokines such as IL-2, IL-7, and IL-15 have also been 
used as immunotherapeutic agents. Combination therapy of 
IL-2 with αCD40 in aging obese mice has been shown to 
exacerbate inflammation, leading to death [228, 229]. How-
ever, more studies are needed to determine the safety of 
interleukin-based cancer therapies in the context of obesity.

Concluding remarks

Obesity-associated chronic adipose inflammation and dys-
function in the development and activity of several types of 
tumor-infiltrating immune cells have been shown to promote 
cancer growth as well as metastasis. Immunotherapy-based 
rescue of the dysfunctional immune cells, alone or in com-
bination with other therapies, could aid in the treatment of 
obesity-associated cancers. However, additional studies will 
be needed to evaluate the efficacy and safety of these thera-
pies for specific obesity-associated cancers. Further, obese 
status needs to be considered during administration for effec-
tive dosage to prevent under-dosing as well as overactivation 
of the immune system. More in vivo model data are also 
required to properly evaluate the impact of obesity on the 

immune microenvironment of tumors, as the role of some 
tumor-infiltrating immune cell types remains poorly charac-
terized. As the rate of obesity continues to increase across 
the globe, greater understanding of the impact of obesity on 
the tumor microenvironment will help inform the develop-
ment of improved treatment regimens, which are urgently 
needed to reduce the burden of obesity on cancer mortality.
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