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ABSTRACT

We have designed hidden Markov models (HMMs) of
structurally conserved repeats that, based on pairwise
comparisons, are unconserved at the sequence
level. To model secondary structure features these
HMMs assign higher probabilities of transition to
insert or delete states within sequence regions
predicted to form loops. HMMs were optimized using
a sampling procedure based on the degree of statistical
uncertainty associated with parameter estimates. A
PSI-BLAST search initialized using a checkpoint-
recovered profile derived from simulated sequences
emitted by such a HMM can reveal distant structural
relationships with, in certain instances, substantially
greater sensitivity than a normal PSI-BLAST search.
This is illustrated using two examples involving
DNA- and RNA-associated proteins with structurally
conserved repeats. In the first example a putative
sliding DNA clamp protein was detected in the thermo-
philic bacterium Thermotoga maritima. This protein
appears to have arisen by way of a duplicated β-clamp
gene that then acquired features of a PCNA-like
clamp, perhaps to perform a PCNA-related function
in association with one or more of the many archaeal-
like proteins present in this organism. In the second
example, β-propeller domains were predicted in the
large subunit of UV-damaged DNA-binding protein
and in related proteins, including the large subunit of
cleavage-polyadenylation specificity factor, the
yeast Rse1p and human SAP130 pre-mRNA splicing
factors and the fission yeast Rik1p gene silencing
protein.

INTRODUCTION

A major goal in computational biology is to predict a protein’s
structure and function from its sequence. To accomplish this,
various approaches have been taken, including structural
threading methods, ab initio structure prediction, homology
modeling and multiple alignment and profile search methods

(for a review see 1). In the case of multiple alignment and
search methods, which is the focus of this analysis, two
concerns need to be considered: the accuracy of the alignment
and the sensitivity and selectivity of the search. Here we
address these concerns by combining a multiple alignment
procedure based on hidden Markov models (HMMs)
(reviewed in 2) that incorporates rather specific structural
features with a PSI-BLAST search (3) initialized with a profile
corresponding to the HMM alignment. One reason for taking
this hybrid approach is that it provides a well-established
measure of significance based on the PSI-BLAST statistics. Of
course, converting the HMM alignment into a PSI-BLAST
profile discards the specific structural features of the HMM,
which are useful for constructing the alignment. This is not
necessarily a drawback, however, because relaxing these structural
constraints during a search may avoid over-training, where the
model incorporates features of the training sequences that are
absent from distant relatives. Indeed, distantly related proteins
often diverge from typical family members in unexpected
ways, so that searching with a less constrained PSI-BLAST
profile could be advantageous in some instances.

During construction of the HMM we use two approaches to
incorporating structural information. First, we take advantage
of structural symmetry by focusing on protein families charac-
terized by the presence of structurally conserved repeats that
are unconserved at the sequence level based on pairwise
comparisons. Modeling of structural repeats, as opposed to
modeling the full-length sequences, increases the effective size
of the sequence training set, leading to improved estimates for
the residue emission probabilities. Second, we rely on
secondary structure information when assigning insert or
delete transition probabilities for the HMM in order to better
align the sequences in a manner consistent with the overall
structural features of the protein family.

Although structurally conserved repeats may be only very
weakly conserved at the sequence level, these can often be
detected and aligned using multiple alignment methods based
on Gibbs sampling (4–7). Gibbs sampling is a Monte Carlo
procedure that, starting from an arbitrary alignment, iteratively
realigns individual sequences against an evolving alignment
model or HMM with probability proportional to the quality of
the realignment. This process is analogous to a thermodynamic
system coming to equilibrium. Just as a chemical reaction
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comes to completion faster at room temperature than near
absolute zero, probabilistic sampling, by facilitating maneuvering
around locally optimal traps in alignment space, converges on
near optimum alignments faster than steepest descent methods.
Early Gibbs sampling alignment procedures were block based
(4,6) but have recently been modified to allow for limited
gapping (8). Here we further generalize these methods to allow
sampling of repeats using a HMM; this method incorporates a
simplified sampling protocol based on the degree of statistical
uncertainty associated with parameter estimates.

We illustrate our approach using two examples relating to
DNA replication and repair proteins. The first example (sliding
DNA clamps) illustrates how a HMM for a set of proteins of
known structure can be used to predict the structure of a distantly
related protein, which in this case has also led to interesting
evolutionary insights. The second example (sequences related
to the large subunit of UV-damaged DNA-binding protein)
illustrates how a HMM for a set of proteins of unknown struc-
ture can be used to detect distantly related proteins of known
structure.

Sliding DNA clamps are ring-shaped proteins that allow
DNA polymerase to achieve high processivity during chromo-
some replication by tethering the polymerase catalytic subunit
to DNA. From the crystal structures of these proteins it appears
that they can encircle duplex DNA without steric hindrance, a
property that presumably allows them to non-specifically
attach to and move rapidly along DNA without dissociating
(for reviews see 9–12). The structures of three distinct families
of sliding clamps are available and include the Escherichia coli
β-clamp (13), the human and yeast proliferating cell nuclear
antigen (PCNA) (14,15) and the bacteriophage RB69 and T4
sliding clamp proteins (16,17). All of these structures share a
12-fold symmetry around the ring consisting of a simple β-α-β-β-β
structural repeat (13), though there is structural divergence in
some of the repeats. Bacterial β-clamps contain six β-α-β-β-β
repeats per subunit with two subunits per ring while the
eukaryotic and bacteriophage clamps contain four repeats per
subunit with three subunits per ring. Pairs of these repeats form
a domain, which has been termed the ‘processivity fold’ (18);
thus the ring of the sliding clamp contains six domains and
therefore is often described as having 6-fold symmetry (19). A
structural representative of a fourth family of processivity fold
proteins, namely the herpes simplex virus UL42 protein, is also
available (18). UL42 does not form a ring-shaped clamp,
however, but rather functions as a monomer and interacts with
DNA quite differently than do sliding clamps; it has been
suggested that UL42 resembles a primitive ancestor of sliding
clamps (see 18 and references therein). Despite their structural
similarity, proteins in each of these four families lack significant
pairwise sequence similarity to proteins in the other families,
suggesting that additional, unrelated processivity fold proteins
remain to be found. Sensitive sequence analysis methods offer
an opportunity to identify additional sliding clamps. For
example, the fission yeast DNA repair proteins Rad1p, Rad9p
and Hus1p were recently predicted to be distant relatives of
PCNA using PSI-BLAST and similar procedures (20–22).

Another protein believed to be involved in DNA repair is
UV-damaged DNA-binding (UV-DDB) protein, which is asso-
ciated with the hereditary disease xeroderma pigmentosum
group E (XP-E). Xeroderma pigmentosum (XP) is character-
ized by extreme sensitivity to UV light and a high disposition

to skin cancer and XP cells are defective in nucleotide excision
repair (for reviews see 23,24). In humans UV-DDB purifies as
a heterodimer of 127 and 48 kDa subunits (25) and, when
injected into XP-E cells that normally lack this protein, can
correct the DNA repair defect (26). However, the exact function
of UV-DDB remains unknown. Sequences related to the UV-DDB
127 kDa subunit (UV-DDB-127) fall into several subfamilies,
the characterized proteins of which all appear to be compo-
nents of DNA- or RNA-associated complexes. Components of
complexes that appear to be DNA associated include the
fission yeast Rik1p protein, which plays a role in gene
silencing at certain centromeric regions and in chromosome
segregation (27), and UV-DDB-127 itself. Components of
RNA-associated complexes include the 160 kDa subunit of
cleavage and polyadenylation specificity factor, which is
required for 3′-end processing of mRNA precursors, and
certain pre-mRNA splicing factors. These pre-mRNA splicing
factors are required for pre-spliceosome assembly and include
the yeast Rse1p protein (28) and the mammalian SAP 130
protein (29), which is associated with interchromatin granule
clusters (30).

Here we use PSI-BLAST searches based on HMMs of subtly
conserved repeats to detect a putative sliding DNA clamp that
shares sequence features with both archaeal PCNAs and
bacterial β-clamps and to predict β-propeller domains in
proteins belonging to the UV-DDB-127 family. By capturing
the inherent structural symmetry present in these proteins this
approach was able to recognize sequence similarities that are
very difficult to detect by standard methods.

MATERIALS AND METHODS

Our strategy for modeling structurally conserved repeats
combines features of several standard computational methods
with a new procedure for sampling gapped alignments that
assigns HMM transition probabilities based on secondary
structure predictions. The overall strategy consists of the
following steps. First, a HMM (2) corresponding to subtle
repeats characteristic of a protein family of interest is
constructed. We require that the modeled repeats be conserved
at the structural level but, in general, lack significant pairwise
similarity to other repeats within the same sequence. During
construction of the HMM, the optimum alignment and number
of the repeats are determined via a Gibbs sampling procedure
with two stages of refinement. In the first stage, repeats are
detected and aligned using an ungapped alignment procedure
similar to that previously described (5). In the second stage, a
gapped alignment of the repeats is constructed based on a
HMM. This gapped sampling routine is conceptually very
simple and works by first sampling residue emission probability
parameters for the HMM from the posterior Dirichlet distribution
and then optimally aligning a given sequence against this
sampled HMM using dynamic programming. During alignment
the transition probabilities for the HMM are based on
secondary structure propensities such that transitions to insert
or delete states within sequence regions predicted to form
loops are assigned higher probabilities. In a second step, we
emit a large number of simulated sequences having a charac-
teristic number of repeats using the optimum HMM obtained
in the first step. In a third step, these simulated sequences are
used to construct a corresponding PSI-BLAST checkpoint file



3572 Nucleic Acids Research, 2000, Vol. 28, No. 18

(3). (As described in the PSI-BLAST documentation, a check-
point file stores a profile derived during a previous search for
use as the starting point for a subsequent search.) Finally, a
protein database is searched using PSI-BLAST initialized with
this checkpoint file. The significance of matching database
sequences is assessed using the PSI-BLAST statistics,
although some care must be taken to eliminate potential false
positives due to subject sequences with detectable internal
repeats (as explained below). The programs implementing
these procedures and instructions for their use are available via
anonymous ftp at ftp.cshl.org in the subdirectory pub/science/
neuwald. These procedures are described in more detail in the
following sections.

Construction of HMMs for structural repeats

HMMs were constructed as follows. An initial alignment of
repeats was obtained using ungapped, block-based multiple
alignment procedures (5,6) based on Gibbs sampling (4). The
initial alignment was further refined using gapped procedures
that are an extension of an earlier ungapped Gibbs sampling
strategy (6) and that represents an alternative to a previously
described ‘steepest descent’ approach (8). For these refinement
procedures we decided to deviate from a rigorous Gibbs
sampling approach for several reasons. First, we found that the
large number of possible gapped alignments compared to
ungapped alignments makes straightforward Gibbs sampling
computationally expensive. Second, the number of unlikely
alignments is so great that their total probabilities often appear
to be substantially greater than the total probabilities associated
with optimal and near optimal alignments. As a result, the
sampler tends to fall into an ‘entropic hole’ of improbable
alignments. Third, although in theory this entropic effect might
be overcome by sampling at lower temperatures, finding the
right temperature is difficult and, in any case, a gapped alignment
space appears to contain many locally optimal traps, thereby
substantially lengthening convergence. Finally, we found that
an alternative, less rigorous sampling approach appears to
work well in practice. This approach, which will be general-
ized for a variety of multiple alignment problems elsewhere
(A.F.Neuwald and A.Poleksic, unpublished results), is
outlined here specifically for alignment of relatively short
repeats.

Just as painting a picture typically requires an initial crude
sketch prior to filling in of the details, we find that alignment
of distantly related sequences typically requires construction of
an initial ungapped, block-based alignment prior to the intro-
duction of insertions and deletions. This is because delineation
of the gross characteristics of the alignment during the
ungapped stage helps avoid becoming trapped in suboptimal
alignments during the gapped stage. Here we push this strategy
one step further by applying two gapped refinement steps. The
first step applies fixed affine gap penalties, while the second
step applies position-specific penalties based on secondary
structure propensities, as described below. These penalties are
formulated as transition probabilities for a HMM. Because the
ungapped sampling procedure results in an initial alignment that
is more or less correct, the subsequent gapped-based refinement
procedures require only limited sampling flexibility. After the
sampler converges, however, it is often necessary to lower the
sampling ‘temperature’ (in a process called simulated annealing)
in order to find an optimal alignment. In a thermodynamic

context, the effect of simulated annealing is to increase the
population of the lowest energy states of the Boltzmann distri-
bution; for multiple alignments this corresponds to increasing
the likelihood of sampling the more probable alignments.

Both of the refinement steps use a sampling strategy based
on the inherent uncertainty in the parameter estimates of the
HMM. This is illustrated through the following simple
example. Consider an alignment of four sequences with only
two types of residues, A and B. Assume that at a given position
in the alignment four As are observed. The frequency of A at
this position (which, for the HMM, corresponds to the match
emission probability for A) can be estimated from this data in
various ways. A maximum likelihood approach would assign a
probability of 1 to A and 0 to B. This is clearly a poor assump-
tion, however, as four observations are too few to jump to the
conclusion that B never occurs at this position. The usual way
around this problem is to use a Bayesian approach, which adds
a certain number of pseudocounts for each residue type along
with the observed counts and then takes the most probable
parameter value from the posterior distribution, a procedure
called maximum a posteriori (MAP) estimation. Thus, for this
simple example, a Bayesian approach may add one pseudo-
count each for A and B to obtain a MAP estimate of 1/(4 + 1 + 1)
≈ 0.167 for the probability of the HMM emitting a B.

Rather than taking the MAP estimate, however, our procedure
samples parameter values from the posterior (Dirichlet)
distribution before each realignment step. [Pseudocounts
corresponding to prior probabilities are obtained using the
method of Henikoff and Henikoff (31); although this method
does not conform to a strict Bayesian formulation, it works
well in practice.] This sampling procedure can easily be
extended to sample transition probabilities, but currently only
residue emission probabilities are sampled. [A similar parameter
sampling routine applied to DNA sequences was recently
described (32).] Using the sampled HMM parameters, an
optimum gapped alignment against the sequence being
realigned is found by dynamic programming, which for a
HMM corresponds to the Viterbi algorithm (2). After convergence,
simulated annealing is applied to find a (hopefully global)
optimum. During simulated annealing, and prior to sampling
the HMM parameters from the posterior Dirichlet distribution,
the temperature is lowered by raising the sum of the observed
counts and pseudocounts to a power greater than one. This has
the effect of increasing the total number of counts, which
causes the Dirichlet distribution to tighten up and favors
sampling nearer the most probable value. At zero degrees the
sampler uses MAP parameter estimates and is therefore equivalent
to a ‘steepest descent’ approach. During sampling, aligned
sequences are weighted for redundancy (33).

Sampling repeats

To concurrently determine the optimum parameters of the
HMM and the optimum number of corresponding gapped
repeats within a set of sequences, we generalized an earlier
sampling algorithm for ungapped repeats (5). This algorithm
iteratively samples candidate sequence regions in and out of
the alignment proportional to the likelihood that a given
sequence region contains a repeat. Hence, it is important to be
able to compute this likelihood for a specific sequence region.
This can be done by comparing the overall MAP estimate for
an alignment that includes the sequence in question with the
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MAP estimate for an alignment that excludes that sequence.
The formula for MAP estimation for ungapped multiple align-
ments has been given previously (7) and it would be helpful to
have an analogous MAP formula for our HMMs.

The full Bayesian approach for doing this would be to find
the posterior probability of an alignment given the input
sequences by integrating over all the possible parameters of the
HMM. Unfortunately, this is a difficult, unsolved computational
problem. As an alternative, we determine the likelihood of an
alignment given the parameters of the HMM, which are estimated
from the alignment itself. Using this approach, possible align-
ments can be explored (via sampling) to find an alignment with
maximum probability given the corresponding HMM. In this
case the alignment likelihood (or, more specifically, the loga-
rithm of the likelihood) is obtained by computing the log-like-
lihood of each sequence being emitted by the HMM and then
summing all of these. In order to speed up this calculation, an
estimate is obtained by summing the log-likelihoods for the
previously sampled alignment tracebacks rather than by inte-
grating over all possible paths through the HMM. This heuristic
approach is similar to computing the sum of the pairwise scores
for assessing the quality of an alignment, only it sums the
sequence-to-HMM log-likelihood scores instead. For each
sequence a likelihood ratio is obtained by dividing the HMM
emission probability (which is obtained from these log-
likelihoods) by its emission probability under the null HMM
(which consists of a single insert state). These likelihood ratios
are used to probabilistically sample sequence regions in and
out of the alignment. The probability of an insert-to-insert tran-
sition for the null HMM is set so that it emits sequences with
an average length equal to that observed for the aligned
sequences. Residue emission probabilities for the null HMM
are based on the overall residue frequencies in the sequences
being aligned.

HMM transition probabilities based on secondary
structure predictions

Transition probabilities between insertion, match and deletion
states of the HMM are based on secondary structure propensity,
which is computed using the DSC method (34). In addition,
observed secondary structure states for specific sequences
whose structures are known can be used to update the DSC-
derived probabilities using Bayes’ theorem. We chose this
approach because the alternative approach of estimating transi-
tion probabilities based on observed numbers of insertions and
deletions at each position in an alignment is typically unreliable
due to the sparseness of data. Basing transition probabilities on
secondary structure predictions indirectly provides an estimate
of the likelihood of insertions and deletions because gaps are
inherently more likely in loops than in helices or strands. Our
procedure starts with pairs of transition probabilities (one
probability for loops and another for helices and strands) for
each of four transitions: match-to-insert, match-to-delete,
insert-to-insert and delete-to-delete. The probabilities associated
with the other transitions (match-to-match, insert-to-match and
delete-to-match) are derived from these based on the constraint
that the transitions out of any state must sum to unity.

The probability of a specific transition at a given position in
the HMM is computed from the secondary structure prediction
at that position via linear interpolation between the input
transition probability pair. For example, assume that the

secondary structure prediction at a specific position in the
alignment is 0.2 for a helix or strand and 0.8 for a loop and that
the input probability pair for a match-to-delete transition is 0.4
for a helix or strand and 0.6 for a loop. Then the computed
match-to-delete transition probability at this position is (0.2 × 0.4)
+ (0.8 × 0.6) = 0.56. Thus, the higher the loop probability, the
higher the probability of a deletion. Transition probabilities
either to or from insert states are based on the average of the
secondary structure predictions on either side of the insertion.
For computational convenience, transition probabilities are
specified as the logarithms of the probabilities.

The parameter values used for the starting transition proba-
bility pairs were determined empirically, based on alignments
of proteins of known structure. These settings result in either
an insertion or a deletion in about half of randomly simulated
sequences with likelihood scores comparable to that of actual
family members.

PSI-BLAST searches based on simulated checkpoint files

After constructing a HMM of a repeat unit from known family
members, the protein database is searched for structurally
related proteins using PSI-BLAST (3) with the checkpoint
recovery option and with a checkpoint file derived from
simulated sequences emitted by the HMM. (A checkpoint file
stores a profile derived during a previous search for use as the
starting point for a subsequent search.) We used PSI-BLAST
in this way rather than searching with the HMM itself because
a PSI-BLAST search is fast and the statistics are thoroughly
tested. Nevertheless, preliminary studies indicate that
assessing statistical significance by fitting the HMM scores to
an extreme value distribution (35) may work as well or better
(at least in some instances) and we are currently exploring this
alternative approach. By starting the search with a checkpoint
file based on the HMM, however, the PSI-BLAST procedure
should still benefit from the enhanced quality of the HMM
alignment.

Simulated sequences were emitted without insertions or
deletions and with a fixed spacing between adjacent repeats;
this spacing was set equal to the average spacing observed for
repeats in the training set. Although it is straightforward to
emit simulated sequences from a HMM with insertions and
deletions characteristic of a particular protein family, this is
unnecessary in this case because PSI-BLAST profiles use
fixed, family-independent gap penalties. More importantly,
generating simulated sequences that lack insertions and
deletions makes it easier for the PSI-BLAST algorithm to set
the checkpoint file ‘residue emission’ parameters closer to
those of the HMM. For the examples described here, 1000
simulated sequences were used. The number of repeats in the
simulated sequences was chosen to reflect the characteristic
number found for that protein family. If desired, the training
sequences used to construct the HMM can be included, along
with the simulated sequences, in the initial PSI-BLAST search
to create the checkpoint file. For each iteration of PSI-BLAST
during this initial search, an E value of 0.05 was used as the
cut-off for inclusion of detected sequences in the profile. A
consensus sequence for the protein family is used as the query.
The degree of similarity between sequences is often too weak
for the standard BLAST heuristic to detect otherwise significant
relationships. Therefore both the simulated searches and
subsequent database searches used a word threshold score of 7



3574 Nucleic Acids Research, 2000, Vol. 28, No. 18

rather than the default value of 11. Note that from run to run
there can be significant variability in the E value for a specific
matching sequence due to the stochastic nature both of the
HMM optimization procedure and of the simulated sequences
used for the checkpoint. The variability in the simulated sequences
(which is probably more significant than that associated with
HMM optimization) can easily be eliminated by creating a PSI-
BLAST profile directly from the HMM within the PSI-BLAST
code itself, but this has not yet been implemented.

Statistical significance

The statistical significance of database hits is obtained directly
from PSI-BLAST. It should be stressed, however, that the
occurrence of repeats within a sequence or profile can lead to
misleading results unless some care is taken in the statistical
analysis (5). In particular, weak similarity between repeats
within a database sequence and repeats within a profile will be
amplified proportional to the level of similarity that the
internal repeats share with each other. As a result, otherwise
non-significant similarity between the database sequence and
the profile can be amplified to a level that appears to be signifi-
cant and thereby lead to false positives. (This is a potential
problem for profile searches in general and not just for the
searches described here.) As a safeguard against this,
sequences with detectable internal repeats were eliminated from
consideration during a search. More specifically, sequences
were eliminated if any matching regions had detectable pairwise
similarity with other matching regions in the same sequence
(E value < 0.01 for the single sequence using the ungapped
BLAST algorithm; 36). For similar reasons, care was taken to
eliminate potential false positives due to coiled-coils (37) and
compositional biased regions (38). Coiled-coil regions were
detected using both the method of Lupas (39) and BLAST
searches against either a single sequence consisting of tandem
copies of a coiled-coil heptad consensus repeat (‘LEEELEE’)
or known coiled-coil proteins.

RESULTS AND DISCUSSION

Testing our approach

Detection of distant relationships between distinct classes of
known β-propeller domains. As a check of the ability of our
method to detect distant structural relationships we applied our
approach to nitrite reductases, a class of β-propeller domain
proteins (see for example 40). We chose this protein family
because it is structurally related to WD40 repeat proteins,
which we predict below to share structural features with the
UV-DDB-127 family. A HMM of nitrite reductase β-propeller
repeats was used in a PSI-BLAST simulated checkpoint search
of the NCBI non-redundant protein database. Among the
sequences detected (E value < 0.01 and lacking pairwise
significant internal repeats or problematical regions) were 10
families of WD40 repeat proteins. The E values obtained for
the detected sequences ranged from 0.01 to 0.0000002. No
other such proteins were detected with E values < 0.01 except,
of course, for the nitrite reductases themselves. PSI-BLAST
searches were used to confirm the presence of WD40 repeats in
matching regions of those proteins not previously reported to
harbor WD40 repeats. Thus, in this analysis our approach

detects known structural relationships between nitrite reductases
and WD40 proteins without picking up false positives.

Example 1: sliding DNA clamps

Alignment of sliding DNA clamp repeats. Application of our
sampling procedure to the construction of a HMM for sliding
DNA clamps resulted in a corresponding alignment of processivity
fold β-α-β-β-β repeats (Fig. 1) that is consistent with what is
known about the structures of these proteins (Fig. 2). The first
strand and helix of the repeat corresponds to the most
conserved region in the alignment and, therefore, these appear
to serve important structural and/or functional roles. The
second and third strands are less conserved, while the fourth
strand is poorly conserved and, as a result, was misaligned for
some repeats in several sliding clamps of known structure. In
general, the most conserved positions correspond mainly to
hydrophobic residues constituting the core of the repeat, but
also include several surface residues that may perform non-
structural roles (Fig. 2a). Within their respective families both
the PCNA-like clamps and the bacterial β-clamps are relatively
highly conserved along their entire lengths and across diverse
taxonomic groups, suggesting that many additional functional
constraints, beyond those needed to maintain the processivity
fold itself, are acting on these distinct clamp families. As
reported in the next section, however, weakly conserved
features of both families appear to be present within an unusual
putative sliding DNA clamp that nonetheless lacks detectable
pairwise similarity to either family.

Database searches. We performed a PSI-BLAST simulated
checkpoint search based on a HMM that was trained on
sequences from three sliding clamp families with known struc-
tures: PCNAs, bacterial β-clamps and bacteriophage clamps.
We chose to model simulated sliding clamp proteins as having
six β-α-β-β-β repeats, in order to facilitate full alignment
against either four or six repeat subunits. This search detected
an uncharacterized protein from Thermotoga maritima
(E value ≈ 0.0003) which lacks pairwise similarity to any other
sequence. Thermotoga maritima is a thermophilic bacterium
whose genome consists of 24% archaeal-like genes, which
may have been acquired through lateral gene transfer, and 76%
typical eubacterial genes (41). In addition to the putative clamp
subunit, this bacterium also has a typical β-clamp; both of
these proteins harbor six repeats (Fig. 1). Moreover, both the
length of the putative clamp subunit (350 amino acids) and the
spacing between its adjacent repeats are similar to that of
known β-clamps. Thus, it seems that duplication of the
Thermotoga β-clamp gene may have generated the putative
clamp.

To further explore the possibility of gene duplication and
divergence, we performed another PSI-BLAST simulated
checkpoint search based on a HMM trained only on the six
repeats in the Thermotoga putative clamp protein. Interestingly,
sequences detected below the default PSI-BLAST E value cut-
off of 0.001 (several of which were highly significant) (Fig. 3)
included β-clamp proteins from two thermophilic bacteria
(Aquifex aeolicus and T.maritima itself) and three PCNA-like
clamps from various thermophilic archaeal organisms (Methano-
coccus jannaschii, Thermococcus fumicolans and Aeropyrum
pernix). A fourth PCNA-like clamp from a thermophilic
archaeal organism (Pyrococcus horikoshii) was the highest
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scoring hit (E value ≈ 0.002) above the cut-off. Similarly, we
performed a PSI-BLAST simulated checkpoint search based
on a HMM trained using the bacterial β-clamps with the
Thermotoga β-clamp as the query. This search detected the
putative Thermotoga clamp protein at a high level of signifi-
cance (E value ≈ 6 × 10–7). A similar simulated checkpoint
search that substitutes the Aquifex for the Thermotoga β-clamp
detects the putative Thermotoga clamp protein at an even
higher level of significance (E value ≈ 1 × 10–8). (All of these
searches were performed against the NCBI non-redundant
database.) Taken together, these findings suggest that the putative
Thermotoga clamp arose via duplication of the β-clamp and
then diverged, taking on some of the structural and functional
characteristics of the thermophilic archaeal PCNA clamps.
This may have occurred in order to allow this protein to

perform the role of a PCNA-like sliding clamp needed for
function of one or more of the archaeal-like proteins present in
this organism. What this function might be is not necessarily
limited to DNA replication, as PCNA performs other roles as
well (42).

Though we failed to detect known viral processivity factors
in our simulated checkpoint search of the entire protein data-
base, a separate search of only these viral processivity factors
tested the specific hypothesis that these proteins possess the
processivity fold. This search yielded the cytomegalovirus
DNA polymerase accessory protein ICP36/UL44 (43) and
related proteins, including the murine cytomegalovirus protein
pp50 (44) (E values ≈ 0.001–0.0001). This suggests that these
proteins are structurally related to sliding DNA clamps, even
though the relationship is admittedly quite weak. The greater

Figure 1. Representative alignment of known and putative processivity fold proteins. Names of proteins of known structure are shown in red, of previously
predicted clamp proteins in blue and of a putative clamp protein from T.maritima in green (see text). Proteins of known structure are designated by their pdb
identifiers; other sequences are designated by their SwissProt identifiers or gi numbers. Abbreviations used for organism names are: bpr69, bacteriophage R69;
METJA, Methanococcus jannaschii; ecoli, Escherichia coli; thema, Thermotoga maritima; AQUAE, Aquifex aeolicus; BACSU, Bacillus subtilis. The transition
probability pairs (expressed in 200th nats) used to obtain the HMM parameters from secondary structure propensities are: match-to-insert, 350–1700; insert-to-insert,
20–150; match-to-delete, 400–500; delete-to-delete, 40–700 (see Materials and Methods). The first repeat in 1B77A_bpr69, which was not found by the sampler,
was determined through optimum alignment against a HMM of four repeats. For each aligned column, elevated residues (i.e. with binomial tail probabilities <0.01)
and related, marginally conserved residues (with tail probabilities <0.05) are indicated using the following automated hierarchical coloring scheme (see 8). Columns
with ≥1.25 bits of information and hydrophobic, red on yellow highlight. Columns with 0.75–1.25 bits of information: hydrophobic, blue on yellow highlight; non-
hydrophobic, magenta highlight. Other columns: ≥70% hydrophobic, yellow highlight; >66% conserved, black highlight; 50–66% conserved, dark gray highlight;
33–50% conserved, black; <33% conserved, dark gray; unconserved, light gray. Note that this coloring scheme is based on the full alignment of about 475 repeats.
Consensus structural assignments based on known structures are shown below the alignment (h, helix; s, strand).
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Figure 2. Processivity fold structural repeats. (a) A single structural repeat. The unit shown corresponds to the third repeat (residues 134–186) of human PCNA
(pdb 1AXC). Conserved residues involved in internal packing are shown as spheres and conserved surface residues as sticks. Side chain colors correspond to the
alignment in Figure 1. (b) Arrangement of the processivity fold domain (repeats 3 and 4 of 1AXC). Adjacent repeats are related to each other through a 180° rotation
around the y-axis. (c) The four repeat subunit of PCNA. (d) The four repeat subunit of the clamp from bacteriophage RB69. (e) The six repeat subunit of the E.coli
β-clamp (pdb 2POL). (f) The two subunit E.coli β-clamp ring.

Figure 3. Sequences detected in a PSI-BLAST simulated checkpoint search based on a HMM trained using the six repeats of the Thermotoga putative clamp
protein. The transition probability pairs used to obtain the HMM parameters from secondary structure propensities are as for Figure 1. The NCBI non-redundant
database was searched. Sequences with pairwise significant internal repeats, coiled-coil regions and compositionally biased regions were eliminated from the search
and are not shown (see Materials and Methods).
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difficulty in detecting these viral proteins may be due to the
high rate of sequence divergence for rapidly evolving phage
and viral genomes and to unusual structural and sequence
constraints. For instance, the herpes simplex virus UL42
protein behaves as a monomer in solution and forms a
heterodimer with HSV polymerase and, therefore, appears not
to form a clamp. Furthermore, as for the bacteriophage T4
gp45 sliding clamp (45), association of UL42 with polymerase or
DNA occurs in the absence of clamp loaders or ATP hydrolysis
(for references see 18). In contrast, an active process is
required for removing (and loading) PCNA and β-clamps (46)
due to their greater stability in solution and on DNA. More-
over, the gp45 clamp has been recruited as a transcriptional
activator (47,48) and interacts with the gp55 late σ factor and
RNA polymerase (49). For these reasons phage and viral
proteins may yield poor matches to our HMM compared with
bacterial, archaeal and eukaryotic sliding DNA clamps.

Example 2: β-propeller domains

Alignment of UV-DDB-127 repeats. Repeats present within
sequences in the UV-DDB-127-family were detected and

multiply aligned as described in Materials and Methods. These
repeats are quite subtle and have not been previously reported
for these proteins. Representative sequences from the align-
ment are shown in Figure 4. The domain architectures for these
proteins are shown in Figure 5a. The repeats are ∼40 residues
in length and are predicted by the DSC algorithm to correspond
to an unstructured N-terminal region followed by three β-
strands. The most conserved positions correspond mainly to
hydrophobic residues within the last two predicted strands and
to small, mostly hydrophilic residues in the predicted loop
regions between strands. The high sequence conservation in
the last two predicted strands suggests an important structural
role. In contrast, the N-terminal region and the first predicted
strand are weakly conserved, suggesting that these may
correspond to surface residues involved in family-specific
interactions (see below).

Database search. A PSI-BLAST simulated checkpoint search
based on a HMM of the UV-DDB-127 repeat yielded numerous
matches to WD40 β-propeller domains and related proteins in
the NCBI non-redundant database. (For construction of the

Figure 4. Representative sequences in the multiple alignment corresponding to the HMM for the UV-DDB-127 repeats. Regions predicted to form strands with
>65% probability are indicated below the alignment. The coloring scheme is described in the legend to Figure 1. See the legend to Figure 5 for sequence identifiers
and organism names.
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checkpoint file, simulated sequences with 10 repeats were
emitted.) To ensure a stringent test for the statistical signifi-
cance of these matches, we required that both the sequences
used to construct the PSI-BLAST checkpoint files and the
subject sequences detected in the search lack internal repeats
detectable by pairwise analysis methods (see Materials and
Methods). The UV-DDB sequences and the simulated
sequences meet this criterion as assessed by searching for
significant internal repeats (see Materials and Methods). In
contrast, many of the matching database sequences contained
pairwise significant internal repeats that may substantially
amplify the apparent significance of the match if the correlation
between repeats is sufficiently strong. We therefore focused on
those matching subject sequences that lack significant internal
repeats. Based on this criterion, the search yielded matches to
many protein families that either were previously reported to
contain WD40 repeats or that clearly can be linked to known
WD40 repeat proteins through BLAST or PSI-BLAST
searches (Fig. 6). Other types of β-propeller domains were not
detected in the search, suggesting that the UV-DDB-127
repeats share similarity primarily to WD40 repeats. Corroborating
evidence was obtained from PSI-BLAST searches using the
UV-DDB-127 repeat sequences as seeds. This yielded several
weak hits to WD40-related proteins (E values < 0.05 but above
the default PSI-BLAST cut-off of 0.001). This also reveals that
a PSI-BLAST simulated checkpoint search is at least several
orders of magnitude more sensitive in this instance than a
normal PSI-BLAST search (Fig. 6).

Implications of UV-DDB-127 β-propeller domains. β-Propellers
are composed of 4–8 structural repeats (or blades), each of

which consists of four antiparallel strands that radiate out from
the center of the propeller. β-Propellers fall into several
families, the largest of which consists of the WD40 repeat
proteins (50,51), which our analysis suggests are related to UV-
DDB-127 repeats. The WD40 family is so named because the
repeats are typically ∼40 residues in length and are characterized
by a conserved WD dipeptide motif near their C-terminal
regions (reviewed in 50). There are also several other patterns
conserved within the WD40 family (50,52). The UV-DDB-127
repeats diverge from WD40 repeats in this regard, as the WD
motif and these other patterns are absent. The UV-DDB-127
repeats also appear to harbor more insertions and deletions and
are less well conserved relative to each other than is the case
for most WD40 repeats. Indeed, additional, undetected repeats
seem likely to be structurally present in members of the UV-
DDB-127 family. Notably, the p48 subunit of UV-DDB
contains seven WD40 repeats (data not shown), one of which
was reported previously (53).

What might the presence of β-propeller domains tell us about
these proteins? It appears that sequences related to UV-DDB-
127 typically have around 16–21 repeats. Assuming that WD40
β-propellers are composed of about seven blades, this suggests
that these proteins may have between two and three β-propeller
domains each. The less conserved N-terminal region of the
UV-DDB-127 repeats may correspond to the outermost strand
of the blade based on analogy to typical WD40 β-propellers,
for which the outermost strand is encoded in a variable length
N-terminal region. This region appears to be less conserved
due to the different functional constraints acting at the surface
of each type of propeller domain (54). Furthermore, for an
alignment of typical WD40 repeats the DSC algorithm predicts

Figure 5. (a) Domain architectures for UV-DDB-127 repeat proteins. Repeats are colored red proportional to their likelihood scores using lighter shades for less
conserved repeats. Protein names are color coded according to families. The number of repeats are indicated in parentheses. GenBank identifiers for the sequences
are: uvddb_human, 4503279; uvddb_drome, 4928452; uvddb_arath, 7267302; uvddb_caeel, 7506084 ; repE_dicdi, 2130171; uvddb_schpo, 7492324; rik1_schpo,
7493406; hypo_arath, 6671952; sap130_human, 3540219; sap130_drome, 7292001; sap130_caeel, 7505161; sap130_arath, 7019653; prp12_schpo, 6451681;
Rse1p_yeast, 6323592; cpsf_bovin, 1706101; cpsf_drome, 7303176; cpsf_caeel, 7105681; cpsf_schpo, 7492482; cft1_yeast, 6320507. Abbreviations used for
organism names are: drome, Drosophila melanogaster; arath, Arabidopsis thaliana; caeel, Caenorhabditis elegans; dicdi, Dictyostelium discoideum; schpo,
Schizosaccharomyces pombe. The transition probability pairs (expressed in 200th nats) used to obtain the HMM parameters from secondary structure propensities
are: match-to-insert, 150–1300; insert-to-insert, 10–70; match-to-delete, 200–600; delete-to-delete, 150–350 (see Materials and Methods). (b) Structural regions of
a WD40 repeat protein (human transducin β-chain, pdb 1GG2B) (55) that align with seven UV-DDB-127 repeats defined by the HMM corresponding to the alignment
in Figure 4. A randomly shuffled transducin sequence was appended to the original sequence to increase the likelihood of misalignment. All seven UV-DDB-127 HMM
repeats (shown using seven distinct colors in the figure) align with the transducin WD40 repeats in a manner consistent with the proposed structural arrangement
(see text).
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an unstructured state for this N-terminal region (not shown),
just as is obtained for an alignment of UV-DDB-127 repeats.
Another weakly conserved region of the UV-DDB-127 repeat
corresponds to the first predicted strand and this may corre-
spond to the innermost strand lining the propeller’s central
tunnel, as is the case for WD40 repeats (54). Finally, the last
two predicted strands seem likely to correspond to the internal
two strands of the propeller blade, as suggested by their higher
levels of sequence conservation. Further evidence for this
structural arrangement is suggested by alignment of a HMM
for seven UV-DDB-127 repeats against the human G protein β
subunit, a WD40 protein of known structure (55; Fig. 5b).

Some possible cellular functions for the UV-DDB-127
repeats are suggested by considering β-propeller components
in other DNA- and RNA-associated complexes. For example,
WD40 repeats occur in the p48 subunit of mammalian chromatin
assembly factor 1 (CAF-1), which, in addition to its role in
chromatin assembly, is also involved in nucleotide excision
repair of UV-damaged DNA (56). CAF-1 p48 binds to histone
H4 and is a known subunit of a histone deacetylase; it has also
been suggested that CAF-1 p48 and closely related WD40
proteins may function as chaperones that bring proteins to
histones (57). Similarly, it has been suggested that UV-DDB
may play a role in the repair of DNA within chromatin (58).
Thus, there appear to be functional similarities between CAF-1
and the UV-DDB complex. Furthermore, in addition to

imparting resistance to UV damage, subunits of the yeast CAF-I
complex, which are homologous to the mammalian CAF-1
subunits, are associated with gene silencing near telomeres
(59,60). This is reminiscent of the fission yeast rik1p protein,
which belongs to the UV-DDB-127 family and is also involved
in gene silencing (61) and in localization of the chromo domain
protein Swi6p (62). Possible chromatin remodeling functions
are performed by other WD40 repeat proteins, such as yeast
Hir1p, which functions as a transcriptional co-repressor (63).
The UV-DDB-127-related proteins associated with RNA
complexes may similarly function to bring together protein
components that localize to RNA.

CONCLUSION

By modeling repetitive structural elements that are very weakly
conserved at the sequence level, the HMMs constructed in our
analysis have yielded substantial improvements in both the
corresponding multiple sequence alignments and in database
search sensitivity. These alignments suggest subtly conserved
structural features, as assessed through comparisons with
proteins of known structure. We believe that a key property of
the HMMs in this regard is the assignment of transition probabilities
based on secondary structure predictions. PSI-BLAST checkpoint-
recovered searches based on simulated sequences emitted from
the HMMs predict novel distant relationships not readily

Figure 6. WD40 proteins detected in a PSI-BLAST simulated checkpoint search based on a HMM of UV-DDB-127 repeats. One representative sequence is shown
for each of 32 distinct protein families that were detected (E value < 0.001) in a search of the NCBI non-redundant database. (The criterion for clustering any two
sequences into the same family was a pairwise gapped BLAST score with an E value < 1 × 10–10.) All of the families detected are known to contain WD40 repeats
except for two small families of uncharacterized proteins that (aside from our analysis) appear to be unrelated to other proteins. Sequences with descriptions in gray
harbor marginally significant internal repeats (with 0.001 < E value < 0.01, as indicated in the far right column). Additional WD40 protein families were detected
in the search but are not shown because the corresponding sequences all harbor clearly significant internal repeats (E values < 0.001), which may significantly
inflate their computed statistical significance (see Materials and Methods).
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detected by standard methods. Indeed, in several instances the
statistical significance is substantially enhanced. One draw-
back of the current approach, however, is variability in the
measure of significance due to the use of simulations. Future
implementations can eliminate this problem, however, by
modifying PSI-BLAST so that it constructs a profile directly
from the HMM. The overall strategy described here is appli-
cable to other protein families with repetitive structural units.
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