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Abstract
Ovarian endometriosis is a common gynecological condition that can cause infertility in women of childbearing age. How-
ever, the pathogenesis is still unknown. We demonstrate that the carboxyl terminus of Hsc70-interacting protein (CHIP) is a 
negative regulator in the development of endometriosis and reduces HMGB1 expression in endometriotic cells. Meanwhile, 
CHIP interacts with HMGB1 and promotes its ubiquitinated degradation, thereby inhibiting aerobic glycolysis and the pro-
gression of endometriosis. Furthermore, the CHIP agonist YL-109 effectively suppresses the growth of ectopic endometrium 
in endometriosis mouse model, which could be a potential therapeutic approach for endometriosis. In conclusion, our data 
suggest that CHIP may inhibit the development of endometriosis by suppressing the HMGB1-related glycolysis.
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Introduction

Endometriosis is a disease characterized by endometrial-like 
tissues that grow outside of the uterine cavity. It is an estro-
gen-dependent gynecological disorder that affects 6–10% of 
reproductive-aged women worldwide [1]. The most common 
implantation site of endometriosis is ovary and posterior cul-
de-sac [2]. Ovarian endometriosis (OEM, also called ovarian 
chocolate cysts) is a cyst formed by regular bleeding of the 
ectopic endometrium in response to ovarian hormones. The 
main symptoms include chronic pelvic pain, dyspareunia, 

dysmenorrhea, and infertility [3]. Women with endome-
triosis have previously reported to be more susceptible to 
ovarian cancer [4]. However, the causes of endometriosis 
are still unknown. Although endometriosis is not generally 
considered a malignant disorder, it does share similar char-
acteristics with tumors, such as glycolytic metabolism [5, 6].

Glycolysis, also known as the Warburg effect, refers to 
the fact that cells prefer glycolysis and use this metabolic 
pathway to produce ATP as their primary source of energy 
supply, rather than oxidative phosphorylation, even in the 
presence of oxygen and properly functioning mitochon-
dria. This phenomenon was prevalent in tumors and was 
also present in endometriosis [5]. The glycolytic pathway 
could produce lactic acid, and excess lactic acid promoted 
angiogenesis, cell invasion, cell metastasis, and immuno-
suppression [7, 8]. Many glycolytic vital enzymes, such as 
6 Phosphofructo-2-kinase/Fructose-2,6-Biphosphatase 3 
(PFKFB3), were highly expressed in endometriosis cells 
and contributed to the progression of endometriosis [9]. 
Hypoxia-inducible factor-1α (HIF-1α), a transcription fac-
tor, was a crucial regulator of glycolysis and promoted the 
development of endometriosis [10, 11]. However, studies on 
the regulation of glycolysis in endometriosis are still rare.

High mobility group protein 1 (HMGB1) is a nonhis-
tone chromosome-binding protein. HMGB1 was previously 
reported to be involved in glycolysis. HMGB1 promoted 

Yujun Sun, Qian Wang, and Mengxue Wang have contributed 
equally.

 * Chune Ren 
 wyfybaby@126.com

 * Zhenhai Yu 
 tomsyu@163.com

 * Tingting Yang 
 Y402115432@163.com

1 Department of Reproductive Medicine, Affiliated Hospital 
of Weifang Medical University, Weifang, Shandong, 
People’s Republic of China

2 School of Clinical Medicine, Weifang Medical University, 
Weifang, Shandong, People’s Republic of China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-022-04637-z&domain=pdf
http://orcid.org/0000-0001-9927-3057


 Y. Sun et al.

1 3

13 Page 2 of 16

pulmonary fibrosis by inducing aerobic glycolysis through 
upregulation of HIF-1α [12]. Moreover, HMGB1, as a new 
hippo pathway regulator, mediated the expression of Yes-
associated protein (YAP), which contributed to aerobic 
glycolysis in hepatocellular carcinoma cells [13]. Besides, 
HMGB1 also played an important role in endometriosis. 
HMGB1 was previously reported to promote the forma-
tion of an immunosuppressive environment and aggravate 
chronic inflammation of endometrial ovarian cyst [14]. 
It also participated in the formation of endometriosis by 
regulating autophagy [15]. In addition, the HMGB1-TLR-
MyD88 signaling pathway induced pain in endometriosis 
[16]. Numerous studies have elucidated that HMGB1 pro-
moted endometriosis, but it was unclear whether HMGB1 
affected endometriosis through the glycolytic pathway. 
HMGB1 can be regulated by posttranslational modifications 
(PTMs) including methylation [17], phosphorylation [18], 
acetylation [19], ADP-ribosylation [20], and glycosylation 
[21]. Furthermore, ubiquitination plays an important role in 
many diseases. However, the ubiquitin ligases that regulate 
HMGB1 remain largely unknown.

As an important posttranslational modification, ubiq-
uitination regulates different cellular signaling pathways 
[22]. The carboxyl terminus of Hsc70-interacting protein 
(CHIP) encoded by the STUB1 gene is composed of 303 
amino acid residues and functions of E3 ubiquitin ligase 
and collaborates with molecular chaperones. The N-termi-
nus of the CHIP protein contains a TPR structural region, 
which regulates binding with molecular chaperone proteins. 
The C-terminal includes the activity of E3 ubiquitin ligase, 
which promotes the ubiquitin degradation of the substrate 
[23]. CHIP promoted ubiquitin degradation of phosphoryl-
ated protein kinase B (AKT) and maintained the stability of 
the intracellular pathway [24]. In gastric cancer, CHIP inhib-
ited cell invasion, metastasis, and angiogenesis by degrading 
NF-κB through ubiquitination [25]. However, the biological 
function of CHIP in endometriosis has not been investigated 
and the specific regulatory mechanisms of CHIP ubiquitina-
tion need to be further explored.

Here, we identify a novel molecular mechanism between 
CHIP and HMGB1 involved in the development of endo-
metriosis. We found that CHIP is a new HMGB1-binding 
protein that promotes ubiquitination and accelerates degra-
dation of HMGB1. CHIP also attenuates cellular glycolysis 
via HMGB1, thus inhibiting the development of endometrio-
sis. These data provide a theoretical basis for further using 
the CHIP as a potential therapeutic intervention in ovarian 
endometriosis.

Materials and methods

Tissue collection and immunohistochemical staining

The Human Investigation Committee of Weifang Medi-
cal University has approved this study. All 50 cases ovar-
ian endometriosis eutopic and ectopic endometrium were 
obtained from the Department of Obstetrics and Gynecology 
of the Affiliated Hospital of Weifang Medical University. 
In addition, we obtained 50 cases of normal endometrium 
from patients with nonendometriosis. These patients had 
not received any hormone therapy for at least three months 
before the procedure. The informed consent of all partici-
pants was obtained. Samples were collected and paraffin-
embedded for subsequent immunohistochemical experi-
ments. The specific method used was as described previously 
[26]. The staining of immunohistochemistry is scored by 
the percentage of positive cells as well as the intensity of 
staining. The score of staining intensity was defined as 0 
for negative, 1 for weak staining, 2 for moderate staining, 
and 3 for strong positive staining. The frequency of positive 
cells was defined as: 0 scores for less than 5%, 1 scores for 
5–25%, 2 scores for 26–50%, 3 scores for 51–75%, and 4 
scores for > 75%. The semi-quantitative score scale ranges 
from 0 to 12, with < 4 defined as negative.

The isolation of stromal cells derived 
from the ectopic endometrium of patients 
with ovarian endometriosis

Ectopic endometrial tissues were collected from patients 
with ovarian endometriosis to isolate and culture primary 
ectopic endometrial stromal cells (EESC). The specific 
method used was as described previously [27]. Briefly, the 
endometrial tissues were cut into 1  mm3 pieces and then 
digested with collagenase IV (Sigma, St Louis, MO, USA) at 
37 °C for 1.5 h. The pieces were then separated with 76 mm 
and 37 mm (pore size) nylon mesh.

Cell culture and transfection

Anna Strazinski-Powitz established the endometrial epi-
thelial cell line (11Z), kindly provided by Prof. Sun-wei 
Guo, Fudan University, Shanghai. HEK293T cells were 
cultured in DMEM (HyClone), and 11Z and EESC were 
maintained in DMEM/F12 medium (HyClone). The medium 
was supplemented with 10% FBS (HyClone) with 100 μg/
mL penicillin and 100 μg/mL streptomycin, and cells were 
cultured at 37 °C and 5%  CO2. Cells were seeded in six-
well plates and transfected using Lipofectamine 2000 (Inv-
itrogen, Shanghai, China) according to the manufacturer’s 
instructions.
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Plasmids, antibodies

The specific constructs used for the recombinant plas-
mids (Flag-CHIP, HA-CHIP, Flag-HMGB1, HA-HMGB1, 
Flag-CHIP-K30A, HA-CHIP-K30A, Flag-CHIP-H260Q, 
HA-CHIP-H260Q) were as described previously [28]. 
The CHIP-H260Q mutant is deficient in E3 ligase activity, 
while the CHIP-K30A mutant showed a defect in binding to 
molecular chaperones [29]. The CHIP shRNA was generated 
with oligonucleotide 5′-CCA GCT GGA GAT GGA GAG TTA-
3′, and the HMGB1 shRNA was generated with oligonucleo-
tide 5ʹ-GGA CAA GGC CCG TTA TGA A-3ʹ. The antibodies 
used are shown in Supplementary Table S1.

Cell proliferation analysis

Transfected cells (20,000–25,000 cells/plate) were replated 
in 24-well plates, and the cells were counted for 4 consecu-
tive days by cell counter. The specific method used was 
as described previously [28]. Three independent replicate 
experiments were done for each experiment.

Colony formation assay

Transfected cells were reseeded in six-well plates (200–800 
cells/plate) and continued to be cultured for 10–14 days. 
Cells were fixed with 4% paraformaldehyde for 15 min, 
stained with crystal violet for 15 min, and photographed 
with a gel imaging system (G: BOX F3 Gel Document Sys-
tem). The specific method used was as described previously 
[30]. Three independent replicate experiments were done 
for each experiment.

Wound healing assay

Cells were reseeded in a six-well plate after transfection, and 
the next day delineated with a medium pipette tip and pho-
tographed. The cells were continued to be cultured for 24 h. 
The culture medium was aspirated and discarded, washed 
with PBS, and photographed again. Three independent rep-
licate experiments were done for each experiment.

Transwell invasion assay

Matrigel gel (BD Biosciences, Bedford, MA, USA) was 
diluted with serum-free DMEM/F12 at a concentration of 
1:8, and then 40 μL of diluted BD gel was added to the 
upper chamber and incubated for 1 h at 37 °C to solidify 
the gel. The transfected cells (1 ×  105) were mixed with 
200 μL of serum-free DMEM/F12 medium and added to 
the upper chamber, and 600 μL of medium containing 10% 
FBS was added to the lower chamber. Twenty-four hours 
later, the Matrigel gel and cells were removed from the 

upper layer, fixed with 4% formaldehyde for 15 min, then 
stained with crystal violet for 10 min, photographed, and 
recorded the number of cells passing through the chamber. 
Three independent replicate experiments were done for each 
experiment.

Glucose consumption and lactate production

Cells were reseeded in six-well plates and replaced with 
serum-free DMEM/F12 medium. 12–16 h later, the super-
natant was collected. The concentration of glucose and lac-
tate was determined using a glucose (GO) assay kit (Sigma, 
#GAGO20-1KT) and a lactate assay kit (Biovision, #K627-
100). The methods used were performed as described previ-
ously [31]. Three independent replicate experiments were 
done for each experiment.

Immunofluorescent analysis and proximity ligation 
assay (PLA)

Cells (1.2 ×  105) were inoculated on cell crawlers and incu-
bated for 24 h and then fixed with 4% paraformaldehyde. 
Tissue sections were hydrated and antigenically repaired. 
Then cells and tissue sections were treated with 0.05% Tri-
ton-100, blocked with 1% BSA for 1 h, and then incubated 
with primary antibody overnight at 4 °C. The samples were 
incubated with secondary antibody for 1 h at 37 °C and then 
stained with DAPI. PLA assay using  Duolink® In Situ Red 
assay (Sigma, DUO92101) is to detect transient interactions 
of endogenous proteins according to the manufacturer's 
instructions. The specific method used was as described 
previously [32, 33]. The images were photographed under a 
fluorescence microscope (ZEISS). Three independent repli-
cate experiments were done for each experiment.

Western blot

Cultured cells were collected and lysed on ice with lysis 
buffer (Beyotime, Shanghai, China, P0013), which can 
be left on ice for 30 min, followed by centrifugation at 
12,000 rpm for 10 min at 4 °C. Keep the supernatant, add 
5 × loading buffer, mix well, and heat at 100 °C for 10 min. 
The proteins were separated by SDS-PAGE electrophoresis, 
transferred to PVDF membranes, blocked in nonfat milk, 
and incubated overnight at 4 °C with indicated antibod-
ies. ImageJ software was used for densitometric analysis. 
The specific method used was as described previously [34]. 
Three independent replicate experiments were done for each 
experiment.
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Co‑immunoprecipitation (Co‑IP) assay

Collect the cells, add the lysate vortex, and incubate on ice 
for 30 min. Centrifuge at 12,000 rpm for 10 min at 4 °C, take 
5% of the supernatant as input, then add beads or primary 
antibody as indicated, and incubate overnight at 4 °C. Add 
2 × protein loading buffer and boil for 10 min. The obtained 
samples were subjected to subsequent western blot experi-
ments. The specific method used was as described previ-
ously [35]. Three independent replicate experiments were 
done for each experiment.

GST pull‑down assay

His-CHIP and GST-HMGB1 were expressed in E. coli BL 
(DE3), and the specific method used was as described previ-
ously [36]. Three independent replicate experiments were 
done for each experiment.

Ubiquitin detection

The amount of samples binding to IP was analyzed by immu-
noblotting with anti-HA (HA-tagged UB) or anti-ubiquitin 
(UB) antibodies. The specific method used was as described 
previously [32]. Three independent replicate experiments 
were done for each experiment.

Fig. 1  CHIP is downregulated 
in endometriotic tissues and 
negatively correlates with 
HMGB1. A Expression of CHIP 
and HMGB1 proteins in control 
endometrium and in eutopic/
ectopic endometrium of patients 
with endometriosis was detected 
by immunohistochemistry 
(scale bar, 20 µm). B, C Violin 
plots showing the difference 
in immunoreactivity of CHIP, 
HMGB1 in the three groups, 
respectively. D Spearman's 
correlation analysis ascer-
tained the correlation between 
CHIP and HMGB1 expression 
in ectopic tissues. (All data 
represent mean ± SEM. The 
Mann–Whitney test, Wilcoxon 
test, and Spearman’s correla-
tion analysis were used for data 
analysis. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001)
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Fig. 2  CHIP suppresses cell proliferation, invasion, and glyco-
lysis in vitro. A, B Immunoblot analysis revealed overexpression and 
knockdown levels of CHIP in 11Z cells. Western blot was quantified 
by ImageJ software, and statistics were normalized to β-actin. C, D 
Effect of CHIP overexpression or knockdown on the proliferation of 
11Z cells. E Overexpression of CHIP in 11Z cells resulted in a sig-
nificant decrease in the number of colony formation. Knockdown of 
CHIP in 11Z cells resulted in a significant increase in the number of 
colony formation. F Overexpression of CHIP in 11Z cells resulted in 

diminished cell invasion. Knockdown of CHIP in 11Z cells resulted 
in enhanced cell invasion. G CHIP overexpression suppressed endo-
metriotic cells migration. CHIP knockdown enhanced endometriotic 
cells migration. H, I The effects on glucose consumption and lactate 
production after overexpression or knockdown of CHIP are indi-
cated, respectively. (All data represent mean ± SEM. The Student’s t 
test was used for data analysis. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001)
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Animal experiments

This experiment was approved by the Institutional Experi-
mental Animal Review Board of Weifang Medical Univer-
sity. Intraperitoneal injection was used to establish a mouse 
model of endometriosis [37]. We used 6-week-old BALB/c 
female mice for this experiment. We injected estradiol benzo-
ate (100 μg/kg) intramuscularly into the thighs of donor mice 
(n = 7) every two days to promote endometrial development. 
One week later, the uterus of the donor mice was sliced into 
1  mm3 pieces, mixed well, and then performed intraperi-
toneal injection to the recipient mice. Two recipient mice 
received endometrium fragments from one donor mouse. 
After 1 week of establishing the endometriosis model, mice 
in the experimental group (n = 7) were given intraperitoneal 
injections of the CHIP agonist YL-109 (15 mg/kg) and mice 
in the control group (n = 7) were injected with normal saline 
twice a week for one month. Mice were executed, endometri-
osis-like lesions were collected and measured, and peritoneal 
fluid was collected for testing.

Statistical analysis

GraphPad Prism 9.0 software was used to complete the sta-
tistical analysis of all data. The obtained data were expressed 
as mean ± SEM. The Mann–Whitney test, Wilcoxon test, one-
way ANOVA, and Student’s t test were used for data analysis. 
Spearman’s correlation analysis was used to assess the rela-
tionship between the two variables. Ρ-values < 0.05 were con-
sidered statistically significant. The n.s. was not significant.

Results

CHIP is downregulated in endometriotic tissues 
and negatively correlates with HMGB1

To investigate the relationship between CHIP and endome-
triosis, we performed immunohistochemical experiments 

on eutopic and ectopic endometrium from patients with 
endometriosis, with normal endometrium as a control. IHC 
staining showed that CHIP was mainly located in the cyto-
plasm of endometrial glandular epithelial cells (Fig. 1A). 
And the protein level of CHIP was significantly lower in 
ectopic endometrium than in normal and eutopic endome-
trium (Fig. 1B). In addition, we verified the expression levels 
of HMGB1 in the tissues. HMGB1 was more abundantly 
expressed in ectopic tissues (Fig. 1C) and was mainly dis-
tributed in the cytoplasm of the glandular epithelium and 
partially in the nucleus (Fig. 1A). The data showed that 
CHIP was negatively correlated with HMGB1 in endome-
triosis (Fig. 1D).

CHIP suppresses cell proliferation, invasion, 
and glycolysis in vitro and in vivo

To determine the role of CHIP in endometriosis, we trans-
fected plasmids or shRNA of CHIP into 11Z and EESC 
cells, respectively. We verified the transfection effect by 
immunoblotting (Fig. 2A, B and Supplementary Fig. 1A, 
B). Then we performed cell proliferation assays and colony 
formation assays and found that overexpression of CHIP sig-
nificantly inhibited cell proliferation. In contrast, knockdown 
of the CHIP promoted the proliferation of endometriotic 
cells (Fig. 2C–E and Supplementary Fig. 1C–E). We per-
formed transwell invasion assays and wound healing tests to 
determine the effect of CHIP on the cell invasion. Compared 
to controls, manipulation of CHIP high expression signifi-
cantly inhibited the invasion and migration of endometriotic 
cells (Fig. 2F, G and Supplementary Fig. 1F, G). Down-
regulation of CHIP promoted cell migration and invasion. In 
addition, high expression of CHIP in cells reduced glucose 
consumption and lactate production. Conversely, reduced 
CHIP expression promoted glucose consumption and lactate 
production (Fig. 2H, I and Supplementary Fig. 1H, I). These 
results suggest that CHIP inhibits the proliferation, invasion, 
and glycolysis of endometriotic cells.

In addition, we studied the effect of YL-109 on endome-
triosis, a specific agonist of CHIP that induces CHIP expres-
sion through aryl hydrocarbon receptor (AhR) signaling 
[38]. To determine whether YL-109 inhibits the develop-
ment of endometriosis in vivo, we established the endome-
triosis mouse model (Fig. 3A) and administered intraperi-
toneal injections of YL-109 to the experimental group of 
mice. Four weeks later, the ectopic tissues were removed 
for measurement and analysis (Fig. 3B). Compared to the 
control group, the ectopic tissues in the YL-109 treatment 
group were significantly suppressed in volume and weight 
(Fig. 3C). We also measured the glucose and lactate lev-
els in the peritoneal fluid of mice. The results showed that 

Fig. 3  YL-109 inhibits the development of endometriosis. A–D After 
establishing the endometriosis mouse model, the control group was 
given intraperitoneal saline and the experimental group was given 
intraperitoneal YL-109 (15 mg/kg). After four weeks, the mice were 
executed to observe the growth and weight of ectopic tissues and 
detect the glucose and lactate levels in the peritoneal fluid. A The red 
circle represented the implanted ectopic tissue. B Represented the 
largest ectopic tissue of each mouse. E Representative photographs 
of H/E staining and CHIP, HMGB1, PKM2, HK2 staining of ectopic 
samples (scale bar, 20  µm). F Box plots showing the difference in 
immunoreactivity of CHIP, HMGB1, PKM2, HK2 in two groups. 
(All data represent mean ± SEM. The Student’s t test was used for 
data analysis. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)

◂
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the experimental group of mice consumed less glucose and 
produced less lactic acid (Fig. 3D). Immunohistochemi-
cal staining also showed that YL-109 caused an increase 
in CHIP and a decrease in HMGB1 as well as PKM2 and 
HK2, which were related to glycolysis (Fig. 3E, F). Taken 
together, these results strongly suggest that CHIP acts as a 
negative regulator to suppress the growth, migration, and 
glycolysis of endometriosis. And the CHIP agonist YL-109 
has a therapeutic effect on the endometriosis mouse model.

CHIP interacts with HMGB1

After demonstrating that CHIP and HMGB1 were nega-
tively correlated, we further explored physical interactions 
between two proteins. Immunoprecipitation (Co-IP) assay 
detected the exogenous interaction between CHIP and 
HMGB1 in HEK293T cells (Fig. 4A, B). Further analysis 
showed that endogenous HMGB1 interacted with CHIP 
in endometriosis cells (Fig. 4C, D). Consistent with these 

Fig. 4  CHIP interacts with HMGB1. Perform immunoprecipitation 
and immunoblot analysis with specified antibodies. A, B Transfected 
Flag-tagged CHIP and HA-tagged HMGB1 into HEK293T cells and 
verified their interaction by immunoprecipitation and immunoblot-
ting. C, D Immunoprecipitation and immunoblotting to verify the 

interaction of endogenous CHIP and HMGB1 proteins in 11Z cells. E 
GST-pull down assay analysis of CHIP and HMGB1 proteins interac-
tion using purified GST-HMGB1 and His-CHIP. F Confocal immu-
nofluorescence microscopy was performed to analyze localization of 
CHIP (red) and HMGB1 (green) in endometriotic cells
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results, the GST pull-down assay showed that recombinant 
His-CHIP could interact with GST-HMGB1 but not with 
GST-tagging alone (Fig. 4E). We further performed PLA 

experiments and verified that endogenous CHIP inter-
acted with HMGB1 in 11Z cells (Supplementary Fig. 2A). 
Meanwhile, immunofluorescence experiments showed that 

Fig. 5  CHIP downregulates HMGB1 protein stability. A HEK293T 
overexpressed Flag-CHIP (0, 0.5 or 1 μg) and HA-HMGB1 protein. 
Immunoblotting experiments were performed. B HEK293T over-
expressed Flag-CHIP (WT or mutants) and HA-HMGB1 protein. 
Immunoblotting experiments were performed. C Overexpression or 
knockdown CHIP with Flag-CHIP or shRNA in 11Z cells, respec-
tively. Immunoblotting experiments were performed. D Overexpres-
sion or knockdown CHIP with Flag-CHIP or shRNA in EESC cells, 
respectively. Immunoblotting experiments were performed. E 11Z 

cells were transfected with Flag-CHIP for 48 h and then treated with 
MG132 (20 μg/mL) for 8 h. Immunoblotting experiments were per-
formed. F HEK293T cells with overexpression of Flag-CHIP and 
HA-HMGB1 were treated with CHX (100  μg/mL) for indicated 
time. Immunoblotting experiments were performed. (Representative 
western blot was quantified by ImageJ software, and statistics were 
normalized to β-actin. All data represent mean ± SEM. Statistical sig-
nificance was analyzed with Student’s t test and one-way ANOVA. 
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)
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CHIP co-localized with HMGB1 mainly in the cytoplasm 
of endometriotic cells (Fig. 4F). Moreover, immunofluo-
rescence of tissue sections revealed this co-localization in 

ectopic endometrium of humans and mice (Supplementary 
Fig. 2B). Collectively, these data show that CHIP is a new 
binding protein for HMGB1.

Fig. 6  CHIP promotes HMGB1 degradation via the ubiquitin protea-
some pathway. A HEK293T cells were cotransfected with HA-CHIP, 
Flag-HMGB1, and HA-UB. The ubiquitylation level of HMGB1 
was detected using an anti-HA antibody (HA-tagged UB). B EESC 
and 11Z cells were cotransfected with Flag-CHIP. The ubiquityla-
tion level of HMGB1 was detected using an anti-ubiquitin antibody 
(UB). C EESC and 11Z cells were cotransfected with shCHIP. The 
ubiquitylation level of HMGB1 was detected using an anti-ubiquitin 
antibody (UB). D HEK293T cells were cotransfected with HA-CHIP 

(WT or mutants), Flag-HMGB1, and HA-UB. The ubiquitylation 
level of HMGB1 was detected using an anti-HA antibody (HA-
tagged UB). E HEK293T cells were cotransfected with different 
ubiquitin mutants with HA-CHIP and Flag-HMGB1. The ubiquityla-
tion level of HMGB1 was detected using an anti-HA antibody (HA-
tagged UB). A–E After transfection for 48 h, the cells were treated 
with MG132 (20 μg/mL) for 8 h and then collected for ubiquitylation 
assays
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Fig. 7  CHIP modulates cell proliferation and migration via HMGB1. 
A–D 11Z cells were transfected with vector, Flag-CHIP, HA-
HMGB1, and Flag-CHIP + HA-HMGB1, respectively. Forty-eight 
hours later, wounding healing assay, transwell invasion assay, cell 

proliferation assay, and colony formation assay were performed (scale 
bar, 50  µm). (All data represent mean ± SEM. One-way ANOVA 
was used for data analysis. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001)
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CHIP downregulates HMGB1 protein stability

Having detected the interaction between CHIP and HMGB1, 
we next evaluated the effect of CHIP on HMGB1 expression 
levels. After transfecting Flag-CHIP and HA-HMGB1 in 
HEK293T cells, the results showed that CHIP dose-depend-
ently reduced HMGB1 expression (Fig. 5A). In addition, we 
overexpressed WT-CHIP, H260Q CHIP mutant, or K30A 
CHIP mutant and detected the expression of HMGB1. 
We found that the two mutants of CHIP failed to reduce 
HMGB1 expression in HEK293T cells compared to WT-
CHIP (Fig. 5B). These results suggest that CHIP destabilizes 
HMGB1 in the manner of E3 ligase activity and binding to 
molecular chaperones. We then overexpressed and knocked 
down CHIP in endometriotic cells to detect endogenous 
HMGB1 protein levels. When CHIP was transfected into 
11Z and EESC cells, a decrease in endogenous HMGB1 
was detected. In contrast, we performed CHIP knockdown 
in 11Z and EESC cells and found increased protein levels of 
endogenous HMGB1 (Fig. 5C, D). Meanwhile, we treated 
cells with the CHIP agonist YL-109 at a concentration of 
10 μmol/L for 24 h. Consistent with the expected results, the 
protein level of HMGB1 decreased (Supplementary Fig. 3A, 
B).

To test whether CHIP regulated the stability of HMGB1 
through the proteasome pathway, we overexpressed Flag-
CHIP in 11Z cells in the presence of MG132 (20 μg/mL). 
The results showed that MG132 eliminated the CHIP-
induced downregulation of HMGB1 (Fig. 5E). Further-
more, to explore the effect of CHIP on HMGB1 half-life, 
we treated HEK293T cells with CHX (100 μg/mL) for 
indicated time. The results revealed that CHIP significantly 
increased the degradation of HMGB1 and shorten its half-
life (Fig. 5F). We overexpressed and knocked down CHIP in 

11Z cells and showed that CHIP also decreased the half-life 
of endogenous HMGB1 protein (Supplementary Fig. 3C, D). 
Altogether, these data show that CHIP accelerates HMGB1 
degradation.

CHIP promotes HMGB1 degradation 
via the ubiquitin proteasome pathway

Since CHIP was an E3 ubiquitin ligase, we hypothesized 
that CHIP degrades HMGB1 protein levels via the ubiq-
uitin proteasome pathway. Overexpression of Flag-CHIP 
increased ubiquitination level of HA-HMGB1 in HEK293T 
(Fig. 6A). CHIP overexpression in EESC and 11Z cells 
significantly promoted the ubiquitination of endogenous 
HMGB1 (Fig. 6B). In addition, knockdown of endogenous 
CHIP eliminated the ubiquitination of HMGB1 (Fig. 6C). 
WT-CHIP promoted ubiquitination of exogenous HMGB1 
but not H260Q-CHIP or K30A-CHIP (Fig. 6D). Subse-
quently, we investigated the possible types of ubiquitin 
chains involved, and we overexpressed several ubiquitin-
defective mutants (K48R and K63R). The results showed 
that CHIP increased Lys48-linked ubiquitination but not 
Lys63-linked ubiquitination (Fig. 6E). These results further 
support our hypothesis that CHIP degrades HMGB1 via the 
ubiquitin proteasome pathway.

CHIP modulates cell proliferation and migration 
via HMGB1

To demonstrate whether CHIP affects the proliferation and 
migration of endometriosis via HMGB1, we manipulated 
cells for overexpression experiments in 11Z and EESC cells. 
Wound healing assay demonstrated that overexpression of 
CHIP significantly suppressed the migration of endometri-
otic cells, but this effect was counteracted by overexpression 
of HMGB1 (Fig. 7A). Similarly, transwell assays demon-
strated that HMGB1 attenuated the effect of CHIP on cell 
invasion (Fig. 7B). Furthermore, overexpression of CHIP 
inhibited cell proliferation, while overexpression of HMGB1 
reversed this function (Fig. 7C). Data from colony formation 
experiments consistently showed that CHIP inhibited cell 
proliferation by regulating HMGB1 (Fig. 7D). These results 
suggest that the growth and invasion suppression of CHIP is 
exerted through HMGB1.

CHIP inhibits glycolysis in endometriosis via HMGB1

HMGB1 has been previously reported to promote gly-
colysis in disease progression. Therefore, we investigated 
whether CHIP regulated glycolysis in endometriosis through 
HMGB1. Using WB experiments, we observed the expres-
sion of PKM2 and HK2 was downregulated in CHIP over-
expressing cells, while simultaneous overexpression of 

Fig. 8  CHIP inhibits glycolysis in endometriosis via HMGB1. A 
11Z cells were transfected with vector, Flag-CHIP, HA-HMGB1, 
and Flag-CHIP + HA-HMGB1, respectively. Cell lysate preparation 
for immunoblot analysis. B 11Z cells were transfected with shNC, 
shCHIP, shHMGB1, and shCHIP + shHMGB1, respectively. Cell 
lysate preparation for immunoblot analysis. C, D EESC and 11Z 
cells were transfected with vector, Flag-CHIP, HA-HMGB1, and 
Flag-CHIP + HA-HMGB1, respectively. The supernatant was col-
lected to detect the consumption of glucose. E, F EESC and 11Z cells 
were transfected with vector, Flag-CHIP, HA-HMGB1, and Flag-
CHIP + HA-HMGB1, respectively. The supernatant was collected 
to detect the production of lactate. G, H EESC and 11Z cells were 
treated with shNC, shCHIP, shHMGB1, and shCHIP + shHMGB1, 
respectively. The supernatant was collected to detect the consumption 
of glucose. I, J EESC and 11Z cells were treated with shNC, shCHIP, 
shHMGB1, and shCHIP + shHMGB1, respectively. Collection of 
supernatant for detection of lactate production. (Representative west-
ern blot was quantified by ImageJ software and normalized to β-actin. 
All data represent mean ± SEM. Statistical significance was ana-
lyzed with one-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001)
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HMGB1 attenuated the inhibitory effect of CHIP (Fig. 8A). 
In contrast, knockdown of CHIP increased the expres-
sion of PKM2 and HK2, while simultaneous knockdown 
of HMGB1 diminished the promotion of PKM2 and HK2 
(Fig. 8B). Our hypothesis was then confirmed by measuring 
the levels of lactate production and glucose consumption 
in the cell culture medium. CHIP overexpression inhibited 
glucose uptake and lactate production, and we found that 
high expression of HMGB1 rescued this effect (Fig. 8C–F). 
Similarly, knockdown of CHIP increased glucose consump-
tion and lactate production, whereas this regulation can 
be abrogated when cells were knocked down of HMGB1 
(Fig. 8G–J). The results show that CHIP affects the glyco-
lytic process through HMGB1.

Discussion

In the present study, we demonstrated that CHIP was an 
inhibitory factor that was low expressed in endometriosis 
and negatively correlated with HMGB1. CHIP downregu-
lated glycolysis and inhibited proliferation and migration 
of endometriosis by promoting ubiquitination and deg-
radation of HMGB1. To our knowledge, this is the first 
report to investigate the biological role of CHIP in endo-
metriosis and to find that HMGB1 can be degraded by 
ubiquitination.

CHIP usually functions as a tumor suppressor, inhibiting 
the development of cancer. CHIP inhibited malignancy in 
colorectal cancer cells by targeting NF-κB signaling [39]. In 
lung adenocarcinoma, CHIP degraded CIB1 and inhibited 

subsequent EMT and tumor metastasis [40]. In our study, we 
demonstrated that CHIP was a negative regulator of endo-
metriosis. Therefore, elevated CHIP in endometriosis cells 
inhibited cell proliferation and migration, further suppress-
ing the development of lesions. Similarly, in the endome-
triosis mouse model, the CHIP agonist YL-109 significantly 
inhibited endometriotic lesions.

Moreover, since CHIP is an E3 ubiquitin ligase with 
molecular chaperone and ubiquitin ligase (E3) activity, it 
can perform ubiquitin degradation of substrates [41, 42]. 
CHIP promoted the ubiquitin degradation of ERβ [43]. And 
CHIP reduced the susceptibility of tumor cells to T-cell-
derived IFN-γ by mediating the ubiquitinated degradation 
of the IFN-γ-R1/JAK1 complex [44]. Our study further 
confirmed that the inhibitory effect of CHIP on endome-
triosis was achieved by its ubiquitination and degradation 
of HMGB1.

HMGB1 has been previously reported to play a facilitat-
ing role in endometriosis [16, 45, 46]. Here, we discovered 
that CHIP interacted with HMGB1 and decreased its protein 
stability. Besides, CHIP shortened the half-life of endog-
enous and exogenous HMGB1 and promoted the degrada-
tion of HMGB1 via the ubiquitylation proteasome pathway. 
It has been reported that CHIP contains a TPR structural 
domain and a UBOX structural domain [47]. CHIP functions 
through them individually or in combination. The E3 ligase 
activity of CHIP was very necessary for ubiquitin degra-
dation of BMAL1 to attenuate cell senescence [48]. CHIP 
regulated the expression of CLEC-2 protein through TPR 
domain and UBOX domain, which played an important role 
in immune response [49]. In our study, the CHIP-H260Q 
mutant was deficient in E3 ligase activity, while the CHIP-
K30A mutant showed a defect in binding to molecular chap-
erones. Both mutants lost the ability to ubiquitin HMGB1. 
Here, we reported that TPR domain and UBOX domain were 
essential for CHIP to degrade HMGB1.

As reported in many studies, the development of endome-
triosis was closely related to glycolysis [8]. Previous studies 
have shown that lactic acid production was increased in the 
peritoneal cavity in patients with endometriosis, and the ele-
vated lactate in the peritoneal cavity promoted cell invasion, 
immune escape, and angiogenesis [10]. In our experiment, 
we proved that CHIP regulated glycolysis through HMGB1. 
We detected the protein expression levels of key enzymes in 
glycolysis, suggesting that CHIP decreased the protein levels 
of PKM2 and HK2, while HMGB1 could reverse this effect. 
In addition, we measured glucose and lactic acid levels, and 
consistent with the results of western blot, CHIP relied on 
HMGB1 to regulate glycolysis in endometriosis.

In conclusion, our findings suggest that CHIP acts as a 
suppressor in ovarian endometriosis (Fig. 9). We provide 
new insights into the posttranslational modifications of 
HMGB1 and for the first time prove that HMGB1 can be 

Fig. 9  Working model. CHIP promotes the degradation of HMGB1 
via the ubiquitinated proteasome pathway and inhibits glycolysis, pro-
liferation, and invasion of endometriosis cells
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degraded by ubiquitination. We also elucidate that CHIP is 
a new HMGB1-binding protein for targeting ubiquitination 
and degradation of HMGB1 and consequently inhibiting 
proliferation, invasion, and glycolysis in endometriosis. We 
may be able to exploit this novel regulatory role of CHIP 
with HMGB1 and glycolysis to develop new therapeutic 
approaches.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00018- 022- 04637-z.
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