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Abstract

The cardiotoxicity associated with des-ethyl-dexfenfluramine (norDF) and related agonists of the 

serotonin receptor 2B (5-HT2B) has solidified the receptor’s place as a traditional “antitarget” 

in drug discovery. Conversely, a growing body of evidence has highlighted the utility of 5-

HT2B antagonists for the treatment of pulmonary arterial hypertension (PAH), valvular heart 

disease (VHD) and related cardiopathies. In this Perspective, we summarize the link between 

the clinical failure of fenfluramine-phentermine (fen-phen) with the subsequent research on the 

role of 5-HT2B in disease progression, as well as the development of drug-like and receptor 

subtype-selective 5-HT2B antagonists. Such agents represent a promising class for the treatment 

of PAH and VHD, but their utility has been historically understudied due to the clinical disasters 

associated with 5-HT2B. Herein, it is our aim to examine the current state of 5-HT2B drug 

discovery, with an emphasis on the receptor’s role in the central nervous system (CNS) versus the 

periphery, as well as known and marketed compounds with 5-HT2B antagonist activity as part of 

their broader polypharmacology.
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1. INTRODUCTION

1.1 Background and Characterization of 5-HT2B.

Serotonin, 5-hydroxytryptamine (5-HT), is the endogenous ligand for the 5-HT receptor 

family, where it acts as a neurotransmitter and growth factor through various signaling 

pathways. Two superfamilies mediate the physiological actions of serotonin: G protein-

coupled receptors (GPCRs) and ligand-gated ion channels, comprising fourteen total 

receptors between both families. The ligand-gated ion channels are currently comprised 

of one family: 5-HT3. The GPCR superfamily includes 5-HT1, 5-HT2, and 5-HT4–7 (Table 

1), and was initially split into two distinct groups: the ‘D’ receptors for their irreversible 

interaction with the antagonist dibenzyline and the ‘M’ receptors for their ability to be 

blocked by morphine.1 A 1979 study on brain homogenates identified distinct serotonin 

receptors: 5-HT1 and 5-HT2. 5-HT1 was reported to have a higher affinity for serotonin, 

and 5-HT2 had a high affinity for certain antagonists correlating with the ‘D’-type receptors 

previously described.2 The 5-HT2B subtype was first characterized in an organ bath studying 

the 5-HT-induced contraction of rat stomach fundus. The receptor was originally known as 

“5-HT2F
” for “stomach fundus” but was later changed to 5-HT2B to match the proposed 

nomenclature.3 Following the discovery and characterization of 5-HT2B, the receptor has 

been implicated in many important roles within the cardiovascular system, central nervous 

system (CNS), and gastrointestinal (GI) tract.

1.2 Relationship to Other Serotonin Receptors.

Currently, the seven receptor subtypes are separated by their primary signaling pathways 

(Table 1).4 The 5-HT2 family is Gq/11-coupled, which activates various signaling molecules 

and intracellular calcium release from the endoplasmic reticulum. The family is divided into 

three distinct subtypes: 5-HT2A, 5-HT2B, and 5-HT2C. While 5-HT2A and 5-HT2C are more 

closely related, 5-HT2B shares similar sequence homology with both 5-HT2A and 5-HT2C, 

with up to 79% similarity within the transmembrane domain and 50% overall.5 There is 

high homology between 5-HT2B across species compared to the human receptor: rat (79%), 

mouse (82%), dog (83%), and pig (95%).6–8
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1.3 Roles of 5-HT2B in Physiological Processes.

The primary physiological effects of 5-HT2B are mediated through the canonical Gq11 

protein signaling pathway (calcium release and activation of secondary signaling molecules, 

see Figure 1).9–11 Receptor expression can be found throughout the body, with the highest 

expression levels in the liver, kidneys, stomach fundus, and gut. 5-HT2B has relatively 

moderate expression in the cardiovascular system, and low expression within the CNS.12 

Within the GI tract, 5-HT2B is responsible for gut motility and hypersensitivity of colonic 

smooth muscle.13 Within the CNS, 5-HT2B is thought to be involved in sleep initiation as 

well as regulation of the central respiratory system and blood volume.14,15 Cardiovascular 

expression and activation of 5-HT2B can lead to myofibroblast proliferation and valvular 

heart disease (VHD) by increasing valve area and causing poor valve closure, which will be 

discussed in this Perspective.16 It is because of this expression in the cardiovascular system 

that 5-HT2B is considered a prototypical “antitarget” in medicinal chemistry programs.

2. ANTITARGETS

2.1. The “Antitarget” Designation.

In pharmacology, an “antitarget” is broadly defined as any biological target that “[is] 

detrimental towards progression of [a] compound towards becoming a drug.”17 A ligand’s 

activity at an antitarget falls under the broader umbrella of “off-target” activity, which 

is generally unanticipated at the outset of a drug discovery program (it is not explicitly 

designed but need not necessarily be detrimental).17,18 While select antitargets garner 

the majority of attention in the medicinal chemistry literature, and indeed seem to be 

encountered more frequently in drug discovery programs, the full list of known antitargets 

is broad and diverse (and certainly not comprehensive).18 In short, any biological target that, 

upon engagement by a ligand, has the potential to induce adverse drug reactions (ADRs) 

can be classified as an antitarget.1 As will be further discussed, such a classification is often 

dependent on the specific mode of pharmacology of the ligand at the target in question (i.e. 

activation vs. inhibition).17,19

The labelling of a specific biological target as an antitarget also need not be absolute. A 

given target may be unofficially reexamined and reclassified over time, and an antitarget 

designation is often program specific. For example, agonist activity at the serotonin receptor 

2A (5-HT2A) is associated with visual hallucinations and psychedelic experiences, and 

indeed many of the classical psychedelics are robust 5-HT2A agonists (lysergic acid 

diethylamide (LSD), psilocin, etc.).20 However, given the recent resurgence of this class 

of molecules in the context of psychedelic-assisted therapy,21 in which the overt psychedelic 

effects are postulated by many to be at least partly responsible for the observed efficacy,22 

a blanket classification of 5-HT2A as an antitarget seems inappropriate. For indications 

unrelated to psychedelic-assisted therapy, however, such effects would almost certainly be 

undesired.

2.2. Examples of Antitargets.

In addition to 5-HT2A and other GPCRs,23 the current list of biological targets deemed 

“anti” is broad and includes kinases,24 ion channels,25 cytochrome P450s,26 and efflux 
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pumps.27 Perhaps the most well-known and frequently encountered antitarget in the drug 

discovery literature is the human Ether-à-go-go-Related Gene, or the hERG channel.28–

30 hERG is a potassium ion channel expressed in cardiac tissue, and plays a critical 

role in the regulation of the heart’s electrical activity.31 Specifically, disruption of hERG 

is associated with the development of potentially fatal Long QT Syndrome (LQTS), an 

unnatural lengthening of the QT cardiac repolarization interval.32

hERG has become a canonical antitarget amongst drug discovery scientists.33 Activity 

at the channel is routinely screened at early stages of the drug discovery pipeline, and 

strategic medicinal chemistry is implemented (if necessary) to avoid hERG inhibition for 

next generation molecules. This is due in no small part to the channel’s promiscuity; 

hERG-biased pharmacophores are routinely encountered in drug-like chemotypes,34 and 

compounds across a broad range of indications have been pulled from the market following 

observations of hERG-related cardiac abnormalities.35,36 Other potential antitargets, 

however, are less ubiquitous and therefore are not always a component of routine counter-

screening. Subsequently, many undiscovered or poorly characterized targets likely exist 

that have the potential to become as notorious as hERG, and conversely, screening may 

eventually be deprioritized for other putative antitargets as their roles in physiological 

processes become clearer. A selection of notable biological antitargets, their associated risks, 

and exemplary ligands is summarized in Table 2.

To reiterate, an antitarget label does not completely preclude the utility of a target (many of 

our most important and useful drugs target 5-HT2A, calcium channels, and the mu opioid 

receptor (μOR), Table 2). As will be further discussed, a target’s physiological location 

(central vs. peripheral tissue) can also be deeply important concerning the manifestation of 

ADRs.

3. 5-HT2B AS AN ANTITARGET

3.1. Fen-Phen and Related Compounds.

It is now well established that excessive activation of 5-HT2B can lead to an increased 

risk for a number of cardiopathies including pulmonary arterial hypertension (PAH)37 

and valvular heart disease (VHD).38 The wealth of available literature demonstrating this 

link21,22,44–47 is directly related to the 1997 withdrawal of the combination anti-obesity 

regimen fenfluramine/phentermine (fen-phen, Figure 2), which was associated with PAH 

and VHD in humans. In the original press release, the FDA stated that the basis for the 

withdrawal was “based on new findings from doctors who have evaluated patients taking 

these two drugs with echocardiograms, a special procedure that can test the functioning of 

heart valves. These findings indicate that approximately 30 percent of patients who were 

evaluated had abnormal echocardiograms, even though they had no symptoms. This is a 

much higher than expected percentage of abnormal test results.”48 The year prior, Connolly 

et al. identified a patient population of 24 women treated with fen-phen who developed 

VHD despite no history of cardiac disease.45 Additional studies from around this time 

demonstrated that a regimen of fenfluramine or its (S)-enantiomer dexfenfluramine (DF, 

Figure 2), increased the risk of developing PAH by a factor anywhere between 3.7 and 23-

fold.49,50 A large population-based study of patients previously taking either fenfluramine, 
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DF, or phentermine revealed several cases of idiopathic valvular disorders in patients taking 

fenfluramine or DF (with no cases noted for the phentermine population).47 Cumulatively, 

these studies strongly suggest that fenfluramine (and DF) were the agents responsible for the 

observed cardiopathies.

3.2. Molecular Pharmacology.

Although DF itself binds only weakly to the 5-HT2A, 5-HT2B, and 5-HT2C receptors, its 

primary metabolite, N-des-ethyl DF (norDF, Figure 2) is a high affinity 5-HT2B ligand 

with selectivity relative to 5-HT2A and 5-HT2C (5-HT2B Ki = 11.2 ± 4.3 nM).38 In 

functional assays, norDF is a potent agonist that stimulates phosphoinositide hydrolysis, 

intracellular Ca2+ levels, and the MAPK cascade (EC50 = 23–24 nM in IP hydrolysis 

and Ca2+ mobilization assays).38,51 Phentermine, by contrast, has no appreciable 5-HT2B 

binding affinity up to 10 μM, and is primarily a dopamine-releasing agent.38 A convergent 

body of evidence indeed suggests that the progression of both PAH and VHD are associated 

with highly increased 5-HT2B receptor expression levels, and that 5-HT2B activation is 

essential for disease progression.37,38,46,52,53 Rodent studies have since recapitulated the 

DF-induced development of PAH observed in human subjects,37,52,53 and additional studies 

have noted similar cardiopathies, primarily VHD, for other 5-HT2B agonists including 

MDMA,54 pergolide,54,55 and methysergide38,56. Taken together, these results strongly 

indicate substantial risks for treatments involving 5-HT2B agonists, and it has been 

recommended that all serotonergic drugs be screened for this functional profile.38,54 (Several 

widely used 5-HT2A agonists including DMT, LSD, psilocin and related phenethylamines 

and tryptamines are relatively non-selective relative to 5-HT2B; the increasingly prevalent 

use of such compounds will need to be reconciled with the risks associated with 5-HT2B 

activation).57–59

Unsurprisingly, 5-HT2B is now widely regarded as one of the primary antitargets in drug 

development pipelines, but it is critical that a compound’s mode of pharmacology at the 

receptor be fully understood before de-prioritization is initiated. A variety of receptor 

profiling tools, in silico cheminformatics assays, 5-HT2B functional assays, and suggested 

safety margins have been recommended toward this end.60 Currently, there is no evidence to 

suggest a role for 5-HT2B antagonists in the development of PAH and VD, and the paucity 

of such compounds, particularly those highly selective for 5-HT2B, have not indicated 

a potential for mechanism-based toxicity (cardiac or otherwise) associated with 5-HT2B 

inhibition. Moreover, as will be discussed in the following sections, such agents have 

the potential to be disease-modifying treatment strategies for these and related cardiac 

disorders.7

4. 5-HT2B ANTAGONISTS AND ANIMAL MODELS

4.1. SB-204741.

Work to elucidate fen-phen’s off-target 5-HT2B agonism led to the hypothesis that 5-HT2B 

antagonism is a potential therapeutic for cardiopulmonary diseases. Of the multitude of 

selective and non-selective 5-HT2B antagonists, SB-204741 was the first synthesized (1994) 

and is widely used; it has a high affinity for 5-HT2B (pKi = 7.95) and high selectivity (>135) 
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compared to 5-HT2C, the receptor most closely matching 5-HT2B in morphology.61,62 One 

of the first animal studies in which SB-204741 was utilized involved antagonizing individual 

5-HT2 receptors to investigate renal sympathoinhibition and mean arterial blood pressure 

following intracerebroventricular administration of quipazine, a 5-HT2 agonist, in rats15. 

SB-204741 has been used to study the blockade of 5-HT2B in the context of several 

cardiopulmonary diseases such as pulmonary hypertension,37,63,64 myocardial infarction,65 

and calcific aortic valve disease,66,67 with encouraging results in the prevention of disease 

progression.

4.2. Gene Editing.

In addition to the administration of antagonists, mouse models that target 5-HT2B through 

genetic ablation have confirmed the receptor’s role in cardiopulmonary disease. In one 

report, the 5-HT2B allele was rendered nonfunctional in embryonic stem cells through the 

interruption of the protein reading frame; this was done by introducing the bacterial neo 
gene in exon 2 of the 5-HT2B gene sequence.68 Ablation of both copies of the 5-HT2B 

gene results in viable offspring, with mutant mice growing to adulthood; however, due to its 

importance in heart development, 5-HT2B mutant mice demonstrate ventricular hypoplasia, 

myocyte disarray, and ventricular dilation.68,69

The gene editing technology “Cre-Lox” allows for the knockout of both 5-HT2B alleles 

in a time- and site-specific manner through homologous recombination. It relies upon the 

recognition of specific DNA sequences called loxP sites by the enzyme Cre recombinase, 

which is activated by a tissue-specific promoter that itself is induced exogenously 

by a stimulus, such as tamoxifen or doxycycline.70 Tissue-specific promoters such as 

Transcription factor 21(Tcf21)Cre, Periostin (Pstn)Cre, and Angiopoietin-1 receptor gene 

(Tie2)Cre are useful tissue-specific promoters that provide cell-lineage tracing capabilities, as 

Tcf21 is expressed in resident fibroblasts, Pstn is expressed in myofibroblasts, and Tie2 is 

expressed in endothelial cells.71–73 5-HT2B conditional knockout models have been used to 

investigate cardiopulmonary fibrosis in diseases such as myocardial infarction65 and PAH.64

4.3. Relevant Signaling Pathways.

5-HT2B agonism results in downstream activation of the signal transduction pathway 

Ras/Raf/mitogen-activated protein kinase (MAPK), leading to an increase in rate of cell 

division and proliferation.9,74 Cytoplasmic tyrosine kinases (e.g., Src) are key mediators 

of G protein-coupled receptor (GPCRs) signaling to the MAPK pathway.9,75 Additionally, 

transforming growth factor-β1 (TGF-β1) is a cytokine that mediates fibroblast proliferation, 

extracellular matrix (ECM) deposition, and myofibroblast differentiation76 through SMADS, 

the substrates for TGF-β1 receptors. TGF-β1 and its fibrotic activity is upregulated upon 

5-HT2B agonism due to signaling pathway crosstalk via Src phosphorylation.67

With 5-HT2B leading to increased stromal fibroblast and myofibroblast proliferation, 

combined with the increased deposition of collagen into the ECM,77 this provides a 

rational hypothesis for the pathophysiology of many cardiopulmonary diseases involving 

5-HT2B signaling (Figure 3). In PAH, the core etiology is unchecked muscularization of 

the pulmonary arterioles; the tissue-specific promoter Tie2Cre allows for targeted 5-HT2B 
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ablation in the bone marrow-derived proangiogenic cells (PACs) and results in normalized 

arteriole compliance.64 Conditional 5-HT2B ablation in myocardial infarction using tissue-

specific Cre promoters demonstrated that resident fibroblasts and myofibroblasts were the 

main culprit of detrimental scar thickness and heart contractility.65 Similarly, calcific aortic 

valve disease is characterized by fibrotic deposition on aortic valve leaflet cusps by aortic 

valve interstitial cells (AVICs), and antagonism of 5-HT2B opposed AVIC activation through 

a myofibroblast, and therefore TGF-β1, mechanism.66,67 Taken together, these studies 

indicate that 5-HT2B inactivation is an attractive strategy for modifying cardiopulmonary 

fibrotic disease.

5. DEVELOPMENT OF NEXT GENERATION 5-HT2B ANTAGONISTS

5.1. Preclinical Compounds.

From a medicinal chemistry perspective, a number of interesting 5-HT2B structure-activity 

relationship (SAR) studies are reported in the literature, with programs ranging from early 

lead optimization61,78–81 through clinical development.82,83 In both cases, the optimization 

for selectivity relative to 5-HT2A and 5-HT2C is a critical parameter, and in many programs 

has proven challenging to attain for both receptors simultaneously.61,81,84 In the 1990s, a 

series of reports detailing compounds derived from yohimbine,81 and substituted indoles 

and indolines61,78–81 described reasonable (~100 fold) selectivity for 5-HT2A and/or 5-HT2C 

(see Figure 4 for a selection of reported 5-HT2B chemotypes). In the latter class, the 

previously discussed isothiazole SB-204741 is considered to be the first reported selective 5-

HT2B antagonist (Figure 4).61 While these early reports are admirably thorough with respect 

to SAR and 5-HT2A/2C selectivity profiling, they contain limited information regarding 

pharmacokinetics (PK) and broader ancillary pharmacology. Bonhaus et al. subsequently 

reported a series of naphthylpyrimidines, including RS-127445, which displays improved 

5-HT2B selectivity (~1,000 fold against a broader off-target profile), albeit with limited oral 

bioavailability in rats (Figure 4).84 Additional reports of selective 5-HT2B antagonists with 

more detailed PK profiles have slowly started to emerge in the literature.85,86 More recently, 

members of the 2-thiazoline pulicatin class of natural products (and synthetic derivatives) 

were reported to have high selectivity for 5-HT2B relative to a broader panel of serotonin 

receptor subtypes (Figure 4).87 As before, drug development-enabling PK information is 

not reported. In 2023, Schieferdecker and Vock reported detailed 5-HT2B pharmacophore 

models which are likely to aid in the development of next-generation ligands with robust 

subtype selectivity.88

5.2. Clinical Compounds.

With respect to the clinical development of more advanced molecules, thiophenylpyrimidine 

PRX-08066 (Figure 4) is a potent and selective 5-HT2B antagonist developed by Epix 

Pharmaceuticals, which was shown to be highly effective in the treatment of drug-induced 

PAH and VHD in rats.82 As of 2009, a Phase 2, “3-month open label study to evaluate 

the safety and efficacy of PRX-08066 in patients with pulmonary hypertension and COPD” 

was terminated for undisclosed reasons.89 Terguride, a potent ergoline 5-HT2A/5-HT2B dual 

antagonist,83 was granted orphan drug status for PAH treatment as of 2008,90 although 

clinical development was ultimately discontinued by 2011 due to lack of efficacy.91,92 In 

Bender et al. Page 7

J Med Chem. Author manuscript; available in PMC 2024 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the absence of more concrete findings, it is difficult to speculate on the reasons for theses 

terminations (in the case of terguride the issue is thought to be related to appropriate plasma 

exposure levels),92 but there is clearly a need for a more thorough discussion on PK, 

exposure, and tolerability of clinical-stage 5-HT2B antagonists in the literature. These data 

will be critical for the design of future clinical trials with next generation molecules.

6. 5-HT2B POLYPHARMACOLOGY

6.1. Marketed 5-HT2B Antagonists.

Many currently marketed drugs (as well as widely studied compounds in late stage 

clinical development) display robust 5-HT2B antagonism in radioligand binding assays as 

part of their broader polypharmacological profile. This is primarily true of antipsychotic 

medications, although examples of antidepressants, antihypertensives, antiparkinsonians, 

and antisedatives with 5-HT2B activity are also known. A search of the National Institute 

of Mental Health’s Psychoactive Drug Screening Program (NIMH-PDSP)93 Ki Database 

for 5-HT2B ligands with Ki’s < 100 nM returns over 500 unique results, one of which, 

aripiprazole, is still among the top 100 pharmaceuticals in terms of yearly sales (Table 

3).94 Although many of these compounds are promiscuous with respect to additional CNS 

receptor targets, it seems clear that 5-HT2B antagonist activity (which should of course 

be rigorously characterized during development) should not preclude a compound from 

advancement to the clinic.

While many of the examples reported here fall into similar indication classes, a couple 

of examples warrant further discussion. Lisuride is a potent dopamine agonist and a 

synthetic ergoline derivative, a class to which cabergoline and pergolide also belong. Of 

these and related dopamine agonists, only cabergoline and pergolide (5-HT2B agonists) were 

associated with VHD after long term use; 5-HT2B antagonists (i.e. lisuride) demonstrate 

no such association. Indeed, lisuride has been prescribed for decades without a single 

known VHD report.102,103 Although a lack of association does not necessarily demonstrate 

prevention, examples also exist of marketed drugs with 5-HT2B antagonism as part of 

their polypharmacology that explicitly reverse drug-induced VHD. Cyproheptadine, a first-

generation tricylic antihistamine with potent 5-HT2B antagonist activity (Ki = 1.5 nM)96, has 

been shown to reverse pergolide-induced valvulopathy in rats.104 Future analyses of patient 

populations taking one or more of these compounds will be important to further understand 

the potential for drug repurposing toward the prevention or treatment of VHD and related 

disorders.

It is worth noting that the compounds in Table 3 represent only molecules that are known 

to be psychoactive (CNS-penetrant). As will be discussed in the next section, it will 

be important to understand the potential risks associated with centrally-mediated 5-HT2B 

antagonism with the development of any next generation therapeutic.
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7. NOVEL 5-HT2B ANTAGONISTS FOR PAH TREATMENT

7.1. VU6047534 and Analogs.

Our group has recently disclosed a potent and highly selective 5-HT2B antagonist, 

VU6047534, which possesses rodent PK properties suitable for proof-of-concept studies 

(Figure 5). Structurally, VU6047534 is derived from the SB204741-like series of urea-

indoles, but is cyclized to give a substituted thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione 

backbone. Encouragingly, VU6047534 demonstrated robust efficacy in Sugen-hypoxia 

mouse models of PAH prevention and treatment, as well as the prevention of right ventricle 

hypertrophy in Sugen-hypoxia and pulmonary arterial banding models. VU6047534 also 

displayed no significant off-target responses in the Eurofins Panlabs ancillary pharmacology 

screen of 68 common membrane proteins, ion channels and transporters (including the 

hERG channel),105 and was clean with respect to cytochrome P450 inhibition across 4 major 

isoforms (1A2, 2C9, 2D6, 3A4 IC50s >30 μM).106

Although VU6047534 displays negligible brain exposure in mice (Figure 5), this compound 

is predicted to have moderate brain exposure in human subjects due to a relative lack 

of P-glycoprotein (P-gp)-mediated efflux (3.7 efflux ratio, PappA-B = 18.0 10−6 cm/s). 

Centrally-mediated 5-HT2B antagonism is thought to be associated with a variety of adverse 

effects including depression, aggression, impulsivity, and suicidality. The presence of a 

relatively common 5-HT2B stop codon exclusive to Finnish populations has been associated 

with these types of psychiatric diseases, highlighting the potential dangers associated with a 

centrally-penetrant antagonist.107–109

An important caveat, however, is that all of the drugs listed in Table 3 are known to be 

CNS-active, and many are routinely and safely taken by millions across the globe. While 

the majority of these compounds tend to be promiscuous with respect to off-target activity 

at additional CNS receptors, it is tempting to speculate that CNS-penetrant compounds with 

robust 5-HT2B antagonist activity may be well tolerated with long term use (at least for a 

majority of the population). Further research in this area is clearly needed to understand this 

apparent discrepancy.

Subsequent SAR on the VU6047534 scaffold, specifically the exploration of polar indole 

N-substitutions, yielded next generation molecules with comparable potency and selectivity 

profiles that are predicted to be robust P-gp efflux substrates (VU6055320; 69.4 efflux 

ratio, PappA-B = 0.35 10−6 cm/s).106 Further preclinical characterization (and assessment 

for efficacy in similar rodent models) will be needed for these next generation 5-HT2B 

antagonists, and such studies are ongoing in our laboratories. Additionally, we have recently 

disclosed results from a high-throughput screen (HTS) aimed at identifying additional 

chemical matter for the development of structurally orthogonal 5-HT2B antagonists.110 

Our HTS campaign led to the immediate identification of potent and selective compounds 

(5-HT2B IC50s in the low nanomolar range; <50% inhibition of 5-HT2A/2C at 10 μM). 

Furthermore, selected compounds from the most potent reconfirmed hits were selected for 

profiling in the P-gp assay, with exemplary compounds showing a low potential for brain 

exposure in human subjects.110
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8. CONCLUSIONS AND PERSPECTIVES

While 5-HT2B has historically been viewed as an antitarget by medicinal chemists, the 

assessment of a compound’s mode of pharmacology at the receptor is crucial. The difference 

between 5-HT2B agonism and antagonism could mean the difference between a cardiotoxic 

agent (fen-phen) and a disease modifying treatment for PAH, VHD, and related disorders. 

It is our hope that the chemical scaffolds described herein will provide a useful platform 

for drug discovery scientists interested in this field, as there still exists an enormous 

unmet need to develop a 5-HT2B antagonist with the full package of properties suitable 

for clinical development. Strategies for 5-HT2B inactivation also need not be limited to 

simple orthosteric antagonists; the development of negative allosteric modulators (NAMs) 

and 5-HT2B-specific protein degraders could also prove viable. Regardless of the approach, 

it is our belief that the future for drug discovery at this receptor is bright.
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ABBREVIATIONS USED

5-HT 5-hydroxytryptamine

5-HT2A serotonin receptor 2A

5-HT2B serotonin receptor 2B

5-HT2C serotonin receptor 2C

ADRs adverse drug reactions

AVICs aortic valve interstitial cells

CNS central nervous system

DF dexfenfluramine

DMT dimethyltryptamine

ECM extracellular matrix

FDA Food and Drug Administration

GI gastrointestinal

GPCR G protein-coupled receptor

hERG human ether-à-go-go-related gene

i.p. intraperitoneal

IP inositol monophosphate

Ki inhibition constant

Kp total brain:total plasma ratio

LQTS long QT syndrome

LSD lysergic acid diethylamide

MAPK mitogen-activated protein kinase
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MDMA 3,4-methyl enedioxy methamphetamine

μOR mu opioid receptor

NIMH-PDSP National Institute of Mental Health’s Psychoactive Drug Screening 

Program

norDF des-ethyl-dexfenfluramine

PACs proangiogenic cells

PAH pulmonary arterial hypertension

P-gp P-glycoprotein

PK pharmacokinetic

Pstn periostin

SAR structure-activity relationship

Tcf21 transcription factor 21

TGF-β1 transforming growth factor-β1

Tie2 angiopoietin-1 receptor gene

VHD valvular heart disease
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• Significance: Antagonists of the serotonin receptor 2B (5-HT2B) are a 

promising and underexplored potential treatment for pulmonary arterial 

hypertension (PAH) and valvular heart disease (VHD).

• Impact: 5-HT2B antagonists are disease modifying with respect to PAH and 

VHD in preclinical species, and could translate to a first in class treatment in 

human subjects.

• Innovation: Structurally-novel 5-HT2B antagonists with favorable selectivity 

and pharmacokinetic (PK) profiles are being profiled for clinical 

development.
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Figure 1. 
(A) Crystal structure of the human 5-HT2B receptor, PDB: 5TVN. (B) Signaling Pathways 

Associated with 5-HT2B (Adapted from “Activation of Protein Kinase C (PKC)”, by 

BioRender.com (2023). Retrieved from https://app.biorender.com/biorender-templates).
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Figure 2. 
Chemical Structures of Key 5-HT2B Agonists
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Figure 3. 
(A) 5-HT2B-mediated recruitment of proangiogenic cells in pulmonary arterial hypertension 

leads to muscularization of pulmonary arterioles, shown by proliferation of pulmonary 

artery smooth muscle cells (PASMCs). (B) Valve remodeling in calcific aortic valve disease 

is driven by aortic valve interstitial cells (AVICs) that increase deposition of collagen 

and glycosaminoglycans (GAG) into the ECM; this stiffens the aortic valve leaflets and 

decreases valve compliance. It is unknown whether proangiogenic cells play a role in 

remodeling the valve ECM. (C) Myofibroblasts are responsible for ECM stiffening and 

scar tissue formation of the infarct zone in myocardial infarction, causing cardiac tissue 

deterioration, decreased compliance, and decreased cardiac output. Retrieved from https://

app.biorender.com
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Figure 4. 
Chemical Structures of Selected 5-HT2B Antagonists
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Figure 5. 
Development of Selective and Peripherally-Restricted 5-HT2B Antagonists for In Vivo 
Studies
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Table 1.

5-HT Receptor Classification.a

Family Potential Type Mechanism of Action

5-HT1 Inhibitory Gi/Go protein-coupled Decrease intracellular concentrations of cAMP

5-HT2 Excitatory Gq11 protein-coupled Increase intracellular concentrations of IP3, DAG, and calcium

5-HT3 Excitatory Ligand-gated ion channel Depolarization of plasma membrane

5-HT4 Excitatory Gs protein-coupled Increase intracellular concentrations of cAMP

5-HT5 Inhibitory Gi/Go protein-coupled Decrease intracellular concentrations of cAMP

5-HT6 Excitatory Gs protein-coupled Increase intracellular concentrations of cAMP

5-HT7 Excitatory Gs protein-coupled Decrease intracellular concentrations of cAMP

a.
Adapted from Reference 4.
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Table 2.

Selected Antitargets and Associated Ligands.

Biological Target Classification Associated Deleterious Effects Mode of 
Pharmacology Example Ligand(s)

5-HT2A GPCR
Hallucinations, psychedelic-experiences, 

changes in perception20–22 Agonism LSD
Psilocin

5-HT 2B GPCR
Pulmonary arterial hypertension, 

valve disease37,38 Agonism
Fenfluramine

Norfenfluramine
MDMA

μOR GPCR Bradypnea, hypoxemia39 Agonism
Morphine
Fentanyl

Carfentanil

M2 GPCR Reduction in heart rate23,40 Agonism Oxotremorine M (non-
selective)

hERG Ion Channel LQTS31–36 Inhibition Cisapride

CaV1.2 Ion Channel LQTS, Brugda Syndrome25 Inhibition Verapamil (non-selective)

CYP3A4 Cytochrome P40 Various drug-drug interactions26,41 Inhibition Mibefradil

MDR1 (ABCB1) Efflux Pump
Multiple drug resistance 

(chemotherapy)42,43 Efflux substrate Verapamil (inhibitor)
Paclitaxel (substrate)
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Table 3.

Selected 5-HT2B Binding Affinity Data for Notable Psychoactive Compounds

Compound Classification 5-HT2B Ki (nM) Species Radioligand

Mianserin95 antidepressant 9.0 Human [3H]-5HT

Trazodone38 antidepressant 74 Human [3H]-5HT

Cyproheptadine96 antihistamine 1.5 Human [3H]-5HT

Ketanserin97 antihypertensive 2.4 Bovine [3H]-ketanserin

Lisuride96 antiparkinsonian 1.1 Human [3H]-5HT

Amisulpride98 antipsychotic 13 Human [3H]-LSD

Aripiprazole99 antipsychotic 0.36 Human [3H]-LSD

Asenapine93 antipsychotic 0.21 Human [3H]-LSD

Chlorpromazine97 antipsychotic 6.0 Bovine [3H]-ketanserin

Clozapine95 antipsychotic 7.2 Human [3H]-5HT

Lurasidone93 antipsychotic 24 Human [3H]-LSD

Olanzapine100 antipsychotic 12 Human [3H]-5HT

Quetiapine93 antipsychotic 86 Human [3H]-LSD

Risperidone100 antipsychotic 29 Human [3H]-5HT

Spiperone97 antipsychotic 0.8 Bovine [3H]-ketanserin

Xanomeline101 antipsychotic 20 Human [3H]-5HT

Yohimbine95 antisedative (veterinary) 43 Human [3H]-5HT
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